linux/drivers/net/ethernet/micrel/ksz884x.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * drivers/net/ethernet/micrel/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
   4 *
   5 * Copyright (c) 2009-2010 Micrel, Inc.
   6 *      Tristram Ha <Tristram.Ha@micrel.com>
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/init.h>
  12#include <linux/interrupt.h>
  13#include <linux/kernel.h>
  14#include <linux/module.h>
  15#include <linux/ioport.h>
  16#include <linux/pci.h>
  17#include <linux/proc_fs.h>
  18#include <linux/mii.h>
  19#include <linux/platform_device.h>
  20#include <linux/ethtool.h>
  21#include <linux/etherdevice.h>
  22#include <linux/in.h>
  23#include <linux/ip.h>
  24#include <linux/if_vlan.h>
  25#include <linux/crc32.h>
  26#include <linux/sched.h>
  27#include <linux/slab.h>
  28
  29
  30/* DMA Registers */
  31
  32#define KS_DMA_TX_CTRL                  0x0000
  33#define DMA_TX_ENABLE                   0x00000001
  34#define DMA_TX_CRC_ENABLE               0x00000002
  35#define DMA_TX_PAD_ENABLE               0x00000004
  36#define DMA_TX_LOOPBACK                 0x00000100
  37#define DMA_TX_FLOW_ENABLE              0x00000200
  38#define DMA_TX_CSUM_IP                  0x00010000
  39#define DMA_TX_CSUM_TCP                 0x00020000
  40#define DMA_TX_CSUM_UDP                 0x00040000
  41#define DMA_TX_BURST_SIZE               0x3F000000
  42
  43#define KS_DMA_RX_CTRL                  0x0004
  44#define DMA_RX_ENABLE                   0x00000001
  45#define KS884X_DMA_RX_MULTICAST         0x00000002
  46#define DMA_RX_PROMISCUOUS              0x00000004
  47#define DMA_RX_ERROR                    0x00000008
  48#define DMA_RX_UNICAST                  0x00000010
  49#define DMA_RX_ALL_MULTICAST            0x00000020
  50#define DMA_RX_BROADCAST                0x00000040
  51#define DMA_RX_FLOW_ENABLE              0x00000200
  52#define DMA_RX_CSUM_IP                  0x00010000
  53#define DMA_RX_CSUM_TCP                 0x00020000
  54#define DMA_RX_CSUM_UDP                 0x00040000
  55#define DMA_RX_BURST_SIZE               0x3F000000
  56
  57#define DMA_BURST_SHIFT                 24
  58#define DMA_BURST_DEFAULT               8
  59
  60#define KS_DMA_TX_START                 0x0008
  61#define KS_DMA_RX_START                 0x000C
  62#define DMA_START                       0x00000001
  63
  64#define KS_DMA_TX_ADDR                  0x0010
  65#define KS_DMA_RX_ADDR                  0x0014
  66
  67#define DMA_ADDR_LIST_MASK              0xFFFFFFFC
  68#define DMA_ADDR_LIST_SHIFT             2
  69
  70/* MTR0 */
  71#define KS884X_MULTICAST_0_OFFSET       0x0020
  72#define KS884X_MULTICAST_1_OFFSET       0x0021
  73#define KS884X_MULTICAST_2_OFFSET       0x0022
  74#define KS884x_MULTICAST_3_OFFSET       0x0023
  75/* MTR1 */
  76#define KS884X_MULTICAST_4_OFFSET       0x0024
  77#define KS884X_MULTICAST_5_OFFSET       0x0025
  78#define KS884X_MULTICAST_6_OFFSET       0x0026
  79#define KS884X_MULTICAST_7_OFFSET       0x0027
  80
  81/* Interrupt Registers */
  82
  83/* INTEN */
  84#define KS884X_INTERRUPTS_ENABLE        0x0028
  85/* INTST */
  86#define KS884X_INTERRUPTS_STATUS        0x002C
  87
  88#define KS884X_INT_RX_STOPPED           0x02000000
  89#define KS884X_INT_TX_STOPPED           0x04000000
  90#define KS884X_INT_RX_OVERRUN           0x08000000
  91#define KS884X_INT_TX_EMPTY             0x10000000
  92#define KS884X_INT_RX                   0x20000000
  93#define KS884X_INT_TX                   0x40000000
  94#define KS884X_INT_PHY                  0x80000000
  95
  96#define KS884X_INT_RX_MASK              \
  97        (KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
  98#define KS884X_INT_TX_MASK              \
  99        (KS884X_INT_TX | KS884X_INT_TX_EMPTY)
 100#define KS884X_INT_MASK (KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
 101
 102/* MAC Additional Station Address */
 103
 104/* MAAL0 */
 105#define KS_ADD_ADDR_0_LO                0x0080
 106/* MAAH0 */
 107#define KS_ADD_ADDR_0_HI                0x0084
 108/* MAAL1 */
 109#define KS_ADD_ADDR_1_LO                0x0088
 110/* MAAH1 */
 111#define KS_ADD_ADDR_1_HI                0x008C
 112/* MAAL2 */
 113#define KS_ADD_ADDR_2_LO                0x0090
 114/* MAAH2 */
 115#define KS_ADD_ADDR_2_HI                0x0094
 116/* MAAL3 */
 117#define KS_ADD_ADDR_3_LO                0x0098
 118/* MAAH3 */
 119#define KS_ADD_ADDR_3_HI                0x009C
 120/* MAAL4 */
 121#define KS_ADD_ADDR_4_LO                0x00A0
 122/* MAAH4 */
 123#define KS_ADD_ADDR_4_HI                0x00A4
 124/* MAAL5 */
 125#define KS_ADD_ADDR_5_LO                0x00A8
 126/* MAAH5 */
 127#define KS_ADD_ADDR_5_HI                0x00AC
 128/* MAAL6 */
 129#define KS_ADD_ADDR_6_LO                0x00B0
 130/* MAAH6 */
 131#define KS_ADD_ADDR_6_HI                0x00B4
 132/* MAAL7 */
 133#define KS_ADD_ADDR_7_LO                0x00B8
 134/* MAAH7 */
 135#define KS_ADD_ADDR_7_HI                0x00BC
 136/* MAAL8 */
 137#define KS_ADD_ADDR_8_LO                0x00C0
 138/* MAAH8 */
 139#define KS_ADD_ADDR_8_HI                0x00C4
 140/* MAAL9 */
 141#define KS_ADD_ADDR_9_LO                0x00C8
 142/* MAAH9 */
 143#define KS_ADD_ADDR_9_HI                0x00CC
 144/* MAAL10 */
 145#define KS_ADD_ADDR_A_LO                0x00D0
 146/* MAAH10 */
 147#define KS_ADD_ADDR_A_HI                0x00D4
 148/* MAAL11 */
 149#define KS_ADD_ADDR_B_LO                0x00D8
 150/* MAAH11 */
 151#define KS_ADD_ADDR_B_HI                0x00DC
 152/* MAAL12 */
 153#define KS_ADD_ADDR_C_LO                0x00E0
 154/* MAAH12 */
 155#define KS_ADD_ADDR_C_HI                0x00E4
 156/* MAAL13 */
 157#define KS_ADD_ADDR_D_LO                0x00E8
 158/* MAAH13 */
 159#define KS_ADD_ADDR_D_HI                0x00EC
 160/* MAAL14 */
 161#define KS_ADD_ADDR_E_LO                0x00F0
 162/* MAAH14 */
 163#define KS_ADD_ADDR_E_HI                0x00F4
 164/* MAAL15 */
 165#define KS_ADD_ADDR_F_LO                0x00F8
 166/* MAAH15 */
 167#define KS_ADD_ADDR_F_HI                0x00FC
 168
 169#define ADD_ADDR_HI_MASK                0x0000FFFF
 170#define ADD_ADDR_ENABLE                 0x80000000
 171#define ADD_ADDR_INCR                   8
 172
 173/* Miscellaneous Registers */
 174
 175/* MARL */
 176#define KS884X_ADDR_0_OFFSET            0x0200
 177#define KS884X_ADDR_1_OFFSET            0x0201
 178/* MARM */
 179#define KS884X_ADDR_2_OFFSET            0x0202
 180#define KS884X_ADDR_3_OFFSET            0x0203
 181/* MARH */
 182#define KS884X_ADDR_4_OFFSET            0x0204
 183#define KS884X_ADDR_5_OFFSET            0x0205
 184
 185/* OBCR */
 186#define KS884X_BUS_CTRL_OFFSET          0x0210
 187
 188#define BUS_SPEED_125_MHZ               0x0000
 189#define BUS_SPEED_62_5_MHZ              0x0001
 190#define BUS_SPEED_41_66_MHZ             0x0002
 191#define BUS_SPEED_25_MHZ                0x0003
 192
 193/* EEPCR */
 194#define KS884X_EEPROM_CTRL_OFFSET       0x0212
 195
 196#define EEPROM_CHIP_SELECT              0x0001
 197#define EEPROM_SERIAL_CLOCK             0x0002
 198#define EEPROM_DATA_OUT                 0x0004
 199#define EEPROM_DATA_IN                  0x0008
 200#define EEPROM_ACCESS_ENABLE            0x0010
 201
 202/* MBIR */
 203#define KS884X_MEM_INFO_OFFSET          0x0214
 204
 205#define RX_MEM_TEST_FAILED              0x0008
 206#define RX_MEM_TEST_FINISHED            0x0010
 207#define TX_MEM_TEST_FAILED              0x0800
 208#define TX_MEM_TEST_FINISHED            0x1000
 209
 210/* GCR */
 211#define KS884X_GLOBAL_CTRL_OFFSET       0x0216
 212#define GLOBAL_SOFTWARE_RESET           0x0001
 213
 214#define KS8841_POWER_MANAGE_OFFSET      0x0218
 215
 216/* WFCR */
 217#define KS8841_WOL_CTRL_OFFSET          0x021A
 218#define KS8841_WOL_MAGIC_ENABLE         0x0080
 219#define KS8841_WOL_FRAME3_ENABLE        0x0008
 220#define KS8841_WOL_FRAME2_ENABLE        0x0004
 221#define KS8841_WOL_FRAME1_ENABLE        0x0002
 222#define KS8841_WOL_FRAME0_ENABLE        0x0001
 223
 224/* WF0 */
 225#define KS8841_WOL_FRAME_CRC_OFFSET     0x0220
 226#define KS8841_WOL_FRAME_BYTE0_OFFSET   0x0224
 227#define KS8841_WOL_FRAME_BYTE2_OFFSET   0x0228
 228
 229/* IACR */
 230#define KS884X_IACR_P                   0x04A0
 231#define KS884X_IACR_OFFSET              KS884X_IACR_P
 232
 233/* IADR1 */
 234#define KS884X_IADR1_P                  0x04A2
 235#define KS884X_IADR2_P                  0x04A4
 236#define KS884X_IADR3_P                  0x04A6
 237#define KS884X_IADR4_P                  0x04A8
 238#define KS884X_IADR5_P                  0x04AA
 239
 240#define KS884X_ACC_CTRL_SEL_OFFSET      KS884X_IACR_P
 241#define KS884X_ACC_CTRL_INDEX_OFFSET    (KS884X_ACC_CTRL_SEL_OFFSET + 1)
 242
 243#define KS884X_ACC_DATA_0_OFFSET        KS884X_IADR4_P
 244#define KS884X_ACC_DATA_1_OFFSET        (KS884X_ACC_DATA_0_OFFSET + 1)
 245#define KS884X_ACC_DATA_2_OFFSET        KS884X_IADR5_P
 246#define KS884X_ACC_DATA_3_OFFSET        (KS884X_ACC_DATA_2_OFFSET + 1)
 247#define KS884X_ACC_DATA_4_OFFSET        KS884X_IADR2_P
 248#define KS884X_ACC_DATA_5_OFFSET        (KS884X_ACC_DATA_4_OFFSET + 1)
 249#define KS884X_ACC_DATA_6_OFFSET        KS884X_IADR3_P
 250#define KS884X_ACC_DATA_7_OFFSET        (KS884X_ACC_DATA_6_OFFSET + 1)
 251#define KS884X_ACC_DATA_8_OFFSET        KS884X_IADR1_P
 252
 253/* P1MBCR */
 254#define KS884X_P1MBCR_P                 0x04D0
 255#define KS884X_P1MBSR_P                 0x04D2
 256#define KS884X_PHY1ILR_P                0x04D4
 257#define KS884X_PHY1IHR_P                0x04D6
 258#define KS884X_P1ANAR_P                 0x04D8
 259#define KS884X_P1ANLPR_P                0x04DA
 260
 261/* P2MBCR */
 262#define KS884X_P2MBCR_P                 0x04E0
 263#define KS884X_P2MBSR_P                 0x04E2
 264#define KS884X_PHY2ILR_P                0x04E4
 265#define KS884X_PHY2IHR_P                0x04E6
 266#define KS884X_P2ANAR_P                 0x04E8
 267#define KS884X_P2ANLPR_P                0x04EA
 268
 269#define KS884X_PHY_1_CTRL_OFFSET        KS884X_P1MBCR_P
 270#define PHY_CTRL_INTERVAL               (KS884X_P2MBCR_P - KS884X_P1MBCR_P)
 271
 272#define KS884X_PHY_CTRL_OFFSET          0x00
 273
 274/* Mode Control Register */
 275#define PHY_REG_CTRL                    0
 276
 277#define PHY_RESET                       0x8000
 278#define PHY_LOOPBACK                    0x4000
 279#define PHY_SPEED_100MBIT               0x2000
 280#define PHY_AUTO_NEG_ENABLE             0x1000
 281#define PHY_POWER_DOWN                  0x0800
 282#define PHY_MII_DISABLE                 0x0400
 283#define PHY_AUTO_NEG_RESTART            0x0200
 284#define PHY_FULL_DUPLEX                 0x0100
 285#define PHY_COLLISION_TEST              0x0080
 286#define PHY_HP_MDIX                     0x0020
 287#define PHY_FORCE_MDIX                  0x0010
 288#define PHY_AUTO_MDIX_DISABLE           0x0008
 289#define PHY_REMOTE_FAULT_DISABLE        0x0004
 290#define PHY_TRANSMIT_DISABLE            0x0002
 291#define PHY_LED_DISABLE                 0x0001
 292
 293#define KS884X_PHY_STATUS_OFFSET        0x02
 294
 295/* Mode Status Register */
 296#define PHY_REG_STATUS                  1
 297
 298#define PHY_100BT4_CAPABLE              0x8000
 299#define PHY_100BTX_FD_CAPABLE           0x4000
 300#define PHY_100BTX_CAPABLE              0x2000
 301#define PHY_10BT_FD_CAPABLE             0x1000
 302#define PHY_10BT_CAPABLE                0x0800
 303#define PHY_MII_SUPPRESS_CAPABLE        0x0040
 304#define PHY_AUTO_NEG_ACKNOWLEDGE        0x0020
 305#define PHY_REMOTE_FAULT                0x0010
 306#define PHY_AUTO_NEG_CAPABLE            0x0008
 307#define PHY_LINK_STATUS                 0x0004
 308#define PHY_JABBER_DETECT               0x0002
 309#define PHY_EXTENDED_CAPABILITY         0x0001
 310
 311#define KS884X_PHY_ID_1_OFFSET          0x04
 312#define KS884X_PHY_ID_2_OFFSET          0x06
 313
 314/* PHY Identifier Registers */
 315#define PHY_REG_ID_1                    2
 316#define PHY_REG_ID_2                    3
 317
 318#define KS884X_PHY_AUTO_NEG_OFFSET      0x08
 319
 320/* Auto-Negotiation Advertisement Register */
 321#define PHY_REG_AUTO_NEGOTIATION        4
 322
 323#define PHY_AUTO_NEG_NEXT_PAGE          0x8000
 324#define PHY_AUTO_NEG_REMOTE_FAULT       0x2000
 325/* Not supported. */
 326#define PHY_AUTO_NEG_ASYM_PAUSE         0x0800
 327#define PHY_AUTO_NEG_SYM_PAUSE          0x0400
 328#define PHY_AUTO_NEG_100BT4             0x0200
 329#define PHY_AUTO_NEG_100BTX_FD          0x0100
 330#define PHY_AUTO_NEG_100BTX             0x0080
 331#define PHY_AUTO_NEG_10BT_FD            0x0040
 332#define PHY_AUTO_NEG_10BT               0x0020
 333#define PHY_AUTO_NEG_SELECTOR           0x001F
 334#define PHY_AUTO_NEG_802_3              0x0001
 335
 336#define PHY_AUTO_NEG_PAUSE  (PHY_AUTO_NEG_SYM_PAUSE | PHY_AUTO_NEG_ASYM_PAUSE)
 337
 338#define KS884X_PHY_REMOTE_CAP_OFFSET    0x0A
 339
 340/* Auto-Negotiation Link Partner Ability Register */
 341#define PHY_REG_REMOTE_CAPABILITY       5
 342
 343#define PHY_REMOTE_NEXT_PAGE            0x8000
 344#define PHY_REMOTE_ACKNOWLEDGE          0x4000
 345#define PHY_REMOTE_REMOTE_FAULT         0x2000
 346#define PHY_REMOTE_SYM_PAUSE            0x0400
 347#define PHY_REMOTE_100BTX_FD            0x0100
 348#define PHY_REMOTE_100BTX               0x0080
 349#define PHY_REMOTE_10BT_FD              0x0040
 350#define PHY_REMOTE_10BT                 0x0020
 351
 352/* P1VCT */
 353#define KS884X_P1VCT_P                  0x04F0
 354#define KS884X_P1PHYCTRL_P              0x04F2
 355
 356/* P2VCT */
 357#define KS884X_P2VCT_P                  0x04F4
 358#define KS884X_P2PHYCTRL_P              0x04F6
 359
 360#define KS884X_PHY_SPECIAL_OFFSET       KS884X_P1VCT_P
 361#define PHY_SPECIAL_INTERVAL            (KS884X_P2VCT_P - KS884X_P1VCT_P)
 362
 363#define KS884X_PHY_LINK_MD_OFFSET       0x00
 364
 365#define PHY_START_CABLE_DIAG            0x8000
 366#define PHY_CABLE_DIAG_RESULT           0x6000
 367#define PHY_CABLE_STAT_NORMAL           0x0000
 368#define PHY_CABLE_STAT_OPEN             0x2000
 369#define PHY_CABLE_STAT_SHORT            0x4000
 370#define PHY_CABLE_STAT_FAILED           0x6000
 371#define PHY_CABLE_10M_SHORT             0x1000
 372#define PHY_CABLE_FAULT_COUNTER         0x01FF
 373
 374#define KS884X_PHY_PHY_CTRL_OFFSET      0x02
 375
 376#define PHY_STAT_REVERSED_POLARITY      0x0020
 377#define PHY_STAT_MDIX                   0x0010
 378#define PHY_FORCE_LINK                  0x0008
 379#define PHY_POWER_SAVING_DISABLE        0x0004
 380#define PHY_REMOTE_LOOPBACK             0x0002
 381
 382/* SIDER */
 383#define KS884X_SIDER_P                  0x0400
 384#define KS884X_CHIP_ID_OFFSET           KS884X_SIDER_P
 385#define KS884X_FAMILY_ID_OFFSET         (KS884X_CHIP_ID_OFFSET + 1)
 386
 387#define REG_FAMILY_ID                   0x88
 388
 389#define REG_CHIP_ID_41                  0x8810
 390#define REG_CHIP_ID_42                  0x8800
 391
 392#define KS884X_CHIP_ID_MASK_41          0xFF10
 393#define KS884X_CHIP_ID_MASK             0xFFF0
 394#define KS884X_CHIP_ID_SHIFT            4
 395#define KS884X_REVISION_MASK            0x000E
 396#define KS884X_REVISION_SHIFT           1
 397#define KS8842_START                    0x0001
 398
 399#define CHIP_IP_41_M                    0x8810
 400#define CHIP_IP_42_M                    0x8800
 401#define CHIP_IP_61_M                    0x8890
 402#define CHIP_IP_62_M                    0x8880
 403
 404#define CHIP_IP_41_P                    0x8850
 405#define CHIP_IP_42_P                    0x8840
 406#define CHIP_IP_61_P                    0x88D0
 407#define CHIP_IP_62_P                    0x88C0
 408
 409/* SGCR1 */
 410#define KS8842_SGCR1_P                  0x0402
 411#define KS8842_SWITCH_CTRL_1_OFFSET     KS8842_SGCR1_P
 412
 413#define SWITCH_PASS_ALL                 0x8000
 414#define SWITCH_TX_FLOW_CTRL             0x2000
 415#define SWITCH_RX_FLOW_CTRL             0x1000
 416#define SWITCH_CHECK_LENGTH             0x0800
 417#define SWITCH_AGING_ENABLE             0x0400
 418#define SWITCH_FAST_AGING               0x0200
 419#define SWITCH_AGGR_BACKOFF             0x0100
 420#define SWITCH_PASS_PAUSE               0x0008
 421#define SWITCH_LINK_AUTO_AGING          0x0001
 422
 423/* SGCR2 */
 424#define KS8842_SGCR2_P                  0x0404
 425#define KS8842_SWITCH_CTRL_2_OFFSET     KS8842_SGCR2_P
 426
 427#define SWITCH_VLAN_ENABLE              0x8000
 428#define SWITCH_IGMP_SNOOP               0x4000
 429#define IPV6_MLD_SNOOP_ENABLE           0x2000
 430#define IPV6_MLD_SNOOP_OPTION           0x1000
 431#define PRIORITY_SCHEME_SELECT          0x0800
 432#define SWITCH_MIRROR_RX_TX             0x0100
 433#define UNICAST_VLAN_BOUNDARY           0x0080
 434#define MULTICAST_STORM_DISABLE         0x0040
 435#define SWITCH_BACK_PRESSURE            0x0020
 436#define FAIR_FLOW_CTRL                  0x0010
 437#define NO_EXC_COLLISION_DROP           0x0008
 438#define SWITCH_HUGE_PACKET              0x0004
 439#define SWITCH_LEGAL_PACKET             0x0002
 440#define SWITCH_BUF_RESERVE              0x0001
 441
 442/* SGCR3 */
 443#define KS8842_SGCR3_P                  0x0406
 444#define KS8842_SWITCH_CTRL_3_OFFSET     KS8842_SGCR3_P
 445
 446#define BROADCAST_STORM_RATE_LO         0xFF00
 447#define SWITCH_REPEATER                 0x0080
 448#define SWITCH_HALF_DUPLEX              0x0040
 449#define SWITCH_FLOW_CTRL                0x0020
 450#define SWITCH_10_MBIT                  0x0010
 451#define SWITCH_REPLACE_NULL_VID         0x0008
 452#define BROADCAST_STORM_RATE_HI         0x0007
 453
 454#define BROADCAST_STORM_RATE            0x07FF
 455
 456/* SGCR4 */
 457#define KS8842_SGCR4_P                  0x0408
 458
 459/* SGCR5 */
 460#define KS8842_SGCR5_P                  0x040A
 461#define KS8842_SWITCH_CTRL_5_OFFSET     KS8842_SGCR5_P
 462
 463#define LED_MODE                        0x8200
 464#define LED_SPEED_DUPLEX_ACT            0x0000
 465#define LED_SPEED_DUPLEX_LINK_ACT       0x8000
 466#define LED_DUPLEX_10_100               0x0200
 467
 468/* SGCR6 */
 469#define KS8842_SGCR6_P                  0x0410
 470#define KS8842_SWITCH_CTRL_6_OFFSET     KS8842_SGCR6_P
 471
 472#define KS8842_PRIORITY_MASK            3
 473#define KS8842_PRIORITY_SHIFT           2
 474
 475/* SGCR7 */
 476#define KS8842_SGCR7_P                  0x0412
 477#define KS8842_SWITCH_CTRL_7_OFFSET     KS8842_SGCR7_P
 478
 479#define SWITCH_UNK_DEF_PORT_ENABLE      0x0008
 480#define SWITCH_UNK_DEF_PORT_3           0x0004
 481#define SWITCH_UNK_DEF_PORT_2           0x0002
 482#define SWITCH_UNK_DEF_PORT_1           0x0001
 483
 484/* MACAR1 */
 485#define KS8842_MACAR1_P                 0x0470
 486#define KS8842_MACAR2_P                 0x0472
 487#define KS8842_MACAR3_P                 0x0474
 488#define KS8842_MAC_ADDR_1_OFFSET        KS8842_MACAR1_P
 489#define KS8842_MAC_ADDR_0_OFFSET        (KS8842_MAC_ADDR_1_OFFSET + 1)
 490#define KS8842_MAC_ADDR_3_OFFSET        KS8842_MACAR2_P
 491#define KS8842_MAC_ADDR_2_OFFSET        (KS8842_MAC_ADDR_3_OFFSET + 1)
 492#define KS8842_MAC_ADDR_5_OFFSET        KS8842_MACAR3_P
 493#define KS8842_MAC_ADDR_4_OFFSET        (KS8842_MAC_ADDR_5_OFFSET + 1)
 494
 495/* TOSR1 */
 496#define KS8842_TOSR1_P                  0x0480
 497#define KS8842_TOSR2_P                  0x0482
 498#define KS8842_TOSR3_P                  0x0484
 499#define KS8842_TOSR4_P                  0x0486
 500#define KS8842_TOSR5_P                  0x0488
 501#define KS8842_TOSR6_P                  0x048A
 502#define KS8842_TOSR7_P                  0x0490
 503#define KS8842_TOSR8_P                  0x0492
 504#define KS8842_TOS_1_OFFSET             KS8842_TOSR1_P
 505#define KS8842_TOS_2_OFFSET             KS8842_TOSR2_P
 506#define KS8842_TOS_3_OFFSET             KS8842_TOSR3_P
 507#define KS8842_TOS_4_OFFSET             KS8842_TOSR4_P
 508#define KS8842_TOS_5_OFFSET             KS8842_TOSR5_P
 509#define KS8842_TOS_6_OFFSET             KS8842_TOSR6_P
 510
 511#define KS8842_TOS_7_OFFSET             KS8842_TOSR7_P
 512#define KS8842_TOS_8_OFFSET             KS8842_TOSR8_P
 513
 514/* P1CR1 */
 515#define KS8842_P1CR1_P                  0x0500
 516#define KS8842_P1CR2_P                  0x0502
 517#define KS8842_P1VIDR_P                 0x0504
 518#define KS8842_P1CR3_P                  0x0506
 519#define KS8842_P1IRCR_P                 0x0508
 520#define KS8842_P1ERCR_P                 0x050A
 521#define KS884X_P1SCSLMD_P               0x0510
 522#define KS884X_P1CR4_P                  0x0512
 523#define KS884X_P1SR_P                   0x0514
 524
 525/* P2CR1 */
 526#define KS8842_P2CR1_P                  0x0520
 527#define KS8842_P2CR2_P                  0x0522
 528#define KS8842_P2VIDR_P                 0x0524
 529#define KS8842_P2CR3_P                  0x0526
 530#define KS8842_P2IRCR_P                 0x0528
 531#define KS8842_P2ERCR_P                 0x052A
 532#define KS884X_P2SCSLMD_P               0x0530
 533#define KS884X_P2CR4_P                  0x0532
 534#define KS884X_P2SR_P                   0x0534
 535
 536/* P3CR1 */
 537#define KS8842_P3CR1_P                  0x0540
 538#define KS8842_P3CR2_P                  0x0542
 539#define KS8842_P3VIDR_P                 0x0544
 540#define KS8842_P3CR3_P                  0x0546
 541#define KS8842_P3IRCR_P                 0x0548
 542#define KS8842_P3ERCR_P                 0x054A
 543
 544#define KS8842_PORT_1_CTRL_1            KS8842_P1CR1_P
 545#define KS8842_PORT_2_CTRL_1            KS8842_P2CR1_P
 546#define KS8842_PORT_3_CTRL_1            KS8842_P3CR1_P
 547
 548#define PORT_CTRL_ADDR(port, addr)              \
 549        (addr = KS8842_PORT_1_CTRL_1 + (port) * \
 550                (KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
 551
 552#define KS8842_PORT_CTRL_1_OFFSET       0x00
 553
 554#define PORT_BROADCAST_STORM            0x0080
 555#define PORT_DIFFSERV_ENABLE            0x0040
 556#define PORT_802_1P_ENABLE              0x0020
 557#define PORT_BASED_PRIORITY_MASK        0x0018
 558#define PORT_BASED_PRIORITY_BASE        0x0003
 559#define PORT_BASED_PRIORITY_SHIFT       3
 560#define PORT_BASED_PRIORITY_0           0x0000
 561#define PORT_BASED_PRIORITY_1           0x0008
 562#define PORT_BASED_PRIORITY_2           0x0010
 563#define PORT_BASED_PRIORITY_3           0x0018
 564#define PORT_INSERT_TAG                 0x0004
 565#define PORT_REMOVE_TAG                 0x0002
 566#define PORT_PRIO_QUEUE_ENABLE          0x0001
 567
 568#define KS8842_PORT_CTRL_2_OFFSET       0x02
 569
 570#define PORT_INGRESS_VLAN_FILTER        0x4000
 571#define PORT_DISCARD_NON_VID            0x2000
 572#define PORT_FORCE_FLOW_CTRL            0x1000
 573#define PORT_BACK_PRESSURE              0x0800
 574#define PORT_TX_ENABLE                  0x0400
 575#define PORT_RX_ENABLE                  0x0200
 576#define PORT_LEARN_DISABLE              0x0100
 577#define PORT_MIRROR_SNIFFER             0x0080
 578#define PORT_MIRROR_RX                  0x0040
 579#define PORT_MIRROR_TX                  0x0020
 580#define PORT_USER_PRIORITY_CEILING      0x0008
 581#define PORT_VLAN_MEMBERSHIP            0x0007
 582
 583#define KS8842_PORT_CTRL_VID_OFFSET     0x04
 584
 585#define PORT_DEFAULT_VID                0x0001
 586
 587#define KS8842_PORT_CTRL_3_OFFSET       0x06
 588
 589#define PORT_INGRESS_LIMIT_MODE         0x000C
 590#define PORT_INGRESS_ALL                0x0000
 591#define PORT_INGRESS_UNICAST            0x0004
 592#define PORT_INGRESS_MULTICAST          0x0008
 593#define PORT_INGRESS_BROADCAST          0x000C
 594#define PORT_COUNT_IFG                  0x0002
 595#define PORT_COUNT_PREAMBLE             0x0001
 596
 597#define KS8842_PORT_IN_RATE_OFFSET      0x08
 598#define KS8842_PORT_OUT_RATE_OFFSET     0x0A
 599
 600#define PORT_PRIORITY_RATE              0x0F
 601#define PORT_PRIORITY_RATE_SHIFT        4
 602
 603#define KS884X_PORT_LINK_MD             0x10
 604
 605#define PORT_CABLE_10M_SHORT            0x8000
 606#define PORT_CABLE_DIAG_RESULT          0x6000
 607#define PORT_CABLE_STAT_NORMAL          0x0000
 608#define PORT_CABLE_STAT_OPEN            0x2000
 609#define PORT_CABLE_STAT_SHORT           0x4000
 610#define PORT_CABLE_STAT_FAILED          0x6000
 611#define PORT_START_CABLE_DIAG           0x1000
 612#define PORT_FORCE_LINK                 0x0800
 613#define PORT_POWER_SAVING_DISABLE       0x0400
 614#define PORT_PHY_REMOTE_LOOPBACK        0x0200
 615#define PORT_CABLE_FAULT_COUNTER        0x01FF
 616
 617#define KS884X_PORT_CTRL_4_OFFSET       0x12
 618
 619#define PORT_LED_OFF                    0x8000
 620#define PORT_TX_DISABLE                 0x4000
 621#define PORT_AUTO_NEG_RESTART           0x2000
 622#define PORT_REMOTE_FAULT_DISABLE       0x1000
 623#define PORT_POWER_DOWN                 0x0800
 624#define PORT_AUTO_MDIX_DISABLE          0x0400
 625#define PORT_FORCE_MDIX                 0x0200
 626#define PORT_LOOPBACK                   0x0100
 627#define PORT_AUTO_NEG_ENABLE            0x0080
 628#define PORT_FORCE_100_MBIT             0x0040
 629#define PORT_FORCE_FULL_DUPLEX          0x0020
 630#define PORT_AUTO_NEG_SYM_PAUSE         0x0010
 631#define PORT_AUTO_NEG_100BTX_FD         0x0008
 632#define PORT_AUTO_NEG_100BTX            0x0004
 633#define PORT_AUTO_NEG_10BT_FD           0x0002
 634#define PORT_AUTO_NEG_10BT              0x0001
 635
 636#define KS884X_PORT_STATUS_OFFSET       0x14
 637
 638#define PORT_HP_MDIX                    0x8000
 639#define PORT_REVERSED_POLARITY          0x2000
 640#define PORT_RX_FLOW_CTRL               0x0800
 641#define PORT_TX_FLOW_CTRL               0x1000
 642#define PORT_STATUS_SPEED_100MBIT       0x0400
 643#define PORT_STATUS_FULL_DUPLEX         0x0200
 644#define PORT_REMOTE_FAULT               0x0100
 645#define PORT_MDIX_STATUS                0x0080
 646#define PORT_AUTO_NEG_COMPLETE          0x0040
 647#define PORT_STATUS_LINK_GOOD           0x0020
 648#define PORT_REMOTE_SYM_PAUSE           0x0010
 649#define PORT_REMOTE_100BTX_FD           0x0008
 650#define PORT_REMOTE_100BTX              0x0004
 651#define PORT_REMOTE_10BT_FD             0x0002
 652#define PORT_REMOTE_10BT                0x0001
 653
 654/*
 655#define STATIC_MAC_TABLE_ADDR           00-0000FFFF-FFFFFFFF
 656#define STATIC_MAC_TABLE_FWD_PORTS      00-00070000-00000000
 657#define STATIC_MAC_TABLE_VALID          00-00080000-00000000
 658#define STATIC_MAC_TABLE_OVERRIDE       00-00100000-00000000
 659#define STATIC_MAC_TABLE_USE_FID        00-00200000-00000000
 660#define STATIC_MAC_TABLE_FID            00-03C00000-00000000
 661*/
 662
 663#define STATIC_MAC_TABLE_ADDR           0x0000FFFF
 664#define STATIC_MAC_TABLE_FWD_PORTS      0x00070000
 665#define STATIC_MAC_TABLE_VALID          0x00080000
 666#define STATIC_MAC_TABLE_OVERRIDE       0x00100000
 667#define STATIC_MAC_TABLE_USE_FID        0x00200000
 668#define STATIC_MAC_TABLE_FID            0x03C00000
 669
 670#define STATIC_MAC_FWD_PORTS_SHIFT      16
 671#define STATIC_MAC_FID_SHIFT            22
 672
 673/*
 674#define VLAN_TABLE_VID                  00-00000000-00000FFF
 675#define VLAN_TABLE_FID                  00-00000000-0000F000
 676#define VLAN_TABLE_MEMBERSHIP           00-00000000-00070000
 677#define VLAN_TABLE_VALID                00-00000000-00080000
 678*/
 679
 680#define VLAN_TABLE_VID                  0x00000FFF
 681#define VLAN_TABLE_FID                  0x0000F000
 682#define VLAN_TABLE_MEMBERSHIP           0x00070000
 683#define VLAN_TABLE_VALID                0x00080000
 684
 685#define VLAN_TABLE_FID_SHIFT            12
 686#define VLAN_TABLE_MEMBERSHIP_SHIFT     16
 687
 688/*
 689#define DYNAMIC_MAC_TABLE_ADDR          00-0000FFFF-FFFFFFFF
 690#define DYNAMIC_MAC_TABLE_FID           00-000F0000-00000000
 691#define DYNAMIC_MAC_TABLE_SRC_PORT      00-00300000-00000000
 692#define DYNAMIC_MAC_TABLE_TIMESTAMP     00-00C00000-00000000
 693#define DYNAMIC_MAC_TABLE_ENTRIES       03-FF000000-00000000
 694#define DYNAMIC_MAC_TABLE_MAC_EMPTY     04-00000000-00000000
 695#define DYNAMIC_MAC_TABLE_RESERVED      78-00000000-00000000
 696#define DYNAMIC_MAC_TABLE_NOT_READY     80-00000000-00000000
 697*/
 698
 699#define DYNAMIC_MAC_TABLE_ADDR          0x0000FFFF
 700#define DYNAMIC_MAC_TABLE_FID           0x000F0000
 701#define DYNAMIC_MAC_TABLE_SRC_PORT      0x00300000
 702#define DYNAMIC_MAC_TABLE_TIMESTAMP     0x00C00000
 703#define DYNAMIC_MAC_TABLE_ENTRIES       0xFF000000
 704
 705#define DYNAMIC_MAC_TABLE_ENTRIES_H     0x03
 706#define DYNAMIC_MAC_TABLE_MAC_EMPTY     0x04
 707#define DYNAMIC_MAC_TABLE_RESERVED      0x78
 708#define DYNAMIC_MAC_TABLE_NOT_READY     0x80
 709
 710#define DYNAMIC_MAC_FID_SHIFT           16
 711#define DYNAMIC_MAC_SRC_PORT_SHIFT      20
 712#define DYNAMIC_MAC_TIMESTAMP_SHIFT     22
 713#define DYNAMIC_MAC_ENTRIES_SHIFT       24
 714#define DYNAMIC_MAC_ENTRIES_H_SHIFT     8
 715
 716/*
 717#define MIB_COUNTER_VALUE               00-00000000-3FFFFFFF
 718#define MIB_COUNTER_VALID               00-00000000-40000000
 719#define MIB_COUNTER_OVERFLOW            00-00000000-80000000
 720*/
 721
 722#define MIB_COUNTER_VALUE               0x3FFFFFFF
 723#define MIB_COUNTER_VALID               0x40000000
 724#define MIB_COUNTER_OVERFLOW            0x80000000
 725
 726#define MIB_PACKET_DROPPED              0x0000FFFF
 727
 728#define KS_MIB_PACKET_DROPPED_TX_0      0x100
 729#define KS_MIB_PACKET_DROPPED_TX_1      0x101
 730#define KS_MIB_PACKET_DROPPED_TX        0x102
 731#define KS_MIB_PACKET_DROPPED_RX_0      0x103
 732#define KS_MIB_PACKET_DROPPED_RX_1      0x104
 733#define KS_MIB_PACKET_DROPPED_RX        0x105
 734
 735/* Change default LED mode. */
 736#define SET_DEFAULT_LED                 LED_SPEED_DUPLEX_ACT
 737
 738#define MAC_ADDR_ORDER(i)               (ETH_ALEN - 1 - (i))
 739
 740#define MAX_ETHERNET_BODY_SIZE          1500
 741#define ETHERNET_HEADER_SIZE            (14 + VLAN_HLEN)
 742
 743#define MAX_ETHERNET_PACKET_SIZE        \
 744        (MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
 745
 746#define REGULAR_RX_BUF_SIZE             (MAX_ETHERNET_PACKET_SIZE + 4)
 747#define MAX_RX_BUF_SIZE                 (1912 + 4)
 748
 749#define ADDITIONAL_ENTRIES              16
 750#define MAX_MULTICAST_LIST              32
 751
 752#define HW_MULTICAST_SIZE               8
 753
 754#define HW_TO_DEV_PORT(port)            (port - 1)
 755
 756enum {
 757        media_connected,
 758        media_disconnected
 759};
 760
 761enum {
 762        OID_COUNTER_UNKOWN,
 763
 764        OID_COUNTER_FIRST,
 765
 766        /* total transmit errors */
 767        OID_COUNTER_XMIT_ERROR,
 768
 769        /* total receive errors */
 770        OID_COUNTER_RCV_ERROR,
 771
 772        OID_COUNTER_LAST
 773};
 774
 775/*
 776 * Hardware descriptor definitions
 777 */
 778
 779#define DESC_ALIGNMENT                  16
 780#define BUFFER_ALIGNMENT                8
 781
 782#define NUM_OF_RX_DESC                  64
 783#define NUM_OF_TX_DESC                  64
 784
 785#define KS_DESC_RX_FRAME_LEN            0x000007FF
 786#define KS_DESC_RX_FRAME_TYPE           0x00008000
 787#define KS_DESC_RX_ERROR_CRC            0x00010000
 788#define KS_DESC_RX_ERROR_RUNT           0x00020000
 789#define KS_DESC_RX_ERROR_TOO_LONG       0x00040000
 790#define KS_DESC_RX_ERROR_PHY            0x00080000
 791#define KS884X_DESC_RX_PORT_MASK        0x00300000
 792#define KS_DESC_RX_MULTICAST            0x01000000
 793#define KS_DESC_RX_ERROR                0x02000000
 794#define KS_DESC_RX_ERROR_CSUM_UDP       0x04000000
 795#define KS_DESC_RX_ERROR_CSUM_TCP       0x08000000
 796#define KS_DESC_RX_ERROR_CSUM_IP        0x10000000
 797#define KS_DESC_RX_LAST                 0x20000000
 798#define KS_DESC_RX_FIRST                0x40000000
 799#define KS_DESC_RX_ERROR_COND           \
 800        (KS_DESC_RX_ERROR_CRC |         \
 801        KS_DESC_RX_ERROR_RUNT |         \
 802        KS_DESC_RX_ERROR_PHY |          \
 803        KS_DESC_RX_ERROR_TOO_LONG)
 804
 805#define KS_DESC_HW_OWNED                0x80000000
 806
 807#define KS_DESC_BUF_SIZE                0x000007FF
 808#define KS884X_DESC_TX_PORT_MASK        0x00300000
 809#define KS_DESC_END_OF_RING             0x02000000
 810#define KS_DESC_TX_CSUM_GEN_UDP         0x04000000
 811#define KS_DESC_TX_CSUM_GEN_TCP         0x08000000
 812#define KS_DESC_TX_CSUM_GEN_IP          0x10000000
 813#define KS_DESC_TX_LAST                 0x20000000
 814#define KS_DESC_TX_FIRST                0x40000000
 815#define KS_DESC_TX_INTERRUPT            0x80000000
 816
 817#define KS_DESC_PORT_SHIFT              20
 818
 819#define KS_DESC_RX_MASK                 (KS_DESC_BUF_SIZE)
 820
 821#define KS_DESC_TX_MASK                 \
 822        (KS_DESC_TX_INTERRUPT |         \
 823        KS_DESC_TX_FIRST |              \
 824        KS_DESC_TX_LAST |               \
 825        KS_DESC_TX_CSUM_GEN_IP |        \
 826        KS_DESC_TX_CSUM_GEN_TCP |       \
 827        KS_DESC_TX_CSUM_GEN_UDP |       \
 828        KS_DESC_BUF_SIZE)
 829
 830struct ksz_desc_rx_stat {
 831#ifdef __BIG_ENDIAN_BITFIELD
 832        u32 hw_owned:1;
 833        u32 first_desc:1;
 834        u32 last_desc:1;
 835        u32 csum_err_ip:1;
 836        u32 csum_err_tcp:1;
 837        u32 csum_err_udp:1;
 838        u32 error:1;
 839        u32 multicast:1;
 840        u32 src_port:4;
 841        u32 err_phy:1;
 842        u32 err_too_long:1;
 843        u32 err_runt:1;
 844        u32 err_crc:1;
 845        u32 frame_type:1;
 846        u32 reserved1:4;
 847        u32 frame_len:11;
 848#else
 849        u32 frame_len:11;
 850        u32 reserved1:4;
 851        u32 frame_type:1;
 852        u32 err_crc:1;
 853        u32 err_runt:1;
 854        u32 err_too_long:1;
 855        u32 err_phy:1;
 856        u32 src_port:4;
 857        u32 multicast:1;
 858        u32 error:1;
 859        u32 csum_err_udp:1;
 860        u32 csum_err_tcp:1;
 861        u32 csum_err_ip:1;
 862        u32 last_desc:1;
 863        u32 first_desc:1;
 864        u32 hw_owned:1;
 865#endif
 866};
 867
 868struct ksz_desc_tx_stat {
 869#ifdef __BIG_ENDIAN_BITFIELD
 870        u32 hw_owned:1;
 871        u32 reserved1:31;
 872#else
 873        u32 reserved1:31;
 874        u32 hw_owned:1;
 875#endif
 876};
 877
 878struct ksz_desc_rx_buf {
 879#ifdef __BIG_ENDIAN_BITFIELD
 880        u32 reserved4:6;
 881        u32 end_of_ring:1;
 882        u32 reserved3:14;
 883        u32 buf_size:11;
 884#else
 885        u32 buf_size:11;
 886        u32 reserved3:14;
 887        u32 end_of_ring:1;
 888        u32 reserved4:6;
 889#endif
 890};
 891
 892struct ksz_desc_tx_buf {
 893#ifdef __BIG_ENDIAN_BITFIELD
 894        u32 intr:1;
 895        u32 first_seg:1;
 896        u32 last_seg:1;
 897        u32 csum_gen_ip:1;
 898        u32 csum_gen_tcp:1;
 899        u32 csum_gen_udp:1;
 900        u32 end_of_ring:1;
 901        u32 reserved4:1;
 902        u32 dest_port:4;
 903        u32 reserved3:9;
 904        u32 buf_size:11;
 905#else
 906        u32 buf_size:11;
 907        u32 reserved3:9;
 908        u32 dest_port:4;
 909        u32 reserved4:1;
 910        u32 end_of_ring:1;
 911        u32 csum_gen_udp:1;
 912        u32 csum_gen_tcp:1;
 913        u32 csum_gen_ip:1;
 914        u32 last_seg:1;
 915        u32 first_seg:1;
 916        u32 intr:1;
 917#endif
 918};
 919
 920union desc_stat {
 921        struct ksz_desc_rx_stat rx;
 922        struct ksz_desc_tx_stat tx;
 923        u32 data;
 924};
 925
 926union desc_buf {
 927        struct ksz_desc_rx_buf rx;
 928        struct ksz_desc_tx_buf tx;
 929        u32 data;
 930};
 931
 932/**
 933 * struct ksz_hw_desc - Hardware descriptor data structure
 934 * @ctrl:       Descriptor control value.
 935 * @buf:        Descriptor buffer value.
 936 * @addr:       Physical address of memory buffer.
 937 * @next:       Pointer to next hardware descriptor.
 938 */
 939struct ksz_hw_desc {
 940        union desc_stat ctrl;
 941        union desc_buf buf;
 942        u32 addr;
 943        u32 next;
 944};
 945
 946/**
 947 * struct ksz_sw_desc - Software descriptor data structure
 948 * @ctrl:       Descriptor control value.
 949 * @buf:        Descriptor buffer value.
 950 * @buf_size:   Current buffers size value in hardware descriptor.
 951 */
 952struct ksz_sw_desc {
 953        union desc_stat ctrl;
 954        union desc_buf buf;
 955        u32 buf_size;
 956};
 957
 958/**
 959 * struct ksz_dma_buf - OS dependent DMA buffer data structure
 960 * @skb:        Associated socket buffer.
 961 * @dma:        Associated physical DMA address.
 962 * @len:        Actual len used.
 963 */
 964struct ksz_dma_buf {
 965        struct sk_buff *skb;
 966        dma_addr_t dma;
 967        int len;
 968};
 969
 970/**
 971 * struct ksz_desc - Descriptor structure
 972 * @phw:        Hardware descriptor pointer to uncached physical memory.
 973 * @sw:         Cached memory to hold hardware descriptor values for
 974 *              manipulation.
 975 * @dma_buf:    Operating system dependent data structure to hold physical
 976 *              memory buffer allocation information.
 977 */
 978struct ksz_desc {
 979        struct ksz_hw_desc *phw;
 980        struct ksz_sw_desc sw;
 981        struct ksz_dma_buf dma_buf;
 982};
 983
 984#define DMA_BUFFER(desc)  ((struct ksz_dma_buf *)(&(desc)->dma_buf))
 985
 986/**
 987 * struct ksz_desc_info - Descriptor information data structure
 988 * @ring:       First descriptor in the ring.
 989 * @cur:        Current descriptor being manipulated.
 990 * @ring_virt:  First hardware descriptor in the ring.
 991 * @ring_phys:  The physical address of the first descriptor of the ring.
 992 * @size:       Size of hardware descriptor.
 993 * @alloc:      Number of descriptors allocated.
 994 * @avail:      Number of descriptors available for use.
 995 * @last:       Index for last descriptor released to hardware.
 996 * @next:       Index for next descriptor available for use.
 997 * @mask:       Mask for index wrapping.
 998 */
 999struct ksz_desc_info {
1000        struct ksz_desc *ring;
1001        struct ksz_desc *cur;
1002        struct ksz_hw_desc *ring_virt;
1003        u32 ring_phys;
1004        int size;
1005        int alloc;
1006        int avail;
1007        int last;
1008        int next;
1009        int mask;
1010};
1011
1012/*
1013 * KSZ8842 switch definitions
1014 */
1015
1016enum {
1017        TABLE_STATIC_MAC = 0,
1018        TABLE_VLAN,
1019        TABLE_DYNAMIC_MAC,
1020        TABLE_MIB
1021};
1022
1023#define LEARNED_MAC_TABLE_ENTRIES       1024
1024#define STATIC_MAC_TABLE_ENTRIES        8
1025
1026/**
1027 * struct ksz_mac_table - Static MAC table data structure
1028 * @mac_addr:   MAC address to filter.
1029 * @vid:        VID value.
1030 * @fid:        FID value.
1031 * @ports:      Port membership.
1032 * @override:   Override setting.
1033 * @use_fid:    FID use setting.
1034 * @valid:      Valid setting indicating the entry is being used.
1035 */
1036struct ksz_mac_table {
1037        u8 mac_addr[ETH_ALEN];
1038        u16 vid;
1039        u8 fid;
1040        u8 ports;
1041        u8 override:1;
1042        u8 use_fid:1;
1043        u8 valid:1;
1044};
1045
1046#define VLAN_TABLE_ENTRIES              16
1047
1048/**
1049 * struct ksz_vlan_table - VLAN table data structure
1050 * @vid:        VID value.
1051 * @fid:        FID value.
1052 * @member:     Port membership.
1053 */
1054struct ksz_vlan_table {
1055        u16 vid;
1056        u8 fid;
1057        u8 member;
1058};
1059
1060#define DIFFSERV_ENTRIES                64
1061#define PRIO_802_1P_ENTRIES             8
1062#define PRIO_QUEUES                     4
1063
1064#define SWITCH_PORT_NUM                 2
1065#define TOTAL_PORT_NUM                  (SWITCH_PORT_NUM + 1)
1066#define HOST_MASK                       (1 << SWITCH_PORT_NUM)
1067#define PORT_MASK                       7
1068
1069#define MAIN_PORT                       0
1070#define OTHER_PORT                      1
1071#define HOST_PORT                       SWITCH_PORT_NUM
1072
1073#define PORT_COUNTER_NUM                0x20
1074#define TOTAL_PORT_COUNTER_NUM          (PORT_COUNTER_NUM + 2)
1075
1076#define MIB_COUNTER_RX_LO_PRIORITY      0x00
1077#define MIB_COUNTER_RX_HI_PRIORITY      0x01
1078#define MIB_COUNTER_RX_UNDERSIZE        0x02
1079#define MIB_COUNTER_RX_FRAGMENT         0x03
1080#define MIB_COUNTER_RX_OVERSIZE         0x04
1081#define MIB_COUNTER_RX_JABBER           0x05
1082#define MIB_COUNTER_RX_SYMBOL_ERR       0x06
1083#define MIB_COUNTER_RX_CRC_ERR          0x07
1084#define MIB_COUNTER_RX_ALIGNMENT_ERR    0x08
1085#define MIB_COUNTER_RX_CTRL_8808        0x09
1086#define MIB_COUNTER_RX_PAUSE            0x0A
1087#define MIB_COUNTER_RX_BROADCAST        0x0B
1088#define MIB_COUNTER_RX_MULTICAST        0x0C
1089#define MIB_COUNTER_RX_UNICAST          0x0D
1090#define MIB_COUNTER_RX_OCTET_64         0x0E
1091#define MIB_COUNTER_RX_OCTET_65_127     0x0F
1092#define MIB_COUNTER_RX_OCTET_128_255    0x10
1093#define MIB_COUNTER_RX_OCTET_256_511    0x11
1094#define MIB_COUNTER_RX_OCTET_512_1023   0x12
1095#define MIB_COUNTER_RX_OCTET_1024_1522  0x13
1096#define MIB_COUNTER_TX_LO_PRIORITY      0x14
1097#define MIB_COUNTER_TX_HI_PRIORITY      0x15
1098#define MIB_COUNTER_TX_LATE_COLLISION   0x16
1099#define MIB_COUNTER_TX_PAUSE            0x17
1100#define MIB_COUNTER_TX_BROADCAST        0x18
1101#define MIB_COUNTER_TX_MULTICAST        0x19
1102#define MIB_COUNTER_TX_UNICAST          0x1A
1103#define MIB_COUNTER_TX_DEFERRED         0x1B
1104#define MIB_COUNTER_TX_TOTAL_COLLISION  0x1C
1105#define MIB_COUNTER_TX_EXCESS_COLLISION 0x1D
1106#define MIB_COUNTER_TX_SINGLE_COLLISION 0x1E
1107#define MIB_COUNTER_TX_MULTI_COLLISION  0x1F
1108
1109#define MIB_COUNTER_RX_DROPPED_PACKET   0x20
1110#define MIB_COUNTER_TX_DROPPED_PACKET   0x21
1111
1112/**
1113 * struct ksz_port_mib - Port MIB data structure
1114 * @cnt_ptr:    Current pointer to MIB counter index.
1115 * @link_down:  Indication the link has just gone down.
1116 * @state:      Connection status of the port.
1117 * @mib_start:  The starting counter index.  Some ports do not start at 0.
1118 * @counter:    64-bit MIB counter value.
1119 * @dropped:    Temporary buffer to remember last read packet dropped values.
1120 *
1121 * MIB counters needs to be read periodically so that counters do not get
1122 * overflowed and give incorrect values.  A right balance is needed to
1123 * satisfy this condition and not waste too much CPU time.
1124 *
1125 * It is pointless to read MIB counters when the port is disconnected.  The
1126 * @state provides the connection status so that MIB counters are read only
1127 * when the port is connected.  The @link_down indicates the port is just
1128 * disconnected so that all MIB counters are read one last time to update the
1129 * information.
1130 */
1131struct ksz_port_mib {
1132        u8 cnt_ptr;
1133        u8 link_down;
1134        u8 state;
1135        u8 mib_start;
1136
1137        u64 counter[TOTAL_PORT_COUNTER_NUM];
1138        u32 dropped[2];
1139};
1140
1141/**
1142 * struct ksz_port_cfg - Port configuration data structure
1143 * @vid:        VID value.
1144 * @member:     Port membership.
1145 * @port_prio:  Port priority.
1146 * @rx_rate:    Receive priority rate.
1147 * @tx_rate:    Transmit priority rate.
1148 * @stp_state:  Current Spanning Tree Protocol state.
1149 */
1150struct ksz_port_cfg {
1151        u16 vid;
1152        u8 member;
1153        u8 port_prio;
1154        u32 rx_rate[PRIO_QUEUES];
1155        u32 tx_rate[PRIO_QUEUES];
1156        int stp_state;
1157};
1158
1159/**
1160 * struct ksz_switch - KSZ8842 switch data structure
1161 * @mac_table:  MAC table entries information.
1162 * @vlan_table: VLAN table entries information.
1163 * @port_cfg:   Port configuration information.
1164 * @diffserv:   DiffServ priority settings.  Possible values from 6-bit of ToS
1165 *              (bit7 ~ bit2) field.
1166 * @p_802_1p:   802.1P priority settings.  Possible values from 3-bit of 802.1p
1167 *              Tag priority field.
1168 * @br_addr:    Bridge address.  Used for STP.
1169 * @other_addr: Other MAC address.  Used for multiple network device mode.
1170 * @broad_per:  Broadcast storm percentage.
1171 * @member:     Current port membership.  Used for STP.
1172 */
1173struct ksz_switch {
1174        struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
1175        struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
1176        struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
1177
1178        u8 diffserv[DIFFSERV_ENTRIES];
1179        u8 p_802_1p[PRIO_802_1P_ENTRIES];
1180
1181        u8 br_addr[ETH_ALEN];
1182        u8 other_addr[ETH_ALEN];
1183
1184        u8 broad_per;
1185        u8 member;
1186};
1187
1188#define TX_RATE_UNIT                    10000
1189
1190/**
1191 * struct ksz_port_info - Port information data structure
1192 * @state:      Connection status of the port.
1193 * @tx_rate:    Transmit rate divided by 10000 to get Mbit.
1194 * @duplex:     Duplex mode.
1195 * @advertised: Advertised auto-negotiation setting.  Used to determine link.
1196 * @partner:    Auto-negotiation partner setting.  Used to determine link.
1197 * @port_id:    Port index to access actual hardware register.
1198 * @pdev:       Pointer to OS dependent network device.
1199 */
1200struct ksz_port_info {
1201        uint state;
1202        uint tx_rate;
1203        u8 duplex;
1204        u8 advertised;
1205        u8 partner;
1206        u8 port_id;
1207        void *pdev;
1208};
1209
1210#define MAX_TX_HELD_SIZE                52000
1211
1212/* Hardware features and bug fixes. */
1213#define LINK_INT_WORKING                (1 << 0)
1214#define SMALL_PACKET_TX_BUG             (1 << 1)
1215#define HALF_DUPLEX_SIGNAL_BUG          (1 << 2)
1216#define RX_HUGE_FRAME                   (1 << 4)
1217#define STP_SUPPORT                     (1 << 8)
1218
1219/* Software overrides. */
1220#define PAUSE_FLOW_CTRL                 (1 << 0)
1221#define FAST_AGING                      (1 << 1)
1222
1223/**
1224 * struct ksz_hw - KSZ884X hardware data structure
1225 * @io:                 Virtual address assigned.
1226 * @ksz_switch:         Pointer to KSZ8842 switch.
1227 * @port_info:          Port information.
1228 * @port_mib:           Port MIB information.
1229 * @dev_count:          Number of network devices this hardware supports.
1230 * @dst_ports:          Destination ports in switch for transmission.
1231 * @id:                 Hardware ID.  Used for display only.
1232 * @mib_cnt:            Number of MIB counters this hardware has.
1233 * @mib_port_cnt:       Number of ports with MIB counters.
1234 * @tx_cfg:             Cached transmit control settings.
1235 * @rx_cfg:             Cached receive control settings.
1236 * @intr_mask:          Current interrupt mask.
1237 * @intr_set:           Current interrup set.
1238 * @intr_blocked:       Interrupt blocked.
1239 * @rx_desc_info:       Receive descriptor information.
1240 * @tx_desc_info:       Transmit descriptor information.
1241 * @tx_int_cnt:         Transmit interrupt count.  Used for TX optimization.
1242 * @tx_int_mask:        Transmit interrupt mask.  Used for TX optimization.
1243 * @tx_size:            Transmit data size.  Used for TX optimization.
1244 *                      The maximum is defined by MAX_TX_HELD_SIZE.
1245 * @perm_addr:          Permanent MAC address.
1246 * @override_addr:      Overridden MAC address.
1247 * @address:            Additional MAC address entries.
1248 * @addr_list_size:     Additional MAC address list size.
1249 * @mac_override:       Indication of MAC address overridden.
1250 * @promiscuous:        Counter to keep track of promiscuous mode set.
1251 * @all_multi:          Counter to keep track of all multicast mode set.
1252 * @multi_list:         Multicast address entries.
1253 * @multi_bits:         Cached multicast hash table settings.
1254 * @multi_list_size:    Multicast address list size.
1255 * @enabled:            Indication of hardware enabled.
1256 * @rx_stop:            Indication of receive process stop.
1257 * @reserved2:          none
1258 * @features:           Hardware features to enable.
1259 * @overrides:          Hardware features to override.
1260 * @parent:             Pointer to parent, network device private structure.
1261 */
1262struct ksz_hw {
1263        void __iomem *io;
1264
1265        struct ksz_switch *ksz_switch;
1266        struct ksz_port_info port_info[SWITCH_PORT_NUM];
1267        struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
1268        int dev_count;
1269        int dst_ports;
1270        int id;
1271        int mib_cnt;
1272        int mib_port_cnt;
1273
1274        u32 tx_cfg;
1275        u32 rx_cfg;
1276        u32 intr_mask;
1277        u32 intr_set;
1278        uint intr_blocked;
1279
1280        struct ksz_desc_info rx_desc_info;
1281        struct ksz_desc_info tx_desc_info;
1282
1283        int tx_int_cnt;
1284        int tx_int_mask;
1285        int tx_size;
1286
1287        u8 perm_addr[ETH_ALEN];
1288        u8 override_addr[ETH_ALEN];
1289        u8 address[ADDITIONAL_ENTRIES][ETH_ALEN];
1290        u8 addr_list_size;
1291        u8 mac_override;
1292        u8 promiscuous;
1293        u8 all_multi;
1294        u8 multi_list[MAX_MULTICAST_LIST][ETH_ALEN];
1295        u8 multi_bits[HW_MULTICAST_SIZE];
1296        u8 multi_list_size;
1297
1298        u8 enabled;
1299        u8 rx_stop;
1300        u8 reserved2[1];
1301
1302        uint features;
1303        uint overrides;
1304
1305        void *parent;
1306};
1307
1308enum {
1309        PHY_NO_FLOW_CTRL,
1310        PHY_FLOW_CTRL,
1311        PHY_TX_ONLY,
1312        PHY_RX_ONLY
1313};
1314
1315/**
1316 * struct ksz_port - Virtual port data structure
1317 * @duplex:             Duplex mode setting.  1 for half duplex, 2 for full
1318 *                      duplex, and 0 for auto, which normally results in full
1319 *                      duplex.
1320 * @speed:              Speed setting.  10 for 10 Mbit, 100 for 100 Mbit, and
1321 *                      0 for auto, which normally results in 100 Mbit.
1322 * @force_link:         Force link setting.  0 for auto-negotiation, and 1 for
1323 *                      force.
1324 * @flow_ctrl:          Flow control setting.  PHY_NO_FLOW_CTRL for no flow
1325 *                      control, and PHY_FLOW_CTRL for flow control.
1326 *                      PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
1327 *                      Mbit PHY.
1328 * @first_port:         Index of first port this port supports.
1329 * @mib_port_cnt:       Number of ports with MIB counters.
1330 * @port_cnt:           Number of ports this port supports.
1331 * @counter:            Port statistics counter.
1332 * @hw:                 Pointer to hardware structure.
1333 * @linked:             Pointer to port information linked to this port.
1334 */
1335struct ksz_port {
1336        u8 duplex;
1337        u8 speed;
1338        u8 force_link;
1339        u8 flow_ctrl;
1340
1341        int first_port;
1342        int mib_port_cnt;
1343        int port_cnt;
1344        u64 counter[OID_COUNTER_LAST];
1345
1346        struct ksz_hw *hw;
1347        struct ksz_port_info *linked;
1348};
1349
1350/**
1351 * struct ksz_timer_info - Timer information data structure
1352 * @timer:      Kernel timer.
1353 * @cnt:        Running timer counter.
1354 * @max:        Number of times to run timer; -1 for infinity.
1355 * @period:     Timer period in jiffies.
1356 */
1357struct ksz_timer_info {
1358        struct timer_list timer;
1359        int cnt;
1360        int max;
1361        int period;
1362};
1363
1364/**
1365 * struct ksz_shared_mem - OS dependent shared memory data structure
1366 * @dma_addr:   Physical DMA address allocated.
1367 * @alloc_size: Allocation size.
1368 * @phys:       Actual physical address used.
1369 * @alloc_virt: Virtual address allocated.
1370 * @virt:       Actual virtual address used.
1371 */
1372struct ksz_shared_mem {
1373        dma_addr_t dma_addr;
1374        uint alloc_size;
1375        uint phys;
1376        u8 *alloc_virt;
1377        u8 *virt;
1378};
1379
1380/**
1381 * struct ksz_counter_info - OS dependent counter information data structure
1382 * @counter:    Wait queue to wakeup after counters are read.
1383 * @time:       Next time in jiffies to read counter.
1384 * @read:       Indication of counters read in full or not.
1385 */
1386struct ksz_counter_info {
1387        wait_queue_head_t counter;
1388        unsigned long time;
1389        int read;
1390};
1391
1392/**
1393 * struct dev_info - Network device information data structure
1394 * @dev:                Pointer to network device.
1395 * @pdev:               Pointer to PCI device.
1396 * @hw:                 Hardware structure.
1397 * @desc_pool:          Physical memory used for descriptor pool.
1398 * @hwlock:             Spinlock to prevent hardware from accessing.
1399 * @lock:               Mutex lock to prevent device from accessing.
1400 * @dev_rcv:            Receive process function used.
1401 * @last_skb:           Socket buffer allocated for descriptor rx fragments.
1402 * @skb_index:          Buffer index for receiving fragments.
1403 * @skb_len:            Buffer length for receiving fragments.
1404 * @mib_read:           Workqueue to read MIB counters.
1405 * @mib_timer_info:     Timer to read MIB counters.
1406 * @counter:            Used for MIB reading.
1407 * @mtu:                Current MTU used.  The default is REGULAR_RX_BUF_SIZE;
1408 *                      the maximum is MAX_RX_BUF_SIZE.
1409 * @opened:             Counter to keep track of device open.
1410 * @rx_tasklet:         Receive processing tasklet.
1411 * @tx_tasklet:         Transmit processing tasklet.
1412 * @wol_enable:         Wake-on-LAN enable set by ethtool.
1413 * @wol_support:        Wake-on-LAN support used by ethtool.
1414 * @pme_wait:           Used for KSZ8841 power management.
1415 */
1416struct dev_info {
1417        struct net_device *dev;
1418        struct pci_dev *pdev;
1419
1420        struct ksz_hw hw;
1421        struct ksz_shared_mem desc_pool;
1422
1423        spinlock_t hwlock;
1424        struct mutex lock;
1425
1426        int (*dev_rcv)(struct dev_info *);
1427
1428        struct sk_buff *last_skb;
1429        int skb_index;
1430        int skb_len;
1431
1432        struct work_struct mib_read;
1433        struct ksz_timer_info mib_timer_info;
1434        struct ksz_counter_info counter[TOTAL_PORT_NUM];
1435
1436        int mtu;
1437        int opened;
1438
1439        struct tasklet_struct rx_tasklet;
1440        struct tasklet_struct tx_tasklet;
1441
1442        int wol_enable;
1443        int wol_support;
1444        unsigned long pme_wait;
1445};
1446
1447/**
1448 * struct dev_priv - Network device private data structure
1449 * @adapter:            Adapter device information.
1450 * @port:               Port information.
1451 * @monitor_timer_info: Timer to monitor ports.
1452 * @proc_sem:           Semaphore for proc accessing.
1453 * @id:                 Device ID.
1454 * @mii_if:             MII interface information.
1455 * @advertising:        Temporary variable to store advertised settings.
1456 * @msg_enable:         The message flags controlling driver output.
1457 * @media_state:        The connection status of the device.
1458 * @multicast:          The all multicast state of the device.
1459 * @promiscuous:        The promiscuous state of the device.
1460 */
1461struct dev_priv {
1462        struct dev_info *adapter;
1463        struct ksz_port port;
1464        struct ksz_timer_info monitor_timer_info;
1465
1466        struct semaphore proc_sem;
1467        int id;
1468
1469        struct mii_if_info mii_if;
1470        u32 advertising;
1471
1472        u32 msg_enable;
1473        int media_state;
1474        int multicast;
1475        int promiscuous;
1476};
1477
1478#define DRV_NAME                "KSZ884X PCI"
1479#define DEVICE_NAME             "KSZ884x PCI"
1480#define DRV_VERSION             "1.0.0"
1481#define DRV_RELDATE             "Feb 8, 2010"
1482
1483static char version[] =
1484        "Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
1485
1486static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
1487
1488/*
1489 * Interrupt processing primary routines
1490 */
1491
1492static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
1493{
1494        writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
1495}
1496
1497static inline void hw_dis_intr(struct ksz_hw *hw)
1498{
1499        hw->intr_blocked = hw->intr_mask;
1500        writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
1501        hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1502}
1503
1504static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
1505{
1506        hw->intr_set = interrupt;
1507        writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
1508}
1509
1510static inline void hw_ena_intr(struct ksz_hw *hw)
1511{
1512        hw->intr_blocked = 0;
1513        hw_set_intr(hw, hw->intr_mask);
1514}
1515
1516static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
1517{
1518        hw->intr_mask &= ~(bit);
1519}
1520
1521static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
1522{
1523        u32 read_intr;
1524
1525        read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1526        hw->intr_set = read_intr & ~interrupt;
1527        writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1528        hw_dis_intr_bit(hw, interrupt);
1529}
1530
1531/**
1532 * hw_turn_on_intr - turn on specified interrupts
1533 * @hw:         The hardware instance.
1534 * @bit:        The interrupt bits to be on.
1535 *
1536 * This routine turns on the specified interrupts in the interrupt mask so that
1537 * those interrupts will be enabled.
1538 */
1539static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
1540{
1541        hw->intr_mask |= bit;
1542
1543        if (!hw->intr_blocked)
1544                hw_set_intr(hw, hw->intr_mask);
1545}
1546
1547static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt)
1548{
1549        u32 read_intr;
1550
1551        read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1552        hw->intr_set = read_intr | interrupt;
1553        writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1554}
1555
1556static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
1557{
1558        *status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
1559        *status = *status & hw->intr_set;
1560}
1561
1562static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
1563{
1564        if (interrupt)
1565                hw_ena_intr(hw);
1566}
1567
1568/**
1569 * hw_block_intr - block hardware interrupts
1570 * @hw: The hardware instance.
1571 *
1572 * This function blocks all interrupts of the hardware and returns the current
1573 * interrupt enable mask so that interrupts can be restored later.
1574 *
1575 * Return the current interrupt enable mask.
1576 */
1577static uint hw_block_intr(struct ksz_hw *hw)
1578{
1579        uint interrupt = 0;
1580
1581        if (!hw->intr_blocked) {
1582                hw_dis_intr(hw);
1583                interrupt = hw->intr_blocked;
1584        }
1585        return interrupt;
1586}
1587
1588/*
1589 * Hardware descriptor routines
1590 */
1591
1592static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
1593{
1594        status.rx.hw_owned = 0;
1595        desc->phw->ctrl.data = cpu_to_le32(status.data);
1596}
1597
1598static inline void release_desc(struct ksz_desc *desc)
1599{
1600        desc->sw.ctrl.tx.hw_owned = 1;
1601        if (desc->sw.buf_size != desc->sw.buf.data) {
1602                desc->sw.buf_size = desc->sw.buf.data;
1603                desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
1604        }
1605        desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
1606}
1607
1608static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
1609{
1610        *desc = &info->ring[info->last];
1611        info->last++;
1612        info->last &= info->mask;
1613        info->avail--;
1614        (*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
1615}
1616
1617static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
1618{
1619        desc->phw->addr = cpu_to_le32(addr);
1620}
1621
1622static inline void set_rx_len(struct ksz_desc *desc, u32 len)
1623{
1624        desc->sw.buf.rx.buf_size = len;
1625}
1626
1627static inline void get_tx_pkt(struct ksz_desc_info *info,
1628        struct ksz_desc **desc)
1629{
1630        *desc = &info->ring[info->next];
1631        info->next++;
1632        info->next &= info->mask;
1633        info->avail--;
1634        (*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
1635}
1636
1637static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
1638{
1639        desc->phw->addr = cpu_to_le32(addr);
1640}
1641
1642static inline void set_tx_len(struct ksz_desc *desc, u32 len)
1643{
1644        desc->sw.buf.tx.buf_size = len;
1645}
1646
1647/* Switch functions */
1648
1649#define TABLE_READ                      0x10
1650#define TABLE_SEL_SHIFT                 2
1651
1652#define HW_DELAY(hw, reg)                       \
1653        do {                                    \
1654                readw(hw->io + reg);            \
1655        } while (0)
1656
1657/**
1658 * sw_r_table - read 4 bytes of data from switch table
1659 * @hw:         The hardware instance.
1660 * @table:      The table selector.
1661 * @addr:       The address of the table entry.
1662 * @data:       Buffer to store the read data.
1663 *
1664 * This routine reads 4 bytes of data from the table of the switch.
1665 * Hardware interrupts are disabled to minimize corruption of read data.
1666 */
1667static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
1668{
1669        u16 ctrl_addr;
1670        uint interrupt;
1671
1672        ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
1673
1674        interrupt = hw_block_intr(hw);
1675
1676        writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1677        HW_DELAY(hw, KS884X_IACR_OFFSET);
1678        *data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1679
1680        hw_restore_intr(hw, interrupt);
1681}
1682
1683/**
1684 * sw_w_table_64 - write 8 bytes of data to the switch table
1685 * @hw:         The hardware instance.
1686 * @table:      The table selector.
1687 * @addr:       The address of the table entry.
1688 * @data_hi:    The high part of data to be written (bit63 ~ bit32).
1689 * @data_lo:    The low part of data to be written (bit31 ~ bit0).
1690 *
1691 * This routine writes 8 bytes of data to the table of the switch.
1692 * Hardware interrupts are disabled to minimize corruption of written data.
1693 */
1694static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
1695        u32 data_lo)
1696{
1697        u16 ctrl_addr;
1698        uint interrupt;
1699
1700        ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
1701
1702        interrupt = hw_block_intr(hw);
1703
1704        writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
1705        writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
1706
1707        writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1708        HW_DELAY(hw, KS884X_IACR_OFFSET);
1709
1710        hw_restore_intr(hw, interrupt);
1711}
1712
1713/**
1714 * sw_w_sta_mac_table - write to the static MAC table
1715 * @hw:         The hardware instance.
1716 * @addr:       The address of the table entry.
1717 * @mac_addr:   The MAC address.
1718 * @ports:      The port members.
1719 * @override:   The flag to override the port receive/transmit settings.
1720 * @valid:      The flag to indicate entry is valid.
1721 * @use_fid:    The flag to indicate the FID is valid.
1722 * @fid:        The FID value.
1723 *
1724 * This routine writes an entry of the static MAC table of the switch.  It
1725 * calls sw_w_table_64() to write the data.
1726 */
1727static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
1728        u8 ports, int override, int valid, int use_fid, u8 fid)
1729{
1730        u32 data_hi;
1731        u32 data_lo;
1732
1733        data_lo = ((u32) mac_addr[2] << 24) |
1734                ((u32) mac_addr[3] << 16) |
1735                ((u32) mac_addr[4] << 8) | mac_addr[5];
1736        data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
1737        data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
1738
1739        if (override)
1740                data_hi |= STATIC_MAC_TABLE_OVERRIDE;
1741        if (use_fid) {
1742                data_hi |= STATIC_MAC_TABLE_USE_FID;
1743                data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
1744        }
1745        if (valid)
1746                data_hi |= STATIC_MAC_TABLE_VALID;
1747
1748        sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
1749}
1750
1751/**
1752 * sw_r_vlan_table - read from the VLAN table
1753 * @hw:         The hardware instance.
1754 * @addr:       The address of the table entry.
1755 * @vid:        Buffer to store the VID.
1756 * @fid:        Buffer to store the VID.
1757 * @member:     Buffer to store the port membership.
1758 *
1759 * This function reads an entry of the VLAN table of the switch.  It calls
1760 * sw_r_table() to get the data.
1761 *
1762 * Return 0 if the entry is valid; otherwise -1.
1763 */
1764static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
1765        u8 *member)
1766{
1767        u32 data;
1768
1769        sw_r_table(hw, TABLE_VLAN, addr, &data);
1770        if (data & VLAN_TABLE_VALID) {
1771                *vid = (u16)(data & VLAN_TABLE_VID);
1772                *fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
1773                *member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
1774                        VLAN_TABLE_MEMBERSHIP_SHIFT);
1775                return 0;
1776        }
1777        return -1;
1778}
1779
1780/**
1781 * port_r_mib_cnt - read MIB counter
1782 * @hw:         The hardware instance.
1783 * @port:       The port index.
1784 * @addr:       The address of the counter.
1785 * @cnt:        Buffer to store the counter.
1786 *
1787 * This routine reads a MIB counter of the port.
1788 * Hardware interrupts are disabled to minimize corruption of read data.
1789 */
1790static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
1791{
1792        u32 data;
1793        u16 ctrl_addr;
1794        uint interrupt;
1795        int timeout;
1796
1797        ctrl_addr = addr + PORT_COUNTER_NUM * port;
1798
1799        interrupt = hw_block_intr(hw);
1800
1801        ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
1802        writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1803        HW_DELAY(hw, KS884X_IACR_OFFSET);
1804
1805        for (timeout = 100; timeout > 0; timeout--) {
1806                data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1807
1808                if (data & MIB_COUNTER_VALID) {
1809                        if (data & MIB_COUNTER_OVERFLOW)
1810                                *cnt += MIB_COUNTER_VALUE + 1;
1811                        *cnt += data & MIB_COUNTER_VALUE;
1812                        break;
1813                }
1814        }
1815
1816        hw_restore_intr(hw, interrupt);
1817}
1818
1819/**
1820 * port_r_mib_pkt - read dropped packet counts
1821 * @hw:         The hardware instance.
1822 * @port:       The port index.
1823 * @last:       last one
1824 * @cnt:        Buffer to store the receive and transmit dropped packet counts.
1825 *
1826 * This routine reads the dropped packet counts of the port.
1827 * Hardware interrupts are disabled to minimize corruption of read data.
1828 */
1829static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
1830{
1831        u32 cur;
1832        u32 data;
1833        u16 ctrl_addr;
1834        uint interrupt;
1835        int index;
1836
1837        index = KS_MIB_PACKET_DROPPED_RX_0 + port;
1838        do {
1839                interrupt = hw_block_intr(hw);
1840
1841                ctrl_addr = (u16) index;
1842                ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
1843                        << 8);
1844                writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1845                HW_DELAY(hw, KS884X_IACR_OFFSET);
1846                data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1847
1848                hw_restore_intr(hw, interrupt);
1849
1850                data &= MIB_PACKET_DROPPED;
1851                cur = *last;
1852                if (data != cur) {
1853                        *last = data;
1854                        if (data < cur)
1855                                data += MIB_PACKET_DROPPED + 1;
1856                        data -= cur;
1857                        *cnt += data;
1858                }
1859                ++last;
1860                ++cnt;
1861                index -= KS_MIB_PACKET_DROPPED_TX -
1862                        KS_MIB_PACKET_DROPPED_TX_0 + 1;
1863        } while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
1864}
1865
1866/**
1867 * port_r_cnt - read MIB counters periodically
1868 * @hw:         The hardware instance.
1869 * @port:       The port index.
1870 *
1871 * This routine is used to read the counters of the port periodically to avoid
1872 * counter overflow.  The hardware should be acquired first before calling this
1873 * routine.
1874 *
1875 * Return non-zero when not all counters not read.
1876 */
1877static int port_r_cnt(struct ksz_hw *hw, int port)
1878{
1879        struct ksz_port_mib *mib = &hw->port_mib[port];
1880
1881        if (mib->mib_start < PORT_COUNTER_NUM)
1882                while (mib->cnt_ptr < PORT_COUNTER_NUM) {
1883                        port_r_mib_cnt(hw, port, mib->cnt_ptr,
1884                                &mib->counter[mib->cnt_ptr]);
1885                        ++mib->cnt_ptr;
1886                }
1887        if (hw->mib_cnt > PORT_COUNTER_NUM)
1888                port_r_mib_pkt(hw, port, mib->dropped,
1889                        &mib->counter[PORT_COUNTER_NUM]);
1890        mib->cnt_ptr = 0;
1891        return 0;
1892}
1893
1894/**
1895 * port_init_cnt - initialize MIB counter values
1896 * @hw:         The hardware instance.
1897 * @port:       The port index.
1898 *
1899 * This routine is used to initialize all counters to zero if the hardware
1900 * cannot do it after reset.
1901 */
1902static void port_init_cnt(struct ksz_hw *hw, int port)
1903{
1904        struct ksz_port_mib *mib = &hw->port_mib[port];
1905
1906        mib->cnt_ptr = 0;
1907        if (mib->mib_start < PORT_COUNTER_NUM)
1908                do {
1909                        port_r_mib_cnt(hw, port, mib->cnt_ptr,
1910                                &mib->counter[mib->cnt_ptr]);
1911                        ++mib->cnt_ptr;
1912                } while (mib->cnt_ptr < PORT_COUNTER_NUM);
1913        if (hw->mib_cnt > PORT_COUNTER_NUM)
1914                port_r_mib_pkt(hw, port, mib->dropped,
1915                        &mib->counter[PORT_COUNTER_NUM]);
1916        memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
1917        mib->cnt_ptr = 0;
1918}
1919
1920/*
1921 * Port functions
1922 */
1923
1924/**
1925 * port_chk - check port register bits
1926 * @hw:         The hardware instance.
1927 * @port:       The port index.
1928 * @offset:     The offset of the port register.
1929 * @bits:       The data bits to check.
1930 *
1931 * This function checks whether the specified bits of the port register are set
1932 * or not.
1933 *
1934 * Return 0 if the bits are not set.
1935 */
1936static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits)
1937{
1938        u32 addr;
1939        u16 data;
1940
1941        PORT_CTRL_ADDR(port, addr);
1942        addr += offset;
1943        data = readw(hw->io + addr);
1944        return (data & bits) == bits;
1945}
1946
1947/**
1948 * port_cfg - set port register bits
1949 * @hw:         The hardware instance.
1950 * @port:       The port index.
1951 * @offset:     The offset of the port register.
1952 * @bits:       The data bits to set.
1953 * @set:        The flag indicating whether the bits are to be set or not.
1954 *
1955 * This routine sets or resets the specified bits of the port register.
1956 */
1957static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
1958        int set)
1959{
1960        u32 addr;
1961        u16 data;
1962
1963        PORT_CTRL_ADDR(port, addr);
1964        addr += offset;
1965        data = readw(hw->io + addr);
1966        if (set)
1967                data |= bits;
1968        else
1969                data &= ~bits;
1970        writew(data, hw->io + addr);
1971}
1972
1973/**
1974 * port_chk_shift - check port bit
1975 * @hw:         The hardware instance.
1976 * @port:       The port index.
1977 * @addr:       The offset of the register.
1978 * @shift:      Number of bits to shift.
1979 *
1980 * This function checks whether the specified port is set in the register or
1981 * not.
1982 *
1983 * Return 0 if the port is not set.
1984 */
1985static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift)
1986{
1987        u16 data;
1988        u16 bit = 1 << port;
1989
1990        data = readw(hw->io + addr);
1991        data >>= shift;
1992        return (data & bit) == bit;
1993}
1994
1995/**
1996 * port_cfg_shift - set port bit
1997 * @hw:         The hardware instance.
1998 * @port:       The port index.
1999 * @addr:       The offset of the register.
2000 * @shift:      Number of bits to shift.
2001 * @set:        The flag indicating whether the port is to be set or not.
2002 *
2003 * This routine sets or resets the specified port in the register.
2004 */
2005static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift,
2006        int set)
2007{
2008        u16 data;
2009        u16 bits = 1 << port;
2010
2011        data = readw(hw->io + addr);
2012        bits <<= shift;
2013        if (set)
2014                data |= bits;
2015        else
2016                data &= ~bits;
2017        writew(data, hw->io + addr);
2018}
2019
2020/**
2021 * port_r8 - read byte from port register
2022 * @hw:         The hardware instance.
2023 * @port:       The port index.
2024 * @offset:     The offset of the port register.
2025 * @data:       Buffer to store the data.
2026 *
2027 * This routine reads a byte from the port register.
2028 */
2029static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
2030{
2031        u32 addr;
2032
2033        PORT_CTRL_ADDR(port, addr);
2034        addr += offset;
2035        *data = readb(hw->io + addr);
2036}
2037
2038/**
2039 * port_r16 - read word from port register.
2040 * @hw:         The hardware instance.
2041 * @port:       The port index.
2042 * @offset:     The offset of the port register.
2043 * @data:       Buffer to store the data.
2044 *
2045 * This routine reads a word from the port register.
2046 */
2047static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
2048{
2049        u32 addr;
2050
2051        PORT_CTRL_ADDR(port, addr);
2052        addr += offset;
2053        *data = readw(hw->io + addr);
2054}
2055
2056/**
2057 * port_w16 - write word to port register.
2058 * @hw:         The hardware instance.
2059 * @port:       The port index.
2060 * @offset:     The offset of the port register.
2061 * @data:       Data to write.
2062 *
2063 * This routine writes a word to the port register.
2064 */
2065static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
2066{
2067        u32 addr;
2068
2069        PORT_CTRL_ADDR(port, addr);
2070        addr += offset;
2071        writew(data, hw->io + addr);
2072}
2073
2074/**
2075 * sw_chk - check switch register bits
2076 * @hw:         The hardware instance.
2077 * @addr:       The address of the switch register.
2078 * @bits:       The data bits to check.
2079 *
2080 * This function checks whether the specified bits of the switch register are
2081 * set or not.
2082 *
2083 * Return 0 if the bits are not set.
2084 */
2085static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
2086{
2087        u16 data;
2088
2089        data = readw(hw->io + addr);
2090        return (data & bits) == bits;
2091}
2092
2093/**
2094 * sw_cfg - set switch register bits
2095 * @hw:         The hardware instance.
2096 * @addr:       The address of the switch register.
2097 * @bits:       The data bits to set.
2098 * @set:        The flag indicating whether the bits are to be set or not.
2099 *
2100 * This function sets or resets the specified bits of the switch register.
2101 */
2102static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
2103{
2104        u16 data;
2105
2106        data = readw(hw->io + addr);
2107        if (set)
2108                data |= bits;
2109        else
2110                data &= ~bits;
2111        writew(data, hw->io + addr);
2112}
2113
2114/* Bandwidth */
2115
2116static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
2117{
2118        port_cfg(hw, p,
2119                KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
2120}
2121
2122static inline int port_chk_broad_storm(struct ksz_hw *hw, int p)
2123{
2124        return port_chk(hw, p,
2125                KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM);
2126}
2127
2128/* Driver set switch broadcast storm protection at 10% rate. */
2129#define BROADCAST_STORM_PROTECTION_RATE 10
2130
2131/* 148,800 frames * 67 ms / 100 */
2132#define BROADCAST_STORM_VALUE           9969
2133
2134/**
2135 * sw_cfg_broad_storm - configure broadcast storm threshold
2136 * @hw:         The hardware instance.
2137 * @percent:    Broadcast storm threshold in percent of transmit rate.
2138 *
2139 * This routine configures the broadcast storm threshold of the switch.
2140 */
2141static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2142{
2143        u16 data;
2144        u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
2145
2146        if (value > BROADCAST_STORM_RATE)
2147                value = BROADCAST_STORM_RATE;
2148
2149        data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2150        data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
2151        data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
2152        writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2153}
2154
2155/**
2156 * sw_get_board_storm - get broadcast storm threshold
2157 * @hw:         The hardware instance.
2158 * @percent:    Buffer to store the broadcast storm threshold percentage.
2159 *
2160 * This routine retrieves the broadcast storm threshold of the switch.
2161 */
2162static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
2163{
2164        int num;
2165        u16 data;
2166
2167        data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2168        num = (data & BROADCAST_STORM_RATE_HI);
2169        num <<= 8;
2170        num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
2171        num = DIV_ROUND_CLOSEST(num * 100, BROADCAST_STORM_VALUE);
2172        *percent = (u8) num;
2173}
2174
2175/**
2176 * sw_dis_broad_storm - disable broadstorm
2177 * @hw:         The hardware instance.
2178 * @port:       The port index.
2179 *
2180 * This routine disables the broadcast storm limit function of the switch.
2181 */
2182static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
2183{
2184        port_cfg_broad_storm(hw, port, 0);
2185}
2186
2187/**
2188 * sw_ena_broad_storm - enable broadcast storm
2189 * @hw:         The hardware instance.
2190 * @port:       The port index.
2191 *
2192 * This routine enables the broadcast storm limit function of the switch.
2193 */
2194static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
2195{
2196        sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2197        port_cfg_broad_storm(hw, port, 1);
2198}
2199
2200/**
2201 * sw_init_broad_storm - initialize broadcast storm
2202 * @hw:         The hardware instance.
2203 *
2204 * This routine initializes the broadcast storm limit function of the switch.
2205 */
2206static void sw_init_broad_storm(struct ksz_hw *hw)
2207{
2208        int port;
2209
2210        hw->ksz_switch->broad_per = 1;
2211        sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2212        for (port = 0; port < TOTAL_PORT_NUM; port++)
2213                sw_dis_broad_storm(hw, port);
2214        sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
2215}
2216
2217/**
2218 * hw_cfg_broad_storm - configure broadcast storm
2219 * @hw:         The hardware instance.
2220 * @percent:    Broadcast storm threshold in percent of transmit rate.
2221 *
2222 * This routine configures the broadcast storm threshold of the switch.
2223 * It is called by user functions.  The hardware should be acquired first.
2224 */
2225static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2226{
2227        if (percent > 100)
2228                percent = 100;
2229
2230        sw_cfg_broad_storm(hw, percent);
2231        sw_get_broad_storm(hw, &percent);
2232        hw->ksz_switch->broad_per = percent;
2233}
2234
2235/**
2236 * sw_dis_prio_rate - disable switch priority rate
2237 * @hw:         The hardware instance.
2238 * @port:       The port index.
2239 *
2240 * This routine disables the priority rate function of the switch.
2241 */
2242static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
2243{
2244        u32 addr;
2245
2246        PORT_CTRL_ADDR(port, addr);
2247        addr += KS8842_PORT_IN_RATE_OFFSET;
2248        writel(0, hw->io + addr);
2249}
2250
2251/**
2252 * sw_init_prio_rate - initialize switch prioirty rate
2253 * @hw:         The hardware instance.
2254 *
2255 * This routine initializes the priority rate function of the switch.
2256 */
2257static void sw_init_prio_rate(struct ksz_hw *hw)
2258{
2259        int port;
2260        int prio;
2261        struct ksz_switch *sw = hw->ksz_switch;
2262
2263        for (port = 0; port < TOTAL_PORT_NUM; port++) {
2264                for (prio = 0; prio < PRIO_QUEUES; prio++) {
2265                        sw->port_cfg[port].rx_rate[prio] =
2266                        sw->port_cfg[port].tx_rate[prio] = 0;
2267                }
2268                sw_dis_prio_rate(hw, port);
2269        }
2270}
2271
2272/* Communication */
2273
2274static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
2275{
2276        port_cfg(hw, p,
2277                KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
2278}
2279
2280static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set)
2281{
2282        port_cfg(hw, p,
2283                KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set);
2284}
2285
2286static inline int port_chk_back_pressure(struct ksz_hw *hw, int p)
2287{
2288        return port_chk(hw, p,
2289                KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE);
2290}
2291
2292static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p)
2293{
2294        return port_chk(hw, p,
2295                KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL);
2296}
2297
2298/* Spanning Tree */
2299
2300static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set)
2301{
2302        port_cfg(hw, p,
2303                KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set);
2304}
2305
2306static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set)
2307{
2308        port_cfg(hw, p,
2309                KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set);
2310}
2311
2312static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set)
2313{
2314        sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set);
2315}
2316
2317static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw)
2318{
2319        if (!(hw->overrides & FAST_AGING)) {
2320                sw_cfg_fast_aging(hw, 1);
2321                mdelay(1);
2322                sw_cfg_fast_aging(hw, 0);
2323        }
2324}
2325
2326/* VLAN */
2327
2328static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert)
2329{
2330        port_cfg(hw, p,
2331                KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert);
2332}
2333
2334static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove)
2335{
2336        port_cfg(hw, p,
2337                KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove);
2338}
2339
2340static inline int port_chk_ins_tag(struct ksz_hw *hw, int p)
2341{
2342        return port_chk(hw, p,
2343                KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG);
2344}
2345
2346static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p)
2347{
2348        return port_chk(hw, p,
2349                KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG);
2350}
2351
2352static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set)
2353{
2354        port_cfg(hw, p,
2355                KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set);
2356}
2357
2358static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set)
2359{
2360        port_cfg(hw, p,
2361                KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set);
2362}
2363
2364static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p)
2365{
2366        return port_chk(hw, p,
2367                KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID);
2368}
2369
2370static inline int port_chk_in_filter(struct ksz_hw *hw, int p)
2371{
2372        return port_chk(hw, p,
2373                KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER);
2374}
2375
2376/* Mirroring */
2377
2378static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
2379{
2380        port_cfg(hw, p,
2381                KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
2382}
2383
2384static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
2385{
2386        port_cfg(hw, p,
2387                KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
2388}
2389
2390static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
2391{
2392        port_cfg(hw, p,
2393                KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
2394}
2395
2396static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
2397{
2398        sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
2399}
2400
2401static void sw_init_mirror(struct ksz_hw *hw)
2402{
2403        int port;
2404
2405        for (port = 0; port < TOTAL_PORT_NUM; port++) {
2406                port_cfg_mirror_sniffer(hw, port, 0);
2407                port_cfg_mirror_rx(hw, port, 0);
2408                port_cfg_mirror_tx(hw, port, 0);
2409        }
2410        sw_cfg_mirror_rx_tx(hw, 0);
2411}
2412
2413static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set)
2414{
2415        sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2416                SWITCH_UNK_DEF_PORT_ENABLE, set);
2417}
2418
2419static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw)
2420{
2421        return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2422                SWITCH_UNK_DEF_PORT_ENABLE);
2423}
2424
2425static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set)
2426{
2427        port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set);
2428}
2429
2430static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port)
2431{
2432        return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0);
2433}
2434
2435/* Priority */
2436
2437static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
2438{
2439        port_cfg(hw, p,
2440                KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
2441}
2442
2443static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
2444{
2445        port_cfg(hw, p,
2446                KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
2447}
2448
2449static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
2450{
2451        port_cfg(hw, p,
2452                KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
2453}
2454
2455static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
2456{
2457        port_cfg(hw, p,
2458                KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
2459}
2460
2461static inline int port_chk_diffserv(struct ksz_hw *hw, int p)
2462{
2463        return port_chk(hw, p,
2464                KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE);
2465}
2466
2467static inline int port_chk_802_1p(struct ksz_hw *hw, int p)
2468{
2469        return port_chk(hw, p,
2470                KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE);
2471}
2472
2473static inline int port_chk_replace_vid(struct ksz_hw *hw, int p)
2474{
2475        return port_chk(hw, p,
2476                KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING);
2477}
2478
2479static inline int port_chk_prio(struct ksz_hw *hw, int p)
2480{
2481        return port_chk(hw, p,
2482                KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE);
2483}
2484
2485/**
2486 * sw_dis_diffserv - disable switch DiffServ priority
2487 * @hw:         The hardware instance.
2488 * @port:       The port index.
2489 *
2490 * This routine disables the DiffServ priority function of the switch.
2491 */
2492static void sw_dis_diffserv(struct ksz_hw *hw, int port)
2493{
2494        port_cfg_diffserv(hw, port, 0);
2495}
2496
2497/**
2498 * sw_dis_802_1p - disable switch 802.1p priority
2499 * @hw:         The hardware instance.
2500 * @port:       The port index.
2501 *
2502 * This routine disables the 802.1p priority function of the switch.
2503 */
2504static void sw_dis_802_1p(struct ksz_hw *hw, int port)
2505{
2506        port_cfg_802_1p(hw, port, 0);
2507}
2508
2509/**
2510 * sw_cfg_replace_null_vid -
2511 * @hw:         The hardware instance.
2512 * @set:        The flag to disable or enable.
2513 *
2514 */
2515static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
2516{
2517        sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
2518}
2519
2520/**
2521 * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
2522 * @hw:         The hardware instance.
2523 * @port:       The port index.
2524 * @set:        The flag to disable or enable.
2525 *
2526 * This routine enables the 802.1p priority re-mapping function of the switch.
2527 * That allows 802.1p priority field to be replaced with the port's default
2528 * tag's priority value if the ingress packet's 802.1p priority has a higher
2529 * priority than port's default tag's priority.
2530 */
2531static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
2532{
2533        port_cfg_replace_vid(hw, port, set);
2534}
2535
2536/**
2537 * sw_cfg_port_based - configure switch port based priority
2538 * @hw:         The hardware instance.
2539 * @port:       The port index.
2540 * @prio:       The priority to set.
2541 *
2542 * This routine configures the port based priority of the switch.
2543 */
2544static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
2545{
2546        u16 data;
2547
2548        if (prio > PORT_BASED_PRIORITY_BASE)
2549                prio = PORT_BASED_PRIORITY_BASE;
2550
2551        hw->ksz_switch->port_cfg[port].port_prio = prio;
2552
2553        port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
2554        data &= ~PORT_BASED_PRIORITY_MASK;
2555        data |= prio << PORT_BASED_PRIORITY_SHIFT;
2556        port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
2557}
2558
2559/**
2560 * sw_dis_multi_queue - disable transmit multiple queues
2561 * @hw:         The hardware instance.
2562 * @port:       The port index.
2563 *
2564 * This routine disables the transmit multiple queues selection of the switch
2565 * port.  Only single transmit queue on the port.
2566 */
2567static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
2568{
2569        port_cfg_prio(hw, port, 0);
2570}
2571
2572/**
2573 * sw_init_prio - initialize switch priority
2574 * @hw:         The hardware instance.
2575 *
2576 * This routine initializes the switch QoS priority functions.
2577 */
2578static void sw_init_prio(struct ksz_hw *hw)
2579{
2580        int port;
2581        int tos;
2582        struct ksz_switch *sw = hw->ksz_switch;
2583
2584        /*
2585         * Init all the 802.1p tag priority value to be assigned to different
2586         * priority queue.
2587         */
2588        sw->p_802_1p[0] = 0;
2589        sw->p_802_1p[1] = 0;
2590        sw->p_802_1p[2] = 1;
2591        sw->p_802_1p[3] = 1;
2592        sw->p_802_1p[4] = 2;
2593        sw->p_802_1p[5] = 2;
2594        sw->p_802_1p[6] = 3;
2595        sw->p_802_1p[7] = 3;
2596
2597        /*
2598         * Init all the DiffServ priority value to be assigned to priority
2599         * queue 0.
2600         */
2601        for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
2602                sw->diffserv[tos] = 0;
2603
2604        /* All QoS functions disabled. */
2605        for (port = 0; port < TOTAL_PORT_NUM; port++) {
2606                sw_dis_multi_queue(hw, port);
2607                sw_dis_diffserv(hw, port);
2608                sw_dis_802_1p(hw, port);
2609                sw_cfg_replace_vid(hw, port, 0);
2610
2611                sw->port_cfg[port].port_prio = 0;
2612                sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
2613        }
2614        sw_cfg_replace_null_vid(hw, 0);
2615}
2616
2617/**
2618 * port_get_def_vid - get port default VID.
2619 * @hw:         The hardware instance.
2620 * @port:       The port index.
2621 * @vid:        Buffer to store the VID.
2622 *
2623 * This routine retrieves the default VID of the port.
2624 */
2625static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
2626{
2627        u32 addr;
2628
2629        PORT_CTRL_ADDR(port, addr);
2630        addr += KS8842_PORT_CTRL_VID_OFFSET;
2631        *vid = readw(hw->io + addr);
2632}
2633
2634/**
2635 * sw_init_vlan - initialize switch VLAN
2636 * @hw:         The hardware instance.
2637 *
2638 * This routine initializes the VLAN function of the switch.
2639 */
2640static void sw_init_vlan(struct ksz_hw *hw)
2641{
2642        int port;
2643        int entry;
2644        struct ksz_switch *sw = hw->ksz_switch;
2645
2646        /* Read 16 VLAN entries from device's VLAN table. */
2647        for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
2648                sw_r_vlan_table(hw, entry,
2649                        &sw->vlan_table[entry].vid,
2650                        &sw->vlan_table[entry].fid,
2651                        &sw->vlan_table[entry].member);
2652        }
2653
2654        for (port = 0; port < TOTAL_PORT_NUM; port++) {
2655                port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
2656                sw->port_cfg[port].member = PORT_MASK;
2657        }
2658}
2659
2660/**
2661 * sw_cfg_port_base_vlan - configure port-based VLAN membership
2662 * @hw:         The hardware instance.
2663 * @port:       The port index.
2664 * @member:     The port-based VLAN membership.
2665 *
2666 * This routine configures the port-based VLAN membership of the port.
2667 */
2668static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
2669{
2670        u32 addr;
2671        u8 data;
2672
2673        PORT_CTRL_ADDR(port, addr);
2674        addr += KS8842_PORT_CTRL_2_OFFSET;
2675
2676        data = readb(hw->io + addr);
2677        data &= ~PORT_VLAN_MEMBERSHIP;
2678        data |= (member & PORT_MASK);
2679        writeb(data, hw->io + addr);
2680
2681        hw->ksz_switch->port_cfg[port].member = member;
2682}
2683
2684/**
2685 * sw_get_addr - get the switch MAC address.
2686 * @hw:         The hardware instance.
2687 * @mac_addr:   Buffer to store the MAC address.
2688 *
2689 * This function retrieves the MAC address of the switch.
2690 */
2691static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr)
2692{
2693        int i;
2694
2695        for (i = 0; i < 6; i += 2) {
2696                mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2697                mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2698        }
2699}
2700
2701/**
2702 * sw_set_addr - configure switch MAC address
2703 * @hw:         The hardware instance.
2704 * @mac_addr:   The MAC address.
2705 *
2706 * This function configures the MAC address of the switch.
2707 */
2708static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
2709{
2710        int i;
2711
2712        for (i = 0; i < 6; i += 2) {
2713                writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2714                writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2715        }
2716}
2717
2718/**
2719 * sw_set_global_ctrl - set switch global control
2720 * @hw:         The hardware instance.
2721 *
2722 * This routine sets the global control of the switch function.
2723 */
2724static void sw_set_global_ctrl(struct ksz_hw *hw)
2725{
2726        u16 data;
2727
2728        /* Enable switch MII flow control. */
2729        data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2730        data |= SWITCH_FLOW_CTRL;
2731        writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2732
2733        data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2734
2735        /* Enable aggressive back off algorithm in half duplex mode. */
2736        data |= SWITCH_AGGR_BACKOFF;
2737
2738        /* Enable automatic fast aging when link changed detected. */
2739        data |= SWITCH_AGING_ENABLE;
2740        data |= SWITCH_LINK_AUTO_AGING;
2741
2742        if (hw->overrides & FAST_AGING)
2743                data |= SWITCH_FAST_AGING;
2744        else
2745                data &= ~SWITCH_FAST_AGING;
2746        writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2747
2748        data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2749
2750        /* Enable no excessive collision drop. */
2751        data |= NO_EXC_COLLISION_DROP;
2752        writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2753}
2754
2755enum {
2756        STP_STATE_DISABLED = 0,
2757        STP_STATE_LISTENING,
2758        STP_STATE_LEARNING,
2759        STP_STATE_FORWARDING,
2760        STP_STATE_BLOCKED,
2761        STP_STATE_SIMPLE
2762};
2763
2764/**
2765 * port_set_stp_state - configure port spanning tree state
2766 * @hw:         The hardware instance.
2767 * @port:       The port index.
2768 * @state:      The spanning tree state.
2769 *
2770 * This routine configures the spanning tree state of the port.
2771 */
2772static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
2773{
2774        u16 data;
2775
2776        port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
2777        switch (state) {
2778        case STP_STATE_DISABLED:
2779                data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2780                data |= PORT_LEARN_DISABLE;
2781                break;
2782        case STP_STATE_LISTENING:
2783/*
2784 * No need to turn on transmit because of port direct mode.
2785 * Turning on receive is required if static MAC table is not setup.
2786 */
2787                data &= ~PORT_TX_ENABLE;
2788                data |= PORT_RX_ENABLE;
2789                data |= PORT_LEARN_DISABLE;
2790                break;
2791        case STP_STATE_LEARNING:
2792                data &= ~PORT_TX_ENABLE;
2793                data |= PORT_RX_ENABLE;
2794                data &= ~PORT_LEARN_DISABLE;
2795                break;
2796        case STP_STATE_FORWARDING:
2797                data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2798                data &= ~PORT_LEARN_DISABLE;
2799                break;
2800        case STP_STATE_BLOCKED:
2801/*
2802 * Need to setup static MAC table with override to keep receiving BPDU
2803 * messages.  See sw_init_stp routine.
2804 */
2805                data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2806                data |= PORT_LEARN_DISABLE;
2807                break;
2808        case STP_STATE_SIMPLE:
2809                data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2810                data |= PORT_LEARN_DISABLE;
2811                break;
2812        }
2813        port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
2814        hw->ksz_switch->port_cfg[port].stp_state = state;
2815}
2816
2817#define STP_ENTRY                       0
2818#define BROADCAST_ENTRY                 1
2819#define BRIDGE_ADDR_ENTRY               2
2820#define IPV6_ADDR_ENTRY                 3
2821
2822/**
2823 * sw_clr_sta_mac_table - clear static MAC table
2824 * @hw:         The hardware instance.
2825 *
2826 * This routine clears the static MAC table.
2827 */
2828static void sw_clr_sta_mac_table(struct ksz_hw *hw)
2829{
2830        struct ksz_mac_table *entry;
2831        int i;
2832
2833        for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
2834                entry = &hw->ksz_switch->mac_table[i];
2835                sw_w_sta_mac_table(hw, i,
2836                        entry->mac_addr, entry->ports,
2837                        entry->override, 0,
2838                        entry->use_fid, entry->fid);
2839        }
2840}
2841
2842/**
2843 * sw_init_stp - initialize switch spanning tree support
2844 * @hw:         The hardware instance.
2845 *
2846 * This routine initializes the spanning tree support of the switch.
2847 */
2848static void sw_init_stp(struct ksz_hw *hw)
2849{
2850        struct ksz_mac_table *entry;
2851
2852        entry = &hw->ksz_switch->mac_table[STP_ENTRY];
2853        entry->mac_addr[0] = 0x01;
2854        entry->mac_addr[1] = 0x80;
2855        entry->mac_addr[2] = 0xC2;
2856        entry->mac_addr[3] = 0x00;
2857        entry->mac_addr[4] = 0x00;
2858        entry->mac_addr[5] = 0x00;
2859        entry->ports = HOST_MASK;
2860        entry->override = 1;
2861        entry->valid = 1;
2862        sw_w_sta_mac_table(hw, STP_ENTRY,
2863                entry->mac_addr, entry->ports,
2864                entry->override, entry->valid,
2865                entry->use_fid, entry->fid);
2866}
2867
2868/**
2869 * sw_block_addr - block certain packets from the host port
2870 * @hw:         The hardware instance.
2871 *
2872 * This routine blocks certain packets from reaching to the host port.
2873 */
2874static void sw_block_addr(struct ksz_hw *hw)
2875{
2876        struct ksz_mac_table *entry;
2877        int i;
2878
2879        for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
2880                entry = &hw->ksz_switch->mac_table[i];
2881                entry->valid = 0;
2882                sw_w_sta_mac_table(hw, i,
2883                        entry->mac_addr, entry->ports,
2884                        entry->override, entry->valid,
2885                        entry->use_fid, entry->fid);
2886        }
2887}
2888
2889#define PHY_LINK_SUPPORT                \
2890        (PHY_AUTO_NEG_ASYM_PAUSE |      \
2891        PHY_AUTO_NEG_SYM_PAUSE |        \
2892        PHY_AUTO_NEG_100BT4 |           \
2893        PHY_AUTO_NEG_100BTX_FD |        \
2894        PHY_AUTO_NEG_100BTX |           \
2895        PHY_AUTO_NEG_10BT_FD |          \
2896        PHY_AUTO_NEG_10BT)
2897
2898static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
2899{
2900        *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2901}
2902
2903static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
2904{
2905        writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2906}
2907
2908static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data)
2909{
2910        *data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET);
2911}
2912
2913static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data)
2914{
2915        *data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2916}
2917
2918static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data)
2919{
2920        writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2921}
2922
2923static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data)
2924{
2925        *data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET);
2926}
2927
2928static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data)
2929{
2930        *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2931}
2932
2933static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data)
2934{
2935        writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2936}
2937
2938static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data)
2939{
2940        *data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2941}
2942
2943static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data)
2944{
2945        writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2946}
2947
2948static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data)
2949{
2950        *data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2951}
2952
2953static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data)
2954{
2955        writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2956}
2957
2958/**
2959 * hw_r_phy - read data from PHY register
2960 * @hw:         The hardware instance.
2961 * @port:       Port to read.
2962 * @reg:        PHY register to read.
2963 * @val:        Buffer to store the read data.
2964 *
2965 * This routine reads data from the PHY register.
2966 */
2967static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
2968{
2969        int phy;
2970
2971        phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2972        *val = readw(hw->io + phy);
2973}
2974
2975/**
2976 * port_w_phy - write data to PHY register
2977 * @hw:         The hardware instance.
2978 * @port:       Port to write.
2979 * @reg:        PHY register to write.
2980 * @val:        Word data to write.
2981 *
2982 * This routine writes data to the PHY register.
2983 */
2984static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
2985{
2986        int phy;
2987
2988        phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2989        writew(val, hw->io + phy);
2990}
2991
2992/*
2993 * EEPROM access functions
2994 */
2995
2996#define AT93C_CODE                      0
2997#define AT93C_WR_OFF                    0x00
2998#define AT93C_WR_ALL                    0x10
2999#define AT93C_ER_ALL                    0x20
3000#define AT93C_WR_ON                     0x30
3001
3002#define AT93C_WRITE                     1
3003#define AT93C_READ                      2
3004#define AT93C_ERASE                     3
3005
3006#define EEPROM_DELAY                    4
3007
3008static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
3009{
3010        u16 data;
3011
3012        data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3013        data &= ~gpio;
3014        writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3015}
3016
3017static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
3018{
3019        u16 data;
3020
3021        data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3022        data |= gpio;
3023        writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3024}
3025
3026static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
3027{
3028        u16 data;
3029
3030        data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3031        return (u8)(data & gpio);
3032}
3033
3034static void eeprom_clk(struct ksz_hw *hw)
3035{
3036        raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3037        udelay(EEPROM_DELAY);
3038        drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3039        udelay(EEPROM_DELAY);
3040}
3041
3042static u16 spi_r(struct ksz_hw *hw)
3043{
3044        int i;
3045        u16 temp = 0;
3046
3047        for (i = 15; i >= 0; i--) {
3048                raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3049                udelay(EEPROM_DELAY);
3050
3051                temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
3052
3053                drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3054                udelay(EEPROM_DELAY);
3055        }
3056        return temp;
3057}
3058
3059static void spi_w(struct ksz_hw *hw, u16 data)
3060{
3061        int i;
3062
3063        for (i = 15; i >= 0; i--) {
3064                (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3065                        drop_gpio(hw, EEPROM_DATA_OUT);
3066                eeprom_clk(hw);
3067        }
3068}
3069
3070static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
3071{
3072        int i;
3073
3074        /* Initial start bit */
3075        raise_gpio(hw, EEPROM_DATA_OUT);
3076        eeprom_clk(hw);
3077
3078        /* AT93C operation */
3079        for (i = 1; i >= 0; i--) {
3080                (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3081                        drop_gpio(hw, EEPROM_DATA_OUT);
3082                eeprom_clk(hw);
3083        }
3084
3085        /* Address location */
3086        for (i = 5; i >= 0; i--) {
3087                (reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3088                        drop_gpio(hw, EEPROM_DATA_OUT);
3089                eeprom_clk(hw);
3090        }
3091}
3092
3093#define EEPROM_DATA_RESERVED            0
3094#define EEPROM_DATA_MAC_ADDR_0          1
3095#define EEPROM_DATA_MAC_ADDR_1          2
3096#define EEPROM_DATA_MAC_ADDR_2          3
3097#define EEPROM_DATA_SUBSYS_ID           4
3098#define EEPROM_DATA_SUBSYS_VEN_ID       5
3099#define EEPROM_DATA_PM_CAP              6
3100
3101/* User defined EEPROM data */
3102#define EEPROM_DATA_OTHER_MAC_ADDR      9
3103
3104/**
3105 * eeprom_read - read from AT93C46 EEPROM
3106 * @hw:         The hardware instance.
3107 * @reg:        The register offset.
3108 *
3109 * This function reads a word from the AT93C46 EEPROM.
3110 *
3111 * Return the data value.
3112 */
3113static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
3114{
3115        u16 data;
3116
3117        raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3118
3119        spi_reg(hw, AT93C_READ, reg);
3120        data = spi_r(hw);
3121
3122        drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3123
3124        return data;
3125}
3126
3127/**
3128 * eeprom_write - write to AT93C46 EEPROM
3129 * @hw:         The hardware instance.
3130 * @reg:        The register offset.
3131 * @data:       The data value.
3132 *
3133 * This procedure writes a word to the AT93C46 EEPROM.
3134 */
3135static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
3136{
3137        int timeout;
3138
3139        raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3140
3141        /* Enable write. */
3142        spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
3143        drop_gpio(hw, EEPROM_CHIP_SELECT);
3144        udelay(1);
3145
3146        /* Erase the register. */
3147        raise_gpio(hw, EEPROM_CHIP_SELECT);
3148        spi_reg(hw, AT93C_ERASE, reg);
3149        drop_gpio(hw, EEPROM_CHIP_SELECT);
3150        udelay(1);
3151
3152        /* Check operation complete. */
3153        raise_gpio(hw, EEPROM_CHIP_SELECT);
3154        timeout = 8;
3155        mdelay(2);
3156        do {
3157                mdelay(1);
3158        } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3159        drop_gpio(hw, EEPROM_CHIP_SELECT);
3160        udelay(1);
3161
3162        /* Write the register. */
3163        raise_gpio(hw, EEPROM_CHIP_SELECT);
3164        spi_reg(hw, AT93C_WRITE, reg);
3165        spi_w(hw, data);
3166        drop_gpio(hw, EEPROM_CHIP_SELECT);
3167        udelay(1);
3168
3169        /* Check operation complete. */
3170        raise_gpio(hw, EEPROM_CHIP_SELECT);
3171        timeout = 8;
3172        mdelay(2);
3173        do {
3174                mdelay(1);
3175        } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3176        drop_gpio(hw, EEPROM_CHIP_SELECT);
3177        udelay(1);
3178
3179        /* Disable write. */
3180        raise_gpio(hw, EEPROM_CHIP_SELECT);
3181        spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
3182
3183        drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3184}
3185
3186/*
3187 * Link detection routines
3188 */
3189
3190static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
3191{
3192        ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
3193        switch (port->flow_ctrl) {
3194        case PHY_FLOW_CTRL:
3195                ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
3196                break;
3197        /* Not supported. */
3198        case PHY_TX_ONLY:
3199        case PHY_RX_ONLY:
3200        default:
3201                break;
3202        }
3203        return ctrl;
3204}
3205
3206static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
3207{
3208        u32 rx_cfg;
3209        u32 tx_cfg;
3210
3211        rx_cfg = hw->rx_cfg;
3212        tx_cfg = hw->tx_cfg;
3213        if (rx)
3214                hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
3215        else
3216                hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
3217        if (tx)
3218                hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
3219        else
3220                hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3221        if (hw->enabled) {
3222                if (rx_cfg != hw->rx_cfg)
3223                        writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3224                if (tx_cfg != hw->tx_cfg)
3225                        writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3226        }
3227}
3228
3229static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
3230        u16 local, u16 remote)
3231{
3232        int rx;
3233        int tx;
3234
3235        if (hw->overrides & PAUSE_FLOW_CTRL)
3236                return;
3237
3238        rx = tx = 0;
3239        if (port->force_link)
3240                rx = tx = 1;
3241        if (remote & PHY_AUTO_NEG_SYM_PAUSE) {
3242                if (local & PHY_AUTO_NEG_SYM_PAUSE) {
3243                        rx = tx = 1;
3244                } else if ((remote & PHY_AUTO_NEG_ASYM_PAUSE) &&
3245                                (local & PHY_AUTO_NEG_PAUSE) ==
3246                                PHY_AUTO_NEG_ASYM_PAUSE) {
3247                        tx = 1;
3248                }
3249        } else if (remote & PHY_AUTO_NEG_ASYM_PAUSE) {
3250                if ((local & PHY_AUTO_NEG_PAUSE) == PHY_AUTO_NEG_PAUSE)
3251                        rx = 1;
3252        }
3253        if (!hw->ksz_switch)
3254                set_flow_ctrl(hw, rx, tx);
3255}
3256
3257static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
3258        struct ksz_port_info *info, u16 link_status)
3259{
3260        if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
3261                        !(hw->overrides & PAUSE_FLOW_CTRL)) {
3262                u32 cfg = hw->tx_cfg;
3263
3264                /* Disable flow control in the half duplex mode. */
3265                if (1 == info->duplex)
3266                        hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3267                if (hw->enabled && cfg != hw->tx_cfg)
3268                        writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3269        }
3270}
3271
3272/**
3273 * port_get_link_speed - get current link status
3274 * @port:       The port instance.
3275 *
3276 * This routine reads PHY registers to determine the current link status of the
3277 * switch ports.
3278 */
3279static void port_get_link_speed(struct ksz_port *port)
3280{
3281        uint interrupt;
3282        struct ksz_port_info *info;
3283        struct ksz_port_info *linked = NULL;
3284        struct ksz_hw *hw = port->hw;
3285        u16 data;
3286        u16 status;
3287        u8 local;
3288        u8 remote;
3289        int i;
3290        int p;
3291        int change = 0;
3292
3293        interrupt = hw_block_intr(hw);
3294
3295        for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3296                info = &hw->port_info[p];
3297                port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3298                port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3299
3300                /*
3301                 * Link status is changing all the time even when there is no
3302                 * cable connection!
3303                 */
3304                remote = status & (PORT_AUTO_NEG_COMPLETE |
3305                        PORT_STATUS_LINK_GOOD);
3306                local = (u8) data;
3307
3308                /* No change to status. */
3309                if (local == info->advertised && remote == info->partner)
3310                        continue;
3311
3312                info->advertised = local;
3313                info->partner = remote;
3314                if (status & PORT_STATUS_LINK_GOOD) {
3315
3316                        /* Remember the first linked port. */
3317                        if (!linked)
3318                                linked = info;
3319
3320                        info->tx_rate = 10 * TX_RATE_UNIT;
3321                        if (status & PORT_STATUS_SPEED_100MBIT)
3322                                info->tx_rate = 100 * TX_RATE_UNIT;
3323
3324                        info->duplex = 1;
3325                        if (status & PORT_STATUS_FULL_DUPLEX)
3326                                info->duplex = 2;
3327
3328                        if (media_connected != info->state) {
3329                                hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
3330                                        &data);
3331                                hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
3332                                        &status);
3333                                determine_flow_ctrl(hw, port, data, status);
3334                                if (hw->ksz_switch) {
3335                                        port_cfg_back_pressure(hw, p,
3336                                                (1 == info->duplex));
3337                                }
3338                                change |= 1 << i;
3339                                port_cfg_change(hw, port, info, status);
3340                        }
3341                        info->state = media_connected;
3342                } else {
3343                        if (media_disconnected != info->state) {
3344                                change |= 1 << i;
3345
3346                                /* Indicate the link just goes down. */
3347                                hw->port_mib[p].link_down = 1;
3348                        }
3349                        info->state = media_disconnected;
3350                }
3351                hw->port_mib[p].state = (u8) info->state;
3352        }
3353
3354        if (linked && media_disconnected == port->linked->state)
3355                port->linked = linked;
3356
3357        hw_restore_intr(hw, interrupt);
3358}
3359
3360#define PHY_RESET_TIMEOUT               10
3361
3362/**
3363 * port_set_link_speed - set port speed
3364 * @port:       The port instance.
3365 *
3366 * This routine sets the link speed of the switch ports.
3367 */
3368static void port_set_link_speed(struct ksz_port *port)
3369{
3370        struct ksz_hw *hw = port->hw;
3371        u16 data;
3372        u16 cfg;
3373        u8 status;
3374        int i;
3375        int p;
3376
3377        for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3378                port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3379                port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3380
3381                cfg = 0;
3382                if (status & PORT_STATUS_LINK_GOOD)
3383                        cfg = data;
3384
3385                data |= PORT_AUTO_NEG_ENABLE;
3386                data = advertised_flow_ctrl(port, data);
3387
3388                data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
3389                        PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
3390
3391                /* Check if manual configuration is specified by the user. */
3392                if (port->speed || port->duplex) {
3393                        if (10 == port->speed)
3394                                data &= ~(PORT_AUTO_NEG_100BTX_FD |
3395                                        PORT_AUTO_NEG_100BTX);
3396                        else if (100 == port->speed)
3397                                data &= ~(PORT_AUTO_NEG_10BT_FD |
3398                                        PORT_AUTO_NEG_10BT);
3399                        if (1 == port->duplex)
3400                                data &= ~(PORT_AUTO_NEG_100BTX_FD |
3401                                        PORT_AUTO_NEG_10BT_FD);
3402                        else if (2 == port->duplex)
3403                                data &= ~(PORT_AUTO_NEG_100BTX |
3404                                        PORT_AUTO_NEG_10BT);
3405                }
3406                if (data != cfg) {
3407                        data |= PORT_AUTO_NEG_RESTART;
3408                        port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
3409                }
3410        }
3411}
3412
3413/**
3414 * port_force_link_speed - force port speed
3415 * @port:       The port instance.
3416 *
3417 * This routine forces the link speed of the switch ports.
3418 */
3419static void port_force_link_speed(struct ksz_port *port)
3420{
3421        struct ksz_hw *hw = port->hw;
3422        u16 data;
3423        int i;
3424        int phy;
3425        int p;
3426
3427        for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3428                phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
3429                hw_r_phy_ctrl(hw, phy, &data);
3430
3431                data &= ~PHY_AUTO_NEG_ENABLE;
3432
3433                if (10 == port->speed)
3434                        data &= ~PHY_SPEED_100MBIT;
3435                else if (100 == port->speed)
3436                        data |= PHY_SPEED_100MBIT;
3437                if (1 == port->duplex)
3438                        data &= ~PHY_FULL_DUPLEX;
3439                else if (2 == port->duplex)
3440                        data |= PHY_FULL_DUPLEX;
3441                hw_w_phy_ctrl(hw, phy, data);
3442        }
3443}
3444
3445static void port_set_power_saving(struct ksz_port *port, int enable)
3446{
3447        struct ksz_hw *hw = port->hw;
3448        int i;
3449        int p;
3450
3451        for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
3452                port_cfg(hw, p,
3453                        KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
3454}
3455
3456/*
3457 * KSZ8841 power management functions
3458 */
3459
3460/**
3461 * hw_chk_wol_pme_status - check PMEN pin
3462 * @hw:         The hardware instance.
3463 *
3464 * This function is used to check PMEN pin is asserted.
3465 *
3466 * Return 1 if PMEN pin is asserted; otherwise, 0.
3467 */
3468static int hw_chk_wol_pme_status(struct ksz_hw *hw)
3469{
3470        struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3471        struct pci_dev *pdev = hw_priv->pdev;
3472        u16 data;
3473
3474        if (!pdev->pm_cap)
3475                return 0;
3476        pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3477        return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
3478}
3479
3480/**
3481 * hw_clr_wol_pme_status - clear PMEN pin
3482 * @hw:         The hardware instance.
3483 *
3484 * This routine is used to clear PME_Status to deassert PMEN pin.
3485 */
3486static void hw_clr_wol_pme_status(struct ksz_hw *hw)
3487{
3488        struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3489        struct pci_dev *pdev = hw_priv->pdev;
3490        u16 data;
3491
3492        if (!pdev->pm_cap)
3493                return;
3494
3495        /* Clear PME_Status to deassert PMEN pin. */
3496        pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3497        data |= PCI_PM_CTRL_PME_STATUS;
3498        pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3499}
3500
3501/**
3502 * hw_cfg_wol_pme - enable or disable Wake-on-LAN
3503 * @hw:         The hardware instance.
3504 * @set:        The flag indicating whether to enable or disable.
3505 *
3506 * This routine is used to enable or disable Wake-on-LAN.
3507 */
3508static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
3509{
3510        struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3511        struct pci_dev *pdev = hw_priv->pdev;
3512        u16 data;
3513
3514        if (!pdev->pm_cap)
3515                return;
3516        pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3517        data &= ~PCI_PM_CTRL_STATE_MASK;
3518        if (set)
3519                data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
3520        else
3521                data &= ~PCI_PM_CTRL_PME_ENABLE;
3522        pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3523}
3524
3525/**
3526 * hw_cfg_wol - configure Wake-on-LAN features
3527 * @hw:         The hardware instance.
3528 * @frame:      The pattern frame bit.
3529 * @set:        The flag indicating whether to enable or disable.
3530 *
3531 * This routine is used to enable or disable certain Wake-on-LAN features.
3532 */
3533static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
3534{
3535        u16 data;
3536
3537        data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
3538        if (set)
3539                data |= frame;
3540        else
3541                data &= ~frame;
3542        writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
3543}
3544
3545/**
3546 * hw_set_wol_frame - program Wake-on-LAN pattern
3547 * @hw:         The hardware instance.
3548 * @i:          The frame index.
3549 * @mask_size:  The size of the mask.
3550 * @mask:       Mask to ignore certain bytes in the pattern.
3551 * @frame_size: The size of the frame.
3552 * @pattern:    The frame data.
3553 *
3554 * This routine is used to program Wake-on-LAN pattern.
3555 */
3556static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
3557        const u8 *mask, uint frame_size, const u8 *pattern)
3558{
3559        int bits;
3560        int from;
3561        int len;
3562        int to;
3563        u32 crc;
3564        u8 data[64];
3565        u8 val = 0;
3566
3567        if (frame_size > mask_size * 8)
3568                frame_size = mask_size * 8;
3569        if (frame_size > 64)
3570                frame_size = 64;
3571
3572        i *= 0x10;
3573        writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
3574        writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
3575
3576        bits = len = from = to = 0;
3577        do {
3578                if (bits) {
3579                        if ((val & 1))
3580                                data[to++] = pattern[from];
3581                        val >>= 1;
3582                        ++from;
3583                        --bits;
3584                } else {
3585                        val = mask[len];
3586                        writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
3587                                + len);
3588                        ++len;
3589                        if (val)
3590                                bits = 8;
3591                        else
3592                                from += 8;
3593                }
3594        } while (from < (int) frame_size);
3595        if (val) {
3596                bits = mask[len - 1];
3597                val <<= (from % 8);
3598                bits &= ~val;
3599                writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
3600                        1);
3601        }
3602        crc = ether_crc(to, data);
3603        writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
3604}
3605
3606/**
3607 * hw_add_wol_arp - add ARP pattern
3608 * @hw:         The hardware instance.
3609 * @ip_addr:    The IPv4 address assigned to the device.
3610 *
3611 * This routine is used to add ARP pattern for waking up the host.
3612 */
3613static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr)
3614{
3615        static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
3616        u8 pattern[42] = {
3617                0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
3618                0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3619                0x08, 0x06,
3620                0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
3621                0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3622                0x00, 0x00, 0x00, 0x00,
3623                0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3624                0x00, 0x00, 0x00, 0x00 };
3625
3626        memcpy(&pattern[38], ip_addr, 4);
3627        hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
3628}
3629
3630/**
3631 * hw_add_wol_bcast - add broadcast pattern
3632 * @hw:         The hardware instance.
3633 *
3634 * This routine is used to add broadcast pattern for waking up the host.
3635 */
3636static void hw_add_wol_bcast(struct ksz_hw *hw)
3637{
3638        static const u8 mask[] = { 0x3F };
3639        static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3640
3641        hw_set_wol_frame(hw, 2, 1, mask, ETH_ALEN, pattern);
3642}
3643
3644/**
3645 * hw_add_wol_mcast - add multicast pattern
3646 * @hw:         The hardware instance.
3647 *
3648 * This routine is used to add multicast pattern for waking up the host.
3649 *
3650 * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
3651 * by IPv6 ping command.  Note that multicast packets are filtred through the
3652 * multicast hash table, so not all multicast packets can wake up the host.
3653 */
3654static void hw_add_wol_mcast(struct ksz_hw *hw)
3655{
3656        static const u8 mask[] = { 0x3F };
3657        u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
3658
3659        memcpy(&pattern[3], &hw->override_addr[3], 3);
3660        hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
3661}
3662
3663/**
3664 * hw_add_wol_ucast - add unicast pattern
3665 * @hw:         The hardware instance.
3666 *
3667 * This routine is used to add unicast pattern to wakeup the host.
3668 *
3669 * It is assumed the unicast packet is directed to the device, as the hardware
3670 * can only receive them in normal case.
3671 */
3672static void hw_add_wol_ucast(struct ksz_hw *hw)
3673{
3674        static const u8 mask[] = { 0x3F };
3675
3676        hw_set_wol_frame(hw, 0, 1, mask, ETH_ALEN, hw->override_addr);
3677}
3678
3679/**
3680 * hw_enable_wol - enable Wake-on-LAN
3681 * @hw:         The hardware instance.
3682 * @wol_enable: The Wake-on-LAN settings.
3683 * @net_addr:   The IPv4 address assigned to the device.
3684 *
3685 * This routine is used to enable Wake-on-LAN depending on driver settings.
3686 */
3687static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr)
3688{
3689        hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
3690        hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
3691        hw_add_wol_ucast(hw);
3692        hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
3693        hw_add_wol_mcast(hw);
3694        hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
3695        hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
3696        hw_add_wol_arp(hw, net_addr);
3697}
3698
3699/**
3700 * hw_init - check driver is correct for the hardware
3701 * @hw:         The hardware instance.
3702 *
3703 * This function checks the hardware is correct for this driver and sets the
3704 * hardware up for proper initialization.
3705 *
3706 * Return number of ports or 0 if not right.
3707 */
3708static int hw_init(struct ksz_hw *hw)
3709{
3710        int rc = 0;
3711        u16 data;
3712        u16 revision;
3713
3714        /* Set bus speed to 125MHz. */
3715        writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
3716
3717        /* Check KSZ884x chip ID. */
3718        data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
3719
3720        revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
3721        data &= KS884X_CHIP_ID_MASK_41;
3722        if (REG_CHIP_ID_41 == data)
3723                rc = 1;
3724        else if (REG_CHIP_ID_42 == data)
3725                rc = 2;
3726        else
3727                return 0;
3728
3729        /* Setup hardware features or bug workarounds. */
3730        if (revision <= 1) {
3731                hw->features |= SMALL_PACKET_TX_BUG;
3732                if (1 == rc)
3733                        hw->features |= HALF_DUPLEX_SIGNAL_BUG;
3734        }
3735        return rc;
3736}
3737
3738/**
3739 * hw_reset - reset the hardware
3740 * @hw:         The hardware instance.
3741 *
3742 * This routine resets the hardware.
3743 */
3744static void hw_reset(struct ksz_hw *hw)
3745{
3746        writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3747
3748        /* Wait for device to reset. */
3749        mdelay(10);
3750
3751        /* Write 0 to clear device reset. */
3752        writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3753}
3754
3755/**
3756 * hw_setup - setup the hardware
3757 * @hw:         The hardware instance.
3758 *
3759 * This routine setup the hardware for proper operation.
3760 */
3761static void hw_setup(struct ksz_hw *hw)
3762{
3763#if SET_DEFAULT_LED
3764        u16 data;
3765
3766        /* Change default LED mode. */
3767        data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3768        data &= ~LED_MODE;
3769        data |= SET_DEFAULT_LED;
3770        writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3771#endif
3772
3773        /* Setup transmit control. */
3774        hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
3775                (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
3776
3777        /* Setup receive control. */
3778        hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
3779                (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
3780        hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
3781
3782        /* Hardware cannot handle UDP packet in IP fragments. */
3783        hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
3784
3785        if (hw->all_multi)
3786                hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3787        if (hw->promiscuous)
3788                hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3789}
3790
3791/**
3792 * hw_setup_intr - setup interrupt mask
3793 * @hw:         The hardware instance.
3794 *
3795 * This routine setup the interrupt mask for proper operation.
3796 */
3797static void hw_setup_intr(struct ksz_hw *hw)
3798{
3799        hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
3800}
3801
3802static void ksz_check_desc_num(struct ksz_desc_info *info)
3803{
3804#define MIN_DESC_SHIFT  2
3805
3806        int alloc = info->alloc;
3807        int shift;
3808
3809        shift = 0;
3810        while (!(alloc & 1)) {
3811                shift++;
3812                alloc >>= 1;
3813        }
3814        if (alloc != 1 || shift < MIN_DESC_SHIFT) {
3815                pr_alert("Hardware descriptor numbers not right!\n");
3816                while (alloc) {
3817                        shift++;
3818                        alloc >>= 1;
3819                }
3820                if (shift < MIN_DESC_SHIFT)
3821                        shift = MIN_DESC_SHIFT;
3822                alloc = 1 << shift;
3823                info->alloc = alloc;
3824        }
3825        info->mask = info->alloc - 1;
3826}
3827
3828static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
3829{
3830        int i;
3831        u32 phys = desc_info->ring_phys;
3832        struct ksz_hw_desc *desc = desc_info->ring_virt;
3833        struct ksz_desc *cur = desc_info->ring;
3834        struct ksz_desc *previous = NULL;
3835
3836        for (i = 0; i < desc_info->alloc; i++) {
3837                cur->phw = desc++;
3838                phys += desc_info->size;
3839                previous = cur++;
3840                previous->phw->next = cpu_to_le32(phys);
3841        }
3842        previous->phw->next = cpu_to_le32(desc_info->ring_phys);
3843        previous->sw.buf.rx.end_of_ring = 1;
3844        previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
3845
3846        desc_info->avail = desc_info->alloc;
3847        desc_info->last = desc_info->next = 0;
3848
3849        desc_info->cur = desc_info->ring;
3850}
3851
3852/**
3853 * hw_set_desc_base - set descriptor base addresses
3854 * @hw:         The hardware instance.
3855 * @tx_addr:    The transmit descriptor base.
3856 * @rx_addr:    The receive descriptor base.
3857 *
3858 * This routine programs the descriptor base addresses after reset.
3859 */
3860static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
3861{
3862        /* Set base address of Tx/Rx descriptors. */
3863        writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
3864        writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
3865}
3866
3867static void hw_reset_pkts(struct ksz_desc_info *info)
3868{
3869        info->cur = info->ring;
3870        info->avail = info->alloc;
3871        info->last = info->next = 0;
3872}
3873
3874static inline void hw_resume_rx(struct ksz_hw *hw)
3875{
3876        writel(DMA_START, hw->io + KS_DMA_RX_START);
3877}
3878
3879/**
3880 * hw_start_rx - start receiving
3881 * @hw:         The hardware instance.
3882 *
3883 * This routine starts the receive function of the hardware.
3884 */
3885static void hw_start_rx(struct ksz_hw *hw)
3886{
3887        writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3888
3889        /* Notify when the receive stops. */
3890        hw->intr_mask |= KS884X_INT_RX_STOPPED;
3891
3892        writel(DMA_START, hw->io + KS_DMA_RX_START);
3893        hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
3894        hw->rx_stop++;
3895
3896        /* Variable overflows. */
3897        if (0 == hw->rx_stop)
3898                hw->rx_stop = 2;
3899}
3900
3901/**
3902 * hw_stop_rx - stop receiving
3903 * @hw:         The hardware instance.
3904 *
3905 * This routine stops the receive function of the hardware.
3906 */
3907static void hw_stop_rx(struct ksz_hw *hw)
3908{
3909        hw->rx_stop = 0;
3910        hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
3911        writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
3912}
3913
3914/**
3915 * hw_start_tx - start transmitting
3916 * @hw:         The hardware instance.
3917 *
3918 * This routine starts the transmit function of the hardware.
3919 */
3920static void hw_start_tx(struct ksz_hw *hw)
3921{
3922        writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3923}
3924
3925/**
3926 * hw_stop_tx - stop transmitting
3927 * @hw:         The hardware instance.
3928 *
3929 * This routine stops the transmit function of the hardware.
3930 */
3931static void hw_stop_tx(struct ksz_hw *hw)
3932{
3933        writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
3934}
3935
3936/**
3937 * hw_disable - disable hardware
3938 * @hw:         The hardware instance.
3939 *
3940 * This routine disables the hardware.
3941 */
3942static void hw_disable(struct ksz_hw *hw)
3943{
3944        hw_stop_rx(hw);
3945        hw_stop_tx(hw);
3946        hw->enabled = 0;
3947}
3948
3949/**
3950 * hw_enable - enable hardware
3951 * @hw:         The hardware instance.
3952 *
3953 * This routine enables the hardware.
3954 */
3955static void hw_enable(struct ksz_hw *hw)
3956{
3957        hw_start_tx(hw);
3958        hw_start_rx(hw);
3959        hw->enabled = 1;
3960}
3961
3962/**
3963 * hw_alloc_pkt - allocate enough descriptors for transmission
3964 * @hw:         The hardware instance.
3965 * @length:     The length of the packet.
3966 * @physical:   Number of descriptors required.
3967 *
3968 * This function allocates descriptors for transmission.
3969 *
3970 * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
3971 */
3972static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
3973{
3974        /* Always leave one descriptor free. */
3975        if (hw->tx_desc_info.avail <= 1)
3976                return 0;
3977
3978        /* Allocate a descriptor for transmission and mark it current. */
3979        get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
3980        hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
3981
3982        /* Keep track of number of transmit descriptors used so far. */
3983        ++hw->tx_int_cnt;
3984        hw->tx_size += length;
3985
3986        /* Cannot hold on too much data. */
3987        if (hw->tx_size >= MAX_TX_HELD_SIZE)
3988                hw->tx_int_cnt = hw->tx_int_mask + 1;
3989
3990        if (physical > hw->tx_desc_info.avail)
3991                return 1;
3992
3993        return hw->tx_desc_info.avail;
3994}
3995
3996/**
3997 * hw_send_pkt - mark packet for transmission
3998 * @hw:         The hardware instance.
3999 *
4000 * This routine marks the packet for transmission in PCI version.
4001 */
4002static void hw_send_pkt(struct ksz_hw *hw)
4003{
4004        struct ksz_desc *cur = hw->tx_desc_info.cur;
4005
4006        cur->sw.buf.tx.last_seg = 1;
4007
4008        /* Interrupt only after specified number of descriptors used. */
4009        if (hw->tx_int_cnt > hw->tx_int_mask) {
4010                cur->sw.buf.tx.intr = 1;
4011                hw->tx_int_cnt = 0;
4012                hw->tx_size = 0;
4013        }
4014
4015        /* KSZ8842 supports port directed transmission. */
4016        cur->sw.buf.tx.dest_port = hw->dst_ports;
4017
4018        release_desc(cur);
4019
4020        writel(0, hw->io + KS_DMA_TX_START);
4021}
4022
4023static int empty_addr(u8 *addr)
4024{
4025        u32 *addr1 = (u32 *) addr;
4026        u16 *addr2 = (u16 *) &addr[4];
4027
4028        return 0 == *addr1 && 0 == *addr2;
4029}
4030
4031/**
4032 * hw_set_addr - set MAC address
4033 * @hw:         The hardware instance.
4034 *
4035 * This routine programs the MAC address of the hardware when the address is
4036 * overridden.
4037 */
4038static void hw_set_addr(struct ksz_hw *hw)
4039{
4040        int i;
4041
4042        for (i = 0; i < ETH_ALEN; i++)
4043                writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
4044                        hw->io + KS884X_ADDR_0_OFFSET + i);
4045
4046        sw_set_addr(hw, hw->override_addr);
4047}
4048
4049/**
4050 * hw_read_addr - read MAC address
4051 * @hw:         The hardware instance.
4052 *
4053 * This routine retrieves the MAC address of the hardware.
4054 */
4055static void hw_read_addr(struct ksz_hw *hw)
4056{
4057        int i;
4058
4059        for (i = 0; i < ETH_ALEN; i++)
4060                hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
4061                        KS884X_ADDR_0_OFFSET + i);
4062
4063        if (!hw->mac_override) {
4064                memcpy(hw->override_addr, hw->perm_addr, ETH_ALEN);
4065                if (empty_addr(hw->override_addr)) {
4066                        memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS, ETH_ALEN);
4067                        memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
4068                               ETH_ALEN);
4069                        hw->override_addr[5] += hw->id;
4070                        hw_set_addr(hw);
4071                }
4072        }
4073}
4074
4075static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
4076{
4077        int i;
4078        u32 mac_addr_lo;
4079        u32 mac_addr_hi;
4080
4081        mac_addr_hi = 0;
4082        for (i = 0; i < 2; i++) {
4083                mac_addr_hi <<= 8;
4084                mac_addr_hi |= mac_addr[i];
4085        }
4086        mac_addr_hi |= ADD_ADDR_ENABLE;
4087        mac_addr_lo = 0;
4088        for (i = 2; i < 6; i++) {
4089                mac_addr_lo <<= 8;
4090                mac_addr_lo |= mac_addr[i];
4091        }
4092        index *= ADD_ADDR_INCR;
4093
4094        writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
4095        writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
4096}
4097
4098static void hw_set_add_addr(struct ksz_hw *hw)
4099{
4100        int i;
4101
4102        for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
4103                if (empty_addr(hw->address[i]))
4104                        writel(0, hw->io + ADD_ADDR_INCR * i +
4105                                KS_ADD_ADDR_0_HI);
4106                else
4107                        hw_ena_add_addr(hw, i, hw->address[i]);
4108        }
4109}
4110
4111static int hw_add_addr(struct ksz_hw *hw, u8 *mac_addr)
4112{
4113        int i;
4114        int j = ADDITIONAL_ENTRIES;
4115
4116        if (ether_addr_equal(hw->override_addr, mac_addr))
4117                return 0;
4118        for (i = 0; i < hw->addr_list_size; i++) {
4119                if (ether_addr_equal(hw->address[i], mac_addr))
4120                        return 0;
4121                if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
4122                        j = i;
4123        }
4124        if (j < ADDITIONAL_ENTRIES) {
4125                memcpy(hw->address[j], mac_addr, ETH_ALEN);
4126                hw_ena_add_addr(hw, j, hw->address[j]);
4127                return 0;
4128        }
4129        return -1;
4130}
4131
4132static int hw_del_addr(struct ksz_hw *hw, u8 *mac_addr)
4133{
4134        int i;
4135
4136        for (i = 0; i < hw->addr_list_size; i++) {
4137                if (ether_addr_equal(hw->address[i], mac_addr)) {
4138                        eth_zero_addr(hw->address[i]);
4139                        writel(0, hw->io + ADD_ADDR_INCR * i +
4140                                KS_ADD_ADDR_0_HI);
4141                        return 0;
4142                }
4143        }
4144        return -1;
4145}
4146
4147/**
4148 * hw_clr_multicast - clear multicast addresses
4149 * @hw:         The hardware instance.
4150 *
4151 * This routine removes all multicast addresses set in the hardware.
4152 */
4153static void hw_clr_multicast(struct ksz_hw *hw)
4154{
4155        int i;
4156
4157        for (i = 0; i < HW_MULTICAST_SIZE; i++) {
4158                hw->multi_bits[i] = 0;
4159
4160                writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
4161        }
4162}
4163
4164/**
4165 * hw_set_grp_addr - set multicast addresses
4166 * @hw:         The hardware instance.
4167 *
4168 * This routine programs multicast addresses for the hardware to accept those
4169 * addresses.
4170 */
4171static void hw_set_grp_addr(struct ksz_hw *hw)
4172{
4173        int i;
4174        int index;
4175        int position;
4176        int value;
4177
4178        memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
4179
4180        for (i = 0; i < hw->multi_list_size; i++) {
4181                position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
4182                index = position >> 3;
4183                value = 1 << (position & 7);
4184                hw->multi_bits[index] |= (u8) value;
4185        }
4186
4187        for (i = 0; i < HW_MULTICAST_SIZE; i++)
4188                writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
4189                        i);
4190}
4191
4192/**
4193 * hw_set_multicast - enable or disable all multicast receiving
4194 * @hw:         The hardware instance.
4195 * @multicast:  To turn on or off the all multicast feature.
4196 *
4197 * This routine enables/disables the hardware to accept all multicast packets.
4198 */
4199static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
4200{
4201        /* Stop receiving for reconfiguration. */
4202        hw_stop_rx(hw);
4203
4204        if (multicast)
4205                hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
4206        else
4207                hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
4208
4209        if (hw->enabled)
4210                hw_start_rx(hw);
4211}
4212
4213/**
4214 * hw_set_promiscuous - enable or disable promiscuous receiving
4215 * @hw:         The hardware instance.
4216 * @prom:       To turn on or off the promiscuous feature.
4217 *
4218 * This routine enables/disables the hardware to accept all packets.
4219 */
4220static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
4221{
4222        /* Stop receiving for reconfiguration. */
4223        hw_stop_rx(hw);
4224
4225        if (prom)
4226                hw->rx_cfg |= DMA_RX_PROMISCUOUS;
4227        else
4228                hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
4229
4230        if (hw->enabled)
4231                hw_start_rx(hw);
4232}
4233
4234/**
4235 * sw_enable - enable the switch
4236 * @hw:         The hardware instance.
4237 * @enable:     The flag to enable or disable the switch
4238 *
4239 * This routine is used to enable/disable the switch in KSZ8842.
4240 */
4241static void sw_enable(struct ksz_hw *hw, int enable)
4242{
4243        int port;
4244
4245        for (port = 0; port < SWITCH_PORT_NUM; port++) {
4246                if (hw->dev_count > 1) {
4247                        /* Set port-base vlan membership with host port. */
4248                        sw_cfg_port_base_vlan(hw, port,
4249                                HOST_MASK | (1 << port));
4250                        port_set_stp_state(hw, port, STP_STATE_DISABLED);
4251                } else {
4252                        sw_cfg_port_base_vlan(hw, port, PORT_MASK);
4253                        port_set_stp_state(hw, port, STP_STATE_FORWARDING);
4254                }
4255        }
4256        if (hw->dev_count > 1)
4257                port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
4258        else
4259                port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
4260
4261        if (enable)
4262                enable = KS8842_START;
4263        writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
4264}
4265
4266/**
4267 * sw_setup - setup the switch
4268 * @hw:         The hardware instance.
4269 *
4270 * This routine setup the hardware switch engine for default operation.
4271 */
4272static void sw_setup(struct ksz_hw *hw)
4273{
4274        int port;
4275
4276        sw_set_global_ctrl(hw);
4277
4278        /* Enable switch broadcast storm protection at 10% percent rate. */
4279        sw_init_broad_storm(hw);
4280        hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
4281        for (port = 0; port < SWITCH_PORT_NUM; port++)
4282                sw_ena_broad_storm(hw, port);
4283
4284        sw_init_prio(hw);
4285
4286        sw_init_mirror(hw);
4287
4288        sw_init_prio_rate(hw);
4289
4290        sw_init_vlan(hw);
4291
4292        if (hw->features & STP_SUPPORT)
4293                sw_init_stp(hw);
4294        if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
4295                        SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
4296                hw->overrides |= PAUSE_FLOW_CTRL;
4297        sw_enable(hw, 1);
4298}
4299
4300/**
4301 * ksz_start_timer - start kernel timer
4302 * @info:       Kernel timer information.
4303 * @time:       The time tick.
4304 *
4305 * This routine starts the kernel timer after the specified time tick.
4306 */
4307static void ksz_start_timer(struct ksz_timer_info *info, int time)
4308{
4309        info->cnt = 0;
4310        info->timer.expires = jiffies + time;
4311        add_timer(&info->timer);
4312
4313        /* infinity */
4314        info->max = -1;
4315}
4316
4317/**
4318 * ksz_stop_timer - stop kernel timer
4319 * @info:       Kernel timer information.
4320 *
4321 * This routine stops the kernel timer.
4322 */
4323static void ksz_stop_timer(struct ksz_timer_info *info)
4324{
4325        if (info->max) {
4326                info->max = 0;
4327                del_timer_sync(&info->timer);
4328        }
4329}
4330
4331static void ksz_init_timer(struct ksz_timer_info *info, int period,
4332        void (*function)(struct timer_list *))
4333{
4334        info->max = 0;
4335        info->period = period;
4336        timer_setup(&info->timer, function, 0);
4337}
4338
4339static void ksz_update_timer(struct ksz_timer_info *info)
4340{
4341        ++info->cnt;
4342        if (info->max > 0) {
4343                if (info->cnt < info->max) {
4344                        info->timer.expires = jiffies + info->period;
4345                        add_timer(&info->timer);
4346                } else
4347                        info->max = 0;
4348        } else if (info->max < 0) {
4349                info->timer.expires = jiffies + info->period;
4350                add_timer(&info->timer);
4351        }
4352}
4353
4354/**
4355 * ksz_alloc_soft_desc - allocate software descriptors
4356 * @desc_info:  Descriptor information structure.
4357 * @transmit:   Indication that descriptors are for transmit.
4358 *
4359 * This local function allocates software descriptors for manipulation in
4360 * memory.
4361 *
4362 * Return 0 if successful.
4363 */
4364static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
4365{
4366        desc_info->ring = kcalloc(desc_info->alloc, sizeof(struct ksz_desc),
4367                                  GFP_KERNEL);
4368        if (!desc_info->ring)
4369                return 1;
4370        hw_init_desc(desc_info, transmit);
4371        return 0;
4372}
4373
4374/**
4375 * ksz_alloc_desc - allocate hardware descriptors
4376 * @adapter:    Adapter information structure.
4377 *
4378 * This local function allocates hardware descriptors for receiving and
4379 * transmitting.
4380 *
4381 * Return 0 if successful.
4382 */
4383static int ksz_alloc_desc(struct dev_info *adapter)
4384{
4385        struct ksz_hw *hw = &adapter->hw;
4386        int offset;
4387
4388        /* Allocate memory for RX & TX descriptors. */
4389        adapter->desc_pool.alloc_size =
4390                hw->rx_desc_info.size * hw->rx_desc_info.alloc +
4391                hw->tx_desc_info.size * hw->tx_desc_info.alloc +
4392                DESC_ALIGNMENT;
4393
4394        adapter->desc_pool.alloc_virt =
4395                dma_alloc_coherent(&adapter->pdev->dev,
4396                                   adapter->desc_pool.alloc_size,
4397                                   &adapter->desc_pool.dma_addr, GFP_KERNEL);
4398        if (adapter->desc_pool.alloc_virt == NULL) {
4399                adapter->desc_pool.alloc_size = 0;
4400                return 1;
4401        }
4402
4403        /* Align to the next cache line boundary. */
4404        offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
4405                (DESC_ALIGNMENT -
4406                ((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
4407        adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
4408        adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
4409
4410        /* Allocate receive/transmit descriptors. */
4411        hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
4412                adapter->desc_pool.virt;
4413        hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
4414        offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
4415        hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
4416                (adapter->desc_pool.virt + offset);
4417        hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
4418
4419        if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
4420