linux/drivers/net/ethernet/sun/cassini.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
   3 *
   4 * Copyright (C) 2004 Sun Microsystems Inc.
   5 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
   6 *
   7 * This driver uses the sungem driver (c) David Miller
   8 * (davem@redhat.com) as its basis.
   9 *
  10 * The cassini chip has a number of features that distinguish it from
  11 * the gem chip:
  12 *  4 transmit descriptor rings that are used for either QoS (VLAN) or
  13 *      load balancing (non-VLAN mode)
  14 *  batching of multiple packets
  15 *  multiple CPU dispatching
  16 *  page-based RX descriptor engine with separate completion rings
  17 *  Gigabit support (GMII and PCS interface)
  18 *  MIF link up/down detection works
  19 *
  20 * RX is handled by page sized buffers that are attached as fragments to
  21 * the skb. here's what's done:
  22 *  -- driver allocates pages at a time and keeps reference counts
  23 *     on them.
  24 *  -- the upper protocol layers assume that the header is in the skb
  25 *     itself. as a result, cassini will copy a small amount (64 bytes)
  26 *     to make them happy.
  27 *  -- driver appends the rest of the data pages as frags to skbuffs
  28 *     and increments the reference count
  29 *  -- on page reclamation, the driver swaps the page with a spare page.
  30 *     if that page is still in use, it frees its reference to that page,
  31 *     and allocates a new page for use. otherwise, it just recycles the
  32 *     the page.
  33 *
  34 * NOTE: cassini can parse the header. however, it's not worth it
  35 *       as long as the network stack requires a header copy.
  36 *
  37 * TX has 4 queues. currently these queues are used in a round-robin
  38 * fashion for load balancing. They can also be used for QoS. for that
  39 * to work, however, QoS information needs to be exposed down to the driver
  40 * level so that subqueues get targeted to particular transmit rings.
  41 * alternatively, the queues can be configured via use of the all-purpose
  42 * ioctl.
  43 *
  44 * RX DATA: the rx completion ring has all the info, but the rx desc
  45 * ring has all of the data. RX can conceivably come in under multiple
  46 * interrupts, but the INT# assignment needs to be set up properly by
  47 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
  48 * that. also, the two descriptor rings are designed to distinguish between
  49 * encrypted and non-encrypted packets, but we use them for buffering
  50 * instead.
  51 *
  52 * by default, the selective clear mask is set up to process rx packets.
  53 */
  54
  55#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  56
  57#include <linux/module.h>
  58#include <linux/kernel.h>
  59#include <linux/types.h>
  60#include <linux/compiler.h>
  61#include <linux/slab.h>
  62#include <linux/delay.h>
  63#include <linux/init.h>
  64#include <linux/interrupt.h>
  65#include <linux/vmalloc.h>
  66#include <linux/ioport.h>
  67#include <linux/pci.h>
  68#include <linux/mm.h>
  69#include <linux/highmem.h>
  70#include <linux/list.h>
  71#include <linux/dma-mapping.h>
  72
  73#include <linux/netdevice.h>
  74#include <linux/etherdevice.h>
  75#include <linux/skbuff.h>
  76#include <linux/ethtool.h>
  77#include <linux/crc32.h>
  78#include <linux/random.h>
  79#include <linux/mii.h>
  80#include <linux/ip.h>
  81#include <linux/tcp.h>
  82#include <linux/mutex.h>
  83#include <linux/firmware.h>
  84
  85#include <net/checksum.h>
  86
  87#include <linux/atomic.h>
  88#include <asm/io.h>
  89#include <asm/byteorder.h>
  90#include <linux/uaccess.h>
  91
  92#define cas_page_map(x)      kmap_atomic((x))
  93#define cas_page_unmap(x)    kunmap_atomic((x))
  94#define CAS_NCPUS            num_online_cpus()
  95
  96#define cas_skb_release(x)  netif_rx(x)
  97
  98/* select which firmware to use */
  99#define USE_HP_WORKAROUND
 100#define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
 101#define CAS_HP_ALT_FIRMWARE   cas_prog_null /* alternate firmware */
 102
 103#include "cassini.h"
 104
 105#define USE_TX_COMPWB      /* use completion writeback registers */
 106#define USE_CSMA_CD_PROTO  /* standard CSMA/CD */
 107#define USE_RX_BLANK       /* hw interrupt mitigation */
 108#undef USE_ENTROPY_DEV     /* don't test for entropy device */
 109
 110/* NOTE: these aren't useable unless PCI interrupts can be assigned.
 111 * also, we need to make cp->lock finer-grained.
 112 */
 113#undef  USE_PCI_INTB
 114#undef  USE_PCI_INTC
 115#undef  USE_PCI_INTD
 116#undef  USE_QOS
 117
 118#undef  USE_VPD_DEBUG       /* debug vpd information if defined */
 119
 120/* rx processing options */
 121#define USE_PAGE_ORDER      /* specify to allocate large rx pages */
 122#define RX_DONT_BATCH  0    /* if 1, don't batch flows */
 123#define RX_COPY_ALWAYS 0    /* if 0, use frags */
 124#define RX_COPY_MIN    64   /* copy a little to make upper layers happy */
 125#undef  RX_COUNT_BUFFERS    /* define to calculate RX buffer stats */
 126
 127#define DRV_MODULE_NAME         "cassini"
 128#define DRV_MODULE_VERSION      "1.6"
 129#define DRV_MODULE_RELDATE      "21 May 2008"
 130
 131#define CAS_DEF_MSG_ENABLE        \
 132        (NETIF_MSG_DRV          | \
 133         NETIF_MSG_PROBE        | \
 134         NETIF_MSG_LINK         | \
 135         NETIF_MSG_TIMER        | \
 136         NETIF_MSG_IFDOWN       | \
 137         NETIF_MSG_IFUP         | \
 138         NETIF_MSG_RX_ERR       | \
 139         NETIF_MSG_TX_ERR)
 140
 141/* length of time before we decide the hardware is borked,
 142 * and dev->tx_timeout() should be called to fix the problem
 143 */
 144#define CAS_TX_TIMEOUT                  (HZ)
 145#define CAS_LINK_TIMEOUT                (22*HZ/10)
 146#define CAS_LINK_FAST_TIMEOUT           (1)
 147
 148/* timeout values for state changing. these specify the number
 149 * of 10us delays to be used before giving up.
 150 */
 151#define STOP_TRIES_PHY 1000
 152#define STOP_TRIES     5000
 153
 154/* specify a minimum frame size to deal with some fifo issues
 155 * max mtu == 2 * page size - ethernet header - 64 - swivel =
 156 *            2 * page_size - 0x50
 157 */
 158#define CAS_MIN_FRAME                   97
 159#define CAS_1000MB_MIN_FRAME            255
 160#define CAS_MIN_MTU                     60
 161#define CAS_MAX_MTU                     min(((cp->page_size << 1) - 0x50), 9000)
 162
 163#if 1
 164/*
 165 * Eliminate these and use separate atomic counters for each, to
 166 * avoid a race condition.
 167 */
 168#else
 169#define CAS_RESET_MTU                   1
 170#define CAS_RESET_ALL                   2
 171#define CAS_RESET_SPARE                 3
 172#endif
 173
 174static char version[] =
 175        DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
 176
 177static int cassini_debug = -1;  /* -1 == use CAS_DEF_MSG_ENABLE as value */
 178static int link_mode;
 179
 180MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
 181MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
 182MODULE_LICENSE("GPL");
 183MODULE_FIRMWARE("sun/cassini.bin");
 184module_param(cassini_debug, int, 0);
 185MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
 186module_param(link_mode, int, 0);
 187MODULE_PARM_DESC(link_mode, "default link mode");
 188
 189/*
 190 * Work around for a PCS bug in which the link goes down due to the chip
 191 * being confused and never showing a link status of "up."
 192 */
 193#define DEFAULT_LINKDOWN_TIMEOUT 5
 194/*
 195 * Value in seconds, for user input.
 196 */
 197static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
 198module_param(linkdown_timeout, int, 0);
 199MODULE_PARM_DESC(linkdown_timeout,
 200"min reset interval in sec. for PCS linkdown issue; disabled if not positive");
 201
 202/*
 203 * value in 'ticks' (units used by jiffies). Set when we init the
 204 * module because 'HZ' in actually a function call on some flavors of
 205 * Linux.  This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
 206 */
 207static int link_transition_timeout;
 208
 209
 210
 211static u16 link_modes[] = {
 212        BMCR_ANENABLE,                   /* 0 : autoneg */
 213        0,                               /* 1 : 10bt half duplex */
 214        BMCR_SPEED100,                   /* 2 : 100bt half duplex */
 215        BMCR_FULLDPLX,                   /* 3 : 10bt full duplex */
 216        BMCR_SPEED100|BMCR_FULLDPLX,     /* 4 : 100bt full duplex */
 217        CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
 218};
 219
 220static const struct pci_device_id cas_pci_tbl[] = {
 221        { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
 222          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 223        { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
 224          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 225        { 0, }
 226};
 227
 228MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
 229
 230static void cas_set_link_modes(struct cas *cp);
 231
 232static inline void cas_lock_tx(struct cas *cp)
 233{
 234        int i;
 235
 236        for (i = 0; i < N_TX_RINGS; i++)
 237                spin_lock_nested(&cp->tx_lock[i], i);
 238}
 239
 240/* WTZ: QA was finding deadlock problems with the previous
 241 * versions after long test runs with multiple cards per machine.
 242 * See if replacing cas_lock_all with safer versions helps. The
 243 * symptoms QA is reporting match those we'd expect if interrupts
 244 * aren't being properly restored, and we fixed a previous deadlock
 245 * with similar symptoms by using save/restore versions in other
 246 * places.
 247 */
 248#define cas_lock_all_save(cp, flags) \
 249do { \
 250        struct cas *xxxcp = (cp); \
 251        spin_lock_irqsave(&xxxcp->lock, flags); \
 252        cas_lock_tx(xxxcp); \
 253} while (0)
 254
 255static inline void cas_unlock_tx(struct cas *cp)
 256{
 257        int i;
 258
 259        for (i = N_TX_RINGS; i > 0; i--)
 260                spin_unlock(&cp->tx_lock[i - 1]);
 261}
 262
 263#define cas_unlock_all_restore(cp, flags) \
 264do { \
 265        struct cas *xxxcp = (cp); \
 266        cas_unlock_tx(xxxcp); \
 267        spin_unlock_irqrestore(&xxxcp->lock, flags); \
 268} while (0)
 269
 270static void cas_disable_irq(struct cas *cp, const int ring)
 271{
 272        /* Make sure we won't get any more interrupts */
 273        if (ring == 0) {
 274                writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
 275                return;
 276        }
 277
 278        /* disable completion interrupts and selectively mask */
 279        if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
 280                switch (ring) {
 281#if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
 282#ifdef USE_PCI_INTB
 283                case 1:
 284#endif
 285#ifdef USE_PCI_INTC
 286                case 2:
 287#endif
 288#ifdef USE_PCI_INTD
 289                case 3:
 290#endif
 291                        writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
 292                               cp->regs + REG_PLUS_INTRN_MASK(ring));
 293                        break;
 294#endif
 295                default:
 296                        writel(INTRN_MASK_CLEAR_ALL, cp->regs +
 297                               REG_PLUS_INTRN_MASK(ring));
 298                        break;
 299                }
 300        }
 301}
 302
 303static inline void cas_mask_intr(struct cas *cp)
 304{
 305        int i;
 306
 307        for (i = 0; i < N_RX_COMP_RINGS; i++)
 308                cas_disable_irq(cp, i);
 309}
 310
 311static void cas_enable_irq(struct cas *cp, const int ring)
 312{
 313        if (ring == 0) { /* all but TX_DONE */
 314                writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
 315                return;
 316        }
 317
 318        if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
 319                switch (ring) {
 320#if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
 321#ifdef USE_PCI_INTB
 322                case 1:
 323#endif
 324#ifdef USE_PCI_INTC
 325                case 2:
 326#endif
 327#ifdef USE_PCI_INTD
 328                case 3:
 329#endif
 330                        writel(INTRN_MASK_RX_EN, cp->regs +
 331                               REG_PLUS_INTRN_MASK(ring));
 332                        break;
 333#endif
 334                default:
 335                        break;
 336                }
 337        }
 338}
 339
 340static inline void cas_unmask_intr(struct cas *cp)
 341{
 342        int i;
 343
 344        for (i = 0; i < N_RX_COMP_RINGS; i++)
 345                cas_enable_irq(cp, i);
 346}
 347
 348static inline void cas_entropy_gather(struct cas *cp)
 349{
 350#ifdef USE_ENTROPY_DEV
 351        if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
 352                return;
 353
 354        batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
 355                            readl(cp->regs + REG_ENTROPY_IV),
 356                            sizeof(uint64_t)*8);
 357#endif
 358}
 359
 360static inline void cas_entropy_reset(struct cas *cp)
 361{
 362#ifdef USE_ENTROPY_DEV
 363        if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
 364                return;
 365
 366        writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
 367               cp->regs + REG_BIM_LOCAL_DEV_EN);
 368        writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
 369        writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
 370
 371        /* if we read back 0x0, we don't have an entropy device */
 372        if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
 373                cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
 374#endif
 375}
 376
 377/* access to the phy. the following assumes that we've initialized the MIF to
 378 * be in frame rather than bit-bang mode
 379 */
 380static u16 cas_phy_read(struct cas *cp, int reg)
 381{
 382        u32 cmd;
 383        int limit = STOP_TRIES_PHY;
 384
 385        cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
 386        cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
 387        cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
 388        cmd |= MIF_FRAME_TURN_AROUND_MSB;
 389        writel(cmd, cp->regs + REG_MIF_FRAME);
 390
 391        /* poll for completion */
 392        while (limit-- > 0) {
 393                udelay(10);
 394                cmd = readl(cp->regs + REG_MIF_FRAME);
 395                if (cmd & MIF_FRAME_TURN_AROUND_LSB)
 396                        return cmd & MIF_FRAME_DATA_MASK;
 397        }
 398        return 0xFFFF; /* -1 */
 399}
 400
 401static int cas_phy_write(struct cas *cp, int reg, u16 val)
 402{
 403        int limit = STOP_TRIES_PHY;
 404        u32 cmd;
 405
 406        cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
 407        cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
 408        cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
 409        cmd |= MIF_FRAME_TURN_AROUND_MSB;
 410        cmd |= val & MIF_FRAME_DATA_MASK;
 411        writel(cmd, cp->regs + REG_MIF_FRAME);
 412
 413        /* poll for completion */
 414        while (limit-- > 0) {
 415                udelay(10);
 416                cmd = readl(cp->regs + REG_MIF_FRAME);
 417                if (cmd & MIF_FRAME_TURN_AROUND_LSB)
 418                        return 0;
 419        }
 420        return -1;
 421}
 422
 423static void cas_phy_powerup(struct cas *cp)
 424{
 425        u16 ctl = cas_phy_read(cp, MII_BMCR);
 426
 427        if ((ctl & BMCR_PDOWN) == 0)
 428                return;
 429        ctl &= ~BMCR_PDOWN;
 430        cas_phy_write(cp, MII_BMCR, ctl);
 431}
 432
 433static void cas_phy_powerdown(struct cas *cp)
 434{
 435        u16 ctl = cas_phy_read(cp, MII_BMCR);
 436
 437        if (ctl & BMCR_PDOWN)
 438                return;
 439        ctl |= BMCR_PDOWN;
 440        cas_phy_write(cp, MII_BMCR, ctl);
 441}
 442
 443/* cp->lock held. note: the last put_page will free the buffer */
 444static int cas_page_free(struct cas *cp, cas_page_t *page)
 445{
 446        dma_unmap_page(&cp->pdev->dev, page->dma_addr, cp->page_size,
 447                       DMA_FROM_DEVICE);
 448        __free_pages(page->buffer, cp->page_order);
 449        kfree(page);
 450        return 0;
 451}
 452
 453#ifdef RX_COUNT_BUFFERS
 454#define RX_USED_ADD(x, y)       ((x)->used += (y))
 455#define RX_USED_SET(x, y)       ((x)->used  = (y))
 456#else
 457#define RX_USED_ADD(x, y) do { } while(0)
 458#define RX_USED_SET(x, y) do { } while(0)
 459#endif
 460
 461/* local page allocation routines for the receive buffers. jumbo pages
 462 * require at least 8K contiguous and 8K aligned buffers.
 463 */
 464static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
 465{
 466        cas_page_t *page;
 467
 468        page = kmalloc(sizeof(cas_page_t), flags);
 469        if (!page)
 470                return NULL;
 471
 472        INIT_LIST_HEAD(&page->list);
 473        RX_USED_SET(page, 0);
 474        page->buffer = alloc_pages(flags, cp->page_order);
 475        if (!page->buffer)
 476                goto page_err;
 477        page->dma_addr = dma_map_page(&cp->pdev->dev, page->buffer, 0,
 478                                      cp->page_size, DMA_FROM_DEVICE);
 479        return page;
 480
 481page_err:
 482        kfree(page);
 483        return NULL;
 484}
 485
 486/* initialize spare pool of rx buffers, but allocate during the open */
 487static void cas_spare_init(struct cas *cp)
 488{
 489        spin_lock(&cp->rx_inuse_lock);
 490        INIT_LIST_HEAD(&cp->rx_inuse_list);
 491        spin_unlock(&cp->rx_inuse_lock);
 492
 493        spin_lock(&cp->rx_spare_lock);
 494        INIT_LIST_HEAD(&cp->rx_spare_list);
 495        cp->rx_spares_needed = RX_SPARE_COUNT;
 496        spin_unlock(&cp->rx_spare_lock);
 497}
 498
 499/* used on close. free all the spare buffers. */
 500static void cas_spare_free(struct cas *cp)
 501{
 502        struct list_head list, *elem, *tmp;
 503
 504        /* free spare buffers */
 505        INIT_LIST_HEAD(&list);
 506        spin_lock(&cp->rx_spare_lock);
 507        list_splice_init(&cp->rx_spare_list, &list);
 508        spin_unlock(&cp->rx_spare_lock);
 509        list_for_each_safe(elem, tmp, &list) {
 510                cas_page_free(cp, list_entry(elem, cas_page_t, list));
 511        }
 512
 513        INIT_LIST_HEAD(&list);
 514#if 1
 515        /*
 516         * Looks like Adrian had protected this with a different
 517         * lock than used everywhere else to manipulate this list.
 518         */
 519        spin_lock(&cp->rx_inuse_lock);
 520        list_splice_init(&cp->rx_inuse_list, &list);
 521        spin_unlock(&cp->rx_inuse_lock);
 522#else
 523        spin_lock(&cp->rx_spare_lock);
 524        list_splice_init(&cp->rx_inuse_list, &list);
 525        spin_unlock(&cp->rx_spare_lock);
 526#endif
 527        list_for_each_safe(elem, tmp, &list) {
 528                cas_page_free(cp, list_entry(elem, cas_page_t, list));
 529        }
 530}
 531
 532/* replenish spares if needed */
 533static void cas_spare_recover(struct cas *cp, const gfp_t flags)
 534{
 535        struct list_head list, *elem, *tmp;
 536        int needed, i;
 537
 538        /* check inuse list. if we don't need any more free buffers,
 539         * just free it
 540         */
 541
 542        /* make a local copy of the list */
 543        INIT_LIST_HEAD(&list);
 544        spin_lock(&cp->rx_inuse_lock);
 545        list_splice_init(&cp->rx_inuse_list, &list);
 546        spin_unlock(&cp->rx_inuse_lock);
 547
 548        list_for_each_safe(elem, tmp, &list) {
 549                cas_page_t *page = list_entry(elem, cas_page_t, list);
 550
 551                /*
 552                 * With the lockless pagecache, cassini buffering scheme gets
 553                 * slightly less accurate: we might find that a page has an
 554                 * elevated reference count here, due to a speculative ref,
 555                 * and skip it as in-use. Ideally we would be able to reclaim
 556                 * it. However this would be such a rare case, it doesn't
 557                 * matter too much as we should pick it up the next time round.
 558                 *
 559                 * Importantly, if we find that the page has a refcount of 1
 560                 * here (our refcount), then we know it is definitely not inuse
 561                 * so we can reuse it.
 562                 */
 563                if (page_count(page->buffer) > 1)
 564                        continue;
 565
 566                list_del(elem);
 567                spin_lock(&cp->rx_spare_lock);
 568                if (cp->rx_spares_needed > 0) {
 569                        list_add(elem, &cp->rx_spare_list);
 570                        cp->rx_spares_needed--;
 571                        spin_unlock(&cp->rx_spare_lock);
 572                } else {
 573                        spin_unlock(&cp->rx_spare_lock);
 574                        cas_page_free(cp, page);
 575                }
 576        }
 577
 578        /* put any inuse buffers back on the list */
 579        if (!list_empty(&list)) {
 580                spin_lock(&cp->rx_inuse_lock);
 581                list_splice(&list, &cp->rx_inuse_list);
 582                spin_unlock(&cp->rx_inuse_lock);
 583        }
 584
 585        spin_lock(&cp->rx_spare_lock);
 586        needed = cp->rx_spares_needed;
 587        spin_unlock(&cp->rx_spare_lock);
 588        if (!needed)
 589                return;
 590
 591        /* we still need spares, so try to allocate some */
 592        INIT_LIST_HEAD(&list);
 593        i = 0;
 594        while (i < needed) {
 595                cas_page_t *spare = cas_page_alloc(cp, flags);
 596                if (!spare)
 597                        break;
 598                list_add(&spare->list, &list);
 599                i++;
 600        }
 601
 602        spin_lock(&cp->rx_spare_lock);
 603        list_splice(&list, &cp->rx_spare_list);
 604        cp->rx_spares_needed -= i;
 605        spin_unlock(&cp->rx_spare_lock);
 606}
 607
 608/* pull a page from the list. */
 609static cas_page_t *cas_page_dequeue(struct cas *cp)
 610{
 611        struct list_head *entry;
 612        int recover;
 613
 614        spin_lock(&cp->rx_spare_lock);
 615        if (list_empty(&cp->rx_spare_list)) {
 616                /* try to do a quick recovery */
 617                spin_unlock(&cp->rx_spare_lock);
 618                cas_spare_recover(cp, GFP_ATOMIC);
 619                spin_lock(&cp->rx_spare_lock);
 620                if (list_empty(&cp->rx_spare_list)) {
 621                        netif_err(cp, rx_err, cp->dev,
 622                                  "no spare buffers available\n");
 623                        spin_unlock(&cp->rx_spare_lock);
 624                        return NULL;
 625                }
 626        }
 627
 628        entry = cp->rx_spare_list.next;
 629        list_del(entry);
 630        recover = ++cp->rx_spares_needed;
 631        spin_unlock(&cp->rx_spare_lock);
 632
 633        /* trigger the timer to do the recovery */
 634        if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
 635#if 1
 636                atomic_inc(&cp->reset_task_pending);
 637                atomic_inc(&cp->reset_task_pending_spare);
 638                schedule_work(&cp->reset_task);
 639#else
 640                atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
 641                schedule_work(&cp->reset_task);
 642#endif
 643        }
 644        return list_entry(entry, cas_page_t, list);
 645}
 646
 647
 648static void cas_mif_poll(struct cas *cp, const int enable)
 649{
 650        u32 cfg;
 651
 652        cfg  = readl(cp->regs + REG_MIF_CFG);
 653        cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
 654
 655        if (cp->phy_type & CAS_PHY_MII_MDIO1)
 656                cfg |= MIF_CFG_PHY_SELECT;
 657
 658        /* poll and interrupt on link status change. */
 659        if (enable) {
 660                cfg |= MIF_CFG_POLL_EN;
 661                cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
 662                cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
 663        }
 664        writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
 665               cp->regs + REG_MIF_MASK);
 666        writel(cfg, cp->regs + REG_MIF_CFG);
 667}
 668
 669/* Must be invoked under cp->lock */
 670static void cas_begin_auto_negotiation(struct cas *cp,
 671                                       const struct ethtool_link_ksettings *ep)
 672{
 673        u16 ctl;
 674#if 1
 675        int lcntl;
 676        int changed = 0;
 677        int oldstate = cp->lstate;
 678        int link_was_not_down = !(oldstate == link_down);
 679#endif
 680        /* Setup link parameters */
 681        if (!ep)
 682                goto start_aneg;
 683        lcntl = cp->link_cntl;
 684        if (ep->base.autoneg == AUTONEG_ENABLE) {
 685                cp->link_cntl = BMCR_ANENABLE;
 686        } else {
 687                u32 speed = ep->base.speed;
 688                cp->link_cntl = 0;
 689                if (speed == SPEED_100)
 690                        cp->link_cntl |= BMCR_SPEED100;
 691                else if (speed == SPEED_1000)
 692                        cp->link_cntl |= CAS_BMCR_SPEED1000;
 693                if (ep->base.duplex == DUPLEX_FULL)
 694                        cp->link_cntl |= BMCR_FULLDPLX;
 695        }
 696#if 1
 697        changed = (lcntl != cp->link_cntl);
 698#endif
 699start_aneg:
 700        if (cp->lstate == link_up) {
 701                netdev_info(cp->dev, "PCS link down\n");
 702        } else {
 703                if (changed) {
 704                        netdev_info(cp->dev, "link configuration changed\n");
 705                }
 706        }
 707        cp->lstate = link_down;
 708        cp->link_transition = LINK_TRANSITION_LINK_DOWN;
 709        if (!cp->hw_running)
 710                return;
 711#if 1
 712        /*
 713         * WTZ: If the old state was link_up, we turn off the carrier
 714         * to replicate everything we do elsewhere on a link-down
 715         * event when we were already in a link-up state..
 716         */
 717        if (oldstate == link_up)
 718                netif_carrier_off(cp->dev);
 719        if (changed  && link_was_not_down) {
 720                /*
 721                 * WTZ: This branch will simply schedule a full reset after
 722                 * we explicitly changed link modes in an ioctl. See if this
 723                 * fixes the link-problems we were having for forced mode.
 724                 */
 725                atomic_inc(&cp->reset_task_pending);
 726                atomic_inc(&cp->reset_task_pending_all);
 727                schedule_work(&cp->reset_task);
 728                cp->timer_ticks = 0;
 729                mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
 730                return;
 731        }
 732#endif
 733        if (cp->phy_type & CAS_PHY_SERDES) {
 734                u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
 735
 736                if (cp->link_cntl & BMCR_ANENABLE) {
 737                        val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
 738                        cp->lstate = link_aneg;
 739                } else {
 740                        if (cp->link_cntl & BMCR_FULLDPLX)
 741                                val |= PCS_MII_CTRL_DUPLEX;
 742                        val &= ~PCS_MII_AUTONEG_EN;
 743                        cp->lstate = link_force_ok;
 744                }
 745                cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
 746                writel(val, cp->regs + REG_PCS_MII_CTRL);
 747
 748        } else {
 749                cas_mif_poll(cp, 0);
 750                ctl = cas_phy_read(cp, MII_BMCR);
 751                ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
 752                         CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
 753                ctl |= cp->link_cntl;
 754                if (ctl & BMCR_ANENABLE) {
 755                        ctl |= BMCR_ANRESTART;
 756                        cp->lstate = link_aneg;
 757                } else {
 758                        cp->lstate = link_force_ok;
 759                }
 760                cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
 761                cas_phy_write(cp, MII_BMCR, ctl);
 762                cas_mif_poll(cp, 1);
 763        }
 764
 765        cp->timer_ticks = 0;
 766        mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
 767}
 768
 769/* Must be invoked under cp->lock. */
 770static int cas_reset_mii_phy(struct cas *cp)
 771{
 772        int limit = STOP_TRIES_PHY;
 773        u16 val;
 774
 775        cas_phy_write(cp, MII_BMCR, BMCR_RESET);
 776        udelay(100);
 777        while (--limit) {
 778                val = cas_phy_read(cp, MII_BMCR);
 779                if ((val & BMCR_RESET) == 0)
 780                        break;
 781                udelay(10);
 782        }
 783        return limit <= 0;
 784}
 785
 786static void cas_saturn_firmware_init(struct cas *cp)
 787{
 788        const struct firmware *fw;
 789        const char fw_name[] = "sun/cassini.bin";
 790        int err;
 791
 792        if (PHY_NS_DP83065 != cp->phy_id)
 793                return;
 794
 795        err = request_firmware(&fw, fw_name, &cp->pdev->dev);
 796        if (err) {
 797                pr_err("Failed to load firmware \"%s\"\n",
 798                       fw_name);
 799                return;
 800        }
 801        if (fw->size < 2) {
 802                pr_err("bogus length %zu in \"%s\"\n",
 803                       fw->size, fw_name);
 804                goto out;
 805        }
 806        cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
 807        cp->fw_size = fw->size - 2;
 808        cp->fw_data = vmalloc(cp->fw_size);
 809        if (!cp->fw_data)
 810                goto out;
 811        memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
 812out:
 813        release_firmware(fw);
 814}
 815
 816static void cas_saturn_firmware_load(struct cas *cp)
 817{
 818        int i;
 819
 820        if (!cp->fw_data)
 821                return;
 822
 823        cas_phy_powerdown(cp);
 824
 825        /* expanded memory access mode */
 826        cas_phy_write(cp, DP83065_MII_MEM, 0x0);
 827
 828        /* pointer configuration for new firmware */
 829        cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
 830        cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
 831        cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
 832        cas_phy_write(cp, DP83065_MII_REGD, 0x82);
 833        cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
 834        cas_phy_write(cp, DP83065_MII_REGD, 0x0);
 835        cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
 836        cas_phy_write(cp, DP83065_MII_REGD, 0x39);
 837
 838        /* download new firmware */
 839        cas_phy_write(cp, DP83065_MII_MEM, 0x1);
 840        cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
 841        for (i = 0; i < cp->fw_size; i++)
 842                cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
 843
 844        /* enable firmware */
 845        cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
 846        cas_phy_write(cp, DP83065_MII_REGD, 0x1);
 847}
 848
 849
 850/* phy initialization */
 851static void cas_phy_init(struct cas *cp)
 852{
 853        u16 val;
 854
 855        /* if we're in MII/GMII mode, set up phy */
 856        if (CAS_PHY_MII(cp->phy_type)) {
 857                writel(PCS_DATAPATH_MODE_MII,
 858                       cp->regs + REG_PCS_DATAPATH_MODE);
 859
 860                cas_mif_poll(cp, 0);
 861                cas_reset_mii_phy(cp); /* take out of isolate mode */
 862
 863                if (PHY_LUCENT_B0 == cp->phy_id) {
 864                        /* workaround link up/down issue with lucent */
 865                        cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
 866                        cas_phy_write(cp, MII_BMCR, 0x00f1);
 867                        cas_phy_write(cp, LUCENT_MII_REG, 0x0);
 868
 869                } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
 870                        /* workarounds for broadcom phy */
 871                        cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
 872                        cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
 873                        cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
 874                        cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
 875                        cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
 876                        cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
 877                        cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
 878                        cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
 879                        cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
 880                        cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
 881                        cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
 882
 883                } else if (PHY_BROADCOM_5411 == cp->phy_id) {
 884                        val = cas_phy_read(cp, BROADCOM_MII_REG4);
 885                        val = cas_phy_read(cp, BROADCOM_MII_REG4);
 886                        if (val & 0x0080) {
 887                                /* link workaround */
 888                                cas_phy_write(cp, BROADCOM_MII_REG4,
 889                                              val & ~0x0080);
 890                        }
 891
 892                } else if (cp->cas_flags & CAS_FLAG_SATURN) {
 893                        writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
 894                               SATURN_PCFG_FSI : 0x0,
 895                               cp->regs + REG_SATURN_PCFG);
 896
 897                        /* load firmware to address 10Mbps auto-negotiation
 898                         * issue. NOTE: this will need to be changed if the
 899                         * default firmware gets fixed.
 900                         */
 901                        if (PHY_NS_DP83065 == cp->phy_id) {
 902                                cas_saturn_firmware_load(cp);
 903                        }
 904                        cas_phy_powerup(cp);
 905                }
 906
 907                /* advertise capabilities */
 908                val = cas_phy_read(cp, MII_BMCR);
 909                val &= ~BMCR_ANENABLE;
 910                cas_phy_write(cp, MII_BMCR, val);
 911                udelay(10);
 912
 913                cas_phy_write(cp, MII_ADVERTISE,
 914                              cas_phy_read(cp, MII_ADVERTISE) |
 915                              (ADVERTISE_10HALF | ADVERTISE_10FULL |
 916                               ADVERTISE_100HALF | ADVERTISE_100FULL |
 917                               CAS_ADVERTISE_PAUSE |
 918                               CAS_ADVERTISE_ASYM_PAUSE));
 919
 920                if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
 921                        /* make sure that we don't advertise half
 922                         * duplex to avoid a chip issue
 923                         */
 924                        val  = cas_phy_read(cp, CAS_MII_1000_CTRL);
 925                        val &= ~CAS_ADVERTISE_1000HALF;
 926                        val |= CAS_ADVERTISE_1000FULL;
 927                        cas_phy_write(cp, CAS_MII_1000_CTRL, val);
 928                }
 929
 930        } else {
 931                /* reset pcs for serdes */
 932                u32 val;
 933                int limit;
 934
 935                writel(PCS_DATAPATH_MODE_SERDES,
 936                       cp->regs + REG_PCS_DATAPATH_MODE);
 937
 938                /* enable serdes pins on saturn */
 939                if (cp->cas_flags & CAS_FLAG_SATURN)
 940                        writel(0, cp->regs + REG_SATURN_PCFG);
 941
 942                /* Reset PCS unit. */
 943                val = readl(cp->regs + REG_PCS_MII_CTRL);
 944                val |= PCS_MII_RESET;
 945                writel(val, cp->regs + REG_PCS_MII_CTRL);
 946
 947                limit = STOP_TRIES;
 948                while (--limit > 0) {
 949                        udelay(10);
 950                        if ((readl(cp->regs + REG_PCS_MII_CTRL) &
 951                             PCS_MII_RESET) == 0)
 952                                break;
 953                }
 954                if (limit <= 0)
 955                        netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n",
 956                                    readl(cp->regs + REG_PCS_STATE_MACHINE));
 957
 958                /* Make sure PCS is disabled while changing advertisement
 959                 * configuration.
 960                 */
 961                writel(0x0, cp->regs + REG_PCS_CFG);
 962
 963                /* Advertise all capabilities except half-duplex. */
 964                val  = readl(cp->regs + REG_PCS_MII_ADVERT);
 965                val &= ~PCS_MII_ADVERT_HD;
 966                val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
 967                        PCS_MII_ADVERT_ASYM_PAUSE);
 968                writel(val, cp->regs + REG_PCS_MII_ADVERT);
 969
 970                /* enable PCS */
 971                writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
 972
 973                /* pcs workaround: enable sync detect */
 974                writel(PCS_SERDES_CTRL_SYNCD_EN,
 975                       cp->regs + REG_PCS_SERDES_CTRL);
 976        }
 977}
 978
 979
 980static int cas_pcs_link_check(struct cas *cp)
 981{
 982        u32 stat, state_machine;
 983        int retval = 0;
 984
 985        /* The link status bit latches on zero, so you must
 986         * read it twice in such a case to see a transition
 987         * to the link being up.
 988         */
 989        stat = readl(cp->regs + REG_PCS_MII_STATUS);
 990        if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
 991                stat = readl(cp->regs + REG_PCS_MII_STATUS);
 992
 993        /* The remote-fault indication is only valid
 994         * when autoneg has completed.
 995         */
 996        if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
 997                     PCS_MII_STATUS_REMOTE_FAULT)) ==
 998            (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT))
 999                netif_info(cp, link, cp->dev, "PCS RemoteFault\n");
1000
1001        /* work around link detection issue by querying the PCS state
1002         * machine directly.
1003         */
1004        state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1005        if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1006                stat &= ~PCS_MII_STATUS_LINK_STATUS;
1007        } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1008                stat |= PCS_MII_STATUS_LINK_STATUS;
1009        }
1010
1011        if (stat & PCS_MII_STATUS_LINK_STATUS) {
1012                if (cp->lstate != link_up) {
1013                        if (cp->opened) {
1014                                cp->lstate = link_up;
1015                                cp->link_transition = LINK_TRANSITION_LINK_UP;
1016
1017                                cas_set_link_modes(cp);
1018                                netif_carrier_on(cp->dev);
1019                        }
1020                }
1021        } else if (cp->lstate == link_up) {
1022                cp->lstate = link_down;
1023                if (link_transition_timeout != 0 &&
1024                    cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1025                    !cp->link_transition_jiffies_valid) {
1026                        /*
1027                         * force a reset, as a workaround for the
1028                         * link-failure problem. May want to move this to a
1029                         * point a bit earlier in the sequence. If we had
1030                         * generated a reset a short time ago, we'll wait for
1031                         * the link timer to check the status until a
1032                         * timer expires (link_transistion_jiffies_valid is
1033                         * true when the timer is running.)  Instead of using
1034                         * a system timer, we just do a check whenever the
1035                         * link timer is running - this clears the flag after
1036                         * a suitable delay.
1037                         */
1038                        retval = 1;
1039                        cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1040                        cp->link_transition_jiffies = jiffies;
1041                        cp->link_transition_jiffies_valid = 1;
1042                } else {
1043                        cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1044                }
1045                netif_carrier_off(cp->dev);
1046                if (cp->opened)
1047                        netif_info(cp, link, cp->dev, "PCS link down\n");
1048
1049                /* Cassini only: if you force a mode, there can be
1050                 * sync problems on link down. to fix that, the following
1051                 * things need to be checked:
1052                 * 1) read serialink state register
1053                 * 2) read pcs status register to verify link down.
1054                 * 3) if link down and serial link == 0x03, then you need
1055                 *    to global reset the chip.
1056                 */
1057                if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1058                        /* should check to see if we're in a forced mode */
1059                        stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1060                        if (stat == 0x03)
1061                                return 1;
1062                }
1063        } else if (cp->lstate == link_down) {
1064                if (link_transition_timeout != 0 &&
1065                    cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1066                    !cp->link_transition_jiffies_valid) {
1067                        /* force a reset, as a workaround for the
1068                         * link-failure problem.  May want to move
1069                         * this to a point a bit earlier in the
1070                         * sequence.
1071                         */
1072                        retval = 1;
1073                        cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1074                        cp->link_transition_jiffies = jiffies;
1075                        cp->link_transition_jiffies_valid = 1;
1076                } else {
1077                        cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1078                }
1079        }
1080
1081        return retval;
1082}
1083
1084static int cas_pcs_interrupt(struct net_device *dev,
1085                             struct cas *cp, u32 status)
1086{
1087        u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1088
1089        if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1090                return 0;
1091        return cas_pcs_link_check(cp);
1092}
1093
1094static int cas_txmac_interrupt(struct net_device *dev,
1095                               struct cas *cp, u32 status)
1096{
1097        u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1098
1099        if (!txmac_stat)
1100                return 0;
1101
1102        netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1103                     "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat);
1104
1105        /* Defer timer expiration is quite normal,
1106         * don't even log the event.
1107         */
1108        if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1109            !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1110                return 0;
1111
1112        spin_lock(&cp->stat_lock[0]);
1113        if (txmac_stat & MAC_TX_UNDERRUN) {
1114                netdev_err(dev, "TX MAC xmit underrun\n");
1115                cp->net_stats[0].tx_fifo_errors++;
1116        }
1117
1118        if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1119                netdev_err(dev, "TX MAC max packet size error\n");
1120                cp->net_stats[0].tx_errors++;
1121        }
1122
1123        /* The rest are all cases of one of the 16-bit TX
1124         * counters expiring.
1125         */
1126        if (txmac_stat & MAC_TX_COLL_NORMAL)
1127                cp->net_stats[0].collisions += 0x10000;
1128
1129        if (txmac_stat & MAC_TX_COLL_EXCESS) {
1130                cp->net_stats[0].tx_aborted_errors += 0x10000;
1131                cp->net_stats[0].collisions += 0x10000;
1132        }
1133
1134        if (txmac_stat & MAC_TX_COLL_LATE) {
1135                cp->net_stats[0].tx_aborted_errors += 0x10000;
1136                cp->net_stats[0].collisions += 0x10000;
1137        }
1138        spin_unlock(&cp->stat_lock[0]);
1139
1140        /* We do not keep track of MAC_TX_COLL_FIRST and
1141         * MAC_TX_PEAK_ATTEMPTS events.
1142         */
1143        return 0;
1144}
1145
1146static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1147{
1148        cas_hp_inst_t *inst;
1149        u32 val;
1150        int i;
1151
1152        i = 0;
1153        while ((inst = firmware) && inst->note) {
1154                writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1155
1156                val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1157                val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1158                writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1159
1160                val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1161                val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1162                val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1163                val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1164                val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1165                val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1166                val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1167                writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1168
1169                val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1170                val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1171                val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1172                val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1173                writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1174                ++firmware;
1175                ++i;
1176        }
1177}
1178
1179static void cas_init_rx_dma(struct cas *cp)
1180{
1181        u64 desc_dma = cp->block_dvma;
1182        u32 val;
1183        int i, size;
1184
1185        /* rx free descriptors */
1186        val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1187        val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1188        val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1189        if ((N_RX_DESC_RINGS > 1) &&
1190            (cp->cas_flags & CAS_FLAG_REG_PLUS))  /* do desc 2 */
1191                val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1192        writel(val, cp->regs + REG_RX_CFG);
1193
1194        val = (unsigned long) cp->init_rxds[0] -
1195                (unsigned long) cp->init_block;
1196        writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1197        writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1198        writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1199
1200        if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1201                /* rx desc 2 is for IPSEC packets. however,
1202                 * we don't it that for that purpose.
1203                 */
1204                val = (unsigned long) cp->init_rxds[1] -
1205                        (unsigned long) cp->init_block;
1206                writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1207                writel((desc_dma + val) & 0xffffffff, cp->regs +
1208                       REG_PLUS_RX_DB1_LOW);
1209                writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1210                       REG_PLUS_RX_KICK1);
1211        }
1212
1213        /* rx completion registers */
1214        val = (unsigned long) cp->init_rxcs[0] -
1215                (unsigned long) cp->init_block;
1216        writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1217        writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1218
1219        if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1220                /* rx comp 2-4 */
1221                for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1222                        val = (unsigned long) cp->init_rxcs[i] -
1223                                (unsigned long) cp->init_block;
1224                        writel((desc_dma + val) >> 32, cp->regs +
1225                               REG_PLUS_RX_CBN_HI(i));
1226                        writel((desc_dma + val) & 0xffffffff, cp->regs +
1227                               REG_PLUS_RX_CBN_LOW(i));
1228                }
1229        }
1230
1231        /* read selective clear regs to prevent spurious interrupts
1232         * on reset because complete == kick.
1233         * selective clear set up to prevent interrupts on resets
1234         */
1235        readl(cp->regs + REG_INTR_STATUS_ALIAS);
1236        writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1237        if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1238                for (i = 1; i < N_RX_COMP_RINGS; i++)
1239                        readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1240
1241                /* 2 is different from 3 and 4 */
1242                if (N_RX_COMP_RINGS > 1)
1243                        writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
1244                               cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1245
1246                for (i = 2; i < N_RX_COMP_RINGS; i++)
1247                        writel(INTR_RX_DONE_ALT,
1248                               cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1249        }
1250
1251        /* set up pause thresholds */
1252        val  = CAS_BASE(RX_PAUSE_THRESH_OFF,
1253                        cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1254        val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1255                        cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1256        writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1257
1258        /* zero out dma reassembly buffers */
1259        for (i = 0; i < 64; i++) {
1260                writel(i, cp->regs + REG_RX_TABLE_ADDR);
1261                writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1262                writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1263                writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1264        }
1265
1266        /* make sure address register is 0 for normal operation */
1267        writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1268        writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1269
1270        /* interrupt mitigation */
1271#ifdef USE_RX_BLANK
1272        val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1273        val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1274        writel(val, cp->regs + REG_RX_BLANK);
1275#else
1276        writel(0x0, cp->regs + REG_RX_BLANK);
1277#endif
1278
1279        /* interrupt generation as a function of low water marks for
1280         * free desc and completion entries. these are used to trigger
1281         * housekeeping for rx descs. we don't use the free interrupt
1282         * as it's not very useful
1283         */
1284        /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1285        val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1286        writel(val, cp->regs + REG_RX_AE_THRESH);
1287        if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1288                val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1289                writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1290        }
1291
1292        /* Random early detect registers. useful for congestion avoidance.
1293         * this should be tunable.
1294         */
1295        writel(0x0, cp->regs + REG_RX_RED);
1296
1297        /* receive page sizes. default == 2K (0x800) */
1298        val = 0;
1299        if (cp->page_size == 0x1000)
1300                val = 0x1;
1301        else if (cp->page_size == 0x2000)
1302                val = 0x2;
1303        else if (cp->page_size == 0x4000)
1304                val = 0x3;
1305
1306        /* round mtu + offset. constrain to page size. */
1307        size = cp->dev->mtu + 64;
1308        if (size > cp->page_size)
1309                size = cp->page_size;
1310
1311        if (size <= 0x400)
1312                i = 0x0;
1313        else if (size <= 0x800)
1314                i = 0x1;
1315        else if (size <= 0x1000)
1316                i = 0x2;
1317        else
1318                i = 0x3;
1319
1320        cp->mtu_stride = 1 << (i + 10);
1321        val  = CAS_BASE(RX_PAGE_SIZE, val);
1322        val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1323        val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1324        val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1325        writel(val, cp->regs + REG_RX_PAGE_SIZE);
1326
1327        /* enable the header parser if desired */
1328        if (CAS_HP_FIRMWARE == cas_prog_null)
1329                return;
1330
1331        val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1332        val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1333        val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1334        writel(val, cp->regs + REG_HP_CFG);
1335}
1336
1337static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1338{
1339        memset(rxc, 0, sizeof(*rxc));
1340        rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1341}
1342
1343/* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1344 * flipping is protected by the fact that the chip will not
1345 * hand back the same page index while it's being processed.
1346 */
1347static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1348{
1349        cas_page_t *page = cp->rx_pages[1][index];
1350        cas_page_t *new;
1351
1352        if (page_count(page->buffer) == 1)
1353                return page;
1354
1355        new = cas_page_dequeue(cp);
1356        if (new) {
1357                spin_lock(&cp->rx_inuse_lock);
1358                list_add(&page->list, &cp->rx_inuse_list);
1359                spin_unlock(&cp->rx_inuse_lock);
1360        }
1361        return new;
1362}
1363
1364/* this needs to be changed if we actually use the ENC RX DESC ring */
1365static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1366                                 const int index)
1367{
1368        cas_page_t **page0 = cp->rx_pages[0];
1369        cas_page_t **page1 = cp->rx_pages[1];
1370
1371        /* swap if buffer is in use */
1372        if (page_count(page0[index]->buffer) > 1) {
1373                cas_page_t *new = cas_page_spare(cp, index);
1374                if (new) {
1375                        page1[index] = page0[index];
1376                        page0[index] = new;
1377                }
1378        }
1379        RX_USED_SET(page0[index], 0);
1380        return page0[index];
1381}
1382
1383static void cas_clean_rxds(struct cas *cp)
1384{
1385        /* only clean ring 0 as ring 1 is used for spare buffers */
1386        struct cas_rx_desc *rxd = cp->init_rxds[0];
1387        int i, size;
1388
1389        /* release all rx flows */
1390        for (i = 0; i < N_RX_FLOWS; i++) {
1391                struct sk_buff *skb;
1392                while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1393                        cas_skb_release(skb);
1394                }
1395        }
1396
1397        /* initialize descriptors */
1398        size = RX_DESC_RINGN_SIZE(0);
1399        for (i = 0; i < size; i++) {
1400                cas_page_t *page = cas_page_swap(cp, 0, i);
1401                rxd[i].buffer = cpu_to_le64(page->dma_addr);
1402                rxd[i].index  = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1403                                            CAS_BASE(RX_INDEX_RING, 0));
1404        }
1405
1406        cp->rx_old[0]  = RX_DESC_RINGN_SIZE(0) - 4;
1407        cp->rx_last[0] = 0;
1408        cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1409}
1410
1411static void cas_clean_rxcs(struct cas *cp)
1412{
1413        int i, j;
1414
1415        /* take ownership of rx comp descriptors */
1416        memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1417        memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1418        for (i = 0; i < N_RX_COMP_RINGS; i++) {
1419                struct cas_rx_comp *rxc = cp->init_rxcs[i];
1420                for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1421                        cas_rxc_init(rxc + j);
1422                }
1423        }
1424}
1425
1426#if 0
1427/* When we get a RX fifo overflow, the RX unit is probably hung
1428 * so we do the following.
1429 *
1430 * If any part of the reset goes wrong, we return 1 and that causes the
1431 * whole chip to be reset.
1432 */
1433static int cas_rxmac_reset(struct cas *cp)
1434{
1435        struct net_device *dev = cp->dev;
1436        int limit;
1437        u32 val;
1438
1439        /* First, reset MAC RX. */
1440        writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1441        for (limit = 0; limit < STOP_TRIES; limit++) {
1442                if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1443                        break;
1444                udelay(10);
1445        }
1446        if (limit == STOP_TRIES) {
1447                netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
1448                return 1;
1449        }
1450
1451        /* Second, disable RX DMA. */
1452        writel(0, cp->regs + REG_RX_CFG);
1453        for (limit = 0; limit < STOP_TRIES; limit++) {
1454                if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1455                        break;
1456                udelay(10);
1457        }
1458        if (limit == STOP_TRIES) {
1459                netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
1460                return 1;
1461        }
1462
1463        mdelay(5);
1464
1465        /* Execute RX reset command. */
1466        writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1467        for (limit = 0; limit < STOP_TRIES; limit++) {
1468                if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1469                        break;
1470                udelay(10);
1471        }
1472        if (limit == STOP_TRIES) {
1473                netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
1474                return 1;
1475        }
1476
1477        /* reset driver rx state */
1478        cas_clean_rxds(cp);
1479        cas_clean_rxcs(cp);
1480
1481        /* Now, reprogram the rest of RX unit. */
1482        cas_init_rx_dma(cp);
1483
1484        /* re-enable */
1485        val = readl(cp->regs + REG_RX_CFG);
1486        writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1487        writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1488        val = readl(cp->regs + REG_MAC_RX_CFG);
1489        writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1490        return 0;
1491}
1492#endif
1493
1494static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1495                               u32 status)
1496{
1497        u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1498
1499        if (!stat)
1500                return 0;
1501
1502        netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat);
1503
1504        /* these are all rollovers */
1505        spin_lock(&cp->stat_lock[0]);
1506        if (stat & MAC_RX_ALIGN_ERR)
1507                cp->net_stats[0].rx_frame_errors += 0x10000;
1508
1509        if (stat & MAC_RX_CRC_ERR)
1510                cp->net_stats[0].rx_crc_errors += 0x10000;
1511
1512        if (stat & MAC_RX_LEN_ERR)
1513                cp->net_stats[0].rx_length_errors += 0x10000;
1514
1515        if (stat & MAC_RX_OVERFLOW) {
1516                cp->net_stats[0].rx_over_errors++;
1517                cp->net_stats[0].rx_fifo_errors++;
1518        }
1519
1520        /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1521         * events.
1522         */
1523        spin_unlock(&cp->stat_lock[0]);
1524        return 0;
1525}
1526
1527static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1528                             u32 status)
1529{
1530        u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1531
1532        if (!stat)
1533                return 0;
1534
1535        netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1536                     "mac interrupt, stat: 0x%x\n", stat);
1537
1538        /* This interrupt is just for pause frame and pause
1539         * tracking.  It is useful for diagnostics and debug
1540         * but probably by default we will mask these events.
1541         */
1542        if (stat & MAC_CTRL_PAUSE_STATE)
1543                cp->pause_entered++;
1544
1545        if (stat & MAC_CTRL_PAUSE_RECEIVED)
1546                cp->pause_last_time_recvd = (stat >> 16);
1547
1548        return 0;
1549}
1550
1551
1552/* Must be invoked under cp->lock. */
1553static inline int cas_mdio_link_not_up(struct cas *cp)
1554{
1555        u16 val;
1556
1557        switch (cp->lstate) {
1558        case link_force_ret:
1559                netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n");
1560                cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1561                cp->timer_ticks = 5;
1562                cp->lstate = link_force_ok;
1563                cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1564                break;
1565
1566        case link_aneg:
1567                val = cas_phy_read(cp, MII_BMCR);
1568
1569                /* Try forced modes. we try things in the following order:
1570                 * 1000 full -> 100 full/half -> 10 half
1571                 */
1572                val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1573                val |= BMCR_FULLDPLX;
1574                val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1575                        CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1576                cas_phy_write(cp, MII_BMCR, val);
1577                cp->timer_ticks = 5;
1578                cp->lstate = link_force_try;
1579                cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1580                break;
1581
1582        case link_force_try:
1583                /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1584                val = cas_phy_read(cp, MII_BMCR);
1585                cp->timer_ticks = 5;
1586                if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1587                        val &= ~CAS_BMCR_SPEED1000;
1588                        val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1589                        cas_phy_write(cp, MII_BMCR, val);
1590                        break;
1591                }
1592
1593                if (val & BMCR_SPEED100) {
1594                        if (val & BMCR_FULLDPLX) /* fd failed */
1595                                val &= ~BMCR_FULLDPLX;
1596                        else { /* 100Mbps failed */
1597                                val &= ~BMCR_SPEED100;
1598                        }
1599                        cas_phy_write(cp, MII_BMCR, val);
1600                        break;
1601                }
1602                break;
1603        default:
1604                break;
1605        }
1606        return 0;
1607}
1608
1609
1610/* must be invoked with cp->lock held */
1611static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1612{
1613        int restart;
1614
1615        if (bmsr & BMSR_LSTATUS) {
1616                /* Ok, here we got a link. If we had it due to a forced
1617                 * fallback, and we were configured for autoneg, we
1618                 * retry a short autoneg pass. If you know your hub is
1619                 * broken, use ethtool ;)
1620                 */
1621                if ((cp->lstate == link_force_try) &&
1622                    (cp->link_cntl & BMCR_ANENABLE)) {
1623                        cp->lstate = link_force_ret;
1624                        cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1625                        cas_mif_poll(cp, 0);
1626                        cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1627                        cp->timer_ticks = 5;
1628                        if (cp->opened)
1629                                netif_info(cp, link, cp->dev,
1630                                           "Got link after fallback, retrying autoneg once...\n");
1631                        cas_phy_write(cp, MII_BMCR,
1632                                      cp->link_fcntl | BMCR_ANENABLE |
1633                                      BMCR_ANRESTART);
1634                        cas_mif_poll(cp, 1);
1635
1636                } else if (cp->lstate != link_up) {
1637                        cp->lstate = link_up;
1638                        cp->link_transition = LINK_TRANSITION_LINK_UP;
1639
1640                        if (cp->opened) {
1641                                cas_set_link_modes(cp);
1642                                netif_carrier_on(cp->dev);
1643                        }
1644                }
1645                return 0;
1646        }
1647
1648        /* link not up. if the link was previously up, we restart the
1649         * whole process
1650         */
1651        restart = 0;
1652        if (cp->lstate == link_up) {
1653                cp->lstate = link_down;
1654                cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1655
1656                netif_carrier_off(cp->dev);
1657                if (cp->opened)
1658                        netif_info(cp, link, cp->dev, "Link down\n");
1659                restart = 1;
1660
1661        } else if (++cp->timer_ticks > 10)
1662                cas_mdio_link_not_up(cp);
1663
1664        return restart;
1665}
1666
1667static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1668                             u32 status)
1669{
1670        u32 stat = readl(cp->regs + REG_MIF_STATUS);
1671        u16 bmsr;
1672
1673        /* check for a link change */
1674        if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1675                return 0;
1676
1677        bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1678        return cas_mii_link_check(cp, bmsr);
1679}
1680
1681static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1682                             u32 status)
1683{
1684        u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1685
1686        if (!stat)
1687                return 0;
1688
1689        netdev_err(dev, "PCI error [%04x:%04x]",
1690                   stat, readl(cp->regs + REG_BIM_DIAG));
1691
1692        /* cassini+ has this reserved */
1693        if ((stat & PCI_ERR_BADACK) &&
1694            ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1695                pr_cont(" <No ACK64# during ABS64 cycle>");
1696
1697        if (stat & PCI_ERR_DTRTO)
1698                pr_cont(" <Delayed transaction timeout>");
1699        if (stat & PCI_ERR_OTHER)
1700                pr_cont(" <other>");
1701        if (stat & PCI_ERR_BIM_DMA_WRITE)
1702                pr_cont(" <BIM DMA 0 write req>");
1703        if (stat & PCI_ERR_BIM_DMA_READ)
1704                pr_cont(" <BIM DMA 0 read req>");
1705        pr_cont("\n");
1706
1707        if (stat & PCI_ERR_OTHER) {
1708                int pci_errs;
1709
1710                /* Interrogate PCI config space for the
1711                 * true cause.
1712                 */
1713                pci_errs = pci_status_get_and_clear_errors(cp->pdev);
1714
1715                netdev_err(dev, "PCI status errors[%04x]\n", pci_errs);
1716                if (pci_errs & PCI_STATUS_PARITY)
1717                        netdev_err(dev, "PCI parity error detected\n");
1718                if (pci_errs & PCI_STATUS_SIG_TARGET_ABORT)
1719                        netdev_err(dev, "PCI target abort\n");
1720                if (pci_errs & PCI_STATUS_REC_TARGET_ABORT)
1721                        netdev_err(dev, "PCI master acks target abort\n");
1722                if (pci_errs & PCI_STATUS_REC_MASTER_ABORT)
1723                        netdev_err(dev, "PCI master abort\n");
1724                if (pci_errs & PCI_STATUS_SIG_SYSTEM_ERROR)
1725                        netdev_err(dev, "PCI system error SERR#\n");
1726                if (pci_errs & PCI_STATUS_DETECTED_PARITY)
1727                        netdev_err(dev, "PCI parity error\n");
1728        }
1729
1730        /* For all PCI errors, we should reset the chip. */
1731        return 1;
1732}
1733
1734/* All non-normal interrupt conditions get serviced here.
1735 * Returns non-zero if we should just exit the interrupt
1736 * handler right now (ie. if we reset the card which invalidates
1737 * all of the other original irq status bits).
1738 */
1739static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1740                            u32 status)
1741{
1742        if (status & INTR_RX_TAG_ERROR) {
1743                /* corrupt RX tag framing */
1744                netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1745                             "corrupt rx tag framing\n");
1746                spin_lock(&cp->stat_lock[0]);
1747                cp->net_stats[0].rx_errors++;
1748                spin_unlock(&cp->stat_lock[0]);
1749                goto do_reset;
1750        }
1751
1752        if (status & INTR_RX_LEN_MISMATCH) {
1753                /* length mismatch. */
1754                netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1755                             "length mismatch for rx frame\n");
1756                spin_lock(&cp->stat_lock[0]);
1757                cp->net_stats[0].rx_errors++;
1758                spin_unlock(&cp->stat_lock[0]);
1759                goto do_reset;
1760        }
1761
1762        if (status & INTR_PCS_STATUS) {
1763                if (cas_pcs_interrupt(dev, cp, status))
1764                        goto do_reset;
1765        }
1766
1767        if (status & INTR_TX_MAC_STATUS) {
1768                if (cas_txmac_interrupt(dev, cp, status))
1769                        goto do_reset;
1770        }
1771
1772        if (status & INTR_RX_MAC_STATUS) {
1773                if (cas_rxmac_interrupt(dev, cp, status))
1774                        goto do_reset;
1775        }
1776
1777        if (status & INTR_MAC_CTRL_STATUS) {
1778                if (cas_mac_interrupt(dev, cp, status))
1779                        goto do_reset;
1780        }
1781
1782        if (status & INTR_MIF_STATUS) {
1783                if (cas_mif_interrupt(dev, cp, status))
1784                        goto do_reset;
1785        }
1786
1787        if (status & INTR_PCI_ERROR_STATUS) {
1788                if (cas_pci_interrupt(dev, cp, status))
1789                        goto do_reset;
1790        }
1791        return 0;
1792
1793do_reset:
1794#if 1
1795        atomic_inc(&cp->reset_task_pending);
1796        atomic_inc(&cp->reset_task_pending_all);
1797        netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status);
1798        schedule_work(&cp->reset_task);
1799#else
1800        atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1801        netdev_err(dev, "reset called in cas_abnormal_irq\n");
1802        schedule_work(&cp->reset_task);
1803#endif
1804        return 1;
1805}
1806
1807/* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1808 *       determining whether to do a netif_stop/wakeup
1809 */
1810#define CAS_TABORT(x)      (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1811#define CAS_ROUND_PAGE(x)  (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1812static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1813                                  const int len)
1814{
1815        unsigned long off = addr + len;
1816
1817        if (CAS_TABORT(cp) == 1)
1818                return 0;
1819        if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1820                return 0;
1821        return TX_TARGET_ABORT_LEN;
1822}
1823
1824static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1825{
1826        struct cas_tx_desc *txds;
1827        struct sk_buff **skbs;
1828        struct net_device *dev = cp->dev;
1829        int entry, count;
1830
1831        spin_lock(&cp->tx_lock[ring]);
1832        txds = cp->init_txds[ring];
1833        skbs = cp->tx_skbs[ring];
1834        entry = cp->tx_old[ring];
1835
1836        count = TX_BUFF_COUNT(ring, entry, limit);
1837        while (entry != limit) {
1838                struct sk_buff *skb = skbs[entry];
1839                dma_addr_t daddr;
1840                u32 dlen;
1841                int frag;
1842
1843                if (!skb) {
1844                        /* this should never occur */
1845                        entry = TX_DESC_NEXT(ring, entry);
1846                        continue;
1847                }
1848
1849                /* however, we might get only a partial skb release. */
1850                count -= skb_shinfo(skb)->nr_frags +
1851                        + cp->tx_tiny_use[ring][entry].nbufs + 1;
1852                if (count < 0)
1853                        break;
1854
1855                netif_printk(cp, tx_done, KERN_DEBUG, cp->dev,
1856                             "tx[%d] done, slot %d\n", ring, entry);
1857
1858                skbs[entry] = NULL;
1859                cp->tx_tiny_use[ring][entry].nbufs = 0;
1860
1861                for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1862                        struct cas_tx_desc *txd = txds + entry;
1863
1864                        daddr = le64_to_cpu(txd->buffer);
1865                        dlen = CAS_VAL(TX_DESC_BUFLEN,
1866                                       le64_to_cpu(txd->control));
1867                        dma_unmap_page(&cp->pdev->dev, daddr, dlen,
1868                                       DMA_TO_DEVICE);
1869                        entry = TX_DESC_NEXT(ring, entry);
1870
1871                        /* tiny buffer may follow */
1872                        if (cp->tx_tiny_use[ring][entry].used) {
1873                                cp->tx_tiny_use[ring][entry].used = 0;
1874                                entry = TX_DESC_NEXT(ring, entry);
1875                        }
1876                }
1877
1878                spin_lock(&cp->stat_lock[ring]);
1879                cp->net_stats[ring].tx_packets++;
1880                cp->net_stats[ring].tx_bytes += skb->len;
1881                spin_unlock(&cp->stat_lock[ring]);
1882                dev_consume_skb_irq(skb);
1883        }
1884        cp->tx_old[ring] = entry;
1885
1886        /* this is wrong for multiple tx rings. the net device needs
1887         * multiple queues for this to do the right thing.  we wait
1888         * for 2*packets to be available when using tiny buffers
1889         */
1890        if (netif_queue_stopped(dev) &&
1891            (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1892                netif_wake_queue(dev);
1893        spin_unlock(&cp->tx_lock[ring]);
1894}
1895
1896static void cas_tx(struct net_device *dev, struct cas *cp,
1897                   u32 status)
1898{
1899        int limit, ring;
1900#ifdef USE_TX_COMPWB
1901        u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1902#endif
1903        netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1904                     "tx interrupt, status: 0x%x, %llx\n",
1905                     status, (unsigned long long)compwb);
1906        /* process all the rings */
1907        for (ring = 0; ring < N_TX_RINGS; ring++) {
1908#ifdef USE_TX_COMPWB
1909                /* use the completion writeback registers */
1910                limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1911                        CAS_VAL(TX_COMPWB_LSB, compwb);
1912                compwb = TX_COMPWB_NEXT(compwb);
1913#else
1914                limit = readl(cp->regs + REG_TX_COMPN(ring));
1915#endif
1916                if (cp->tx_old[ring] != limit)
1917                        cas_tx_ringN(cp, ring, limit);
1918        }
1919}
1920
1921
1922static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1923                              int entry, const u64 *words,
1924                              struct sk_buff **skbref)
1925{
1926        int dlen, hlen, len, i, alloclen;
1927        int off, swivel = RX_SWIVEL_OFF_VAL;
1928        struct cas_page *page;
1929        struct sk_buff *skb;
1930        void *addr, *crcaddr;
1931        __sum16 csum;
1932        char *p;
1933
1934        hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1935        dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1936        len  = hlen + dlen;
1937
1938        if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1939                alloclen = len;
1940        else
1941                alloclen = max(hlen, RX_COPY_MIN);
1942
1943        skb = netdev_alloc_skb(cp->dev, alloclen + swivel + cp->crc_size);
1944        if (skb == NULL)
1945                return -1;
1946
1947        *skbref = skb;
1948        skb_reserve(skb, swivel);
1949
1950        p = skb->data;
1951        addr = crcaddr = NULL;
1952        if (hlen) { /* always copy header pages */
1953                i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1954                page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1955                off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1956                        swivel;
1957
1958                i = hlen;
1959                if (!dlen) /* attach FCS */
1960                        i += cp->crc_size;
1961                dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
1962                                        i, DMA_FROM_DEVICE);
1963                addr = cas_page_map(page->buffer);
1964                memcpy(p, addr + off, i);
1965                dma_sync_single_for_device(&cp->pdev->dev,
1966                                           page->dma_addr + off, i,
1967                                           DMA_FROM_DEVICE);
1968                cas_page_unmap(addr);
1969                RX_USED_ADD(page, 0x100);
1970                p += hlen;
1971                swivel = 0;
1972        }
1973
1974
1975        if (alloclen < (hlen + dlen)) {
1976                skb_frag_t *frag = skb_shinfo(skb)->frags;
1977
1978                /* normal or jumbo packets. we use frags */
1979                i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
1980                page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1981                off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
1982
1983                hlen = min(cp->page_size - off, dlen);
1984                if (hlen < 0) {
1985                        netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1986                                     "rx page overflow: %d\n", hlen);
1987                        dev_kfree_skb_irq(skb);
1988                        return -1;
1989                }
1990                i = hlen;
1991                if (i == dlen)  /* attach FCS */
1992                        i += cp->crc_size;
1993                dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
1994                                        i, DMA_FROM_DEVICE);
1995
1996                /* make sure we always copy a header */
1997                swivel = 0;
1998                if (p == (char *) skb->data) { /* not split */
1999                        addr = cas_page_map(page->buffer);
2000                        memcpy(p, addr + off, RX_COPY_MIN);
2001                        dma_sync_single_for_device(&cp->pdev->dev,
2002                                                   page->dma_addr + off, i,
2003                                                   DMA_FROM_DEVICE);
2004                        cas_page_unmap(addr);
2005                        off += RX_COPY_MIN;
2006                        swivel = RX_COPY_MIN;
2007                        RX_USED_ADD(page, cp->mtu_stride);
2008                } else {
2009                        RX_USED_ADD(page, hlen);
2010                }
2011                skb_put(skb, alloclen);
2012
2013                skb_shinfo(skb)->nr_frags++;
2014                skb->data_len += hlen - swivel;
2015                skb->truesize += hlen - swivel;
2016                skb->len      += hlen - swivel;
2017
2018                __skb_frag_set_page(frag, page->buffer);
2019                __skb_frag_ref(frag);
2020                skb_frag_off_set(frag, off);
2021                skb_frag_size_set(frag, hlen - swivel);
2022
2023                /* any more data? */
2024                if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2025                        hlen = dlen;
2026                        off = 0;
2027
2028                        i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2029                        page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2030                        dma_sync_single_for_cpu(&cp->pdev->dev,
2031                                                page->dma_addr,
2032                                                hlen + cp->crc_size,
2033                                                DMA_FROM_DEVICE);
2034                        dma_sync_single_for_device(&cp->pdev->dev,
2035                                                   page->dma_addr,
2036                                                   hlen + cp->crc_size,
2037                                                   DMA_FROM_DEVICE);
2038
2039                        skb_shinfo(skb)->nr_frags++;
2040                        skb->data_len += hlen;
2041                        skb->len      += hlen;
2042                        frag++;
2043
2044                        __skb_frag_set_page(frag, page->buffer);
2045                        __skb_frag_ref(frag);
2046                        skb_frag_off_set(frag, 0);
2047                        skb_frag_size_set(frag, hlen);
2048                        RX_USED_ADD(page, hlen + cp->crc_size);
2049                }
2050
2051                if (cp->crc_size) {
2052                        addr = cas_page_map(page->buffer);
2053                        crcaddr  = addr + off + hlen;
2054                }
2055
2056        } else {
2057                /* copying packet */
2058                if (!dlen)
2059                        goto end_copy_pkt;
2060
2061                i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2062                page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2063                off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2064                hlen = min(cp->page_size - off, dlen);
2065                if (hlen < 0) {
2066                        netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2067                                     "rx page overflow: %d\n", hlen);
2068                        dev_kfree_skb_irq(skb);
2069                        return -1;
2070                }
2071                i = hlen;
2072                if (i == dlen) /* attach FCS */
2073                        i += cp->crc_size;
2074                dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
2075                                        i, DMA_FROM_DEVICE);
2076                addr = cas_page_map(page->buffer);
2077                memcpy(p, addr + off, i);
2078                dma_sync_single_for_device(&cp->pdev->dev,
2079                                           page->dma_addr + off, i,
2080                                           DMA_FROM_DEVICE);
2081                cas_page_unmap(addr);
2082                if (p == (char *) skb->data) /* not split */
2083                        RX_USED_ADD(page, cp->mtu_stride);
2084                else
2085                        RX_USED_ADD(page, i);
2086
2087                /* any more data? */
2088                if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2089                        p += hlen;
2090                        i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2091                        page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2092                        dma_sync_single_for_cpu(&cp->pdev->dev,
2093                                                page->dma_addr,
2094                                                dlen + cp->crc_size,
2095                                                DMA_FROM_DEVICE);
2096                        addr = cas_page_map(page->buffer);
2097                        memcpy(p, addr, dlen + cp->crc_size);
2098                        dma_sync_single_for_device(&cp->pdev->dev,
2099                                                   page->dma_addr,
2100                                                   dlen + cp->crc_size,
2101                                                   DMA_FROM_DEVICE);
2102                        cas_page_unmap(addr);
2103                        RX_USED_ADD(page, dlen + cp->crc_size);
2104                }
2105end_copy_pkt:
2106                if (cp->crc_size) {
2107                        addr    = NULL;
2108                        crcaddr = skb->data + alloclen;
2109                }
2110                skb_put(skb, alloclen);
2111        }
2112
2113        csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2114        if (cp->crc_size) {
2115                /* checksum includes FCS. strip it out. */
2116                csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2117                                              csum_unfold(csum)));
2118                if (addr)
2119                        cas_page_unmap(addr);
2120        }
2121        skb->protocol = eth_type_trans(skb, cp->dev);
2122        if (skb->protocol == htons(ETH_P_IP)) {
2123                skb->csum = csum_unfold(~csum);
2124                skb->ip_summed = CHECKSUM_COMPLETE;
2125        } else
2126                skb_checksum_none_assert(skb);
2127        return len;
2128}
2129
2130
2131/* we can handle up to 64 rx flows at a time. we do the same thing
2132 * as nonreassm except that we batch up the buffers.
2133 * NOTE: we currently just treat each flow as a bunch of packets that
2134 *       we pass up. a better way would be to coalesce the packets
2135 *       into a jumbo packet. to do that, we need to do the following:
2136 *       1) the first packet will have a clean split between header and
2137 *          data. save both.
2138 *       2) each time the next flow packet comes in, extend the
2139 *          data length and merge the checksums.
2140 *       3) on flow release, fix up the header.
2141 *       4) make sure the higher layer doesn't care.
2142 * because packets get coalesced, we shouldn't run into fragment count
2143 * issues.
2144 */
2145static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2146                                   struct sk_buff *skb)
2147{
2148        int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2149        struct sk_buff_head *flow = &cp->rx_flows[flowid];
2150
2151        /* this is protected at a higher layer, so no need to
2152         * do any additional locking here. stick the buffer
2153         * at the end.
2154         */
2155        __skb_queue_tail(flow, skb);
2156        if (words[0] & RX_COMP1_RELEASE_FLOW) {
2157                while ((skb = __skb_dequeue(flow))) {
2158                        cas_skb_release(skb);
2159                }
2160        }
2161}
2162
2163/* put rx descriptor back on ring. if a buffer is in use by a higher
2164 * layer, this will need to put in a replacement.
2165 */
2166static void cas_post_page(struct cas *cp, const int ring, const int index)
2167{
2168        cas_page_t *new;
2169        int entry;
2170
2171        entry = cp->rx_old[ring];
2172
2173        new = cas_page_swap(cp, ring, index);
2174        cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2175        cp->init_rxds[ring][entry].index  =
2176                cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2177                            CAS_BASE(RX_INDEX_RING, ring));
2178
2179        entry = RX_DESC_ENTRY(ring, entry + 1);
2180        cp->rx_old[ring] = entry;
2181
2182        if (entry % 4)
2183                return;
2184
2185        if (ring == 0)
2186                writel(entry, cp->regs + REG_RX_KICK);
2187        else if ((N_RX_DESC_RINGS > 1) &&
2188                 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2189                writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2190}
2191
2192
2193/* only when things are bad */
2194static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2195{
2196        unsigned int entry, last, count, released;
2197        int cluster;
2198        cas_page_t **page = cp->rx_pages[ring];
2199
2200        entry = cp->rx_old[ring];
2201
2202        netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2203                     "rxd[%d] interrupt, done: %d\n", ring, entry);
2204
2205        cluster = -1;
2206        count = entry & 0x3;
2207        last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2208        released = 0;
2209        while (entry != last) {
2210                /* make a new buffer if it's still in use */
2211                if (page_count(page[entry]->buffer) > 1) {
2212                        cas_page_t *new = cas_page_dequeue(cp);
2213                        if (!new) {
2214                                /* let the timer know that we need to
2215                                 * do this again
2216                                 */
2217                                cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2218                                if (!timer_pending(&cp->link_timer))
2219                                        mod_timer(&cp->link_timer, jiffies +
2220                                                  CAS_LINK_FAST_TIMEOUT);
2221                                cp->rx_old[ring]  = entry;
2222                                cp->rx_last[ring] = num ? num - released : 0;
2223                                return -ENOMEM;
2224                        }
2225                        spin_lock(&cp->rx_inuse_lock);
2226                        list_add(&page[entry]->list, &cp->rx_inuse_list);
2227                        spin_unlock(&cp->rx_inuse_lock);
2228                        cp->init_rxds[ring][entry].buffer =
2229                                cpu_to_le64(new->dma_addr);
2230                        page[entry] = new;
2231
2232                }
2233
2234                if (++count == 4) {
2235                        cluster = entry;
2236                        count = 0;
2237                }
2238                released++;
2239                entry = RX_DESC_ENTRY(ring, entry + 1);
2240        }
2241        cp->rx_old[ring] = entry;
2242
2243        if (cluster < 0)
2244                return 0;
2245
2246        if (ring == 0)
2247                writel(cluster, cp->regs + REG_RX_KICK);
2248        else if ((N_RX_DESC_RINGS > 1) &&
2249                 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2250                writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2251        return 0;
2252}
2253
2254
2255/* process a completion ring. packets are set up in three basic ways:
2256 * small packets: should be copied header + data in single buffer.
2257 * large packets: header and data in a single buffer.
2258 * split packets: header in a separate buffer from data.
2259 *                data may be in multiple pages. data may be > 256
2260 *                bytes but in a single page.
2261 *
2262 * NOTE: RX page posting is done in this routine as well. while there's
2263 *       the capability of using multiple RX completion rings, it isn't
2264 *       really worthwhile due to the fact that the page posting will
2265 *       force serialization on the single descriptor ring.
2266 */
2267static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2268{
2269        struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2270        int entry, drops;
2271        int npackets = 0;
2272
2273        netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2274                     "rx[%d] interrupt, done: %d/%d\n",
2275                     ring,
2276                     readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]);
2277
2278        entry = cp->rx_new[ring];
2279        drops = 0;
2280        while (1) {
2281                struct cas_rx_comp *rxc = rxcs + entry;
2282                struct sk_buff *skb;
2283                int type, len;
2284                u64 words[4];
2285                int i, dring;
2286
2287                words[0] = le64_to_cpu(rxc->word1);
2288                words[1] = le64_to_cpu(rxc->word2);
2289                words[2] = le64_to_cpu(rxc->word3);
2290                words[3] = le64_to_cpu(rxc->word4);
2291
2292                /* don't touch if still owned by hw */
2293                type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2294                if (type == 0)
2295                        break;
2296
2297                /* hw hasn't cleared the zero bit yet */
2298                if (words[3] & RX_COMP4_ZERO) {
2299                        break;
2300                }
2301
2302                /* get info on the packet */
2303                if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2304                        spin_lock(&cp->stat_lock[ring]);
2305                        cp->net_stats[ring].rx_errors++;
2306                        if (words[3] & RX_COMP4_LEN_MISMATCH)
2307                                cp->net_stats[ring].rx_length_errors++;
2308                        if (words[3] & RX_COMP4_BAD)
2309                                cp->net_stats[ring].rx_crc_errors++;
2310                        spin_unlock(&cp->stat_lock[ring]);
2311
2312                        /* We'll just return it to Cassini. */
2313                drop_it:
2314                        spin_lock(&cp->stat_lock[ring]);
2315                        ++cp->net_stats[ring].rx_dropped;
2316                        spin_unlock(&cp->stat_lock[ring]);
2317                        goto next;
2318                }
2319
2320                len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2321                if (len < 0) {
2322                        ++drops;
2323                        goto drop_it;
2324                }
2325
2326                /* see if it's a flow re-assembly or not. the driver
2327                 * itself handles release back up.
2328                 */
2329                if (RX_DONT_BATCH || (type == 0x2)) {
2330                        /* non-reassm: these always get released */
2331                        cas_skb_release(skb);
2332                } else {
2333                        cas_rx_flow_pkt(cp, words, skb);
2334                }
2335
2336                spin_lock(&cp->stat_lock[ring]);
2337                cp->net_stats[ring].rx_packets++;
2338                cp->net_stats[ring].rx_bytes += len;
2339                spin_unlock(&cp->stat_lock[ring]);
2340
2341        next:
2342                npackets++;
2343
2344                /* should it be released? */
2345                if (words[0] & RX_COMP1_RELEASE_HDR) {
2346                        i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2347                        dring = CAS_VAL(RX_INDEX_RING, i);
2348                        i = CAS_VAL(RX_INDEX_NUM, i);
2349                        cas_post_page(cp, dring, i);
2350                }
2351
2352                if (words[0] & RX_COMP1_RELEASE_DATA) {
2353                        i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2354                        dring = CAS_VAL(RX_INDEX_RING, i);
2355                        i = CAS_VAL(RX_INDEX_NUM, i);
2356                        cas_post_page(cp, dring, i);
2357                }
2358
2359                if (words[0] & RX_COMP1_RELEASE_NEXT) {
2360                        i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2361                        dring = CAS_VAL(RX_INDEX_RING, i);
2362                        i = CAS_VAL(RX_INDEX_NUM, i);
2363                        cas_post_page(cp, dring, i);
2364                }
2365
2366                /* skip to the next entry */
2367                entry = RX_COMP_ENTRY(ring, entry + 1 +
2368                                      CAS_VAL(RX_COMP1_SKIP, words[0]));
2369#ifdef USE_NAPI
2370                if (budget && (npackets >= budget))
2371                        break;
2372#endif
2373        }
2374        cp->rx_new[ring] = entry;
2375
2376        if (drops)
2377                netdev_info(cp->dev, "Memory squeeze, deferring packet\n");
2378        return npackets;
2379}
2380
2381
2382/* put completion entries back on the ring */
2383static void cas_post_rxcs_ringN(struct net_device *dev,
2384                                struct cas *cp, int ring)
2385{
2386        struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2387        int last, entry;
2388
2389        last = cp->rx_cur[ring];
2390        entry = cp->rx_new[ring];
2391        netif_printk(cp, intr, KERN_DEBUG, dev,
2392                     "rxc[%d] interrupt, done: %d/%d\n",
2393                     ring, readl(cp->regs + REG_RX_COMP_HEAD), entry);
2394
2395        /* zero and re-mark descriptors */
2396        while (last != entry) {
2397                cas_rxc_init(rxc + last);
2398                last = RX_COMP_ENTRY(ring, last + 1);
2399        }
2400        cp->rx_cur[ring] = last;
2401
2402        if (ring == 0)
2403                writel(last, cp->regs + REG_RX_COMP_TAIL);
2404        else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2405                writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2406}
2407
2408
2409
2410/* cassini can use all four PCI interrupts for the completion ring.
2411 * rings 3 and 4 are identical
2412 */
2413#if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2414static inline void cas_handle_irqN(struct net_device *dev,
2415                                   struct cas *cp, const u32 status,
2416                                   const int ring)
2417{
2418        if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2419                cas_post_rxcs_ringN(dev, cp, ring);
2420}
2421
2422static irqreturn_t cas_interruptN(int irq, void *dev_id)
2423{
2424        struct net_device *dev = dev_id;
2425        struct cas *cp = netdev_priv(dev);
2426        unsigned long flags;
2427        int ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2428        u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2429
2430        /* check for shared irq */
2431        if (status == 0)
2432                return IRQ_NONE;
2433
2434        spin_lock_irqsave(&cp->lock, flags);
2435        if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2436#ifdef USE_NAPI
2437                cas_mask_intr(cp);
2438                napi_schedule(&cp->napi);
2439#else
2440                cas_rx_ringN(cp, ring, 0);
2441#endif
2442                status &= ~INTR_RX_DONE_ALT;
2443        }
2444
2445        if (status)
2446                cas_handle_irqN(dev, cp, status, ring);
2447        spin_unlock_irqrestore(&cp->lock, flags);
2448        return IRQ_HANDLED;
2449}
2450#endif
2451
2452#ifdef USE_PCI_INTB
2453/* everything but rx packets */
2454static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2455{
2456        if (status & INTR_RX_BUF_UNAVAIL_1) {
2457                /* Frame arrived, no free RX buffers available.
2458                 * NOTE: we can get this on a link transition. */
2459                cas_post_rxds_ringN(cp, 1, 0);
2460                spin_lock(&cp->stat_lock[1]);
2461                cp->net_stats[1].rx_dropped++;
2462                spin_unlock(&cp->stat_lock[1]);
2463        }
2464
2465        if (status & INTR_RX_BUF_AE_1)
2466                cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2467                                    RX_AE_FREEN_VAL(1));
2468
2469        if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2470                cas_post_rxcs_ringN(cp, 1);
2471}
2472
2473/* ring 2 handles a few more events than 3 and 4 */
2474static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2475{
2476        struct net_device *dev = dev_id;
2477        struct cas *cp = netdev_priv(dev);
2478        unsigned long flags;
2479        u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2480
2481        /* check for shared interrupt */
2482        if (status == 0)
2483                return IRQ_NONE;
2484
2485        spin_lock_irqsave(&cp->lock, flags);
2486        if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2487#ifdef USE_NAPI
2488                cas_mask_intr(cp);
2489                napi_schedule(&cp->napi);
2490#else
2491                cas_rx_ringN(cp, 1, 0);
2492#endif
2493                status &= ~INTR_RX_DONE_ALT;
2494        }
2495        if (status)
2496                cas_handle_irq1(cp, status);
2497        spin_unlock_irqrestore(&cp->lock, flags);
2498        return IRQ_HANDLED;
2499}
2500#endif
2501
2502static inline void cas_handle_irq(struct net_device *dev,
2503                                  struct cas *cp, const u32 status)
2504{
2505        /* housekeeping interrupts */
2506        if (status & INTR_ERROR_MASK)
2507                cas_abnormal_irq(dev, cp, status);
2508
2509        if (status & INTR_RX_BUF_UNAVAIL) {
2510                /* Frame arrived, no free RX buffers available.
2511                 * NOTE: we can get this on a link transition.
2512                 */
2513                cas_post_rxds_ringN(cp, 0, 0);
2514                spin_lock(&cp->stat_lock[0]);
2515                cp->net_stats[0].rx_dropped++;
2516                spin_unlock(&cp->stat_lock[0]);
2517        } else if (status & INTR_RX_BUF_AE) {
2518                cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2519                                    RX_AE_FREEN_VAL(0));
2520        }
2521
2522        if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2523                cas_post_rxcs_ringN(dev, cp, 0);
2524}
2525
2526static irqreturn_t cas_interrupt(int irq, void *dev_id)
2527{
2528        struct net_device *dev = dev_id;
2529        struct cas *cp = netdev_priv(dev);
2530        unsigned long flags;
2531        u32 status = readl(cp->regs + REG_INTR_STATUS);
2532
2533        if (status == 0)
2534                return IRQ_NONE;
2535
2536        spin_lock_irqsave(&cp->lock, flags);
2537        if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2538                cas_tx(dev, cp, status);
2539                status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2540        }
2541
2542        if (status & INTR_RX_DONE) {
2543#ifdef USE_NAPI
2544                cas_mask_intr(cp);
2545                napi_schedule(&cp->napi);
2546#else
2547                cas_rx_ringN(cp, 0, 0);
2548#endif
2549                status &= ~INTR_RX_DONE;
2550        }
2551
2552        if (status)
2553                cas_handle_irq(dev, cp, status);
2554        spin_unlock_irqrestore(&cp->lock, flags);
2555        return IRQ_HANDLED;
2556}
2557
2558
2559#ifdef USE_NAPI
2560static int cas_poll(struct napi_struct *napi, int budget)
2561{
2562        struct cas *cp = container_of(napi, struct cas, napi);
2563        struct net_device *dev = cp->dev;
2564        int i, enable_intr, credits;
2565        u32 status = readl(cp->regs + REG_INTR_STATUS);
2566        unsigned long flags;
2567
2568        spin_lock_irqsave(&cp->lock, flags);
2569        cas_tx(dev, cp, status);
2570        spin_unlock_irqrestore(&cp->lock, flags);
2571
2572        /* NAPI rx packets. we spread the credits across all of the
2573         * rxc rings
2574         *
2575         * to make sure we're fair with the work we loop through each
2576         * ring N_RX_COMP_RING times with a request of
2577         * budget / N_RX_COMP_RINGS
2578         */
2579        enable_intr = 1;
2580        credits = 0;
2581        for (i = 0; i < N_RX_COMP_RINGS; i++) {
2582                int j;
2583                for (j = 0; j < N_RX_COMP_RINGS; j++) {
2584                        credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2585                        if (credits >= budget) {
2586                                enable_intr = 0;
2587                                goto rx_comp;
2588                        }
2589                }
2590        }
2591
2592rx_comp:
2593        /* final rx completion */
2594        spin_lock_irqsave(&cp->lock, flags);
2595        if (status)
2596                cas_handle_irq(dev, cp, status);
2597
2598#ifdef USE_PCI_INTB
2599        if (N_RX_COMP_RINGS > 1) {
2600                status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2601                if (status)
2602                        cas_handle_irq1(dev, cp, status);
2603        }
2604#endif
2605
2606#ifdef USE_PCI_INTC
2607        if (N_RX_COMP_RINGS > 2) {
2608                status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2609                if (status)
2610                        cas_handle_irqN(dev, cp, status, 2);
2611        }
2612#endif
2613
2614#ifdef USE_PCI_INTD
2615        if (N_RX_COMP_RINGS > 3) {
2616                status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2617                if (status)
2618                        cas_handle_irqN(dev, cp, status, 3);
2619        }
2620#endif
2621        spin_unlock_irqrestore(&cp->lock, flags);
2622        if (enable_intr) {
2623                napi_complete(napi);
2624                cas_unmask_intr(cp);
2625        }
2626        return credits;
2627}
2628#endif
2629
2630#ifdef CONFIG_NET_POLL_CONTROLLER
2631static void cas_netpoll(struct net_device *dev)
2632{
2633        struct cas *cp = netdev_priv(dev);
2634
2635        cas_disable_irq(cp, 0);
2636        cas_interrupt(cp->pdev->irq, dev);
2637        cas_enable_irq(cp, 0);
2638
2639#ifdef USE_PCI_INTB
2640        if (N_RX_COMP_RINGS > 1) {
2641                /* cas_interrupt1(); */
2642        }
2643#endif
2644#ifdef USE_PCI_INTC
2645        if (N_RX_COMP_RINGS > 2) {
2646                /* cas_interruptN(); */
2647        }
2648#endif
2649#ifdef USE_PCI_INTD
2650        if (N_RX_COMP_RINGS > 3) {
2651                /* cas_interruptN(); */
2652        }
2653#endif
2654}
2655#endif
2656
2657static void cas_tx_timeout(struct net_device *dev, unsigned int txqueue)
2658{
2659        struct cas *cp = netdev_priv(dev);
2660
2661        netdev_err(dev, "transmit timed out, resetting\n");
2662        if (!cp->hw_running) {
2663                netdev_err(dev, "hrm.. hw not running!\n");
2664                return;
2665        }
2666
2667        netdev_err(dev, "MIF_STATE[%08x]\n",
2668                   readl(cp->regs + REG_MIF_STATE_MACHINE));
2669
2670        netdev_err(dev, "MAC_STATE[%08x]\n",
2671                   readl(cp->regs + REG_MAC_STATE_MACHINE));
2672
2673        netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2674                   readl(cp->regs + REG_TX_CFG),
2675                   readl(cp->regs + REG_MAC_TX_STATUS),
2676                   readl(cp->regs + REG_MAC_TX_CFG),
2677                   readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2678                   readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2679                   readl(cp->regs + REG_TX_FIFO_READ_PTR),
2680                   readl(cp->regs + REG_TX_SM_1),
2681                   readl(cp->regs + REG_TX_SM_2));
2682
2683        netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
2684                   readl(cp->regs + REG_RX_CFG),
2685                   readl(cp->regs + REG_MAC_RX_STATUS),
2686                   readl(cp->regs + REG_MAC_RX_CFG));
2687
2688        netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2689                   readl(cp->regs + REG_HP_STATE_MACHINE),
2690                   readl(cp->regs + REG_HP_STATUS0),
2691                   readl(cp->regs + REG_HP_STATUS1),
2692                   readl(cp->regs + REG_HP_STATUS2));
2693
2694#if 1
2695        atomic_inc(&cp->reset_task_pending);
2696        atomic_inc(&cp->reset_task_pending_all);
2697        schedule_work(&cp->reset_task);
2698#else
2699        atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2700        schedule_work(&cp->reset_task);
2701#endif
2702}
2703
2704static inline int cas_intme(int ring, int entry)
2705{
2706        /* Algorithm: IRQ every 1/2 of descriptors. */
2707        if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2708                return 1;
2709        return 0;
2710}
2711
2712
2713static void cas_write_txd(struct cas *cp, int ring, int entry,
2714                          dma_addr_t mapping, int len, u64 ctrl, int last)
2715{
2716        struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2717
2718        ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2719        if (cas_intme(ring, entry))
2720                ctrl |= TX_DESC_INTME;
2721        if (last)
2722                ctrl |= TX_DESC_EOF;
2723        txd->control = cpu_to_le64(ctrl);
2724        txd->buffer = cpu_to_le64(mapping);
2725}
2726
2727static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2728                                const int entry)
2729{
2730        return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2731}
2732
2733static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2734                                     const int entry, const int tentry)
2735{
2736        cp->tx_tiny_use[ring][tentry].nbufs++;
2737        cp->tx_tiny_use[ring][entry].used = 1;
2738        return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2739}
2740
2741static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2742                                    struct sk_buff *skb)
2743{
2744        struct net_device *dev = cp->dev;
2745        int entry, nr_frags, frag, tabort, tentry;
2746        dma_addr_t mapping;
2747        unsigned long flags;
2748        u64 ctrl;
2749        u32 len;
2750
2751        spin_lock_irqsave(&cp->tx_lock[ring], flags);
2752
2753        /* This is a hard error, log it. */
2754        if (TX_BUFFS_AVAIL(cp, ring) <=
2755            CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2756                netif_stop_queue(dev);
2757                spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2758                netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
2759                return 1;
2760        }
2761
2762        ctrl = 0;
2763        if (skb->ip_summed == CHECKSUM_PARTIAL) {
2764                const u64 csum_start_off = skb_checksum_start_offset(skb);
2765                const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2766
2767                ctrl =  TX_DESC_CSUM_EN |
2768                        CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2769                        CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2770        }
2771
2772        entry = cp->tx_new[ring];
2773        cp->tx_skbs[ring][entry] = skb;
2774
2775        nr_frags = skb_shinfo(skb)->nr_frags;
2776        len = skb_headlen(skb);
2777        mapping = dma_map_page(&cp->pdev->dev, virt_to_page(skb->data),
2778                               offset_in_page(skb->data), len, DMA_TO_DEVICE);
2779
2780        tentry = entry;
2781        tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2782        if (unlikely(tabort)) {
2783                /* NOTE: len is always >  tabort */
2784                cas_write_txd(cp, ring, entry, mapping, len - tabort,
2785                              ctrl | TX_DESC_SOF, 0);
2786                entry = TX_DESC_NEXT(ring, entry);
2787
2788                skb_copy_from_linear_data_offset(skb, len - tabort,
2789                              tx_tiny_buf(cp, ring, entry), tabort);
2790                mapping = tx_tiny_map(cp, ring, entry, tentry);
2791                cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2792                              (nr_frags == 0));
2793        } else {
2794                cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2795                              TX_DESC_SOF, (nr_frags == 0));
2796        }
2797        entry = TX_DESC_NEXT(ring, entry);
2798
2799        for (frag = 0; frag < nr_frags; frag++) {
2800                const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2801
2802                len = skb_frag_size(fragp);
2803                mapping = skb_frag_dma_map(&cp->pdev->dev, fragp, 0, len,
2804                                           DMA_TO_DEVICE);
2805
2806                tabort = cas_calc_tabort(cp, skb_frag_off(fragp), len);
2807                if (unlikely(tabort)) {
2808                        void *addr;
2809
2810                        /* NOTE: len is always > tabort */
2811                        cas_write_txd(cp, ring, entry, mapping, len - tabort,
2812                                      ctrl, 0);
2813                        entry = TX_DESC_NEXT(ring, entry);
2814
2815                        addr = cas_page_map(skb_frag_page(fragp));
2816                        memcpy(tx_tiny_buf(cp, ring, entry),
2817                               addr + skb_frag_off(fragp) + len - tabort,
2818                               tabort);
2819                        cas_page_unmap(addr);
2820                        mapping = tx_tiny_map(cp, ring, entry, tentry);
2821                        len     = tabort;
2822                }
2823
2824                cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2825                              (frag + 1 == nr_frags));
2826                entry = TX_DESC_NEXT(ring, entry);
2827        }
2828
2829        cp->tx_new[ring] = entry;
2830        if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2831                netif_stop_queue(dev);
2832
2833        netif_printk(cp, tx_queued, KERN_DEBUG, dev,
2834                     "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2835                     ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring));
2836        writel(entry, cp->regs + REG_TX_KICKN(ring));
2837        spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2838        return 0;
2839}
2840
2841static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2842{
2843        struct cas *cp = netdev_priv(dev);
2844
2845        /* this is only used as a load-balancing hint, so it doesn't
2846         * need to be SMP safe
2847         */
2848        static int ring;
2849
2850        if (skb_padto(skb, cp->min_frame_size))
2851                return NETDEV_TX_OK;
2852
2853        /* XXX: we need some higher-level QoS hooks to steer packets to
2854         *      individual queues.
2855         */
2856        if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2857                return NETDEV_TX_BUSY;
2858        return NETDEV_TX_OK;
2859}
2860
2861static void cas_init_tx_dma(struct cas *cp)
2862{
2863        u64 desc_dma = cp->block_dvma;
2864        unsigned long off;
2865        u32 val;
2866        int i;
2867
2868        /* set up tx completion writeback registers. must be 8-byte aligned */
2869#ifdef USE_TX_COMPWB
2870        off = offsetof(struct cas_init_block, tx_compwb);
2871        writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2872        writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2873#endif
2874
2875        /* enable completion writebacks, enable paced mode,
2876         * disable read pipe, and disable pre-interrupt compwbs
2877         */
2878        val =   TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2879                TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2880                TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2881                TX_CFG_INTR_COMPWB_DIS;
2882
2883        /* write out tx ring info and tx desc bases */
2884        for (i = 0; i < MAX_TX_RINGS; i++) {
2885                off = (unsigned long) cp->init_txds[i] -
2886                        (unsigned long) cp->init_block;
2887
2888                val |= CAS_TX_RINGN_BASE(i);
2889                writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2890                writel((desc_dma + off) & 0xffffffff, cp->regs +
2891                       REG_TX_DBN_LOW(i));
2892                /* don't zero out the kick register here as the system
2893                 * will wedge
2894                 */
2895        }
2896        writel(val, cp->regs + REG_TX_CFG);
2897
2898        /* program max burst sizes. these numbers should be different
2899         * if doing QoS.
2900         */
2901#ifdef USE_QOS
2902        writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2903        writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2904        writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2905        writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2906#else
2907        writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2908        writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2909        writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2910        writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2911#endif
2912}
2913
2914/* Must be invoked under cp->lock. */
2915static inline void cas_init_dma(struct cas *cp)
2916{
2917        cas_init_tx_dma(cp);
2918        cas_init_rx_dma(cp);
2919}
2920
2921static void cas_process_mc_list(struct cas *cp)
2922{
2923        u16 hash_table[16];
2924        u32 crc;
2925        struct netdev_hw_addr *ha;
2926        int i = 1;
2927
2928        memset(hash_table, 0, sizeof(hash_table));
2929        netdev_for_each_mc_addr(ha, cp->dev) {
2930                if (i <= CAS_MC_EXACT_MATCH_SIZE) {
2931                        /* use the alternate mac address registers for the
2932                         * first 15 multicast addresses
2933                         */
2934                        writel((ha->addr[4] << 8) | ha->addr[5],
2935                               cp->regs + REG_MAC_ADDRN(i*3 + 0));
2936                        writel((ha->addr[2] << 8) | ha->addr[3],
2937                               cp->regs + REG_MAC_ADDRN(i*3 + 1));
2938                        writel((ha->addr[0] << 8) | ha->addr[1],
2939                               cp->regs + REG_MAC_ADDRN(i*3 + 2));
2940                        i++;
2941                }
2942                else {
2943                        /* use hw hash table for the next series of
2944                         * multicast addresses
2945                         */
2946                        crc = ether_crc_le(ETH_ALEN, ha->addr);
2947                        crc >>= 24;
2948                        hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
2949                }
2950        }
2951        for (i = 0; i < 16; i++)
2952                writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i));
2953}
2954
2955/* Must be invoked under cp->lock. */
2956static u32 cas_setup_multicast(struct cas *cp)
2957{
2958        u32 rxcfg = 0;
2959        int i;
2960
2961        if (cp->dev->flags & IFF_PROMISC) {
2962                rxcfg |= MAC_RX_CFG_PROMISC_EN;
2963
2964        } else if (cp->dev->flags & IFF_ALLMULTI) {
2965                for (i=0; i < 16; i++)
2966                        writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2967                rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2968
2969        } else {
2970                cas_process_mc_list(cp);
2971                rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2972        }
2973
2974        return rxcfg;
2975}
2976
2977/* must be invoked under cp->stat_lock[N_TX_RINGS] */
2978static void cas_clear_mac_err(struct cas *cp)
2979{
2980        writel(0, cp->regs + REG_MAC_COLL_NORMAL);
2981        writel(0, cp->regs + REG_MAC_COLL_FIRST);
2982        writel(0, cp->regs + REG_MAC_COLL_EXCESS);
2983        writel(0, cp->regs + REG_MAC_COLL_LATE);
2984        writel(0, cp->regs + REG_MAC_TIMER_DEFER);
2985        writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
2986        writel(0, cp->regs + REG_MAC_RECV_FRAME);
2987        writel(0, cp->regs + REG_MAC_LEN_ERR);
2988        writel(0, cp->regs + REG_MAC_ALIGN_ERR);
2989        writel(0, cp->regs + REG_MAC_FCS_ERR);
2990        writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
2991}
2992
2993
2994static void cas_mac_reset(struct cas *cp)
2995{
2996        int i;
2997
2998        /* do both TX and RX reset */
2999        writel(0x1, cp->regs + REG_MAC_TX_RESET);
3000        writel(0x1, cp->regs + REG_MAC_RX_RESET);
3001
3002        /* wait for TX */
3003        i = STOP_TRIES;
3004        while (i-- > 0) {
3005                if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3006                        break;
3007                udelay(10);
3008        }
3009
3010        /* wait for RX */
3011        i = STOP_TRIES;
3012        while (i-- > 0) {
3013                if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3014                        break;
3015                udelay(10);
3016        }
3017
3018        if (readl(cp->regs + REG_MAC_TX_RESET) |
3019            readl(cp->regs + REG_MAC_RX_RESET))
3020                netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
3021                           readl(cp->regs + REG_MAC_TX_RESET),
3022                           readl(cp->regs + REG_MAC_RX_RESET),
3023                           readl(cp->regs + REG_MAC_STATE_MACHINE));
3024}
3025
3026
3027/* Must be invoked under cp->lock. */
3028static void cas_init_mac(struct cas *cp)
3029{
3030        unsigned char *e = &cp->dev->dev_addr[0];
3031        int i;
3032        cas_mac_reset(cp);
3033
3034        /* setup core arbitration weight register */
3035        writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3036
3037#if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3038        /* set the infinite burst register for chips that don't have
3039         * pci issues.
3040         */
3041        if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3042                writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3043#endif
3044
3045        writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3046
3047        writel(0x00, cp->regs + REG_MAC_IPG0);
3048        writel(0x08, cp->regs + REG_MAC_IPG1);
3049        writel(0x04, cp->regs + REG_MAC_IPG2);
3050
3051        /* change later for 802.3z */
3052        writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3053
3054        /* min frame + FCS */
3055        writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3056
3057        /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3058         * specify the maximum frame size to prevent RX tag errors on
3059         * oversized frames.
3060         */
3061        writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3062               CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3063                        (CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3064               cp->regs + REG_MAC_FRAMESIZE_MAX);
3065
3066        /* NOTE: crc_size is used as a surrogate for half-duplex.
3067         * workaround saturn half-duplex issue by increasing preamble
3068         * size to 65 bytes.
3069         */
3070        if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3071                writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3072        else
3073                writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3074        writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3075        writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3076        writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3077
3078        writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3079
3080        writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3081        writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3082        writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3083        writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3084        writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3085
3086        /* setup mac address in perfect filter array */
3087        for (i = 0; i < 45; i++)
3088                writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3089
3090        writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3091        writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3092        writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3093
3094        writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3095        writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3096        writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3097
3098        cp->mac_rx_cfg = cas_setup_multicast(cp);
3099
3100        spin_lock(&cp->stat_lock[N_TX_RINGS]);
3101        cas_clear_mac_err(cp);
3102        spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3103
3104        /* Setup MAC interrupts.  We want to get all of the interesting
3105         * counter expiration events, but we do not want to hear about
3106         * normal rx/tx as the DMA engine tells us that.
3107         */
3108        writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3109        writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3110
3111        /* Don't enable even the PAUSE interrupts for now, we
3112         * make no use of those events other than to record them.
3113         */
3114        writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3115}
3116
3117/* Must be invoked under cp->lock. */
3118static void cas_init_pause_thresholds(struct cas *cp)
3119{
3120        /* Calculate pause thresholds.  Setting the OFF threshold to the
3121         * full RX fifo size effectively disables PAUSE generation
3122         */
3123        if (cp->rx_fifo_size <= (2 * 1024)) {
3124                cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3125        } else {
3126                int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3127                if (max_frame * 3 > cp->rx_fifo_size) {
3128                        cp->rx_pause_off = 7104;
3129                        cp->rx_pause_on  = 960;
3130                } else {
3131                        int off = (cp->rx_fifo_size - (max_frame * 2));
3132                        int on = off - max_frame;
3133                        cp->rx_pause_off = off;
3134                        cp->rx_pause_on = on;
3135                }
3136        }
3137}
3138
3139static int cas_vpd_match(const void __iomem *p, const char *str)
3140{
3141        int len = strlen(str) + 1;
3142        int i;
3143
3144        for (i = 0; i < len; i++) {
3145                if (readb(p + i) != str[i])
3146                        return 0;
3147        }
3148        return 1;
3149}
3150
3151
3152/* get the mac address by reading the vpd information in the rom.
3153 * also get the phy type and determine if there's an entropy generator.
3154 * NOTE: this is a bit convoluted for the following reasons:
3155 *  1) vpd info has order-dependent mac addresses for multinic cards
3156 *  2) the only way to determine the nic order is to use the slot
3157 *     number.
3158 *  3) fiber cards don't have bridges, so their slot numbers don't
3159 *     mean anything.
3160 *  4) we don't actually know we have a fiber card until after
3161 *     the mac addresses are parsed.
3162 */
3163static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3164                            const int offset)
3165{
3166        void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3167        void __iomem *base, *kstart;
3168        int i, len;
3169        int found = 0;
3170#define VPD_FOUND_MAC        0x01
3171#define VPD_FOUND_PHY        0x02
3172
3173        int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3174        int mac_off  = 0;
3175
3176#if defined(CONFIG_SPARC)
3177        const unsigned char *addr;
3178#endif
3179
3180        /* give us access to the PROM */
3181        writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3182               cp->regs + REG_BIM_LOCAL_DEV_EN);
3183
3184        /* check for an expansion rom */
3185        if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3186                goto use_random_mac_addr;
3187
3188        /* search for beginning of vpd */
3189        base = NULL;
3190        for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3191                /* check for PCIR */
3192                if ((readb(p + i + 0) == 0x50) &&
3193                    (readb(p + i + 1) == 0x43) &&
3194                    (readb(p + i + 2) == 0x49) &&
3195                    (readb(p + i + 3) == 0x52)) {
3196                        base = p + (readb(p + i + 8) |
3197                                    (readb(p + i + 9) << 8));
3198                        break;
3199                }
3200        }
3201
3202        if (!base || (readb(base) != 0x82))
3203                goto use_random_mac_addr;
3204
3205        i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3206        while (i < EXPANSION_ROM_SIZE) {
3207                if (readb(base + i) != 0x90) /* no vpd found */
3208                        goto use_random_mac_addr;
3209
3210                /* found a vpd field */
3211                len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3212
3213                /* extract keywords */
3214                kstart = base + i + 3;
3215                p = kstart;
3216                while ((p - kstart) < len) {
3217                        int klen = readb(p + 2);
3218                        int j;
3219                        char type;
3220
3221                        p += 3;
3222
3223                        /* look for the following things:
3224                         * -- correct length == 29
3225                         * 3 (type) + 2 (size) +
3226                         * 18 (strlen("local-mac-address") + 1) +
3227                         * 6 (mac addr)
3228                         * -- VPD Instance 'I'
3229                         * -- VPD Type Bytes 'B'
3230                         * -- VPD data length == 6
3231                         * -- property string == local-mac-address
3232                         *
3233                         * -- correct length == 24
3234                         * 3 (type) + 2 (size) +
3235                         * 12 (strlen("entropy-dev") + 1) +
3236                         * 7 (strlen("vms110") + 1)
3237                         * -- VPD Instance 'I'
3238                         * -- VPD Type String 'B'
3239                         * -- VPD data length == 7
3240                         * -- property string == entropy-dev
3241                         *
3242                         * -- correct length == 18
3243                         * 3 (type) + 2 (size) +
3244                         * 9 (strlen("phy-type") + 1) +
3245                         * 4 (strlen("pcs") + 1)
3246                         * -- VPD Instance 'I'
3247                         * -- VPD Type String 'S'
3248                         * -- VPD data length == 4
3249                         * -- property string == phy-type
3250                         *
3251                         * -- correct length == 23
3252                         * 3 (type) + 2 (size) +
3253                         * 14 (strlen("phy-interface") + 1) +
3254                         * 4 (strlen("pcs") + 1)
3255                         * -- VPD Instance 'I'
3256                         * -- VPD Type String 'S'
3257                         * -- VPD data length == 4
3258                         * -- property string == phy-interface
3259                         */
3260                        if (readb(p) != 'I')
3261                                goto next;
3262
3263                        /* finally, check string and length */
3264                        type = readb(p + 3);
3265                        if (type == 'B') {
3266                                if ((klen == 29) && readb(p + 4) == 6 &&
3267                                    cas_vpd_match(p + 5,
3268                                                  "local-mac-address")) {
3269                                        if (mac_off++ > offset)
3270                                                goto next;
3271
3272                                        /* set mac address */
3273                                        for (j = 0; j < 6; j++)
3274                                                dev_addr[j] =
3275                                                        readb(p + 23 + j);
3276                                        goto found_mac;
3277                                }
3278                        }
3279
3280                        if (type != 'S')
3281                                goto next;
3282
3283#ifdef USE_ENTROPY_DEV
3284                        if ((klen == 24) &&
3285                            cas_vpd_match(p + 5, "entropy-dev") &&
3286                            cas_vpd_match(p + 17, "vms110")) {
3287                                cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3288                                goto next;
3289                        }
3290#endif
3291
3292                        if (found & VPD_FOUND_PHY)
3293                                goto next;
3294
3295                        if ((klen == 18) && readb(p + 4) == 4 &&
3296                            cas_vpd_match(p + 5, "phy-type")) {
3297                                if (cas_vpd_match(p + 14, "pcs")) {
3298                                        phy_type = CAS_PHY_SERDES;
3299                                        goto found_phy;
3300                                }
3301                        }
3302
3303                        if ((klen == 23) && readb(p + 4) == 4 &&
3304                            cas_vpd_match(p + 5, "phy-interface")) {
3305                                if (cas_vpd_match(p + 19, "pcs")) {
3306                                        phy_type = CAS_PHY_SERDES;
3307                                        goto found_phy;
3308                                }
3309                        }
3310found_mac:
3311                        found |= VPD_FOUND_MAC;
3312                        goto next;
3313
3314found_phy:
3315                        found |= VPD_FOUND_PHY;
3316
3317next:
3318                        p += klen;
3319                }
3320                i += len + 3;
3321        }
3322
3323use_random_mac_addr:
3324        if (found & VPD_FOUND_MAC)
3325                goto done;
3326
3327#if defined(CONFIG_SPARC)
3328        addr = of_get_property(cp->of_node, "local-mac-address", NULL);
3329        if (addr != NULL) {
3330                memcpy(dev_addr, addr, ETH_ALEN);
3331                goto done;
3332        }
3333#endif
3334
3335        /* Sun MAC prefix then 3 random bytes. */
3336        pr_info("MAC address not found in ROM VPD\n");
3337        dev_addr[0] = 0x08;
3338        dev_addr[1] = 0x00;
3339        dev_addr[2] = 0x20;
3340        get_random_bytes(dev_addr + 3, 3);
3341
3342done:
3343        writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3344        return phy_type;
3345}
3346
3347/* check pci invariants */
3348static void cas_check_pci_invariants(struct cas *cp)
3349{
3350        struct pci_dev *pdev = cp->pdev;
3351
3352        cp->cas_flags = 0;
3353        if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3354            (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3355                if (pdev->revision >= CAS_ID_REVPLUS)
3356                        cp->cas_flags |= CAS_FLAG_REG_PLUS;
3357                if (pdev->revision < CAS_ID_REVPLUS02u)
3358                        cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3359
3360                /* Original Cassini supports HW CSUM, but it's not
3361                 * enabled by default as it can trigger TX hangs.
3362                 */
3363                if (pdev->revision < CAS_ID_REV2)
3364                        cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3365        } else {
3366                /* Only sun has original cassini chips.  */
3367                cp->cas_flags |= CAS_FLAG_REG_PLUS;
3368
3369                /* We use a flag because the same phy might be externally
3370                 * connected.
3371                 */
3372                if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3373                    (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3374                        cp->cas_flags |= CAS_FLAG_SATURN;
3375        }
3376}
3377
3378
3379static int cas_check_invariants(struct cas *cp)
3380{
3381        struct pci_dev *pdev = cp->pdev;
3382        u32 cfg;
3383        int i;
3384
3385        /* get page size for rx buffers. */
3386        cp->page_order = 0;
3387#ifdef USE_PAGE_ORDER
3388        if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3389                /* see if we can allocate larger pages */
3390                struct page *page = alloc_pages(GFP_ATOMIC,
3391                                                CAS_JUMBO_PAGE_SHIFT -
3392                                                PAGE_SHIFT);
3393                if (page) {
3394                        __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3395                        cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3396                } else {
3397                        printk("MTU limited to %d bytes\n", CAS_MAX_MTU);
3398                }
3399        }
3400#endif
3401        cp->page_size = (PAGE_SIZE << cp->page_order);
3402
3403        /* Fetch the FIFO configurations. */
3404        cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3405        cp->rx_fifo_size = RX_FIFO_SIZE;
3406
3407        /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3408         * they're both connected.
3409         */
3410        cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
3411                                        PCI_SLOT(pdev->devfn));
3412        if (cp->phy_type & CAS_PHY_SERDES) {
3413                cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3414                return 0; /* no more checking needed */
3415        }
3416
3417        /* MII */
3418        cfg = readl(cp->regs + REG_MIF_CFG);
3419        if (cfg & MIF_CFG_MDIO_1) {
3420                cp->phy_type = CAS_PHY_MII_MDIO1;
3421        } else if (cfg & MIF_CFG_MDIO_0) {
3422                cp->phy_type = CAS_PHY_MII_MDIO0;
3423        }
3424
3425        cas_mif_poll(cp, 0);
3426        writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3427
3428        for (i = 0; i < 32; i++) {
3429                u32 phy_id;
3430                int j;
3431
3432                for (j = 0; j < 3; j++) {
3433                        cp->phy_addr = i;
3434                        phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3435                        phy_id |= cas_phy_read(cp, MII_PHYSID2);
3436                        if (phy_id && (phy_id != 0xFFFFFFFF)) {
3437                                cp->phy_id = phy_id;
3438                                goto done;
3439                        }
3440                }
3441        }
3442        pr_err("MII phy did not respond [%08x]\n",
3443               readl(cp->regs + REG_MIF_STATE_MACHINE));
3444        return -1;
3445
3446done:
3447        /* see if we can do gigabit */
3448        cfg = cas_phy_read(cp, MII_BMSR);
3449        if ((cfg & CAS_BMSR_1000_EXTEND) &&
3450            cas_phy_read(cp, CAS_MII_1000_EXTEND))
3451                cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3452        return 0;
3453}
3454
3455/* Must be invoked under cp->lock. */
3456static inline void cas_start_dma(struct cas *cp)
3457{
3458        int i;
3459        u32 val;
3460        int txfailed = 0;
3461
3462        /* enable dma */
3463        val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3464        writel(val, cp->regs + REG_TX_CFG);
3465        val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3466        writel(val, cp->regs + REG_RX_CFG);
3467
3468        /* enable the mac */
3469        val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3470        writel(val, cp->regs + REG_MAC_TX_CFG);
3471        val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3472        writel(val, cp->regs + REG_MAC_RX_CFG);
3473
3474        i = STOP_TRIES;
3475        while (i-- > 0) {
3476                val = readl(cp->regs + REG_MAC_TX_CFG);
3477                if ((val & MAC_TX_CFG_EN))
3478                        break;
3479                udelay(10);
3480        }
3481        if (i < 0) txfailed = 1;
3482        i = STOP_TRIES;
3483        while (i-- > 0) {
3484                val = readl(cp->regs + REG_MAC_RX_CFG);
3485                if ((val & MAC_RX_CFG_EN)) {
3486                        if (txfailed) {
3487                                netdev_err(cp->dev,
3488                                           "enabling mac failed [tx:%08x:%08x]\n",
3489                                           readl(cp->regs + REG_MIF_STATE_MACHINE),
3490                                           readl(cp->regs + REG_MAC_STATE_MACHINE));
3491                        }
3492                        goto enable_rx_done;
3493                }
3494                udelay(10);
3495        }
3496        netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n",
3497                   (txfailed ? "tx,rx" : "rx"),
3498                   readl(cp->regs + REG_MIF_STATE_MACHINE),
3499                   readl(cp->regs + REG_MAC_STATE_MACHINE));
3500
3501enable_rx_done:
3502        cas_unmask_intr(cp); /* enable interrupts */
3503        writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3504        writel(0, cp->regs + REG_RX_COMP_TAIL);
3505
3506        if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3507                if (N_RX_DESC_RINGS > 1)
3508                        writel(RX_DESC_RINGN_SIZE(1) - 4,
3509                               cp->regs + REG_PLUS_RX_KICK1);
3510
3511                for (i = 1; i < N_RX_COMP_RINGS; i++)
3512                        writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3513        }
3514}
3515
3516/* Must be invoked under cp->lock. */
3517static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3518                                   int *pause)
3519{
3520        u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3521        *fd     = (val & PCS_MII_LPA_FD) ? 1 : 0;
3522        *pause  = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3523        if (val & PCS_MII_LPA_ASYM_PAUSE)
3524                *pause |= 0x10;
3525        *spd = 1000;
3526}
3527
3528/* Must be invoked under cp->lock. */
3529static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3530                                   int *pause)
3531{
3532        u32 val;
3533
3534        *fd = 0;
3535        *spd = 10;
3536        *pause = 0;
3537
3538        /* use GMII registers */
3539        val = cas_phy_read(cp, MII_LPA);
3540        if (val & CAS_LPA_PAUSE)
3541                *pause = 0x01;
3542
3543        if (val & CAS_LPA_ASYM_PAUSE)
3544                *pause |= 0x10;
3545
3546        if (val & LPA_DUPLEX)
3547                *fd = 1;
3548        if (val & LPA_100)
3549                *spd = 100;
3550
3551        if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3552                val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3553                if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3554                        *spd = 1000;
3555                if (val & CAS_LPA_1000FULL)
3556                        *fd = 1;
3557        }
3558}
3559
3560/* A link-up condition has occurred, initialize and enable the
3561 * rest of the chip.
3562 *
3563 * Must be invoked under cp->lock.
3564 */
3565static void cas_set_link_modes(struct cas *cp)
3566{
3567        u32 val;
3568        int full_duplex, speed, pause;
3569
3570        full_duplex = 0;
3571        speed = 10;
3572        pause = 0;
3573
3574        if (CAS_PHY_MII(cp->phy_type)) {
3575                cas_mif_poll(cp, 0);
3576                val = cas_phy_read(cp, MII_BMCR);
3577                if (val & BMCR_ANENABLE) {
3578                        cas_read_mii_link_mode(cp, &full_duplex, &speed,
3579                                               &pause);
3580                } else {
3581                        if (val & BMCR_FULLDPLX)
3582                                full_duplex = 1;
3583
3584                        if (val & BMCR_SPEED100)
3585                                speed = 100;
3586                        else if (val & CAS_BMCR_SPEED1000)
3587                                speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3588                                        1000 : 100;
3589                }
3590                cas_mif_poll(cp, 1);
3591
3592        } else {
3593                val = readl(cp->regs + REG_PCS_MII_CTRL);
3594                cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3595                if ((val & PCS_MII_AUTONEG_EN) == 0) {
3596                        if (val & PCS_MII_CTRL_DUPLEX)
3597                                full_duplex = 1;
3598                }
3599        }
3600
3601        netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n",
3602                   speed, full_duplex ? "full" : "half");
3603
3604        val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3605        if (CAS_PHY_MII(cp->phy_type)) {
3606                val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3607                if (!full_duplex)
3608                        val |= MAC_XIF_DISABLE_ECHO;
3609        }
3610        if (full_duplex)
3611                val |= MAC_XIF_FDPLX_LED;
3612        if (speed == 1000)
3613                val |= MAC_XIF_GMII_MODE;
3614        writel(val, cp->regs + REG_MAC_XIF_CFG);
3615
3616        /* deal with carrier and collision detect. */
3617        val = MAC_TX_CFG_IPG_EN;
3618        if (full_duplex) {
3619                val |= MAC_TX_CFG_IGNORE_CARRIER;
3620                val |= MAC_TX_CFG_IGNORE_COLL;
3621        } else {
3622#ifndef USE_CSMA_CD_PROTO
3623                val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3624                val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3625#endif
3626        }
3627        /* val now set up for REG_MAC_TX_CFG */
3628
3629        /* If gigabit and half-duplex, enable carrier extension
3630         * mode.  increase slot time to 512 bytes as well.
3631         * else, disable it and make sure slot time is 64 bytes.
3632         * also activate checksum bug workaround
3633         */
3634        if ((speed == 1000) && !full_duplex) {
3635                writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3636                       cp->regs + REG_MAC_TX_CFG);
3637
3638                val = readl(cp->regs + REG_MAC_RX_CFG);
3639                val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3640                writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3641                       cp->regs + REG_MAC_RX_CFG);
3642
3643                writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3644
3645                cp->crc_size = 4;
3646                /* minimum size gigabit frame at half duplex */
3647                cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3648
3649        } else {
3650                writel(val, cp->regs + REG_MAC_TX_CFG);
3651
3652                /* checksum bug workaround. don't strip FCS when in
3653                 * half-duplex mode
3654                 */
3655                val = readl(cp->regs + REG_MAC_RX_CFG);
3656                if (full_duplex) {
3657                        val |= MAC_RX_CFG_STRIP_FCS;
3658                        cp->crc_size = 0;
3659                        cp->min_frame_size = CAS_MIN_MTU;
3660                } else {
3661                        val &= ~MAC_RX_CFG_STRIP_FCS;
3662                        cp->crc_size = 4;
3663                        cp->min_frame_size = CAS_MIN_FRAME;
3664                }
3665                writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3666                       cp->regs + REG_MAC_RX_CFG);
3667                writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3668        }
3669
3670        if (netif_msg_link(cp)) {
3671                if (pause & 0x01) {
3672                        netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3673                                    cp->rx_fifo_size,
3674                                    cp->rx_pause_off,
3675                                    cp->rx_pause_on);
3676                } else if (pause & 0x10) {
3677                        netdev_info(cp->dev, "TX pause enabled\n");
3678                } else {
3679                        netdev_info(cp->dev, "Pause is disabled\n");
3680                }
3681        }
3682
3683        val = readl(cp->regs + REG_MAC_CTRL_CFG);
3684        val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3685        if (pause) { /* symmetric or asymmetric pause */
3686                val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3687                if (pause & 0x01) { /* symmetric pause */
3688                        val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3689                }
3690        }
3691        writel(val, cp->regs + REG_MAC_CTRL_CFG);
3692        cas_start_dma(cp);
3693}
3694
3695/* Must be invoked under cp->lock. */
3696static void cas_init_hw(struct cas *cp, int restart_link)
3697{
3698        if (restart_link)
3699                cas_phy_init(cp);
3700
3701        cas_init_pause_thresholds(cp);
3702        cas_init_mac(cp);
3703        cas_init_dma(cp);
3704
3705        if (restart_link) {
3706                /* Default aneg parameters */
3707                cp->timer_ticks = 0;
3708                cas_begin_auto_negotiation(cp, NULL);
3709        } else if (cp->lstate == link_up) {
3710                cas_set_link_modes(cp);
3711                netif_carrier_on(cp->dev);
3712        }
3713}
3714
3715/* Must be invoked under cp->lock. on earlier cassini boards,
3716 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3717 * let it settle out, and then restore pci state.
3718 */
3719static void cas_hard_reset(struct cas *cp)
3720{
3721        writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3722        udelay(20);
3723        pci_restore_state(cp->pdev);
3724}
3725
3726
3727static void cas_global_reset(struct cas *cp, int blkflag)
3728{
3729        int limit;
3730
3731        /* issue a global reset. don't use RSTOUT. */
3732        if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3733                /* For PCS, when the blkflag is set, we should set the
3734                 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3735                 * the last autonegotiation from being cleared.  We'll
3736                 * need some special handling if the chip is set into a
3737                 * loopback mode.
3738                 */
3739                writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3740                       cp->regs + REG_SW_RESET);
3741        } else {
3742                writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3743        }
3744
3745        /* need to wait at least 3ms before polling register */
3746        mdelay(3);
3747
3748        limit = STOP_TRIES;
3749        while (limit-- > 0) {
3750                u32 val = readl(cp->regs + REG_SW_RESET);
3751                if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3752                        goto done;
3753                udelay(10);
3754        }
3755        netdev_err(cp->dev, "sw reset failed\n");
3756
3757done:
3758        /* enable various BIM interrupts */
3759        writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3760               BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3761
3762        /* clear out pci error status mask for handled errors.
3763         * we don't deal with DMA counter overflows as they happen
3764         * all the time.
3765         */
3766        writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3767                               PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3768                               PCI_ERR_BIM_DMA_READ), cp->regs +
3769               REG_PCI_ERR_STATUS_MASK);
3770
3771        /* set up for MII by default to address mac rx reset timeout
3772         * issue
3773         */
3774        writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3775}
3776
3777static void cas_reset(struct cas *cp, int blkflag)
3778{
3779        u32 val;
3780
3781        cas_mask_intr(cp);
3782        cas_global_reset(cp, blkflag);
3783        cas_mac_reset(cp);
3784        cas_entropy_reset(cp);
3785
3786        /* disable dma engines. */
3787        val = readl(cp->regs + REG_TX_CFG);
3788        val &= ~TX_CFG_DMA_EN;
3789        writel(val, cp->regs + REG_TX_CFG);
3790
3791        val = readl(cp->regs + REG_RX_CFG);
3792        val &= ~RX_CFG_DMA_EN;
3793        writel(val, cp->regs + REG_RX_CFG);
3794
3795        /* program header parser */
3796        if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3797            (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3798                cas_load_firmware(cp, CAS_HP_FIRMWARE);
3799        } else {
3800                cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3801        }
3802
3803        /* clear out error registers */
3804        spin_lock(&cp->stat_lock[N_TX_RINGS]);
3805        cas_clear_mac_err(cp);
3806        spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3807}
3808
3809/* Shut down the chip, must be called with pm_mutex held.  */
3810static void cas_shutdown(struct cas *cp)
3811{
3812        unsigned long flags;
3813
3814        /* Make us not-running to avoid timers respawning */
3815        cp->hw_running = 0;
3816
3817        del_timer_sync(&cp->link_timer);
3818
3819        /* Stop the reset task */
3820#if 0
3821        while (atomic_read(&cp->reset_task_pending_mtu) ||
3822               atomic_read(&cp->reset_task_pending_spare) ||
3823               atomic_read(&cp->reset_task_pending_all))
3824                schedule();
3825
3826#else
3827        while (atomic_read(&cp->reset_task_pending))
3828                schedule();
3829#endif
3830        /* Actually stop the chip */
3831        cas_lock_all_save(cp, flags);
3832        cas_reset(cp, 0);
3833        if (cp->cas_flags & CAS_FLAG_SATURN)
3834                cas_phy_powerdown(cp);
3835        cas_unlock_all_restore(cp, flags);
3836}
3837
3838static int cas_change_mtu(struct net_device *dev, int new_mtu)
3839{
3840        struct cas *cp = netdev_priv(dev);
3841
3842        dev->mtu = new_mtu;
3843        if (!netif_running(dev) || !netif_device_present(dev))
3844                return 0;
3845
3846        /* let the reset task handle it */
3847#if 1
3848        atomic_inc(&cp->reset_task_pending);
3849        if ((cp->phy_type & CAS_PHY_SERDES)) {
3850                atomic_inc(&cp->reset_task_pending_all);
3851        } else {
3852                atomic_inc(&cp->reset_task_pending_mtu);
3853        }
3854        schedule_work(&cp->reset_task);
3855#else
3856        atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3857                   CAS_RESET_ALL : CAS_RESET_MTU);
3858        pr_err("reset called in cas_change_mtu\n");
3859        schedule_work(&cp->reset_task);
3860#endif
3861
3862        flush_work(&cp->reset_task);
3863        return 0;
3864}
3865
3866static void cas_clean_txd(struct cas *cp, int ring)
3867{
3868        struct cas_tx_desc *txd = cp->init_txds[ring];
3869        struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3870        u64 daddr, dlen;
3871        int i, size;
3872
3873        size = TX_DESC_RINGN_SIZE(ring);
3874        for (i = 0; i < size; i++) {
3875                int frag;
3876
3877                if (skbs[i] == NULL)
3878                        continue;
3879
3880                skb = skbs[i];
3881                skbs[i] = NULL;
3882
3883                for (frag = 0; frag <= skb_shinfo(skb)->nr_frags;  frag++) {
3884                        int ent = i & (size - 1);
3885
3886                        /* first buffer is never a tiny buffer and so
3887                         * needs to be unmapped.
3888                         */
3889                        daddr = le64_to_cpu(txd[ent].buffer);
3890                        dlen  =  CAS_VAL(TX_DESC_BUFLEN,
3891                                         le64_to_cpu(txd[ent].control));
3892                        dma_unmap_page(&cp->pdev->dev, daddr, dlen,
3893                                       DMA_TO_DEVICE);
3894
3895                        if (frag != skb_shinfo(skb)->nr_frags) {
3896                                i++;
3897
3898                                /* next buffer might by a tiny buffer.
3899                                 * skip past it.
3900                                 */
3901                                ent = i & (size - 1);
3902                                if (cp->tx_tiny_use[ring][ent].used)
3903                                        i++;
3904                        }
3905                }
3906                dev_kfree_skb_any(skb);
3907        }
3908
3909        /* zero out tiny buf usage */
3910        memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3911}
3912
3913/* freed on close */
3914static inline void cas_free_rx_desc(struct cas *cp, int ring)
3915{
3916        cas_page_t **page = cp->rx_pages[ring];
3917        int i, size;
3918
3919        size = RX_DESC_RINGN_SIZE(ring);
3920        for (i = 0; i < size; i++) {
3921                if (page[i]) {
3922                        cas_page_free(cp, page[i]);
3923                        page[i] = NULL;
3924                }
3925        }
3926}
3927
3928static void cas_free_rxds(struct cas *cp)
3929{
3930        int i;
3931
3932        for (i = 0; i < N_RX_DESC_RINGS; i++)
3933                cas_free_rx_desc(cp, i);
3934}
3935
3936/* Must be invoked under cp->lock. */
3937static void cas_clean_rings(struct cas *cp)
3938{