linux/drivers/block/brd.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Ram backed block device driver.
   4 *
   5 * Copyright (C) 2007 Nick Piggin
   6 * Copyright (C) 2007 Novell Inc.
   7 *
   8 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
   9 * of their respective owners.
  10 */
  11
  12#include <linux/init.h>
  13#include <linux/initrd.h>
  14#include <linux/module.h>
  15#include <linux/moduleparam.h>
  16#include <linux/major.h>
  17#include <linux/blkdev.h>
  18#include <linux/bio.h>
  19#include <linux/highmem.h>
  20#include <linux/mutex.h>
  21#include <linux/pagemap.h>
  22#include <linux/radix-tree.h>
  23#include <linux/fs.h>
  24#include <linux/slab.h>
  25#include <linux/backing-dev.h>
  26#include <linux/debugfs.h>
  27
  28#include <linux/uaccess.h>
  29
  30#define PAGE_SECTORS_SHIFT      (PAGE_SHIFT - SECTOR_SHIFT)
  31#define PAGE_SECTORS            (1 << PAGE_SECTORS_SHIFT)
  32
  33/*
  34 * Each block ramdisk device has a radix_tree brd_pages of pages that stores
  35 * the pages containing the block device's contents. A brd page's ->index is
  36 * its offset in PAGE_SIZE units. This is similar to, but in no way connected
  37 * with, the kernel's pagecache or buffer cache (which sit above our block
  38 * device).
  39 */
  40struct brd_device {
  41        int             brd_number;
  42
  43        struct request_queue    *brd_queue;
  44        struct gendisk          *brd_disk;
  45        struct list_head        brd_list;
  46
  47        /*
  48         * Backing store of pages and lock to protect it. This is the contents
  49         * of the block device.
  50         */
  51        spinlock_t              brd_lock;
  52        struct radix_tree_root  brd_pages;
  53        u64                     brd_nr_pages;
  54};
  55
  56/*
  57 * Look up and return a brd's page for a given sector.
  58 */
  59static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
  60{
  61        pgoff_t idx;
  62        struct page *page;
  63
  64        /*
  65         * The page lifetime is protected by the fact that we have opened the
  66         * device node -- brd pages will never be deleted under us, so we
  67         * don't need any further locking or refcounting.
  68         *
  69         * This is strictly true for the radix-tree nodes as well (ie. we
  70         * don't actually need the rcu_read_lock()), however that is not a
  71         * documented feature of the radix-tree API so it is better to be
  72         * safe here (we don't have total exclusion from radix tree updates
  73         * here, only deletes).
  74         */
  75        rcu_read_lock();
  76        idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
  77        page = radix_tree_lookup(&brd->brd_pages, idx);
  78        rcu_read_unlock();
  79
  80        BUG_ON(page && page->index != idx);
  81
  82        return page;
  83}
  84
  85/*
  86 * Look up and return a brd's page for a given sector.
  87 * If one does not exist, allocate an empty page, and insert that. Then
  88 * return it.
  89 */
  90static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
  91{
  92        pgoff_t idx;
  93        struct page *page;
  94        gfp_t gfp_flags;
  95
  96        page = brd_lookup_page(brd, sector);
  97        if (page)
  98                return page;
  99
 100        /*
 101         * Must use NOIO because we don't want to recurse back into the
 102         * block or filesystem layers from page reclaim.
 103         */
 104        gfp_flags = GFP_NOIO | __GFP_ZERO | __GFP_HIGHMEM;
 105        page = alloc_page(gfp_flags);
 106        if (!page)
 107                return NULL;
 108
 109        if (radix_tree_preload(GFP_NOIO)) {
 110                __free_page(page);
 111                return NULL;
 112        }
 113
 114        spin_lock(&brd->brd_lock);
 115        idx = sector >> PAGE_SECTORS_SHIFT;
 116        page->index = idx;
 117        if (radix_tree_insert(&brd->brd_pages, idx, page)) {
 118                __free_page(page);
 119                page = radix_tree_lookup(&brd->brd_pages, idx);
 120                BUG_ON(!page);
 121                BUG_ON(page->index != idx);
 122        } else {
 123                brd->brd_nr_pages++;
 124        }
 125        spin_unlock(&brd->brd_lock);
 126
 127        radix_tree_preload_end();
 128
 129        return page;
 130}
 131
 132/*
 133 * Free all backing store pages and radix tree. This must only be called when
 134 * there are no other users of the device.
 135 */
 136#define FREE_BATCH 16
 137static void brd_free_pages(struct brd_device *brd)
 138{
 139        unsigned long pos = 0;
 140        struct page *pages[FREE_BATCH];
 141        int nr_pages;
 142
 143        do {
 144                int i;
 145
 146                nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
 147                                (void **)pages, pos, FREE_BATCH);
 148
 149                for (i = 0; i < nr_pages; i++) {
 150                        void *ret;
 151
 152                        BUG_ON(pages[i]->index < pos);
 153                        pos = pages[i]->index;
 154                        ret = radix_tree_delete(&brd->brd_pages, pos);
 155                        BUG_ON(!ret || ret != pages[i]);
 156                        __free_page(pages[i]);
 157                }
 158
 159                pos++;
 160
 161                /*
 162                 * It takes 3.4 seconds to remove 80GiB ramdisk.
 163                 * So, we need cond_resched to avoid stalling the CPU.
 164                 */
 165                cond_resched();
 166
 167                /*
 168                 * This assumes radix_tree_gang_lookup always returns as
 169                 * many pages as possible. If the radix-tree code changes,
 170                 * so will this have to.
 171                 */
 172        } while (nr_pages == FREE_BATCH);
 173}
 174
 175/*
 176 * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
 177 */
 178static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
 179{
 180        unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
 181        size_t copy;
 182
 183        copy = min_t(size_t, n, PAGE_SIZE - offset);
 184        if (!brd_insert_page(brd, sector))
 185                return -ENOSPC;
 186        if (copy < n) {
 187                sector += copy >> SECTOR_SHIFT;
 188                if (!brd_insert_page(brd, sector))
 189                        return -ENOSPC;
 190        }
 191        return 0;
 192}
 193
 194/*
 195 * Copy n bytes from src to the brd starting at sector. Does not sleep.
 196 */
 197static void copy_to_brd(struct brd_device *brd, const void *src,
 198                        sector_t sector, size_t n)
 199{
 200        struct page *page;
 201        void *dst;
 202        unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
 203        size_t copy;
 204
 205        copy = min_t(size_t, n, PAGE_SIZE - offset);
 206        page = brd_lookup_page(brd, sector);
 207        BUG_ON(!page);
 208
 209        dst = kmap_atomic(page);
 210        memcpy(dst + offset, src, copy);
 211        kunmap_atomic(dst);
 212
 213        if (copy < n) {
 214                src += copy;
 215                sector += copy >> SECTOR_SHIFT;
 216                copy = n - copy;
 217                page = brd_lookup_page(brd, sector);
 218                BUG_ON(!page);
 219
 220                dst = kmap_atomic(page);
 221                memcpy(dst, src, copy);
 222                kunmap_atomic(dst);
 223        }
 224}
 225
 226/*
 227 * Copy n bytes to dst from the brd starting at sector. Does not sleep.
 228 */
 229static void copy_from_brd(void *dst, struct brd_device *brd,
 230                        sector_t sector, size_t n)
 231{
 232        struct page *page;
 233        void *src;
 234        unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
 235        size_t copy;
 236
 237        copy = min_t(size_t, n, PAGE_SIZE - offset);
 238        page = brd_lookup_page(brd, sector);
 239        if (page) {
 240                src = kmap_atomic(page);
 241                memcpy(dst, src + offset, copy);
 242                kunmap_atomic(src);
 243        } else
 244                memset(dst, 0, copy);
 245
 246        if (copy < n) {
 247                dst += copy;
 248                sector += copy >> SECTOR_SHIFT;
 249                copy = n - copy;
 250                page = brd_lookup_page(brd, sector);
 251                if (page) {
 252                        src = kmap_atomic(page);
 253                        memcpy(dst, src, copy);
 254                        kunmap_atomic(src);
 255                } else
 256                        memset(dst, 0, copy);
 257        }
 258}
 259
 260/*
 261 * Process a single bvec of a bio.
 262 */
 263static int brd_do_bvec(struct brd_device *brd, struct page *page,
 264                        unsigned int len, unsigned int off, unsigned int op,
 265                        sector_t sector)
 266{
 267        void *mem;
 268        int err = 0;
 269
 270        if (op_is_write(op)) {
 271                err = copy_to_brd_setup(brd, sector, len);
 272                if (err)
 273                        goto out;
 274        }
 275
 276        mem = kmap_atomic(page);
 277        if (!op_is_write(op)) {
 278                copy_from_brd(mem + off, brd, sector, len);
 279                flush_dcache_page(page);
 280        } else {
 281                flush_dcache_page(page);
 282                copy_to_brd(brd, mem + off, sector, len);
 283        }
 284        kunmap_atomic(mem);
 285
 286out:
 287        return err;
 288}
 289
 290static blk_qc_t brd_submit_bio(struct bio *bio)
 291{
 292        struct brd_device *brd = bio->bi_bdev->bd_disk->private_data;
 293        sector_t sector = bio->bi_iter.bi_sector;
 294        struct bio_vec bvec;
 295        struct bvec_iter iter;
 296
 297        bio_for_each_segment(bvec, bio, iter) {
 298                unsigned int len = bvec.bv_len;
 299                int err;
 300
 301                /* Don't support un-aligned buffer */
 302                WARN_ON_ONCE((bvec.bv_offset & (SECTOR_SIZE - 1)) ||
 303                                (len & (SECTOR_SIZE - 1)));
 304
 305                err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset,
 306                                  bio_op(bio), sector);
 307                if (err)
 308                        goto io_error;
 309                sector += len >> SECTOR_SHIFT;
 310        }
 311
 312        bio_endio(bio);
 313        return BLK_QC_T_NONE;
 314io_error:
 315        bio_io_error(bio);
 316        return BLK_QC_T_NONE;
 317}
 318
 319static int brd_rw_page(struct block_device *bdev, sector_t sector,
 320                       struct page *page, unsigned int op)
 321{
 322        struct brd_device *brd = bdev->bd_disk->private_data;
 323        int err;
 324
 325        if (PageTransHuge(page))
 326                return -ENOTSUPP;
 327        err = brd_do_bvec(brd, page, PAGE_SIZE, 0, op, sector);
 328        page_endio(page, op_is_write(op), err);
 329        return err;
 330}
 331
 332static const struct block_device_operations brd_fops = {
 333        .owner =                THIS_MODULE,
 334        .submit_bio =           brd_submit_bio,
 335        .rw_page =              brd_rw_page,
 336};
 337
 338/*
 339 * And now the modules code and kernel interface.
 340 */
 341static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
 342module_param(rd_nr, int, 0444);
 343MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
 344
 345unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE;
 346module_param(rd_size, ulong, 0444);
 347MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
 348
 349static int max_part = 1;
 350module_param(max_part, int, 0444);
 351MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
 352
 353MODULE_LICENSE("GPL");
 354MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
 355MODULE_ALIAS("rd");
 356
 357#ifndef MODULE
 358/* Legacy boot options - nonmodular */
 359static int __init ramdisk_size(char *str)
 360{
 361        rd_size = simple_strtol(str, NULL, 0);
 362        return 1;
 363}
 364__setup("ramdisk_size=", ramdisk_size);
 365#endif
 366
 367/*
 368 * The device scheme is derived from loop.c. Keep them in synch where possible
 369 * (should share code eventually).
 370 */
 371static LIST_HEAD(brd_devices);
 372static DEFINE_MUTEX(brd_devices_mutex);
 373static struct dentry *brd_debugfs_dir;
 374
 375static struct brd_device *brd_alloc(int i)
 376{
 377        struct brd_device *brd;
 378        struct gendisk *disk;
 379        char buf[DISK_NAME_LEN];
 380
 381        brd = kzalloc(sizeof(*brd), GFP_KERNEL);
 382        if (!brd)
 383                goto out;
 384        brd->brd_number         = i;
 385        spin_lock_init(&brd->brd_lock);
 386        INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
 387
 388        brd->brd_queue = blk_alloc_queue(NUMA_NO_NODE);
 389        if (!brd->brd_queue)
 390                goto out_free_dev;
 391
 392        snprintf(buf, DISK_NAME_LEN, "ram%d", i);
 393        if (!IS_ERR_OR_NULL(brd_debugfs_dir))
 394                debugfs_create_u64(buf, 0444, brd_debugfs_dir,
 395                                &brd->brd_nr_pages);
 396
 397        /* This is so fdisk will align partitions on 4k, because of
 398         * direct_access API needing 4k alignment, returning a PFN
 399         * (This is only a problem on very small devices <= 4M,
 400         *  otherwise fdisk will align on 1M. Regardless this call
 401         *  is harmless)
 402         */
 403        blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE);
 404        disk = brd->brd_disk = alloc_disk(max_part);
 405        if (!disk)
 406                goto out_free_queue;
 407        disk->major             = RAMDISK_MAJOR;
 408        disk->first_minor       = i * max_part;
 409        disk->fops              = &brd_fops;
 410        disk->private_data      = brd;
 411        disk->flags             = GENHD_FL_EXT_DEVT;
 412        strlcpy(disk->disk_name, buf, DISK_NAME_LEN);
 413        set_capacity(disk, rd_size * 2);
 414
 415        /* Tell the block layer that this is not a rotational device */
 416        blk_queue_flag_set(QUEUE_FLAG_NONROT, brd->brd_queue);
 417        blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, brd->brd_queue);
 418
 419        return brd;
 420
 421out_free_queue:
 422        blk_cleanup_queue(brd->brd_queue);
 423out_free_dev:
 424        kfree(brd);
 425out:
 426        return NULL;
 427}
 428
 429static void brd_free(struct brd_device *brd)
 430{
 431        put_disk(brd->brd_disk);
 432        blk_cleanup_queue(brd->brd_queue);
 433        brd_free_pages(brd);
 434        kfree(brd);
 435}
 436
 437static void brd_probe(dev_t dev)
 438{
 439        struct brd_device *brd;
 440        int i = MINOR(dev) / max_part;
 441
 442        mutex_lock(&brd_devices_mutex);
 443        list_for_each_entry(brd, &brd_devices, brd_list) {
 444                if (brd->brd_number == i)
 445                        goto out_unlock;
 446        }
 447
 448        brd = brd_alloc(i);
 449        if (brd) {
 450                brd->brd_disk->queue = brd->brd_queue;
 451                add_disk(brd->brd_disk);
 452                list_add_tail(&brd->brd_list, &brd_devices);
 453        }
 454
 455out_unlock:
 456        mutex_unlock(&brd_devices_mutex);
 457}
 458
 459static void brd_del_one(struct brd_device *brd)
 460{
 461        list_del(&brd->brd_list);
 462        del_gendisk(brd->brd_disk);
 463        brd_free(brd);
 464}
 465
 466static inline void brd_check_and_reset_par(void)
 467{
 468        if (unlikely(!max_part))
 469                max_part = 1;
 470
 471        /*
 472         * make sure 'max_part' can be divided exactly by (1U << MINORBITS),
 473         * otherwise, it is possiable to get same dev_t when adding partitions.
 474         */
 475        if ((1U << MINORBITS) % max_part != 0)
 476                max_part = 1UL << fls(max_part);
 477
 478        if (max_part > DISK_MAX_PARTS) {
 479                pr_info("brd: max_part can't be larger than %d, reset max_part = %d.\n",
 480                        DISK_MAX_PARTS, DISK_MAX_PARTS);
 481                max_part = DISK_MAX_PARTS;
 482        }
 483}
 484
 485static int __init brd_init(void)
 486{
 487        struct brd_device *brd, *next;
 488        int i;
 489
 490        /*
 491         * brd module now has a feature to instantiate underlying device
 492         * structure on-demand, provided that there is an access dev node.
 493         *
 494         * (1) if rd_nr is specified, create that many upfront. else
 495         *     it defaults to CONFIG_BLK_DEV_RAM_COUNT
 496         * (2) User can further extend brd devices by create dev node themselves
 497         *     and have kernel automatically instantiate actual device
 498         *     on-demand. Example:
 499         *              mknod /path/devnod_name b 1 X   # 1 is the rd major
 500         *              fdisk -l /path/devnod_name
 501         *      If (X / max_part) was not already created it will be created
 502         *      dynamically.
 503         */
 504
 505        if (__register_blkdev(RAMDISK_MAJOR, "ramdisk", brd_probe))
 506                return -EIO;
 507
 508        brd_check_and_reset_par();
 509
 510        brd_debugfs_dir = debugfs_create_dir("ramdisk_pages", NULL);
 511
 512        mutex_lock(&brd_devices_mutex);
 513        for (i = 0; i < rd_nr; i++) {
 514                brd = brd_alloc(i);
 515                if (!brd)
 516                        goto out_free;
 517                list_add_tail(&brd->brd_list, &brd_devices);
 518        }
 519
 520        /* point of no return */
 521
 522        list_for_each_entry(brd, &brd_devices, brd_list) {
 523                /*
 524                 * associate with queue just before adding disk for
 525                 * avoiding to mess up failure path
 526                 */
 527                brd->brd_disk->queue = brd->brd_queue;
 528                add_disk(brd->brd_disk);
 529        }
 530        mutex_unlock(&brd_devices_mutex);
 531
 532        pr_info("brd: module loaded\n");
 533        return 0;
 534
 535out_free:
 536        debugfs_remove_recursive(brd_debugfs_dir);
 537
 538        list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
 539                list_del(&brd->brd_list);
 540                brd_free(brd);
 541        }
 542        mutex_unlock(&brd_devices_mutex);
 543        unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
 544
 545        pr_info("brd: module NOT loaded !!!\n");
 546        return -ENOMEM;
 547}
 548
 549static void __exit brd_exit(void)
 550{
 551        struct brd_device *brd, *next;
 552
 553        debugfs_remove_recursive(brd_debugfs_dir);
 554
 555        list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
 556                brd_del_one(brd);
 557
 558        unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
 559
 560        pr_info("brd: module unloaded\n");
 561}
 562
 563module_init(brd_init);
 564module_exit(brd_exit);
 565
 566