1
2
3
4
5
6
7
8#include <linux/module.h>
9#include <linux/slab.h>
10#include <linux/blkdev.h>
11#include <linux/bio.h>
12#include <linux/blktrace_api.h>
13#include <linux/blk-cgroup.h>
14#include "blk.h"
15#include "blk-cgroup-rwstat.h"
16
17
18#define THROTL_GRP_QUANTUM 8
19
20
21#define THROTL_QUANTUM 32
22
23
24#define DFL_THROTL_SLICE_HD (HZ / 10)
25#define DFL_THROTL_SLICE_SSD (HZ / 50)
26#define MAX_THROTL_SLICE (HZ)
27#define MAX_IDLE_TIME (5L * 1000 * 1000)
28#define MIN_THROTL_BPS (320 * 1024)
29#define MIN_THROTL_IOPS (10)
30#define DFL_LATENCY_TARGET (-1L)
31#define DFL_IDLE_THRESHOLD (0)
32#define DFL_HD_BASELINE_LATENCY (4000L)
33#define LATENCY_FILTERED_SSD (0)
34
35
36
37
38#define LATENCY_FILTERED_HD (1000L)
39
40static struct blkcg_policy blkcg_policy_throtl;
41
42
43static struct workqueue_struct *kthrotld_workqueue;
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68struct throtl_qnode {
69 struct list_head node;
70 struct bio_list bios;
71 struct throtl_grp *tg;
72};
73
74struct throtl_service_queue {
75 struct throtl_service_queue *parent_sq;
76
77
78
79
80
81 struct list_head queued[2];
82 unsigned int nr_queued[2];
83
84
85
86
87
88 struct rb_root_cached pending_tree;
89 unsigned int nr_pending;
90 unsigned long first_pending_disptime;
91 struct timer_list pending_timer;
92};
93
94enum tg_state_flags {
95 THROTL_TG_PENDING = 1 << 0,
96 THROTL_TG_WAS_EMPTY = 1 << 1,
97};
98
99#define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
100
101enum {
102 LIMIT_LOW,
103 LIMIT_MAX,
104 LIMIT_CNT,
105};
106
107struct throtl_grp {
108
109 struct blkg_policy_data pd;
110
111
112 struct rb_node rb_node;
113
114
115 struct throtl_data *td;
116
117
118 struct throtl_service_queue service_queue;
119
120
121
122
123
124
125
126
127
128 struct throtl_qnode qnode_on_self[2];
129 struct throtl_qnode qnode_on_parent[2];
130
131
132
133
134
135
136 unsigned long disptime;
137
138 unsigned int flags;
139
140
141 bool has_rules[2];
142
143
144 uint64_t bps[2][LIMIT_CNT];
145
146 uint64_t bps_conf[2][LIMIT_CNT];
147
148
149 unsigned int iops[2][LIMIT_CNT];
150
151 unsigned int iops_conf[2][LIMIT_CNT];
152
153
154 uint64_t bytes_disp[2];
155
156 unsigned int io_disp[2];
157
158 unsigned long last_low_overflow_time[2];
159
160 uint64_t last_bytes_disp[2];
161 unsigned int last_io_disp[2];
162
163 unsigned long last_check_time;
164
165 unsigned long latency_target;
166 unsigned long latency_target_conf;
167
168 unsigned long slice_start[2];
169 unsigned long slice_end[2];
170
171 unsigned long last_finish_time;
172 unsigned long checked_last_finish_time;
173 unsigned long avg_idletime;
174 unsigned long idletime_threshold;
175 unsigned long idletime_threshold_conf;
176
177 unsigned int bio_cnt;
178 unsigned int bad_bio_cnt;
179 unsigned long bio_cnt_reset_time;
180
181 atomic_t io_split_cnt[2];
182 atomic_t last_io_split_cnt[2];
183
184 struct blkg_rwstat stat_bytes;
185 struct blkg_rwstat stat_ios;
186};
187
188
189#define LATENCY_BUCKET_SIZE 9
190
191struct latency_bucket {
192 unsigned long total_latency;
193 int samples;
194};
195
196struct avg_latency_bucket {
197 unsigned long latency;
198 bool valid;
199};
200
201struct throtl_data
202{
203
204 struct throtl_service_queue service_queue;
205
206 struct request_queue *queue;
207
208
209 unsigned int nr_queued[2];
210
211 unsigned int throtl_slice;
212
213
214 struct work_struct dispatch_work;
215 unsigned int limit_index;
216 bool limit_valid[LIMIT_CNT];
217
218 unsigned long low_upgrade_time;
219 unsigned long low_downgrade_time;
220
221 unsigned int scale;
222
223 struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
224 struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
225 struct latency_bucket __percpu *latency_buckets[2];
226 unsigned long last_calculate_time;
227 unsigned long filtered_latency;
228
229 bool track_bio_latency;
230};
231
232static void throtl_pending_timer_fn(struct timer_list *t);
233
234static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
235{
236 return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
237}
238
239static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
240{
241 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
242}
243
244static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
245{
246 return pd_to_blkg(&tg->pd);
247}
248
249
250
251
252
253
254
255
256static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
257{
258 if (sq && sq->parent_sq)
259 return container_of(sq, struct throtl_grp, service_queue);
260 else
261 return NULL;
262}
263
264
265
266
267
268
269
270
271static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
272{
273 struct throtl_grp *tg = sq_to_tg(sq);
274
275 if (tg)
276 return tg->td;
277 else
278 return container_of(sq, struct throtl_data, service_queue);
279}
280
281
282
283
284
285
286
287
288
289static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
290{
291
292 if (td->scale < 4096 && time_after_eq(jiffies,
293 td->low_upgrade_time + td->scale * td->throtl_slice))
294 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
295
296 return low + (low >> 1) * td->scale;
297}
298
299static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
300{
301 struct blkcg_gq *blkg = tg_to_blkg(tg);
302 struct throtl_data *td;
303 uint64_t ret;
304
305 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
306 return U64_MAX;
307
308 td = tg->td;
309 ret = tg->bps[rw][td->limit_index];
310 if (ret == 0 && td->limit_index == LIMIT_LOW) {
311
312 if (!list_empty(&blkg->blkcg->css.children) ||
313 tg->iops[rw][td->limit_index])
314 return U64_MAX;
315 else
316 return MIN_THROTL_BPS;
317 }
318
319 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
320 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
321 uint64_t adjusted;
322
323 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
324 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
325 }
326 return ret;
327}
328
329static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
330{
331 struct blkcg_gq *blkg = tg_to_blkg(tg);
332 struct throtl_data *td;
333 unsigned int ret;
334
335 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
336 return UINT_MAX;
337
338 td = tg->td;
339 ret = tg->iops[rw][td->limit_index];
340 if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
341
342 if (!list_empty(&blkg->blkcg->css.children) ||
343 tg->bps[rw][td->limit_index])
344 return UINT_MAX;
345 else
346 return MIN_THROTL_IOPS;
347 }
348
349 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
350 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
351 uint64_t adjusted;
352
353 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
354 if (adjusted > UINT_MAX)
355 adjusted = UINT_MAX;
356 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
357 }
358 return ret;
359}
360
361#define request_bucket_index(sectors) \
362 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
363
364
365
366
367
368
369
370
371
372
373#define throtl_log(sq, fmt, args...) do { \
374 struct throtl_grp *__tg = sq_to_tg((sq)); \
375 struct throtl_data *__td = sq_to_td((sq)); \
376 \
377 (void)__td; \
378 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
379 break; \
380 if ((__tg)) { \
381 blk_add_cgroup_trace_msg(__td->queue, \
382 tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
383 } else { \
384 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
385 } \
386} while (0)
387
388static inline unsigned int throtl_bio_data_size(struct bio *bio)
389{
390
391 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
392 return 512;
393 return bio->bi_iter.bi_size;
394}
395
396static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
397{
398 INIT_LIST_HEAD(&qn->node);
399 bio_list_init(&qn->bios);
400 qn->tg = tg;
401}
402
403
404
405
406
407
408
409
410
411
412
413static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
414 struct list_head *queued)
415{
416 bio_list_add(&qn->bios, bio);
417 if (list_empty(&qn->node)) {
418 list_add_tail(&qn->node, queued);
419 blkg_get(tg_to_blkg(qn->tg));
420 }
421}
422
423
424
425
426
427static struct bio *throtl_peek_queued(struct list_head *queued)
428{
429 struct throtl_qnode *qn;
430 struct bio *bio;
431
432 if (list_empty(queued))
433 return NULL;
434
435 qn = list_first_entry(queued, struct throtl_qnode, node);
436 bio = bio_list_peek(&qn->bios);
437 WARN_ON_ONCE(!bio);
438 return bio;
439}
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455static struct bio *throtl_pop_queued(struct list_head *queued,
456 struct throtl_grp **tg_to_put)
457{
458 struct throtl_qnode *qn;
459 struct bio *bio;
460
461 if (list_empty(queued))
462 return NULL;
463
464 qn = list_first_entry(queued, struct throtl_qnode, node);
465 bio = bio_list_pop(&qn->bios);
466 WARN_ON_ONCE(!bio);
467
468 if (bio_list_empty(&qn->bios)) {
469 list_del_init(&qn->node);
470 if (tg_to_put)
471 *tg_to_put = qn->tg;
472 else
473 blkg_put(tg_to_blkg(qn->tg));
474 } else {
475 list_move_tail(&qn->node, queued);
476 }
477
478 return bio;
479}
480
481
482static void throtl_service_queue_init(struct throtl_service_queue *sq)
483{
484 INIT_LIST_HEAD(&sq->queued[0]);
485 INIT_LIST_HEAD(&sq->queued[1]);
486 sq->pending_tree = RB_ROOT_CACHED;
487 timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
488}
489
490static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp,
491 struct request_queue *q,
492 struct blkcg *blkcg)
493{
494 struct throtl_grp *tg;
495 int rw;
496
497 tg = kzalloc_node(sizeof(*tg), gfp, q->node);
498 if (!tg)
499 return NULL;
500
501 if (blkg_rwstat_init(&tg->stat_bytes, gfp))
502 goto err_free_tg;
503
504 if (blkg_rwstat_init(&tg->stat_ios, gfp))
505 goto err_exit_stat_bytes;
506
507 throtl_service_queue_init(&tg->service_queue);
508
509 for (rw = READ; rw <= WRITE; rw++) {
510 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
511 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
512 }
513
514 RB_CLEAR_NODE(&tg->rb_node);
515 tg->bps[READ][LIMIT_MAX] = U64_MAX;
516 tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
517 tg->iops[READ][LIMIT_MAX] = UINT_MAX;
518 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
519 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
520 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
521 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
522 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
523
524
525 tg->latency_target = DFL_LATENCY_TARGET;
526 tg->latency_target_conf = DFL_LATENCY_TARGET;
527 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
528 tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
529
530 return &tg->pd;
531
532err_exit_stat_bytes:
533 blkg_rwstat_exit(&tg->stat_bytes);
534err_free_tg:
535 kfree(tg);
536 return NULL;
537}
538
539static void throtl_pd_init(struct blkg_policy_data *pd)
540{
541 struct throtl_grp *tg = pd_to_tg(pd);
542 struct blkcg_gq *blkg = tg_to_blkg(tg);
543 struct throtl_data *td = blkg->q->td;
544 struct throtl_service_queue *sq = &tg->service_queue;
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559 sq->parent_sq = &td->service_queue;
560 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
561 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
562 tg->td = td;
563}
564
565
566
567
568
569
570static void tg_update_has_rules(struct throtl_grp *tg)
571{
572 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
573 struct throtl_data *td = tg->td;
574 int rw;
575
576 for (rw = READ; rw <= WRITE; rw++)
577 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
578 (td->limit_valid[td->limit_index] &&
579 (tg_bps_limit(tg, rw) != U64_MAX ||
580 tg_iops_limit(tg, rw) != UINT_MAX));
581}
582
583static void throtl_pd_online(struct blkg_policy_data *pd)
584{
585 struct throtl_grp *tg = pd_to_tg(pd);
586
587
588
589
590 tg_update_has_rules(tg);
591}
592
593#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
594static void blk_throtl_update_limit_valid(struct throtl_data *td)
595{
596 struct cgroup_subsys_state *pos_css;
597 struct blkcg_gq *blkg;
598 bool low_valid = false;
599
600 rcu_read_lock();
601 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
602 struct throtl_grp *tg = blkg_to_tg(blkg);
603
604 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
605 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
606 low_valid = true;
607 break;
608 }
609 }
610 rcu_read_unlock();
611
612 td->limit_valid[LIMIT_LOW] = low_valid;
613}
614#else
615static inline void blk_throtl_update_limit_valid(struct throtl_data *td)
616{
617}
618#endif
619
620static void throtl_upgrade_state(struct throtl_data *td);
621static void throtl_pd_offline(struct blkg_policy_data *pd)
622{
623 struct throtl_grp *tg = pd_to_tg(pd);
624
625 tg->bps[READ][LIMIT_LOW] = 0;
626 tg->bps[WRITE][LIMIT_LOW] = 0;
627 tg->iops[READ][LIMIT_LOW] = 0;
628 tg->iops[WRITE][LIMIT_LOW] = 0;
629
630 blk_throtl_update_limit_valid(tg->td);
631
632 if (!tg->td->limit_valid[tg->td->limit_index])
633 throtl_upgrade_state(tg->td);
634}
635
636static void throtl_pd_free(struct blkg_policy_data *pd)
637{
638 struct throtl_grp *tg = pd_to_tg(pd);
639
640 del_timer_sync(&tg->service_queue.pending_timer);
641 blkg_rwstat_exit(&tg->stat_bytes);
642 blkg_rwstat_exit(&tg->stat_ios);
643 kfree(tg);
644}
645
646static struct throtl_grp *
647throtl_rb_first(struct throtl_service_queue *parent_sq)
648{
649 struct rb_node *n;
650
651 n = rb_first_cached(&parent_sq->pending_tree);
652 WARN_ON_ONCE(!n);
653 if (!n)
654 return NULL;
655 return rb_entry_tg(n);
656}
657
658static void throtl_rb_erase(struct rb_node *n,
659 struct throtl_service_queue *parent_sq)
660{
661 rb_erase_cached(n, &parent_sq->pending_tree);
662 RB_CLEAR_NODE(n);
663 --parent_sq->nr_pending;
664}
665
666static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
667{
668 struct throtl_grp *tg;
669
670 tg = throtl_rb_first(parent_sq);
671 if (!tg)
672 return;
673
674 parent_sq->first_pending_disptime = tg->disptime;
675}
676
677static void tg_service_queue_add(struct throtl_grp *tg)
678{
679 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
680 struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
681 struct rb_node *parent = NULL;
682 struct throtl_grp *__tg;
683 unsigned long key = tg->disptime;
684 bool leftmost = true;
685
686 while (*node != NULL) {
687 parent = *node;
688 __tg = rb_entry_tg(parent);
689
690 if (time_before(key, __tg->disptime))
691 node = &parent->rb_left;
692 else {
693 node = &parent->rb_right;
694 leftmost = false;
695 }
696 }
697
698 rb_link_node(&tg->rb_node, parent, node);
699 rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
700 leftmost);
701}
702
703static void throtl_enqueue_tg(struct throtl_grp *tg)
704{
705 if (!(tg->flags & THROTL_TG_PENDING)) {
706 tg_service_queue_add(tg);
707 tg->flags |= THROTL_TG_PENDING;
708 tg->service_queue.parent_sq->nr_pending++;
709 }
710}
711
712static void throtl_dequeue_tg(struct throtl_grp *tg)
713{
714 if (tg->flags & THROTL_TG_PENDING) {
715 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
716 tg->flags &= ~THROTL_TG_PENDING;
717 }
718}
719
720
721static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
722 unsigned long expires)
723{
724 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
725
726
727
728
729
730
731
732
733 if (time_after(expires, max_expire))
734 expires = max_expire;
735 mod_timer(&sq->pending_timer, expires);
736 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
737 expires - jiffies, jiffies);
738}
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
759 bool force)
760{
761
762 if (!sq->nr_pending)
763 return true;
764
765 update_min_dispatch_time(sq);
766
767
768 if (force || time_after(sq->first_pending_disptime, jiffies)) {
769 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
770 return true;
771 }
772
773
774 return false;
775}
776
777static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
778 bool rw, unsigned long start)
779{
780 tg->bytes_disp[rw] = 0;
781 tg->io_disp[rw] = 0;
782
783 atomic_set(&tg->io_split_cnt[rw], 0);
784
785
786
787
788
789
790
791 if (time_after_eq(start, tg->slice_start[rw]))
792 tg->slice_start[rw] = start;
793
794 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
795 throtl_log(&tg->service_queue,
796 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
797 rw == READ ? 'R' : 'W', tg->slice_start[rw],
798 tg->slice_end[rw], jiffies);
799}
800
801static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
802{
803 tg->bytes_disp[rw] = 0;
804 tg->io_disp[rw] = 0;
805 tg->slice_start[rw] = jiffies;
806 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
807
808 atomic_set(&tg->io_split_cnt[rw], 0);
809
810 throtl_log(&tg->service_queue,
811 "[%c] new slice start=%lu end=%lu jiffies=%lu",
812 rw == READ ? 'R' : 'W', tg->slice_start[rw],
813 tg->slice_end[rw], jiffies);
814}
815
816static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
817 unsigned long jiffy_end)
818{
819 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
820}
821
822static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
823 unsigned long jiffy_end)
824{
825 throtl_set_slice_end(tg, rw, jiffy_end);
826 throtl_log(&tg->service_queue,
827 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
828 rw == READ ? 'R' : 'W', tg->slice_start[rw],
829 tg->slice_end[rw], jiffies);
830}
831
832
833static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
834{
835 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
836 return false;
837
838 return true;
839}
840
841
842static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
843{
844 unsigned long nr_slices, time_elapsed, io_trim;
845 u64 bytes_trim, tmp;
846
847 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
848
849
850
851
852
853
854 if (throtl_slice_used(tg, rw))
855 return;
856
857
858
859
860
861
862
863
864
865 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
866
867 time_elapsed = jiffies - tg->slice_start[rw];
868
869 nr_slices = time_elapsed / tg->td->throtl_slice;
870
871 if (!nr_slices)
872 return;
873 tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
874 do_div(tmp, HZ);
875 bytes_trim = tmp;
876
877 io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
878 HZ;
879
880 if (!bytes_trim && !io_trim)
881 return;
882
883 if (tg->bytes_disp[rw] >= bytes_trim)
884 tg->bytes_disp[rw] -= bytes_trim;
885 else
886 tg->bytes_disp[rw] = 0;
887
888 if (tg->io_disp[rw] >= io_trim)
889 tg->io_disp[rw] -= io_trim;
890 else
891 tg->io_disp[rw] = 0;
892
893 tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
894
895 throtl_log(&tg->service_queue,
896 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
897 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
898 tg->slice_start[rw], tg->slice_end[rw], jiffies);
899}
900
901static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
902 u32 iops_limit, unsigned long *wait)
903{
904 bool rw = bio_data_dir(bio);
905 unsigned int io_allowed;
906 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
907 u64 tmp;
908
909 if (iops_limit == UINT_MAX) {
910 if (wait)
911 *wait = 0;
912 return true;
913 }
914
915 jiffy_elapsed = jiffies - tg->slice_start[rw];
916
917
918 jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
919
920
921
922
923
924
925
926
927 tmp = (u64)iops_limit * jiffy_elapsed_rnd;
928 do_div(tmp, HZ);
929
930 if (tmp > UINT_MAX)
931 io_allowed = UINT_MAX;
932 else
933 io_allowed = tmp;
934
935 if (tg->io_disp[rw] + 1 <= io_allowed) {
936 if (wait)
937 *wait = 0;
938 return true;
939 }
940
941
942 jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
943
944 if (wait)
945 *wait = jiffy_wait;
946 return false;
947}
948
949static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
950 u64 bps_limit, unsigned long *wait)
951{
952 bool rw = bio_data_dir(bio);
953 u64 bytes_allowed, extra_bytes, tmp;
954 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
955 unsigned int bio_size = throtl_bio_data_size(bio);
956
957 if (bps_limit == U64_MAX) {
958 if (wait)
959 *wait = 0;
960 return true;
961 }
962
963 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
964
965
966 if (!jiffy_elapsed)
967 jiffy_elapsed_rnd = tg->td->throtl_slice;
968
969 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
970
971 tmp = bps_limit * jiffy_elapsed_rnd;
972 do_div(tmp, HZ);
973 bytes_allowed = tmp;
974
975 if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
976 if (wait)
977 *wait = 0;
978 return true;
979 }
980
981
982 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
983 jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
984
985 if (!jiffy_wait)
986 jiffy_wait = 1;
987
988
989
990
991
992 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
993 if (wait)
994 *wait = jiffy_wait;
995 return false;
996}
997
998
999
1000
1001
1002static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
1003 unsigned long *wait)
1004{
1005 bool rw = bio_data_dir(bio);
1006 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
1007 u64 bps_limit = tg_bps_limit(tg, rw);
1008 u32 iops_limit = tg_iops_limit(tg, rw);
1009
1010
1011
1012
1013
1014
1015
1016 BUG_ON(tg->service_queue.nr_queued[rw] &&
1017 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
1018
1019
1020 if (bps_limit == U64_MAX && iops_limit == UINT_MAX) {
1021 if (wait)
1022 *wait = 0;
1023 return true;
1024 }
1025
1026
1027
1028
1029
1030
1031
1032
1033 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
1034 throtl_start_new_slice(tg, rw);
1035 else {
1036 if (time_before(tg->slice_end[rw],
1037 jiffies + tg->td->throtl_slice))
1038 throtl_extend_slice(tg, rw,
1039 jiffies + tg->td->throtl_slice);
1040 }
1041
1042 if (iops_limit != UINT_MAX)
1043 tg->io_disp[rw] += atomic_xchg(&tg->io_split_cnt[rw], 0);
1044
1045 if (tg_with_in_bps_limit(tg, bio, bps_limit, &bps_wait) &&
1046 tg_with_in_iops_limit(tg, bio, iops_limit, &iops_wait)) {
1047 if (wait)
1048 *wait = 0;
1049 return true;
1050 }
1051
1052 max_wait = max(bps_wait, iops_wait);
1053
1054 if (wait)
1055 *wait = max_wait;
1056
1057 if (time_before(tg->slice_end[rw], jiffies + max_wait))
1058 throtl_extend_slice(tg, rw, jiffies + max_wait);
1059
1060 return false;
1061}
1062
1063static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
1064{
1065 bool rw = bio_data_dir(bio);
1066 unsigned int bio_size = throtl_bio_data_size(bio);
1067
1068
1069 tg->bytes_disp[rw] += bio_size;
1070 tg->io_disp[rw]++;
1071 tg->last_bytes_disp[rw] += bio_size;
1072 tg->last_io_disp[rw]++;
1073
1074
1075
1076
1077
1078
1079
1080 if (!bio_flagged(bio, BIO_THROTTLED))
1081 bio_set_flag(bio, BIO_THROTTLED);
1082}
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1094 struct throtl_grp *tg)
1095{
1096 struct throtl_service_queue *sq = &tg->service_queue;
1097 bool rw = bio_data_dir(bio);
1098
1099 if (!qn)
1100 qn = &tg->qnode_on_self[rw];
1101
1102
1103
1104
1105
1106
1107
1108 if (!sq->nr_queued[rw])
1109 tg->flags |= THROTL_TG_WAS_EMPTY;
1110
1111 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1112
1113 sq->nr_queued[rw]++;
1114 throtl_enqueue_tg(tg);
1115}
1116
1117static void tg_update_disptime(struct throtl_grp *tg)
1118{
1119 struct throtl_service_queue *sq = &tg->service_queue;
1120 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1121 struct bio *bio;
1122
1123 bio = throtl_peek_queued(&sq->queued[READ]);
1124 if (bio)
1125 tg_may_dispatch(tg, bio, &read_wait);
1126
1127 bio = throtl_peek_queued(&sq->queued[WRITE]);
1128 if (bio)
1129 tg_may_dispatch(tg, bio, &write_wait);
1130
1131 min_wait = min(read_wait, write_wait);
1132 disptime = jiffies + min_wait;
1133
1134
1135 throtl_dequeue_tg(tg);
1136 tg->disptime = disptime;
1137 throtl_enqueue_tg(tg);
1138
1139
1140 tg->flags &= ~THROTL_TG_WAS_EMPTY;
1141}
1142
1143static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1144 struct throtl_grp *parent_tg, bool rw)
1145{
1146 if (throtl_slice_used(parent_tg, rw)) {
1147 throtl_start_new_slice_with_credit(parent_tg, rw,
1148 child_tg->slice_start[rw]);
1149 }
1150
1151}
1152
1153static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1154{
1155 struct throtl_service_queue *sq = &tg->service_queue;
1156 struct throtl_service_queue *parent_sq = sq->parent_sq;
1157 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1158 struct throtl_grp *tg_to_put = NULL;
1159 struct bio *bio;
1160
1161
1162
1163
1164
1165
1166
1167 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1168 sq->nr_queued[rw]--;
1169
1170 throtl_charge_bio(tg, bio);
1171
1172
1173
1174
1175
1176
1177
1178
1179 if (parent_tg) {
1180 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1181 start_parent_slice_with_credit(tg, parent_tg, rw);
1182 } else {
1183 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1184 &parent_sq->queued[rw]);
1185 BUG_ON(tg->td->nr_queued[rw] <= 0);
1186 tg->td->nr_queued[rw]--;
1187 }
1188
1189 throtl_trim_slice(tg, rw);
1190
1191 if (tg_to_put)
1192 blkg_put(tg_to_blkg(tg_to_put));
1193}
1194
1195static int throtl_dispatch_tg(struct throtl_grp *tg)
1196{
1197 struct throtl_service_queue *sq = &tg->service_queue;
1198 unsigned int nr_reads = 0, nr_writes = 0;
1199 unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1200 unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
1201 struct bio *bio;
1202
1203
1204
1205 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1206 tg_may_dispatch(tg, bio, NULL)) {
1207
1208 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1209 nr_reads++;
1210
1211 if (nr_reads >= max_nr_reads)
1212 break;
1213 }
1214
1215 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1216 tg_may_dispatch(tg, bio, NULL)) {
1217
1218 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1219 nr_writes++;
1220
1221 if (nr_writes >= max_nr_writes)
1222 break;
1223 }
1224
1225 return nr_reads + nr_writes;
1226}
1227
1228static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1229{
1230 unsigned int nr_disp = 0;
1231
1232 while (1) {
1233 struct throtl_grp *tg;
1234 struct throtl_service_queue *sq;
1235
1236 if (!parent_sq->nr_pending)
1237 break;
1238
1239 tg = throtl_rb_first(parent_sq);
1240 if (!tg)
1241 break;
1242
1243 if (time_before(jiffies, tg->disptime))
1244 break;
1245
1246 throtl_dequeue_tg(tg);
1247
1248 nr_disp += throtl_dispatch_tg(tg);
1249
1250 sq = &tg->service_queue;
1251 if (sq->nr_queued[0] || sq->nr_queued[1])
1252 tg_update_disptime(tg);
1253
1254 if (nr_disp >= THROTL_QUANTUM)
1255 break;
1256 }
1257
1258 return nr_disp;
1259}
1260
1261static bool throtl_can_upgrade(struct throtl_data *td,
1262 struct throtl_grp *this_tg);
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278static void throtl_pending_timer_fn(struct timer_list *t)
1279{
1280 struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1281 struct throtl_grp *tg = sq_to_tg(sq);
1282 struct throtl_data *td = sq_to_td(sq);
1283 struct request_queue *q = td->queue;
1284 struct throtl_service_queue *parent_sq;
1285 bool dispatched;
1286 int ret;
1287
1288 spin_lock_irq(&q->queue_lock);
1289 if (throtl_can_upgrade(td, NULL))
1290 throtl_upgrade_state(td);
1291
1292again:
1293 parent_sq = sq->parent_sq;
1294 dispatched = false;
1295
1296 while (true) {
1297 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1298 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1299 sq->nr_queued[READ], sq->nr_queued[WRITE]);
1300
1301 ret = throtl_select_dispatch(sq);
1302 if (ret) {
1303 throtl_log(sq, "bios disp=%u", ret);
1304 dispatched = true;
1305 }
1306
1307 if (throtl_schedule_next_dispatch(sq, false))
1308 break;
1309
1310
1311 spin_unlock_irq(&q->queue_lock);
1312 cpu_relax();
1313 spin_lock_irq(&q->queue_lock);
1314 }
1315
1316 if (!dispatched)
1317 goto out_unlock;
1318
1319 if (parent_sq) {
1320
1321 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1322 tg_update_disptime(tg);
1323 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1324
1325 sq = parent_sq;
1326 tg = sq_to_tg(sq);
1327 goto again;
1328 }
1329 }
1330 } else {
1331
1332 queue_work(kthrotld_workqueue, &td->dispatch_work);
1333 }
1334out_unlock:
1335 spin_unlock_irq(&q->queue_lock);
1336}
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1347{
1348 struct throtl_data *td = container_of(work, struct throtl_data,
1349 dispatch_work);
1350 struct throtl_service_queue *td_sq = &td->service_queue;
1351 struct request_queue *q = td->queue;
1352 struct bio_list bio_list_on_stack;
1353 struct bio *bio;
1354 struct blk_plug plug;
1355 int rw;
1356
1357 bio_list_init(&bio_list_on_stack);
1358
1359 spin_lock_irq(&q->queue_lock);
1360 for (rw = READ; rw <= WRITE; rw++)
1361 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1362 bio_list_add(&bio_list_on_stack, bio);
1363 spin_unlock_irq(&q->queue_lock);
1364
1365 if (!bio_list_empty(&bio_list_on_stack)) {
1366 blk_start_plug(&plug);
1367 while ((bio = bio_list_pop(&bio_list_on_stack)))
1368 submit_bio_noacct(bio);
1369 blk_finish_plug(&plug);
1370 }
1371}
1372
1373static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1374 int off)
1375{
1376 struct throtl_grp *tg = pd_to_tg(pd);
1377 u64 v = *(u64 *)((void *)tg + off);
1378
1379 if (v == U64_MAX)
1380 return 0;
1381 return __blkg_prfill_u64(sf, pd, v);
1382}
1383
1384static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1385 int off)
1386{
1387 struct throtl_grp *tg = pd_to_tg(pd);
1388 unsigned int v = *(unsigned int *)((void *)tg + off);
1389
1390 if (v == UINT_MAX)
1391 return 0;
1392 return __blkg_prfill_u64(sf, pd, v);
1393}
1394
1395static int tg_print_conf_u64(struct seq_file *sf, void *v)
1396{
1397 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1398 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1399 return 0;
1400}
1401
1402static int tg_print_conf_uint(struct seq_file *sf, void *v)
1403{
1404 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1405 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1406 return 0;
1407}
1408
1409static void tg_conf_updated(struct throtl_grp *tg, bool global)
1410{
1411 struct throtl_service_queue *sq = &tg->service_queue;
1412 struct cgroup_subsys_state *pos_css;
1413 struct blkcg_gq *blkg;
1414
1415 throtl_log(&tg->service_queue,
1416 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1417 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1418 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1419
1420
1421
1422
1423
1424
1425
1426
1427 blkg_for_each_descendant_pre(blkg, pos_css,
1428 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1429 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1430 struct throtl_grp *parent_tg;
1431
1432 tg_update_has_rules(this_tg);
1433
1434 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1435 !blkg->parent->parent)
1436 continue;
1437 parent_tg = blkg_to_tg(blkg->parent);
1438
1439
1440
1441
1442 this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1443 parent_tg->idletime_threshold);
1444 this_tg->latency_target = max(this_tg->latency_target,
1445 parent_tg->latency_target);
1446 }
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456 throtl_start_new_slice(tg, READ);
1457 throtl_start_new_slice(tg, WRITE);
1458
1459 if (tg->flags & THROTL_TG_PENDING) {
1460 tg_update_disptime(tg);
1461 throtl_schedule_next_dispatch(sq->parent_sq, true);
1462 }
1463}
1464
1465static ssize_t tg_set_conf(struct kernfs_open_file *of,
1466 char *buf, size_t nbytes, loff_t off, bool is_u64)
1467{
1468 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1469 struct blkg_conf_ctx ctx;
1470 struct throtl_grp *tg;
1471 int ret;
1472 u64 v;
1473
1474 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1475 if (ret)
1476 return ret;
1477
1478 ret = -EINVAL;
1479 if (sscanf(ctx.body, "%llu", &v) != 1)
1480 goto out_finish;
1481 if (!v)
1482 v = U64_MAX;
1483
1484 tg = blkg_to_tg(ctx.blkg);
1485
1486 if (is_u64)
1487 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1488 else
1489 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1490
1491 tg_conf_updated(tg, false);
1492 ret = 0;
1493out_finish:
1494 blkg_conf_finish(&ctx);
1495 return ret ?: nbytes;
1496}
1497
1498static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1499 char *buf, size_t nbytes, loff_t off)
1500{
1501 return tg_set_conf(of, buf, nbytes, off, true);
1502}
1503
1504static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1505 char *buf, size_t nbytes, loff_t off)
1506{
1507 return tg_set_conf(of, buf, nbytes, off, false);
1508}
1509
1510static int tg_print_rwstat(struct seq_file *sf, void *v)
1511{
1512 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1513 blkg_prfill_rwstat, &blkcg_policy_throtl,
1514 seq_cft(sf)->private, true);
1515 return 0;
1516}
1517
1518static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1519 struct blkg_policy_data *pd, int off)
1520{
1521 struct blkg_rwstat_sample sum;
1522
1523 blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1524 &sum);
1525 return __blkg_prfill_rwstat(sf, pd, &sum);
1526}
1527
1528static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1529{
1530 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1531 tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1532 seq_cft(sf)->private, true);
1533 return 0;
1534}
1535
1536static struct cftype throtl_legacy_files[] = {
1537 {
1538 .name = "throttle.read_bps_device",
1539 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1540 .seq_show = tg_print_conf_u64,
1541 .write = tg_set_conf_u64,
1542 },
1543 {
1544 .name = "throttle.write_bps_device",
1545 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1546 .seq_show = tg_print_conf_u64,
1547 .write = tg_set_conf_u64,
1548 },
1549 {
1550 .name = "throttle.read_iops_device",
1551 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1552 .seq_show = tg_print_conf_uint,
1553 .write = tg_set_conf_uint,
1554 },
1555 {
1556 .name = "throttle.write_iops_device",
1557 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1558 .seq_show = tg_print_conf_uint,
1559 .write = tg_set_conf_uint,
1560 },
1561 {
1562 .name = "throttle.io_service_bytes",
1563 .private = offsetof(struct throtl_grp, stat_bytes),
1564 .seq_show = tg_print_rwstat,
1565 },
1566 {
1567 .name = "throttle.io_service_bytes_recursive",
1568 .private = offsetof(struct throtl_grp, stat_bytes),
1569 .seq_show = tg_print_rwstat_recursive,
1570 },
1571 {
1572 .name = "throttle.io_serviced",
1573 .private = offsetof(struct throtl_grp, stat_ios),
1574 .seq_show = tg_print_rwstat,
1575 },
1576 {
1577 .name = "throttle.io_serviced_recursive",
1578 .private = offsetof(struct throtl_grp, stat_ios),
1579 .seq_show = tg_print_rwstat_recursive,
1580 },
1581 { }
1582};
1583
1584static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1585 int off)
1586{
1587 struct throtl_grp *tg = pd_to_tg(pd);
1588 const char *dname = blkg_dev_name(pd->blkg);
1589 char bufs[4][21] = { "max", "max", "max", "max" };
1590 u64 bps_dft;
1591 unsigned int iops_dft;
1592 char idle_time[26] = "";
1593 char latency_time[26] = "";
1594
1595 if (!dname)
1596 return 0;
1597
1598 if (off == LIMIT_LOW) {
1599 bps_dft = 0;
1600 iops_dft = 0;
1601 } else {
1602 bps_dft = U64_MAX;
1603 iops_dft = UINT_MAX;
1604 }
1605
1606 if (tg->bps_conf[READ][off] == bps_dft &&
1607 tg->bps_conf[WRITE][off] == bps_dft &&
1608 tg->iops_conf[READ][off] == iops_dft &&
1609 tg->iops_conf[WRITE][off] == iops_dft &&
1610 (off != LIMIT_LOW ||
1611 (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1612 tg->latency_target_conf == DFL_LATENCY_TARGET)))
1613 return 0;
1614
1615 if (tg->bps_conf[READ][off] != U64_MAX)
1616 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1617 tg->bps_conf[READ][off]);
1618 if (tg->bps_conf[WRITE][off] != U64_MAX)
1619 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1620 tg->bps_conf[WRITE][off]);
1621 if (tg->iops_conf[READ][off] != UINT_MAX)
1622 snprintf(bufs[2], sizeof(bufs[2]), "%u",
1623 tg->iops_conf[READ][off]);
1624 if (tg->iops_conf[WRITE][off] != UINT_MAX)
1625 snprintf(bufs[3], sizeof(bufs[3]), "%u",
1626 tg->iops_conf[WRITE][off]);
1627 if (off == LIMIT_LOW) {
1628 if (tg->idletime_threshold_conf == ULONG_MAX)
1629 strcpy(idle_time, " idle=max");
1630 else
1631 snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1632 tg->idletime_threshold_conf);
1633
1634 if (tg->latency_target_conf == ULONG_MAX)
1635 strcpy(latency_time, " latency=max");
1636 else
1637 snprintf(latency_time, sizeof(latency_time),
1638 " latency=%lu", tg->latency_target_conf);
1639 }
1640
1641 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1642 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1643 latency_time);
1644 return 0;
1645}
1646
1647static int tg_print_limit(struct seq_file *sf, void *v)
1648{
1649 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1650 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1651 return 0;
1652}
1653
1654static ssize_t tg_set_limit(struct kernfs_open_file *of,
1655 char *buf, size_t nbytes, loff_t off)
1656{
1657 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1658 struct blkg_conf_ctx ctx;
1659 struct throtl_grp *tg;
1660 u64 v[4];
1661 unsigned long idle_time;
1662 unsigned long latency_time;
1663 int ret;
1664 int index = of_cft(of)->private;
1665
1666 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1667 if (ret)
1668 return ret;
1669
1670 tg = blkg_to_tg(ctx.blkg);
1671
1672 v[0] = tg->bps_conf[READ][index];
1673 v[1] = tg->bps_conf[WRITE][index];
1674 v[2] = tg->iops_conf[READ][index];
1675 v[3] = tg->iops_conf[WRITE][index];
1676
1677 idle_time = tg->idletime_threshold_conf;
1678 latency_time = tg->latency_target_conf;
1679 while (true) {
1680 char tok[27];
1681 char *p;
1682 u64 val = U64_MAX;
1683 int len;
1684
1685 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1686 break;
1687 if (tok[0] == '\0')
1688 break;
1689 ctx.body += len;
1690
1691 ret = -EINVAL;
1692 p = tok;
1693 strsep(&p, "=");
1694 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1695 goto out_finish;
1696
1697 ret = -ERANGE;
1698 if (!val)
1699 goto out_finish;
1700
1701 ret = -EINVAL;
1702 if (!strcmp(tok, "rbps") && val > 1)
1703 v[0] = val;
1704 else if (!strcmp(tok, "wbps") && val > 1)
1705 v[1] = val;
1706 else if (!strcmp(tok, "riops") && val > 1)
1707 v[2] = min_t(u64, val, UINT_MAX);
1708 else if (!strcmp(tok, "wiops") && val > 1)
1709 v[3] = min_t(u64, val, UINT_MAX);
1710 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1711 idle_time = val;
1712 else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1713 latency_time = val;
1714 else
1715 goto out_finish;
1716 }
1717
1718 tg->bps_conf[READ][index] = v[0];
1719 tg->bps_conf[WRITE][index] = v[1];
1720 tg->iops_conf[READ][index] = v[2];
1721 tg->iops_conf[WRITE][index] = v[3];
1722
1723 if (index == LIMIT_MAX) {
1724 tg->bps[READ][index] = v[0];
1725 tg->bps[WRITE][index] = v[1];
1726 tg->iops[READ][index] = v[2];
1727 tg->iops[WRITE][index] = v[3];
1728 }
1729 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1730 tg->bps_conf[READ][LIMIT_MAX]);
1731 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1732 tg->bps_conf[WRITE][LIMIT_MAX]);
1733 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1734 tg->iops_conf[READ][LIMIT_MAX]);
1735 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1736 tg->iops_conf[WRITE][LIMIT_MAX]);
1737 tg->idletime_threshold_conf = idle_time;
1738 tg->latency_target_conf = latency_time;
1739
1740
1741 if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1742 tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1743 tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1744 tg->latency_target_conf == DFL_LATENCY_TARGET) {
1745 tg->bps[READ][LIMIT_LOW] = 0;
1746 tg->bps[WRITE][LIMIT_LOW] = 0;
1747 tg->iops[READ][LIMIT_LOW] = 0;
1748 tg->iops[WRITE][LIMIT_LOW] = 0;
1749 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1750 tg->latency_target = DFL_LATENCY_TARGET;
1751 } else if (index == LIMIT_LOW) {
1752 tg->idletime_threshold = tg->idletime_threshold_conf;
1753 tg->latency_target = tg->latency_target_conf;
1754 }
1755
1756 blk_throtl_update_limit_valid(tg->td);
1757 if (tg->td->limit_valid[LIMIT_LOW]) {
1758 if (index == LIMIT_LOW)
1759 tg->td->limit_index = LIMIT_LOW;
1760 } else
1761 tg->td->limit_index = LIMIT_MAX;
1762 tg_conf_updated(tg, index == LIMIT_LOW &&
1763 tg->td->limit_valid[LIMIT_LOW]);
1764 ret = 0;
1765out_finish:
1766 blkg_conf_finish(&ctx);
1767 return ret ?: nbytes;
1768}
1769
1770static struct cftype throtl_files[] = {
1771#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1772 {
1773 .name = "low",
1774 .flags = CFTYPE_NOT_ON_ROOT,
1775 .seq_show = tg_print_limit,
1776 .write = tg_set_limit,
1777 .private = LIMIT_LOW,
1778 },
1779#endif
1780 {
1781 .name = "max",
1782 .flags = CFTYPE_NOT_ON_ROOT,
1783 .seq_show = tg_print_limit,
1784 .write = tg_set_limit,
1785 .private = LIMIT_MAX,
1786 },
1787 { }
1788};
1789
1790static void throtl_shutdown_wq(struct request_queue *q)
1791{
1792 struct throtl_data *td = q->td;
1793
1794 cancel_work_sync(&td->dispatch_work);
1795}
1796
1797static struct blkcg_policy blkcg_policy_throtl = {
1798 .dfl_cftypes = throtl_files,
1799 .legacy_cftypes = throtl_legacy_files,
1800
1801 .pd_alloc_fn = throtl_pd_alloc,
1802 .pd_init_fn = throtl_pd_init,
1803 .pd_online_fn = throtl_pd_online,
1804 .pd_offline_fn = throtl_pd_offline,
1805 .pd_free_fn = throtl_pd_free,
1806};
1807
1808static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1809{
1810 unsigned long rtime = jiffies, wtime = jiffies;
1811
1812 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1813 rtime = tg->last_low_overflow_time[READ];
1814 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1815 wtime = tg->last_low_overflow_time[WRITE];
1816 return min(rtime, wtime);
1817}
1818
1819
1820static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1821{
1822 struct throtl_service_queue *parent_sq;
1823 struct throtl_grp *parent = tg;
1824 unsigned long ret = __tg_last_low_overflow_time(tg);
1825
1826 while (true) {
1827 parent_sq = parent->service_queue.parent_sq;
1828 parent = sq_to_tg(parent_sq);
1829 if (!parent)
1830 break;
1831
1832
1833
1834
1835
1836 if (!parent->bps[READ][LIMIT_LOW] &&
1837 !parent->iops[READ][LIMIT_LOW] &&
1838 !parent->bps[WRITE][LIMIT_LOW] &&
1839 !parent->iops[WRITE][LIMIT_LOW])
1840 continue;
1841 if (time_after(__tg_last_low_overflow_time(parent), ret))
1842 ret = __tg_last_low_overflow_time(parent);
1843 }
1844 return ret;
1845}
1846
1847static bool throtl_tg_is_idle(struct throtl_grp *tg)
1848{
1849
1850
1851
1852
1853
1854
1855
1856 unsigned long time;
1857 bool ret;
1858
1859 time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1860 ret = tg->latency_target == DFL_LATENCY_TARGET ||
1861 tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1862 (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1863 tg->avg_idletime > tg->idletime_threshold ||
1864 (tg->latency_target && tg->bio_cnt &&
1865 tg->bad_bio_cnt * 5 < tg->bio_cnt);
1866 throtl_log(&tg->service_queue,
1867 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1868 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1869 tg->bio_cnt, ret, tg->td->scale);
1870 return ret;
1871}
1872
1873static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1874{
1875 struct throtl_service_queue *sq = &tg->service_queue;
1876 bool read_limit, write_limit;
1877
1878
1879
1880
1881
1882 read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1883 write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1884 if (!read_limit && !write_limit)
1885 return true;
1886 if (read_limit && sq->nr_queued[READ] &&
1887 (!write_limit || sq->nr_queued[WRITE]))
1888 return true;
1889 if (write_limit && sq->nr_queued[WRITE] &&
1890 (!read_limit || sq->nr_queued[READ]))
1891 return true;
1892
1893 if (time_after_eq(jiffies,
1894 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1895 throtl_tg_is_idle(tg))
1896 return true;
1897 return false;
1898}
1899
1900static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1901{
1902 while (true) {
1903 if (throtl_tg_can_upgrade(tg))
1904 return true;
1905 tg = sq_to_tg(tg->service_queue.parent_sq);
1906 if (!tg || !tg_to_blkg(tg)->parent)
1907 return false;
1908 }
1909 return false;
1910}
1911
1912static bool throtl_can_upgrade(struct throtl_data *td,
1913 struct throtl_grp *this_tg)
1914{
1915 struct cgroup_subsys_state *pos_css;
1916 struct blkcg_gq *blkg;
1917
1918 if (td->limit_index != LIMIT_LOW)
1919 return false;
1920
1921 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1922 return false;
1923
1924 rcu_read_lock();
1925 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1926 struct throtl_grp *tg = blkg_to_tg(blkg);
1927
1928 if (tg == this_tg)
1929 continue;
1930 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1931 continue;
1932 if (!throtl_hierarchy_can_upgrade(tg)) {
1933 rcu_read_unlock();
1934 return false;
1935 }
1936 }
1937 rcu_read_unlock();
1938 return true;
1939}
1940
1941static void throtl_upgrade_check(struct throtl_grp *tg)
1942{
1943 unsigned long now = jiffies;
1944
1945 if (tg->td->limit_index != LIMIT_LOW)
1946 return;
1947
1948 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1949 return;
1950
1951 tg->last_check_time = now;
1952
1953 if (!time_after_eq(now,
1954 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1955 return;
1956
1957 if (throtl_can_upgrade(tg->td, NULL))
1958 throtl_upgrade_state(tg->td);
1959}
1960
1961static void throtl_upgrade_state(struct throtl_data *td)
1962{
1963 struct cgroup_subsys_state *pos_css;
1964 struct blkcg_gq *blkg;
1965
1966 throtl_log(&td->service_queue, "upgrade to max");
1967 td->limit_index = LIMIT_MAX;
1968 td->low_upgrade_time = jiffies;
1969 td->scale = 0;
1970 rcu_read_lock();
1971 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1972 struct throtl_grp *tg = blkg_to_tg(blkg);
1973 struct throtl_service_queue *sq = &tg->service_queue;
1974
1975 tg->disptime = jiffies - 1;
1976 throtl_select_dispatch(sq);
1977 throtl_schedule_next_dispatch(sq, true);
1978 }
1979 rcu_read_unlock();
1980 throtl_select_dispatch(&td->service_queue);
1981 throtl_schedule_next_dispatch(&td->service_queue, true);
1982 queue_work(kthrotld_workqueue, &td->dispatch_work);
1983}
1984
1985static void throtl_downgrade_state(struct throtl_data *td)
1986{
1987 td->scale /= 2;
1988
1989 throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1990 if (td->scale) {
1991 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1992 return;
1993 }
1994
1995 td->limit_index = LIMIT_LOW;
1996 td->low_downgrade_time = jiffies;
1997}
1998
1999static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
2000{
2001 struct throtl_data *td = tg->td;
2002 unsigned long now = jiffies;
2003
2004
2005
2006
2007
2008 if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
2009 time_after_eq(now, tg_last_low_overflow_time(tg) +
2010 td->throtl_slice) &&
2011 (!throtl_tg_is_idle(tg) ||
2012 !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
2013 return true;
2014 return false;
2015}
2016
2017static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
2018{
2019 while (true) {
2020 if (!throtl_tg_can_downgrade(tg))
2021 return false;
2022 tg = sq_to_tg(tg->service_queue.parent_sq);
2023 if (!tg || !tg_to_blkg(tg)->parent)
2024 break;
2025 }
2026 return true;
2027}
2028
2029static void throtl_downgrade_check(struct throtl_grp *tg)
2030{
2031 uint64_t bps;
2032 unsigned int iops;
2033 unsigned long elapsed_time;
2034 unsigned long now = jiffies;
2035
2036 if (tg->td->limit_index != LIMIT_MAX ||
2037 !tg->td->limit_valid[LIMIT_LOW])
2038 return;
2039 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
2040 return;
2041 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
2042 return;
2043
2044 elapsed_time = now - tg->last_check_time;
2045 tg->last_check_time = now;
2046
2047 if (time_before(now, tg_last_low_overflow_time(tg) +
2048 tg->td->throtl_slice))
2049 return;
2050
2051 if (tg->bps[READ][LIMIT_LOW]) {
2052 bps = tg->last_bytes_disp[READ] * HZ;
2053 do_div(bps, elapsed_time);
2054 if (bps >= tg->bps[READ][LIMIT_LOW])
2055 tg->last_low_overflow_time[READ] = now;
2056 }
2057
2058 if (tg->bps[WRITE][LIMIT_LOW]) {
2059 bps = tg->last_bytes_disp[WRITE] * HZ;
2060 do_div(bps, elapsed_time);
2061 if (bps >= tg->bps[WRITE][LIMIT_LOW])
2062 tg->last_low_overflow_time[WRITE] = now;
2063 }
2064
2065 if (tg->iops[READ][LIMIT_LOW]) {
2066 tg->last_io_disp[READ] += atomic_xchg(&tg->last_io_split_cnt[READ], 0);
2067 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2068 if (iops >= tg->iops[READ][LIMIT_LOW])
2069 tg->last_low_overflow_time[READ] = now;
2070 }
2071
2072 if (tg->iops[WRITE][LIMIT_LOW]) {
2073 tg->last_io_disp[WRITE] += atomic_xchg(&tg->last_io_split_cnt[WRITE], 0);
2074 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2075 if (iops >= tg->iops[WRITE][LIMIT_LOW])
2076 tg->last_low_overflow_time[WRITE] = now;
2077 }
2078
2079
2080
2081
2082
2083 if (throtl_hierarchy_can_downgrade(tg))
2084 throtl_downgrade_state(tg->td);
2085
2086 tg->last_bytes_disp[READ] = 0;
2087 tg->last_bytes_disp[WRITE] = 0;
2088 tg->last_io_disp[READ] = 0;
2089 tg->last_io_disp[WRITE] = 0;
2090}
2091
2092static void blk_throtl_update_idletime(struct throtl_grp *tg)
2093{
2094 unsigned long now;
2095 unsigned long last_finish_time = tg->last_finish_time;
2096
2097 if (last_finish_time == 0)
2098 return;
2099
2100 now = ktime_get_ns() >> 10;
2101 if (now <= last_finish_time ||
2102 last_finish_time == tg->checked_last_finish_time)
2103 return;
2104
2105 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2106 tg->checked_last_finish_time = last_finish_time;
2107}
2108
2109#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2110static void throtl_update_latency_buckets(struct throtl_data *td)
2111{
2112 struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2113 int i, cpu, rw;
2114 unsigned long last_latency[2] = { 0 };
2115 unsigned long latency[2];
2116
2117 if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
2118 return;
2119 if (time_before(jiffies, td->last_calculate_time + HZ))
2120 return;
2121 td->last_calculate_time = jiffies;
2122
2123 memset(avg_latency, 0, sizeof(avg_latency));
2124 for (rw = READ; rw <= WRITE; rw++) {
2125 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2126 struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2127
2128 for_each_possible_cpu(cpu) {
2129 struct latency_bucket *bucket;
2130
2131
2132 bucket = per_cpu_ptr(td->latency_buckets[rw],
2133 cpu);
2134 tmp->total_latency += bucket[i].total_latency;
2135 tmp->samples += bucket[i].samples;
2136 bucket[i].total_latency = 0;
2137 bucket[i].samples = 0;
2138 }
2139
2140 if (tmp->samples >= 32) {
2141 int samples = tmp->samples;
2142
2143 latency[rw] = tmp->total_latency;
2144
2145 tmp->total_latency = 0;
2146 tmp->samples = 0;
2147 latency[rw] /= samples;
2148 if (latency[rw] == 0)
2149 continue;
2150 avg_latency[rw][i].latency = latency[rw];
2151 }
2152 }
2153 }
2154
2155 for (rw = READ; rw <= WRITE; rw++) {
2156 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2157 if (!avg_latency[rw][i].latency) {
2158 if (td->avg_buckets[rw][i].latency < last_latency[rw])
2159 td->avg_buckets[rw][i].latency =
2160 last_latency[rw];
2161 continue;
2162 }
2163
2164 if (!td->avg_buckets[rw][i].valid)
2165 latency[rw] = avg_latency[rw][i].latency;
2166 else
2167 latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2168 avg_latency[rw][i].latency) >> 3;
2169
2170 td->avg_buckets[rw][i].latency = max(latency[rw],
2171 last_latency[rw]);
2172 td->avg_buckets[rw][i].valid = true;
2173 last_latency[rw] = td->avg_buckets[rw][i].latency;
2174 }
2175 }
2176
2177 for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2178 throtl_log(&td->service_queue,
2179 "Latency bucket %d: read latency=%ld, read valid=%d, "
2180 "write latency=%ld, write valid=%d", i,
2181 td->avg_buckets[READ][i].latency,
2182 td->avg_buckets[READ][i].valid,
2183 td->avg_buckets[WRITE][i].latency,
2184 td->avg_buckets[WRITE][i].valid);
2185}
2186#else
2187static inline void throtl_update_latency_buckets(struct throtl_data *td)
2188{
2189}
2190#endif
2191
2192void blk_throtl_charge_bio_split(struct bio *bio)
2193{
2194 struct blkcg_gq *blkg = bio->bi_blkg;
2195 struct throtl_grp *parent = blkg_to_tg(blkg);
2196 struct throtl_service_queue *parent_sq;
2197 bool rw = bio_data_dir(bio);
2198
2199 do {
2200 if (!parent->has_rules[rw])
2201 break;
2202
2203 atomic_inc(&parent->io_split_cnt[rw]);
2204 atomic_inc(&parent->last_io_split_cnt[rw]);
2205
2206 parent_sq = parent->service_queue.parent_sq;
2207 parent = sq_to_tg(parent_sq);
2208 } while (parent);
2209}
2210
2211bool blk_throtl_bio(struct bio *bio)
2212{
2213 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
2214 struct blkcg_gq *blkg = bio->bi_blkg;
2215 struct throtl_qnode *qn = NULL;
2216 struct throtl_grp *tg = blkg_to_tg(blkg);
2217 struct throtl_service_queue *sq;
2218 bool rw = bio_data_dir(bio);
2219 bool throttled = false;
2220 struct throtl_data *td = tg->td;
2221
2222 rcu_read_lock();
2223
2224
2225 if (bio_flagged(bio, BIO_THROTTLED))
2226 goto out;
2227
2228 if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) {
2229 blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf,
2230 bio->bi_iter.bi_size);
2231 blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1);
2232 }
2233
2234 if (!tg->has_rules[rw])
2235 goto out;
2236
2237 spin_lock_irq(&q->queue_lock);
2238
2239 throtl_update_latency_buckets(td);
2240
2241 blk_throtl_update_idletime(tg);
2242
2243 sq = &tg->service_queue;
2244
2245again:
2246 while (true) {
2247 if (tg->last_low_overflow_time[rw] == 0)
2248 tg->last_low_overflow_time[rw] = jiffies;
2249 throtl_downgrade_check(tg);
2250 throtl_upgrade_check(tg);
2251
2252 if (sq->nr_queued[rw])
2253 break;
2254
2255
2256 if (!tg_may_dispatch(tg, bio, NULL)) {
2257 tg->last_low_overflow_time[rw] = jiffies;
2258 if (throtl_can_upgrade(td, tg)) {
2259 throtl_upgrade_state(td);
2260 goto again;
2261 }
2262 break;
2263 }
2264
2265
2266 throtl_charge_bio(tg, bio);
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279 throtl_trim_slice(tg, rw);
2280
2281
2282
2283
2284
2285
2286 qn = &tg->qnode_on_parent[rw];
2287 sq = sq->parent_sq;
2288 tg = sq_to_tg(sq);
2289 if (!tg)
2290 goto out_unlock;
2291 }
2292
2293
2294 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2295 rw == READ ? 'R' : 'W',
2296 tg->bytes_disp[rw], bio->bi_iter.bi_size,
2297 tg_bps_limit(tg, rw),
2298 tg->io_disp[rw], tg_iops_limit(tg, rw),
2299 sq->nr_queued[READ], sq->nr_queued[WRITE]);
2300
2301 tg->last_low_overflow_time[rw] = jiffies;
2302
2303 td->nr_queued[rw]++;
2304 throtl_add_bio_tg(bio, qn, tg);
2305 throttled = true;
2306
2307
2308
2309
2310
2311
2312
2313 if (tg->flags & THROTL_TG_WAS_EMPTY) {
2314 tg_update_disptime(tg);
2315 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2316 }
2317
2318out_unlock:
2319 spin_unlock_irq(&q->queue_lock);
2320out:
2321 bio_set_flag(bio, BIO_THROTTLED);
2322
2323#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2324 if (throttled || !td->track_bio_latency)
2325 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2326#endif
2327 rcu_read_unlock();
2328 return throttled;
2329}
2330
2331#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2332static void throtl_track_latency(struct throtl_data *td, sector_t size,
2333 int op, unsigned long time)
2334{
2335 struct latency_bucket *latency;
2336 int index;
2337
2338 if (!td || td->limit_index != LIMIT_LOW ||
2339 !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2340 !blk_queue_nonrot(td->queue))
2341 return;
2342
2343 index = request_bucket_index(size);
2344
2345 latency = get_cpu_ptr(td->latency_buckets[op]);
2346 latency[index].total_latency += time;
2347 latency[index].samples++;
2348 put_cpu_ptr(td->latency_buckets[op]);
2349}
2350
2351void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2352{
2353 struct request_queue *q = rq->q;
2354 struct throtl_data *td = q->td;
2355
2356 throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2357 time_ns >> 10);
2358}
2359
2360void blk_throtl_bio_endio(struct bio *bio)
2361{
2362 struct blkcg_gq *blkg;
2363 struct throtl_grp *tg;
2364 u64 finish_time_ns;
2365 unsigned long finish_time;
2366 unsigned long start_time;
2367 unsigned long lat;
2368 int rw = bio_data_dir(bio);
2369
2370 blkg = bio->bi_blkg;
2371 if (!blkg)
2372 return;
2373 tg = blkg_to_tg(blkg);
2374 if (!tg->td->limit_valid[LIMIT_LOW])
2375 return;
2376
2377 finish_time_ns = ktime_get_ns();
2378 tg->last_finish_time = finish_time_ns >> 10;
2379
2380 start_time = bio_issue_time(&bio->bi_issue) >> 10;
2381 finish_time = __bio_issue_time(finish_time_ns) >> 10;
2382 if (!start_time || finish_time <= start_time)
2383 return;
2384
2385 lat = finish_time - start_time;
2386
2387 if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2388 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2389 bio_op(bio), lat);
2390
2391 if (tg->latency_target && lat >= tg->td->filtered_latency) {
2392 int bucket;
2393 unsigned int threshold;
2394
2395 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2396 threshold = tg->td->avg_buckets[rw][bucket].latency +
2397 tg->latency_target;
2398 if (lat > threshold)
2399 tg->bad_bio_cnt++;
2400
2401
2402
2403
2404 tg->bio_cnt++;
2405 }
2406
2407 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2408 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2409 tg->bio_cnt /= 2;
2410 tg->bad_bio_cnt /= 2;
2411 }
2412}
2413#endif
2414
2415int blk_throtl_init(struct request_queue *q)
2416{
2417 struct throtl_data *td;
2418 int ret;
2419
2420 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2421 if (!td)
2422 return -ENOMEM;
2423 td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2424 LATENCY_BUCKET_SIZE, __alignof__(u64));
2425 if (!td->latency_buckets[READ]) {
2426 kfree(td);
2427 return -ENOMEM;
2428 }
2429 td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2430 LATENCY_BUCKET_SIZE, __alignof__(u64));
2431 if (!td->latency_buckets[WRITE]) {
2432 free_percpu(td->latency_buckets[READ]);
2433 kfree(td);
2434 return -ENOMEM;
2435 }
2436
2437 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2438 throtl_service_queue_init(&td->service_queue);
2439
2440 q->td = td;
2441 td->queue = q;
2442
2443 td->limit_valid[LIMIT_MAX] = true;
2444 td->limit_index = LIMIT_MAX;
2445 td->low_upgrade_time = jiffies;
2446 td->low_downgrade_time = jiffies;
2447
2448
2449 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2450 if (ret) {
2451 free_percpu(td->latency_buckets[READ]);
2452 free_percpu(td->latency_buckets[WRITE]);
2453 kfree(td);
2454 }
2455 return ret;
2456}
2457
2458void blk_throtl_exit(struct request_queue *q)
2459{
2460 BUG_ON(!q->td);
2461 throtl_shutdown_wq(q);
2462 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2463 free_percpu(q->td->latency_buckets[READ]);
2464 free_percpu(q->td->latency_buckets[WRITE]);
2465 kfree(q->td);
2466}
2467
2468void blk_throtl_register_queue(struct request_queue *q)
2469{
2470 struct throtl_data *td;
2471 int i;
2472
2473 td = q->td;
2474 BUG_ON(!td);
2475
2476 if (blk_queue_nonrot(q)) {
2477 td->throtl_slice = DFL_THROTL_SLICE_SSD;
2478 td->filtered_latency = LATENCY_FILTERED_SSD;
2479 } else {
2480 td->throtl_slice = DFL_THROTL_SLICE_HD;
2481 td->filtered_latency = LATENCY_FILTERED_HD;
2482 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2483 td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2484 td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2485 }
2486 }
2487#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2488
2489 td->throtl_slice = DFL_THROTL_SLICE_HD;
2490#endif
2491
2492 td->track_bio_latency = !queue_is_mq(q);
2493 if (!td->track_bio_latency)
2494 blk_stat_enable_accounting(q);
2495}
2496
2497#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2498ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2499{
2500 if (!q->td)
2501 return -EINVAL;
2502 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2503}
2504
2505ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2506 const char *page, size_t count)
2507{
2508 unsigned long v;
2509 unsigned long t;
2510
2511 if (!q->td)
2512 return -EINVAL;
2513 if (kstrtoul(page, 10, &v))
2514 return -EINVAL;
2515 t = msecs_to_jiffies(v);
2516 if (t == 0 || t > MAX_THROTL_SLICE)
2517 return -EINVAL;
2518 q->td->throtl_slice = t;
2519 return count;
2520}
2521#endif
2522
2523static int __init throtl_init(void)
2524{
2525 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2526 if (!kthrotld_workqueue)
2527 panic("Failed to create kthrotld\n");
2528
2529 return blkcg_policy_register(&blkcg_policy_throtl);
2530}
2531
2532module_init(throtl_init);
2533