linux/block/blk-crypto.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright 2019 Google LLC
   4 */
   5
   6/*
   7 * Refer to Documentation/block/inline-encryption.rst for detailed explanation.
   8 */
   9
  10#define pr_fmt(fmt) "blk-crypto: " fmt
  11
  12#include <linux/bio.h>
  13#include <linux/blkdev.h>
  14#include <linux/keyslot-manager.h>
  15#include <linux/module.h>
  16#include <linux/slab.h>
  17
  18#include "blk-crypto-internal.h"
  19
  20const struct blk_crypto_mode blk_crypto_modes[] = {
  21        [BLK_ENCRYPTION_MODE_AES_256_XTS] = {
  22                .cipher_str = "xts(aes)",
  23                .keysize = 64,
  24                .ivsize = 16,
  25        },
  26        [BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV] = {
  27                .cipher_str = "essiv(cbc(aes),sha256)",
  28                .keysize = 16,
  29                .ivsize = 16,
  30        },
  31        [BLK_ENCRYPTION_MODE_ADIANTUM] = {
  32                .cipher_str = "adiantum(xchacha12,aes)",
  33                .keysize = 32,
  34                .ivsize = 32,
  35        },
  36};
  37
  38/*
  39 * This number needs to be at least (the number of threads doing IO
  40 * concurrently) * (maximum recursive depth of a bio), so that we don't
  41 * deadlock on crypt_ctx allocations. The default is chosen to be the same
  42 * as the default number of post read contexts in both EXT4 and F2FS.
  43 */
  44static int num_prealloc_crypt_ctxs = 128;
  45
  46module_param(num_prealloc_crypt_ctxs, int, 0444);
  47MODULE_PARM_DESC(num_prealloc_crypt_ctxs,
  48                "Number of bio crypto contexts to preallocate");
  49
  50static struct kmem_cache *bio_crypt_ctx_cache;
  51static mempool_t *bio_crypt_ctx_pool;
  52
  53static int __init bio_crypt_ctx_init(void)
  54{
  55        size_t i;
  56
  57        bio_crypt_ctx_cache = KMEM_CACHE(bio_crypt_ctx, 0);
  58        if (!bio_crypt_ctx_cache)
  59                goto out_no_mem;
  60
  61        bio_crypt_ctx_pool = mempool_create_slab_pool(num_prealloc_crypt_ctxs,
  62                                                      bio_crypt_ctx_cache);
  63        if (!bio_crypt_ctx_pool)
  64                goto out_no_mem;
  65
  66        /* This is assumed in various places. */
  67        BUILD_BUG_ON(BLK_ENCRYPTION_MODE_INVALID != 0);
  68
  69        /* Sanity check that no algorithm exceeds the defined limits. */
  70        for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++) {
  71                BUG_ON(blk_crypto_modes[i].keysize > BLK_CRYPTO_MAX_KEY_SIZE);
  72                BUG_ON(blk_crypto_modes[i].ivsize > BLK_CRYPTO_MAX_IV_SIZE);
  73        }
  74
  75        return 0;
  76out_no_mem:
  77        panic("Failed to allocate mem for bio crypt ctxs\n");
  78}
  79subsys_initcall(bio_crypt_ctx_init);
  80
  81void bio_crypt_set_ctx(struct bio *bio, const struct blk_crypto_key *key,
  82                       const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE], gfp_t gfp_mask)
  83{
  84        struct bio_crypt_ctx *bc;
  85
  86        /*
  87         * The caller must use a gfp_mask that contains __GFP_DIRECT_RECLAIM so
  88         * that the mempool_alloc() can't fail.
  89         */
  90        WARN_ON_ONCE(!(gfp_mask & __GFP_DIRECT_RECLAIM));
  91
  92        bc = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
  93
  94        bc->bc_key = key;
  95        memcpy(bc->bc_dun, dun, sizeof(bc->bc_dun));
  96
  97        bio->bi_crypt_context = bc;
  98}
  99
 100void __bio_crypt_free_ctx(struct bio *bio)
 101{
 102        mempool_free(bio->bi_crypt_context, bio_crypt_ctx_pool);
 103        bio->bi_crypt_context = NULL;
 104}
 105
 106int __bio_crypt_clone(struct bio *dst, struct bio *src, gfp_t gfp_mask)
 107{
 108        dst->bi_crypt_context = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
 109        if (!dst->bi_crypt_context)
 110                return -ENOMEM;
 111        *dst->bi_crypt_context = *src->bi_crypt_context;
 112        return 0;
 113}
 114EXPORT_SYMBOL_GPL(__bio_crypt_clone);
 115
 116/* Increments @dun by @inc, treating @dun as a multi-limb integer. */
 117void bio_crypt_dun_increment(u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],
 118                             unsigned int inc)
 119{
 120        int i;
 121
 122        for (i = 0; inc && i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) {
 123                dun[i] += inc;
 124                /*
 125                 * If the addition in this limb overflowed, then we need to
 126                 * carry 1 into the next limb. Else the carry is 0.
 127                 */
 128                if (dun[i] < inc)
 129                        inc = 1;
 130                else
 131                        inc = 0;
 132        }
 133}
 134
 135void __bio_crypt_advance(struct bio *bio, unsigned int bytes)
 136{
 137        struct bio_crypt_ctx *bc = bio->bi_crypt_context;
 138
 139        bio_crypt_dun_increment(bc->bc_dun,
 140                                bytes >> bc->bc_key->data_unit_size_bits);
 141}
 142
 143/*
 144 * Returns true if @bc->bc_dun plus @bytes converted to data units is equal to
 145 * @next_dun, treating the DUNs as multi-limb integers.
 146 */
 147bool bio_crypt_dun_is_contiguous(const struct bio_crypt_ctx *bc,
 148                                 unsigned int bytes,
 149                                 const u64 next_dun[BLK_CRYPTO_DUN_ARRAY_SIZE])
 150{
 151        int i;
 152        unsigned int carry = bytes >> bc->bc_key->data_unit_size_bits;
 153
 154        for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) {
 155                if (bc->bc_dun[i] + carry != next_dun[i])
 156                        return false;
 157                /*
 158                 * If the addition in this limb overflowed, then we need to
 159                 * carry 1 into the next limb. Else the carry is 0.
 160                 */
 161                if ((bc->bc_dun[i] + carry) < carry)
 162                        carry = 1;
 163                else
 164                        carry = 0;
 165        }
 166
 167        /* If the DUN wrapped through 0, don't treat it as contiguous. */
 168        return carry == 0;
 169}
 170
 171/*
 172 * Checks that two bio crypt contexts are compatible - i.e. that
 173 * they are mergeable except for data_unit_num continuity.
 174 */
 175static bool bio_crypt_ctx_compatible(struct bio_crypt_ctx *bc1,
 176                                     struct bio_crypt_ctx *bc2)
 177{
 178        if (!bc1)
 179                return !bc2;
 180
 181        return bc2 && bc1->bc_key == bc2->bc_key;
 182}
 183
 184bool bio_crypt_rq_ctx_compatible(struct request *rq, struct bio *bio)
 185{
 186        return bio_crypt_ctx_compatible(rq->crypt_ctx, bio->bi_crypt_context);
 187}
 188
 189/*
 190 * Checks that two bio crypt contexts are compatible, and also
 191 * that their data_unit_nums are continuous (and can hence be merged)
 192 * in the order @bc1 followed by @bc2.
 193 */
 194bool bio_crypt_ctx_mergeable(struct bio_crypt_ctx *bc1, unsigned int bc1_bytes,
 195                             struct bio_crypt_ctx *bc2)
 196{
 197        if (!bio_crypt_ctx_compatible(bc1, bc2))
 198                return false;
 199
 200        return !bc1 || bio_crypt_dun_is_contiguous(bc1, bc1_bytes, bc2->bc_dun);
 201}
 202
 203/* Check that all I/O segments are data unit aligned. */
 204static bool bio_crypt_check_alignment(struct bio *bio)
 205{
 206        const unsigned int data_unit_size =
 207                bio->bi_crypt_context->bc_key->crypto_cfg.data_unit_size;
 208        struct bvec_iter iter;
 209        struct bio_vec bv;
 210
 211        bio_for_each_segment(bv, bio, iter) {
 212                if (!IS_ALIGNED(bv.bv_len | bv.bv_offset, data_unit_size))
 213                        return false;
 214        }
 215
 216        return true;
 217}
 218
 219blk_status_t __blk_crypto_init_request(struct request *rq)
 220{
 221        return blk_ksm_get_slot_for_key(rq->q->ksm, rq->crypt_ctx->bc_key,
 222                                        &rq->crypt_keyslot);
 223}
 224
 225/**
 226 * __blk_crypto_free_request - Uninitialize the crypto fields of a request.
 227 *
 228 * @rq: The request whose crypto fields to uninitialize.
 229 *
 230 * Completely uninitializes the crypto fields of a request. If a keyslot has
 231 * been programmed into some inline encryption hardware, that keyslot is
 232 * released. The rq->crypt_ctx is also freed.
 233 */
 234void __blk_crypto_free_request(struct request *rq)
 235{
 236        blk_ksm_put_slot(rq->crypt_keyslot);
 237        mempool_free(rq->crypt_ctx, bio_crypt_ctx_pool);
 238        blk_crypto_rq_set_defaults(rq);
 239}
 240
 241/**
 242 * __blk_crypto_bio_prep - Prepare bio for inline encryption
 243 *
 244 * @bio_ptr: pointer to original bio pointer
 245 *
 246 * If the bio crypt context provided for the bio is supported by the underlying
 247 * device's inline encryption hardware, do nothing.
 248 *
 249 * Otherwise, try to perform en/decryption for this bio by falling back to the
 250 * kernel crypto API. When the crypto API fallback is used for encryption,
 251 * blk-crypto may choose to split the bio into 2 - the first one that will
 252 * continue to be processed and the second one that will be resubmitted via
 253 * submit_bio_noacct. A bounce bio will be allocated to encrypt the contents
 254 * of the aforementioned "first one", and *bio_ptr will be updated to this
 255 * bounce bio.
 256 *
 257 * Caller must ensure bio has bio_crypt_ctx.
 258 *
 259 * Return: true on success; false on error (and bio->bi_status will be set
 260 *         appropriately, and bio_endio() will have been called so bio
 261 *         submission should abort).
 262 */
 263bool __blk_crypto_bio_prep(struct bio **bio_ptr)
 264{
 265        struct bio *bio = *bio_ptr;
 266        const struct blk_crypto_key *bc_key = bio->bi_crypt_context->bc_key;
 267
 268        /* Error if bio has no data. */
 269        if (WARN_ON_ONCE(!bio_has_data(bio))) {
 270                bio->bi_status = BLK_STS_IOERR;
 271                goto fail;
 272        }
 273
 274        if (!bio_crypt_check_alignment(bio)) {
 275                bio->bi_status = BLK_STS_IOERR;
 276                goto fail;
 277        }
 278
 279        /*
 280         * Success if device supports the encryption context, or if we succeeded
 281         * in falling back to the crypto API.
 282         */
 283        if (blk_ksm_crypto_cfg_supported(bio->bi_bdev->bd_disk->queue->ksm,
 284                                         &bc_key->crypto_cfg))
 285                return true;
 286
 287        if (blk_crypto_fallback_bio_prep(bio_ptr))
 288                return true;
 289fail:
 290        bio_endio(*bio_ptr);
 291        return false;
 292}
 293
 294int __blk_crypto_rq_bio_prep(struct request *rq, struct bio *bio,
 295                             gfp_t gfp_mask)
 296{
 297        if (!rq->crypt_ctx) {
 298                rq->crypt_ctx = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
 299                if (!rq->crypt_ctx)
 300                        return -ENOMEM;
 301        }
 302        *rq->crypt_ctx = *bio->bi_crypt_context;
 303        return 0;
 304}
 305
 306/**
 307 * blk_crypto_init_key() - Prepare a key for use with blk-crypto
 308 * @blk_key: Pointer to the blk_crypto_key to initialize.
 309 * @raw_key: Pointer to the raw key. Must be the correct length for the chosen
 310 *           @crypto_mode; see blk_crypto_modes[].
 311 * @crypto_mode: identifier for the encryption algorithm to use
 312 * @dun_bytes: number of bytes that will be used to specify the DUN when this
 313 *             key is used
 314 * @data_unit_size: the data unit size to use for en/decryption
 315 *
 316 * Return: 0 on success, -errno on failure.  The caller is responsible for
 317 *         zeroizing both blk_key and raw_key when done with them.
 318 */
 319int blk_crypto_init_key(struct blk_crypto_key *blk_key, const u8 *raw_key,
 320                        enum blk_crypto_mode_num crypto_mode,
 321                        unsigned int dun_bytes,
 322                        unsigned int data_unit_size)
 323{
 324        const struct blk_crypto_mode *mode;
 325
 326        memset(blk_key, 0, sizeof(*blk_key));
 327
 328        if (crypto_mode >= ARRAY_SIZE(blk_crypto_modes))
 329                return -EINVAL;
 330
 331        mode = &blk_crypto_modes[crypto_mode];
 332        if (mode->keysize == 0)
 333                return -EINVAL;
 334
 335        if (dun_bytes == 0 || dun_bytes > mode->ivsize)
 336                return -EINVAL;
 337
 338        if (!is_power_of_2(data_unit_size))
 339                return -EINVAL;
 340
 341        blk_key->crypto_cfg.crypto_mode = crypto_mode;
 342        blk_key->crypto_cfg.dun_bytes = dun_bytes;
 343        blk_key->crypto_cfg.data_unit_size = data_unit_size;
 344        blk_key->data_unit_size_bits = ilog2(data_unit_size);
 345        blk_key->size = mode->keysize;
 346        memcpy(blk_key->raw, raw_key, mode->keysize);
 347
 348        return 0;
 349}
 350
 351/*
 352 * Check if bios with @cfg can be en/decrypted by blk-crypto (i.e. either the
 353 * request queue it's submitted to supports inline crypto, or the
 354 * blk-crypto-fallback is enabled and supports the cfg).
 355 */
 356bool blk_crypto_config_supported(struct request_queue *q,
 357                                 const struct blk_crypto_config *cfg)
 358{
 359        return IS_ENABLED(CONFIG_BLK_INLINE_ENCRYPTION_FALLBACK) ||
 360               blk_ksm_crypto_cfg_supported(q->ksm, cfg);
 361}
 362
 363/**
 364 * blk_crypto_start_using_key() - Start using a blk_crypto_key on a device
 365 * @key: A key to use on the device
 366 * @q: the request queue for the device
 367 *
 368 * Upper layers must call this function to ensure that either the hardware
 369 * supports the key's crypto settings, or the crypto API fallback has transforms
 370 * for the needed mode allocated and ready to go. This function may allocate
 371 * an skcipher, and *should not* be called from the data path, since that might
 372 * cause a deadlock
 373 *
 374 * Return: 0 on success; -ENOPKG if the hardware doesn't support the key and
 375 *         blk-crypto-fallback is either disabled or the needed algorithm
 376 *         is disabled in the crypto API; or another -errno code.
 377 */
 378int blk_crypto_start_using_key(const struct blk_crypto_key *key,
 379                               struct request_queue *q)
 380{
 381        if (blk_ksm_crypto_cfg_supported(q->ksm, &key->crypto_cfg))
 382                return 0;
 383        return blk_crypto_fallback_start_using_mode(key->crypto_cfg.crypto_mode);
 384}
 385
 386/**
 387 * blk_crypto_evict_key() - Evict a key from any inline encryption hardware
 388 *                          it may have been programmed into
 389 * @q: The request queue who's associated inline encryption hardware this key
 390 *     might have been programmed into
 391 * @key: The key to evict
 392 *
 393 * Upper layers (filesystems) must call this function to ensure that a key is
 394 * evicted from any hardware that it might have been programmed into.  The key
 395 * must not be in use by any in-flight IO when this function is called.
 396 *
 397 * Return: 0 on success or if key is not present in the q's ksm, -err on error.
 398 */
 399int blk_crypto_evict_key(struct request_queue *q,
 400                         const struct blk_crypto_key *key)
 401{
 402        if (blk_ksm_crypto_cfg_supported(q->ksm, &key->crypto_cfg))
 403                return blk_ksm_evict_key(q->ksm, key);
 404
 405        /*
 406         * If the request queue's associated inline encryption hardware didn't
 407         * have support for the key, then the key might have been programmed
 408         * into the fallback keyslot manager, so try to evict from there.
 409         */
 410        return blk_crypto_fallback_evict_key(key);
 411}
 412EXPORT_SYMBOL_GPL(blk_crypto_evict_key);
 413