linux/drivers/thunderbolt/switch.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Thunderbolt driver - switch/port utility functions
   4 *
   5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
   6 * Copyright (C) 2018, Intel Corporation
   7 */
   8
   9#include <linux/delay.h>
  10#include <linux/idr.h>
  11#include <linux/nvmem-provider.h>
  12#include <linux/pm_runtime.h>
  13#include <linux/sched/signal.h>
  14#include <linux/sizes.h>
  15#include <linux/slab.h>
  16
  17#include "tb.h"
  18
  19/* Switch NVM support */
  20
  21#define NVM_CSS                 0x10
  22
  23struct nvm_auth_status {
  24        struct list_head list;
  25        uuid_t uuid;
  26        u32 status;
  27};
  28
  29enum nvm_write_ops {
  30        WRITE_AND_AUTHENTICATE = 1,
  31        WRITE_ONLY = 2,
  32};
  33
  34/*
  35 * Hold NVM authentication failure status per switch This information
  36 * needs to stay around even when the switch gets power cycled so we
  37 * keep it separately.
  38 */
  39static LIST_HEAD(nvm_auth_status_cache);
  40static DEFINE_MUTEX(nvm_auth_status_lock);
  41
  42static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
  43{
  44        struct nvm_auth_status *st;
  45
  46        list_for_each_entry(st, &nvm_auth_status_cache, list) {
  47                if (uuid_equal(&st->uuid, sw->uuid))
  48                        return st;
  49        }
  50
  51        return NULL;
  52}
  53
  54static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
  55{
  56        struct nvm_auth_status *st;
  57
  58        mutex_lock(&nvm_auth_status_lock);
  59        st = __nvm_get_auth_status(sw);
  60        mutex_unlock(&nvm_auth_status_lock);
  61
  62        *status = st ? st->status : 0;
  63}
  64
  65static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
  66{
  67        struct nvm_auth_status *st;
  68
  69        if (WARN_ON(!sw->uuid))
  70                return;
  71
  72        mutex_lock(&nvm_auth_status_lock);
  73        st = __nvm_get_auth_status(sw);
  74
  75        if (!st) {
  76                st = kzalloc(sizeof(*st), GFP_KERNEL);
  77                if (!st)
  78                        goto unlock;
  79
  80                memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
  81                INIT_LIST_HEAD(&st->list);
  82                list_add_tail(&st->list, &nvm_auth_status_cache);
  83        }
  84
  85        st->status = status;
  86unlock:
  87        mutex_unlock(&nvm_auth_status_lock);
  88}
  89
  90static void nvm_clear_auth_status(const struct tb_switch *sw)
  91{
  92        struct nvm_auth_status *st;
  93
  94        mutex_lock(&nvm_auth_status_lock);
  95        st = __nvm_get_auth_status(sw);
  96        if (st) {
  97                list_del(&st->list);
  98                kfree(st);
  99        }
 100        mutex_unlock(&nvm_auth_status_lock);
 101}
 102
 103static int nvm_validate_and_write(struct tb_switch *sw)
 104{
 105        unsigned int image_size, hdr_size;
 106        const u8 *buf = sw->nvm->buf;
 107        u16 ds_size;
 108        int ret;
 109
 110        if (!buf)
 111                return -EINVAL;
 112
 113        image_size = sw->nvm->buf_data_size;
 114        if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
 115                return -EINVAL;
 116
 117        /*
 118         * FARB pointer must point inside the image and must at least
 119         * contain parts of the digital section we will be reading here.
 120         */
 121        hdr_size = (*(u32 *)buf) & 0xffffff;
 122        if (hdr_size + NVM_DEVID + 2 >= image_size)
 123                return -EINVAL;
 124
 125        /* Digital section start should be aligned to 4k page */
 126        if (!IS_ALIGNED(hdr_size, SZ_4K))
 127                return -EINVAL;
 128
 129        /*
 130         * Read digital section size and check that it also fits inside
 131         * the image.
 132         */
 133        ds_size = *(u16 *)(buf + hdr_size);
 134        if (ds_size >= image_size)
 135                return -EINVAL;
 136
 137        if (!sw->safe_mode) {
 138                u16 device_id;
 139
 140                /*
 141                 * Make sure the device ID in the image matches the one
 142                 * we read from the switch config space.
 143                 */
 144                device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
 145                if (device_id != sw->config.device_id)
 146                        return -EINVAL;
 147
 148                if (sw->generation < 3) {
 149                        /* Write CSS headers first */
 150                        ret = dma_port_flash_write(sw->dma_port,
 151                                DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
 152                                DMA_PORT_CSS_MAX_SIZE);
 153                        if (ret)
 154                                return ret;
 155                }
 156
 157                /* Skip headers in the image */
 158                buf += hdr_size;
 159                image_size -= hdr_size;
 160        }
 161
 162        if (tb_switch_is_usb4(sw))
 163                ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
 164        else
 165                ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
 166        if (!ret)
 167                sw->nvm->flushed = true;
 168        return ret;
 169}
 170
 171static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
 172{
 173        int ret = 0;
 174
 175        /*
 176         * Root switch NVM upgrade requires that we disconnect the
 177         * existing paths first (in case it is not in safe mode
 178         * already).
 179         */
 180        if (!sw->safe_mode) {
 181                u32 status;
 182
 183                ret = tb_domain_disconnect_all_paths(sw->tb);
 184                if (ret)
 185                        return ret;
 186                /*
 187                 * The host controller goes away pretty soon after this if
 188                 * everything goes well so getting timeout is expected.
 189                 */
 190                ret = dma_port_flash_update_auth(sw->dma_port);
 191                if (!ret || ret == -ETIMEDOUT)
 192                        return 0;
 193
 194                /*
 195                 * Any error from update auth operation requires power
 196                 * cycling of the host router.
 197                 */
 198                tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
 199                if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
 200                        nvm_set_auth_status(sw, status);
 201        }
 202
 203        /*
 204         * From safe mode we can get out by just power cycling the
 205         * switch.
 206         */
 207        dma_port_power_cycle(sw->dma_port);
 208        return ret;
 209}
 210
 211static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
 212{
 213        int ret, retries = 10;
 214
 215        ret = dma_port_flash_update_auth(sw->dma_port);
 216        switch (ret) {
 217        case 0:
 218        case -ETIMEDOUT:
 219        case -EACCES:
 220        case -EINVAL:
 221                /* Power cycle is required */
 222                break;
 223        default:
 224                return ret;
 225        }
 226
 227        /*
 228         * Poll here for the authentication status. It takes some time
 229         * for the device to respond (we get timeout for a while). Once
 230         * we get response the device needs to be power cycled in order
 231         * to the new NVM to be taken into use.
 232         */
 233        do {
 234                u32 status;
 235
 236                ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
 237                if (ret < 0 && ret != -ETIMEDOUT)
 238                        return ret;
 239                if (ret > 0) {
 240                        if (status) {
 241                                tb_sw_warn(sw, "failed to authenticate NVM\n");
 242                                nvm_set_auth_status(sw, status);
 243                        }
 244
 245                        tb_sw_info(sw, "power cycling the switch now\n");
 246                        dma_port_power_cycle(sw->dma_port);
 247                        return 0;
 248                }
 249
 250                msleep(500);
 251        } while (--retries);
 252
 253        return -ETIMEDOUT;
 254}
 255
 256static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
 257{
 258        struct pci_dev *root_port;
 259
 260        /*
 261         * During host router NVM upgrade we should not allow root port to
 262         * go into D3cold because some root ports cannot trigger PME
 263         * itself. To be on the safe side keep the root port in D0 during
 264         * the whole upgrade process.
 265         */
 266        root_port = pcie_find_root_port(sw->tb->nhi->pdev);
 267        if (root_port)
 268                pm_runtime_get_noresume(&root_port->dev);
 269}
 270
 271static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
 272{
 273        struct pci_dev *root_port;
 274
 275        root_port = pcie_find_root_port(sw->tb->nhi->pdev);
 276        if (root_port)
 277                pm_runtime_put(&root_port->dev);
 278}
 279
 280static inline bool nvm_readable(struct tb_switch *sw)
 281{
 282        if (tb_switch_is_usb4(sw)) {
 283                /*
 284                 * USB4 devices must support NVM operations but it is
 285                 * optional for hosts. Therefore we query the NVM sector
 286                 * size here and if it is supported assume NVM
 287                 * operations are implemented.
 288                 */
 289                return usb4_switch_nvm_sector_size(sw) > 0;
 290        }
 291
 292        /* Thunderbolt 2 and 3 devices support NVM through DMA port */
 293        return !!sw->dma_port;
 294}
 295
 296static inline bool nvm_upgradeable(struct tb_switch *sw)
 297{
 298        if (sw->no_nvm_upgrade)
 299                return false;
 300        return nvm_readable(sw);
 301}
 302
 303static inline int nvm_read(struct tb_switch *sw, unsigned int address,
 304                           void *buf, size_t size)
 305{
 306        if (tb_switch_is_usb4(sw))
 307                return usb4_switch_nvm_read(sw, address, buf, size);
 308        return dma_port_flash_read(sw->dma_port, address, buf, size);
 309}
 310
 311static int nvm_authenticate(struct tb_switch *sw)
 312{
 313        int ret;
 314
 315        if (tb_switch_is_usb4(sw))
 316                return usb4_switch_nvm_authenticate(sw);
 317
 318        if (!tb_route(sw)) {
 319                nvm_authenticate_start_dma_port(sw);
 320                ret = nvm_authenticate_host_dma_port(sw);
 321        } else {
 322                ret = nvm_authenticate_device_dma_port(sw);
 323        }
 324
 325        return ret;
 326}
 327
 328static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
 329                              size_t bytes)
 330{
 331        struct tb_nvm *nvm = priv;
 332        struct tb_switch *sw = tb_to_switch(nvm->dev);
 333        int ret;
 334
 335        pm_runtime_get_sync(&sw->dev);
 336
 337        if (!mutex_trylock(&sw->tb->lock)) {
 338                ret = restart_syscall();
 339                goto out;
 340        }
 341
 342        ret = nvm_read(sw, offset, val, bytes);
 343        mutex_unlock(&sw->tb->lock);
 344
 345out:
 346        pm_runtime_mark_last_busy(&sw->dev);
 347        pm_runtime_put_autosuspend(&sw->dev);
 348
 349        return ret;
 350}
 351
 352static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
 353                               size_t bytes)
 354{
 355        struct tb_nvm *nvm = priv;
 356        struct tb_switch *sw = tb_to_switch(nvm->dev);
 357        int ret;
 358
 359        if (!mutex_trylock(&sw->tb->lock))
 360                return restart_syscall();
 361
 362        /*
 363         * Since writing the NVM image might require some special steps,
 364         * for example when CSS headers are written, we cache the image
 365         * locally here and handle the special cases when the user asks
 366         * us to authenticate the image.
 367         */
 368        ret = tb_nvm_write_buf(nvm, offset, val, bytes);
 369        mutex_unlock(&sw->tb->lock);
 370
 371        return ret;
 372}
 373
 374static int tb_switch_nvm_add(struct tb_switch *sw)
 375{
 376        struct tb_nvm *nvm;
 377        u32 val;
 378        int ret;
 379
 380        if (!nvm_readable(sw))
 381                return 0;
 382
 383        /*
 384         * The NVM format of non-Intel hardware is not known so
 385         * currently restrict NVM upgrade for Intel hardware. We may
 386         * relax this in the future when we learn other NVM formats.
 387         */
 388        if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL &&
 389            sw->config.vendor_id != 0x8087) {
 390                dev_info(&sw->dev,
 391                         "NVM format of vendor %#x is not known, disabling NVM upgrade\n",
 392                         sw->config.vendor_id);
 393                return 0;
 394        }
 395
 396        nvm = tb_nvm_alloc(&sw->dev);
 397        if (IS_ERR(nvm))
 398                return PTR_ERR(nvm);
 399
 400        /*
 401         * If the switch is in safe-mode the only accessible portion of
 402         * the NVM is the non-active one where userspace is expected to
 403         * write new functional NVM.
 404         */
 405        if (!sw->safe_mode) {
 406                u32 nvm_size, hdr_size;
 407
 408                ret = nvm_read(sw, NVM_FLASH_SIZE, &val, sizeof(val));
 409                if (ret)
 410                        goto err_nvm;
 411
 412                hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
 413                nvm_size = (SZ_1M << (val & 7)) / 8;
 414                nvm_size = (nvm_size - hdr_size) / 2;
 415
 416                ret = nvm_read(sw, NVM_VERSION, &val, sizeof(val));
 417                if (ret)
 418                        goto err_nvm;
 419
 420                nvm->major = val >> 16;
 421                nvm->minor = val >> 8;
 422
 423                ret = tb_nvm_add_active(nvm, nvm_size, tb_switch_nvm_read);
 424                if (ret)
 425                        goto err_nvm;
 426        }
 427
 428        if (!sw->no_nvm_upgrade) {
 429                ret = tb_nvm_add_non_active(nvm, NVM_MAX_SIZE,
 430                                            tb_switch_nvm_write);
 431                if (ret)
 432                        goto err_nvm;
 433        }
 434
 435        sw->nvm = nvm;
 436        return 0;
 437
 438err_nvm:
 439        tb_nvm_free(nvm);
 440        return ret;
 441}
 442
 443static void tb_switch_nvm_remove(struct tb_switch *sw)
 444{
 445        struct tb_nvm *nvm;
 446
 447        nvm = sw->nvm;
 448        sw->nvm = NULL;
 449
 450        if (!nvm)
 451                return;
 452
 453        /* Remove authentication status in case the switch is unplugged */
 454        if (!nvm->authenticating)
 455                nvm_clear_auth_status(sw);
 456
 457        tb_nvm_free(nvm);
 458}
 459
 460/* port utility functions */
 461
 462static const char *tb_port_type(struct tb_regs_port_header *port)
 463{
 464        switch (port->type >> 16) {
 465        case 0:
 466                switch ((u8) port->type) {
 467                case 0:
 468                        return "Inactive";
 469                case 1:
 470                        return "Port";
 471                case 2:
 472                        return "NHI";
 473                default:
 474                        return "unknown";
 475                }
 476        case 0x2:
 477                return "Ethernet";
 478        case 0x8:
 479                return "SATA";
 480        case 0xe:
 481                return "DP/HDMI";
 482        case 0x10:
 483                return "PCIe";
 484        case 0x20:
 485                return "USB";
 486        default:
 487                return "unknown";
 488        }
 489}
 490
 491static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port)
 492{
 493        tb_dbg(tb,
 494               " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
 495               port->port_number, port->vendor_id, port->device_id,
 496               port->revision, port->thunderbolt_version, tb_port_type(port),
 497               port->type);
 498        tb_dbg(tb, "  Max hop id (in/out): %d/%d\n",
 499               port->max_in_hop_id, port->max_out_hop_id);
 500        tb_dbg(tb, "  Max counters: %d\n", port->max_counters);
 501        tb_dbg(tb, "  NFC Credits: %#x\n", port->nfc_credits);
 502}
 503
 504/**
 505 * tb_port_state() - get connectedness state of a port
 506 * @port: the port to check
 507 *
 508 * The port must have a TB_CAP_PHY (i.e. it should be a real port).
 509 *
 510 * Return: Returns an enum tb_port_state on success or an error code on failure.
 511 */
 512int tb_port_state(struct tb_port *port)
 513{
 514        struct tb_cap_phy phy;
 515        int res;
 516        if (port->cap_phy == 0) {
 517                tb_port_WARN(port, "does not have a PHY\n");
 518                return -EINVAL;
 519        }
 520        res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
 521        if (res)
 522                return res;
 523        return phy.state;
 524}
 525
 526/**
 527 * tb_wait_for_port() - wait for a port to become ready
 528 * @port: Port to wait
 529 * @wait_if_unplugged: Wait also when port is unplugged
 530 *
 531 * Wait up to 1 second for a port to reach state TB_PORT_UP. If
 532 * wait_if_unplugged is set then we also wait if the port is in state
 533 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
 534 * switch resume). Otherwise we only wait if a device is registered but the link
 535 * has not yet been established.
 536 *
 537 * Return: Returns an error code on failure. Returns 0 if the port is not
 538 * connected or failed to reach state TB_PORT_UP within one second. Returns 1
 539 * if the port is connected and in state TB_PORT_UP.
 540 */
 541int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
 542{
 543        int retries = 10;
 544        int state;
 545        if (!port->cap_phy) {
 546                tb_port_WARN(port, "does not have PHY\n");
 547                return -EINVAL;
 548        }
 549        if (tb_is_upstream_port(port)) {
 550                tb_port_WARN(port, "is the upstream port\n");
 551                return -EINVAL;
 552        }
 553
 554        while (retries--) {
 555                state = tb_port_state(port);
 556                if (state < 0)
 557                        return state;
 558                if (state == TB_PORT_DISABLED) {
 559                        tb_port_dbg(port, "is disabled (state: 0)\n");
 560                        return 0;
 561                }
 562                if (state == TB_PORT_UNPLUGGED) {
 563                        if (wait_if_unplugged) {
 564                                /* used during resume */
 565                                tb_port_dbg(port,
 566                                            "is unplugged (state: 7), retrying...\n");
 567                                msleep(100);
 568                                continue;
 569                        }
 570                        tb_port_dbg(port, "is unplugged (state: 7)\n");
 571                        return 0;
 572                }
 573                if (state == TB_PORT_UP) {
 574                        tb_port_dbg(port, "is connected, link is up (state: 2)\n");
 575                        return 1;
 576                }
 577
 578                /*
 579                 * After plug-in the state is TB_PORT_CONNECTING. Give it some
 580                 * time.
 581                 */
 582                tb_port_dbg(port,
 583                            "is connected, link is not up (state: %d), retrying...\n",
 584                            state);
 585                msleep(100);
 586        }
 587        tb_port_warn(port,
 588                     "failed to reach state TB_PORT_UP. Ignoring port...\n");
 589        return 0;
 590}
 591
 592/**
 593 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
 594 * @port: Port to add/remove NFC credits
 595 * @credits: Credits to add/remove
 596 *
 597 * Change the number of NFC credits allocated to @port by @credits. To remove
 598 * NFC credits pass a negative amount of credits.
 599 *
 600 * Return: Returns 0 on success or an error code on failure.
 601 */
 602int tb_port_add_nfc_credits(struct tb_port *port, int credits)
 603{
 604        u32 nfc_credits;
 605
 606        if (credits == 0 || port->sw->is_unplugged)
 607                return 0;
 608
 609        /*
 610         * USB4 restricts programming NFC buffers to lane adapters only
 611         * so skip other ports.
 612         */
 613        if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port))
 614                return 0;
 615
 616        nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
 617        nfc_credits += credits;
 618
 619        tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
 620                    port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
 621
 622        port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
 623        port->config.nfc_credits |= nfc_credits;
 624
 625        return tb_port_write(port, &port->config.nfc_credits,
 626                             TB_CFG_PORT, ADP_CS_4, 1);
 627}
 628
 629/**
 630 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
 631 * @port: Port whose counters to clear
 632 * @counter: Counter index to clear
 633 *
 634 * Return: Returns 0 on success or an error code on failure.
 635 */
 636int tb_port_clear_counter(struct tb_port *port, int counter)
 637{
 638        u32 zero[3] = { 0, 0, 0 };
 639        tb_port_dbg(port, "clearing counter %d\n", counter);
 640        return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
 641}
 642
 643/**
 644 * tb_port_unlock() - Unlock downstream port
 645 * @port: Port to unlock
 646 *
 647 * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
 648 * downstream router accessible for CM.
 649 */
 650int tb_port_unlock(struct tb_port *port)
 651{
 652        if (tb_switch_is_icm(port->sw))
 653                return 0;
 654        if (!tb_port_is_null(port))
 655                return -EINVAL;
 656        if (tb_switch_is_usb4(port->sw))
 657                return usb4_port_unlock(port);
 658        return 0;
 659}
 660
 661static int __tb_port_enable(struct tb_port *port, bool enable)
 662{
 663        int ret;
 664        u32 phy;
 665
 666        if (!tb_port_is_null(port))
 667                return -EINVAL;
 668
 669        ret = tb_port_read(port, &phy, TB_CFG_PORT,
 670                           port->cap_phy + LANE_ADP_CS_1, 1);
 671        if (ret)
 672                return ret;
 673
 674        if (enable)
 675                phy &= ~LANE_ADP_CS_1_LD;
 676        else
 677                phy |= LANE_ADP_CS_1_LD;
 678
 679        return tb_port_write(port, &phy, TB_CFG_PORT,
 680                             port->cap_phy + LANE_ADP_CS_1, 1);
 681}
 682
 683/**
 684 * tb_port_enable() - Enable lane adapter
 685 * @port: Port to enable (can be %NULL)
 686 *
 687 * This is used for lane 0 and 1 adapters to enable it.
 688 */
 689int tb_port_enable(struct tb_port *port)
 690{
 691        return __tb_port_enable(port, true);
 692}
 693
 694/**
 695 * tb_port_disable() - Disable lane adapter
 696 * @port: Port to disable (can be %NULL)
 697 *
 698 * This is used for lane 0 and 1 adapters to disable it.
 699 */
 700int tb_port_disable(struct tb_port *port)
 701{
 702        return __tb_port_enable(port, false);
 703}
 704
 705/*
 706 * tb_init_port() - initialize a port
 707 *
 708 * This is a helper method for tb_switch_alloc. Does not check or initialize
 709 * any downstream switches.
 710 *
 711 * Return: Returns 0 on success or an error code on failure.
 712 */
 713static int tb_init_port(struct tb_port *port)
 714{
 715        int res;
 716        int cap;
 717
 718        res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
 719        if (res) {
 720                if (res == -ENODEV) {
 721                        tb_dbg(port->sw->tb, " Port %d: not implemented\n",
 722                               port->port);
 723                        port->disabled = true;
 724                        return 0;
 725                }
 726                return res;
 727        }
 728
 729        /* Port 0 is the switch itself and has no PHY. */
 730        if (port->config.type == TB_TYPE_PORT && port->port != 0) {
 731                cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
 732
 733                if (cap > 0)
 734                        port->cap_phy = cap;
 735                else
 736                        tb_port_WARN(port, "non switch port without a PHY\n");
 737
 738                cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
 739                if (cap > 0)
 740                        port->cap_usb4 = cap;
 741        } else if (port->port != 0) {
 742                cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
 743                if (cap > 0)
 744                        port->cap_adap = cap;
 745        }
 746
 747        tb_dump_port(port->sw->tb, &port->config);
 748
 749        INIT_LIST_HEAD(&port->list);
 750        return 0;
 751
 752}
 753
 754static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
 755                               int max_hopid)
 756{
 757        int port_max_hopid;
 758        struct ida *ida;
 759
 760        if (in) {
 761                port_max_hopid = port->config.max_in_hop_id;
 762                ida = &port->in_hopids;
 763        } else {
 764                port_max_hopid = port->config.max_out_hop_id;
 765                ida = &port->out_hopids;
 766        }
 767
 768        /*
 769         * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
 770         * reserved.
 771         */
 772        if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID)
 773                min_hopid = TB_PATH_MIN_HOPID;
 774
 775        if (max_hopid < 0 || max_hopid > port_max_hopid)
 776                max_hopid = port_max_hopid;
 777
 778        return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
 779}
 780
 781/**
 782 * tb_port_alloc_in_hopid() - Allocate input HopID from port
 783 * @port: Port to allocate HopID for
 784 * @min_hopid: Minimum acceptable input HopID
 785 * @max_hopid: Maximum acceptable input HopID
 786 *
 787 * Return: HopID between @min_hopid and @max_hopid or negative errno in
 788 * case of error.
 789 */
 790int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
 791{
 792        return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
 793}
 794
 795/**
 796 * tb_port_alloc_out_hopid() - Allocate output HopID from port
 797 * @port: Port to allocate HopID for
 798 * @min_hopid: Minimum acceptable output HopID
 799 * @max_hopid: Maximum acceptable output HopID
 800 *
 801 * Return: HopID between @min_hopid and @max_hopid or negative errno in
 802 * case of error.
 803 */
 804int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
 805{
 806        return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
 807}
 808
 809/**
 810 * tb_port_release_in_hopid() - Release allocated input HopID from port
 811 * @port: Port whose HopID to release
 812 * @hopid: HopID to release
 813 */
 814void tb_port_release_in_hopid(struct tb_port *port, int hopid)
 815{
 816        ida_simple_remove(&port->in_hopids, hopid);
 817}
 818
 819/**
 820 * tb_port_release_out_hopid() - Release allocated output HopID from port
 821 * @port: Port whose HopID to release
 822 * @hopid: HopID to release
 823 */
 824void tb_port_release_out_hopid(struct tb_port *port, int hopid)
 825{
 826        ida_simple_remove(&port->out_hopids, hopid);
 827}
 828
 829static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
 830                                          const struct tb_switch *sw)
 831{
 832        u64 mask = (1ULL << parent->config.depth * 8) - 1;
 833        return (tb_route(parent) & mask) == (tb_route(sw) & mask);
 834}
 835
 836/**
 837 * tb_next_port_on_path() - Return next port for given port on a path
 838 * @start: Start port of the walk
 839 * @end: End port of the walk
 840 * @prev: Previous port (%NULL if this is the first)
 841 *
 842 * This function can be used to walk from one port to another if they
 843 * are connected through zero or more switches. If the @prev is dual
 844 * link port, the function follows that link and returns another end on
 845 * that same link.
 846 *
 847 * If the @end port has been reached, return %NULL.
 848 *
 849 * Domain tb->lock must be held when this function is called.
 850 */
 851struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
 852                                     struct tb_port *prev)
 853{
 854        struct tb_port *next;
 855
 856        if (!prev)
 857                return start;
 858
 859        if (prev->sw == end->sw) {
 860                if (prev == end)
 861                        return NULL;
 862                return end;
 863        }
 864
 865        if (tb_switch_is_reachable(prev->sw, end->sw)) {
 866                next = tb_port_at(tb_route(end->sw), prev->sw);
 867                /* Walk down the topology if next == prev */
 868                if (prev->remote &&
 869                    (next == prev || next->dual_link_port == prev))
 870                        next = prev->remote;
 871        } else {
 872                if (tb_is_upstream_port(prev)) {
 873                        next = prev->remote;
 874                } else {
 875                        next = tb_upstream_port(prev->sw);
 876                        /*
 877                         * Keep the same link if prev and next are both
 878                         * dual link ports.
 879                         */
 880                        if (next->dual_link_port &&
 881                            next->link_nr != prev->link_nr) {
 882                                next = next->dual_link_port;
 883                        }
 884                }
 885        }
 886
 887        return next != prev ? next : NULL;
 888}
 889
 890/**
 891 * tb_port_get_link_speed() - Get current link speed
 892 * @port: Port to check (USB4 or CIO)
 893 *
 894 * Returns link speed in Gb/s or negative errno in case of failure.
 895 */
 896int tb_port_get_link_speed(struct tb_port *port)
 897{
 898        u32 val, speed;
 899        int ret;
 900
 901        if (!port->cap_phy)
 902                return -EINVAL;
 903
 904        ret = tb_port_read(port, &val, TB_CFG_PORT,
 905                           port->cap_phy + LANE_ADP_CS_1, 1);
 906        if (ret)
 907                return ret;
 908
 909        speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
 910                LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
 911        return speed == LANE_ADP_CS_1_CURRENT_SPEED_GEN3 ? 20 : 10;
 912}
 913
 914/**
 915 * tb_port_get_link_width() - Get current link width
 916 * @port: Port to check (USB4 or CIO)
 917 *
 918 * Returns link width. Return values can be 1 (Single-Lane), 2 (Dual-Lane)
 919 * or negative errno in case of failure.
 920 */
 921int tb_port_get_link_width(struct tb_port *port)
 922{
 923        u32 val;
 924        int ret;
 925
 926        if (!port->cap_phy)
 927                return -EINVAL;
 928
 929        ret = tb_port_read(port, &val, TB_CFG_PORT,
 930                           port->cap_phy + LANE_ADP_CS_1, 1);
 931        if (ret)
 932                return ret;
 933
 934        return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
 935                LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
 936}
 937
 938static bool tb_port_is_width_supported(struct tb_port *port, int width)
 939{
 940        u32 phy, widths;
 941        int ret;
 942
 943        if (!port->cap_phy)
 944                return false;
 945
 946        ret = tb_port_read(port, &phy, TB_CFG_PORT,
 947                           port->cap_phy + LANE_ADP_CS_0, 1);
 948        if (ret)
 949                return false;
 950
 951        widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >>
 952                LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT;
 953
 954        return !!(widths & width);
 955}
 956
 957static int tb_port_set_link_width(struct tb_port *port, unsigned int width)
 958{
 959        u32 val;
 960        int ret;
 961
 962        if (!port->cap_phy)
 963                return -EINVAL;
 964
 965        ret = tb_port_read(port, &val, TB_CFG_PORT,
 966                           port->cap_phy + LANE_ADP_CS_1, 1);
 967        if (ret)
 968                return ret;
 969
 970        val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
 971        switch (width) {
 972        case 1:
 973                val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
 974                        LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
 975                break;
 976        case 2:
 977                val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
 978                        LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
 979                break;
 980        default:
 981                return -EINVAL;
 982        }
 983
 984        val |= LANE_ADP_CS_1_LB;
 985
 986        return tb_port_write(port, &val, TB_CFG_PORT,
 987                             port->cap_phy + LANE_ADP_CS_1, 1);
 988}
 989
 990/**
 991 * tb_port_lane_bonding_enable() - Enable bonding on port
 992 * @port: port to enable
 993 *
 994 * Enable bonding by setting the link width of the port and the
 995 * other port in case of dual link port.
 996 *
 997 * Return: %0 in case of success and negative errno in case of error
 998 */
 999int tb_port_lane_bonding_enable(struct tb_port *port)
1000{
1001        int ret;
1002
1003        /*
1004         * Enable lane bonding for both links if not already enabled by
1005         * for example the boot firmware.
1006         */
1007        ret = tb_port_get_link_width(port);
1008        if (ret == 1) {
1009                ret = tb_port_set_link_width(port, 2);
1010                if (ret)
1011                        return ret;
1012        }
1013
1014        ret = tb_port_get_link_width(port->dual_link_port);
1015        if (ret == 1) {
1016                ret = tb_port_set_link_width(port->dual_link_port, 2);
1017                if (ret) {
1018                        tb_port_set_link_width(port, 1);
1019                        return ret;
1020                }
1021        }
1022
1023        port->bonded = true;
1024        port->dual_link_port->bonded = true;
1025
1026        return 0;
1027}
1028
1029/**
1030 * tb_port_lane_bonding_disable() - Disable bonding on port
1031 * @port: port to disable
1032 *
1033 * Disable bonding by setting the link width of the port and the
1034 * other port in case of dual link port.
1035 *
1036 */
1037void tb_port_lane_bonding_disable(struct tb_port *port)
1038{
1039        port->dual_link_port->bonded = false;
1040        port->bonded = false;
1041
1042        tb_port_set_link_width(port->dual_link_port, 1);
1043        tb_port_set_link_width(port, 1);
1044}
1045
1046static int tb_port_start_lane_initialization(struct tb_port *port)
1047{
1048        int ret;
1049
1050        if (tb_switch_is_usb4(port->sw))
1051                return 0;
1052
1053        ret = tb_lc_start_lane_initialization(port);
1054        return ret == -EINVAL ? 0 : ret;
1055}
1056
1057/**
1058 * tb_port_is_enabled() - Is the adapter port enabled
1059 * @port: Port to check
1060 */
1061bool tb_port_is_enabled(struct tb_port *port)
1062{
1063        switch (port->config.type) {
1064        case TB_TYPE_PCIE_UP:
1065        case TB_TYPE_PCIE_DOWN:
1066                return tb_pci_port_is_enabled(port);
1067
1068        case TB_TYPE_DP_HDMI_IN:
1069        case TB_TYPE_DP_HDMI_OUT:
1070                return tb_dp_port_is_enabled(port);
1071
1072        case TB_TYPE_USB3_UP:
1073        case TB_TYPE_USB3_DOWN:
1074                return tb_usb3_port_is_enabled(port);
1075
1076        default:
1077                return false;
1078        }
1079}
1080
1081/**
1082 * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1083 * @port: USB3 adapter port to check
1084 */
1085bool tb_usb3_port_is_enabled(struct tb_port *port)
1086{
1087        u32 data;
1088
1089        if (tb_port_read(port, &data, TB_CFG_PORT,
1090                         port->cap_adap + ADP_USB3_CS_0, 1))
1091                return false;
1092
1093        return !!(data & ADP_USB3_CS_0_PE);
1094}
1095
1096/**
1097 * tb_usb3_port_enable() - Enable USB3 adapter port
1098 * @port: USB3 adapter port to enable
1099 * @enable: Enable/disable the USB3 adapter
1100 */
1101int tb_usb3_port_enable(struct tb_port *port, bool enable)
1102{
1103        u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1104                          : ADP_USB3_CS_0_V;
1105
1106        if (!port->cap_adap)
1107                return -ENXIO;
1108        return tb_port_write(port, &word, TB_CFG_PORT,
1109                             port->cap_adap + ADP_USB3_CS_0, 1);
1110}
1111
1112/**
1113 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1114 * @port: PCIe port to check
1115 */
1116bool tb_pci_port_is_enabled(struct tb_port *port)
1117{
1118        u32 data;
1119
1120        if (tb_port_read(port, &data, TB_CFG_PORT,
1121                         port->cap_adap + ADP_PCIE_CS_0, 1))
1122                return false;
1123
1124        return !!(data & ADP_PCIE_CS_0_PE);
1125}
1126
1127/**
1128 * tb_pci_port_enable() - Enable PCIe adapter port
1129 * @port: PCIe port to enable
1130 * @enable: Enable/disable the PCIe adapter
1131 */
1132int tb_pci_port_enable(struct tb_port *port, bool enable)
1133{
1134        u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1135        if (!port->cap_adap)
1136                return -ENXIO;
1137        return tb_port_write(port, &word, TB_CFG_PORT,
1138                             port->cap_adap + ADP_PCIE_CS_0, 1);
1139}
1140
1141/**
1142 * tb_dp_port_hpd_is_active() - Is HPD already active
1143 * @port: DP out port to check
1144 *
1145 * Checks if the DP OUT adapter port has HDP bit already set.
1146 */
1147int tb_dp_port_hpd_is_active(struct tb_port *port)
1148{
1149        u32 data;
1150        int ret;
1151
1152        ret = tb_port_read(port, &data, TB_CFG_PORT,
1153                           port->cap_adap + ADP_DP_CS_2, 1);
1154        if (ret)
1155                return ret;
1156
1157        return !!(data & ADP_DP_CS_2_HDP);
1158}
1159
1160/**
1161 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1162 * @port: Port to clear HPD
1163 *
1164 * If the DP IN port has HDP set, this function can be used to clear it.
1165 */
1166int tb_dp_port_hpd_clear(struct tb_port *port)
1167{
1168        u32 data;
1169        int ret;
1170
1171        ret = tb_port_read(port, &data, TB_CFG_PORT,
1172                           port->cap_adap + ADP_DP_CS_3, 1);
1173        if (ret)
1174                return ret;
1175
1176        data |= ADP_DP_CS_3_HDPC;
1177        return tb_port_write(port, &data, TB_CFG_PORT,
1178                             port->cap_adap + ADP_DP_CS_3, 1);
1179}
1180
1181/**
1182 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1183 * @port: DP IN/OUT port to set hops
1184 * @video: Video Hop ID
1185 * @aux_tx: AUX TX Hop ID
1186 * @aux_rx: AUX RX Hop ID
1187 *
1188 * Programs specified Hop IDs for DP IN/OUT port.
1189 */
1190int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1191                        unsigned int aux_tx, unsigned int aux_rx)
1192{
1193        u32 data[2];
1194        int ret;
1195
1196        ret = tb_port_read(port, data, TB_CFG_PORT,
1197                           port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1198        if (ret)
1199                return ret;
1200
1201        data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1202        data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1203        data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1204
1205        data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1206                ADP_DP_CS_0_VIDEO_HOPID_MASK;
1207        data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1208        data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1209                ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1210
1211        return tb_port_write(port, data, TB_CFG_PORT,
1212                             port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1213}
1214
1215/**
1216 * tb_dp_port_is_enabled() - Is DP adapter port enabled
1217 * @port: DP adapter port to check
1218 */
1219bool tb_dp_port_is_enabled(struct tb_port *port)
1220{
1221        u32 data[2];
1222
1223        if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1224                         ARRAY_SIZE(data)))
1225                return false;
1226
1227        return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1228}
1229
1230/**
1231 * tb_dp_port_enable() - Enables/disables DP paths of a port
1232 * @port: DP IN/OUT port
1233 * @enable: Enable/disable DP path
1234 *
1235 * Once Hop IDs are programmed DP paths can be enabled or disabled by
1236 * calling this function.
1237 */
1238int tb_dp_port_enable(struct tb_port *port, bool enable)
1239{
1240        u32 data[2];
1241        int ret;
1242
1243        ret = tb_port_read(port, data, TB_CFG_PORT,
1244                          port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1245        if (ret)
1246                return ret;
1247
1248        if (enable)
1249                data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1250        else
1251                data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1252
1253        return tb_port_write(port, data, TB_CFG_PORT,
1254                             port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1255}
1256
1257/* switch utility functions */
1258
1259static const char *tb_switch_generation_name(const struct tb_switch *sw)
1260{
1261        switch (sw->generation) {
1262        case 1:
1263                return "Thunderbolt 1";
1264        case 2:
1265                return "Thunderbolt 2";
1266        case 3:
1267                return "Thunderbolt 3";
1268        case 4:
1269                return "USB4";
1270        default:
1271                return "Unknown";
1272        }
1273}
1274
1275static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1276{
1277        const struct tb_regs_switch_header *regs = &sw->config;
1278
1279        tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1280               tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1281               regs->revision, regs->thunderbolt_version);
1282        tb_dbg(tb, "  Max Port Number: %d\n", regs->max_port_number);
1283        tb_dbg(tb, "  Config:\n");
1284        tb_dbg(tb,
1285                "   Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1286               regs->upstream_port_number, regs->depth,
1287               (((u64) regs->route_hi) << 32) | regs->route_lo,
1288               regs->enabled, regs->plug_events_delay);
1289        tb_dbg(tb, "   unknown1: %#x unknown4: %#x\n",
1290               regs->__unknown1, regs->__unknown4);
1291}
1292
1293/**
1294 * tb_switch_reset() - reconfigure route, enable and send TB_CFG_PKG_RESET
1295 * @sw: Switch to reset
1296 *
1297 * Return: Returns 0 on success or an error code on failure.
1298 */
1299int tb_switch_reset(struct tb_switch *sw)
1300{
1301        struct tb_cfg_result res;
1302
1303        if (sw->generation > 1)
1304                return 0;
1305
1306        tb_sw_dbg(sw, "resetting switch\n");
1307
1308        res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2,
1309                              TB_CFG_SWITCH, 2, 2);
1310        if (res.err)
1311                return res.err;
1312        res = tb_cfg_reset(sw->tb->ctl, tb_route(sw));
1313        if (res.err > 0)
1314                return -EIO;
1315        return res.err;
1316}
1317
1318/*
1319 * tb_plug_events_active() - enable/disable plug events on a switch
1320 *
1321 * Also configures a sane plug_events_delay of 255ms.
1322 *
1323 * Return: Returns 0 on success or an error code on failure.
1324 */
1325static int tb_plug_events_active(struct tb_switch *sw, bool active)
1326{
1327        u32 data;
1328        int res;
1329
1330        if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw))
1331                return 0;
1332
1333        sw->config.plug_events_delay = 0xff;
1334        res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1335        if (res)
1336                return res;
1337
1338        res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1339        if (res)
1340                return res;
1341
1342        if (active) {
1343                data = data & 0xFFFFFF83;
1344                switch (sw->config.device_id) {
1345                case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1346                case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1347                case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1348                        break;
1349                default:
1350                        data |= 4;
1351                }
1352        } else {
1353                data = data | 0x7c;
1354        }
1355        return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1356                           sw->cap_plug_events + 1, 1);
1357}
1358
1359static ssize_t authorized_show(struct device *dev,
1360                               struct device_attribute *attr,
1361                               char *buf)
1362{
1363        struct tb_switch *sw = tb_to_switch(dev);
1364
1365        return sprintf(buf, "%u\n", sw->authorized);
1366}
1367
1368static int disapprove_switch(struct device *dev, void *not_used)
1369{
1370        struct tb_switch *sw;
1371
1372        sw = tb_to_switch(dev);
1373        if (sw && sw->authorized) {
1374                int ret;
1375
1376                /* First children */
1377                ret = device_for_each_child_reverse(&sw->dev, NULL, disapprove_switch);
1378                if (ret)
1379                        return ret;
1380
1381                ret = tb_domain_disapprove_switch(sw->tb, sw);
1382                if (ret)
1383                        return ret;
1384
1385                sw->authorized = 0;
1386                kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
1387        }
1388
1389        return 0;
1390}
1391
1392static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1393{
1394        int ret = -EINVAL;
1395
1396        if (!mutex_trylock(&sw->tb->lock))
1397                return restart_syscall();
1398
1399        if (!!sw->authorized == !!val)
1400                goto unlock;
1401
1402        switch (val) {
1403        /* Disapprove switch */
1404        case 0:
1405                if (tb_route(sw)) {
1406                        ret = disapprove_switch(&sw->dev, NULL);
1407                        goto unlock;
1408                }
1409                break;
1410
1411        /* Approve switch */
1412        case 1:
1413                if (sw->key)
1414                        ret = tb_domain_approve_switch_key(sw->tb, sw);
1415                else
1416                        ret = tb_domain_approve_switch(sw->tb, sw);
1417                break;
1418
1419        /* Challenge switch */
1420        case 2:
1421                if (sw->key)
1422                        ret = tb_domain_challenge_switch_key(sw->tb, sw);
1423                break;
1424
1425        default:
1426                break;
1427        }
1428
1429        if (!ret) {
1430                sw->authorized = val;
1431                /* Notify status change to the userspace */
1432                kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
1433        }
1434
1435unlock:
1436        mutex_unlock(&sw->tb->lock);
1437        return ret;
1438}
1439
1440static ssize_t authorized_store(struct device *dev,
1441                                struct device_attribute *attr,
1442                                const char *buf, size_t count)
1443{
1444        struct tb_switch *sw = tb_to_switch(dev);
1445        unsigned int val;
1446        ssize_t ret;
1447
1448        ret = kstrtouint(buf, 0, &val);
1449        if (ret)
1450                return ret;
1451        if (val > 2)
1452                return -EINVAL;
1453
1454        pm_runtime_get_sync(&sw->dev);
1455        ret = tb_switch_set_authorized(sw, val);
1456        pm_runtime_mark_last_busy(&sw->dev);
1457        pm_runtime_put_autosuspend(&sw->dev);
1458
1459        return ret ? ret : count;
1460}
1461static DEVICE_ATTR_RW(authorized);
1462
1463static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1464                         char *buf)
1465{
1466        struct tb_switch *sw = tb_to_switch(dev);
1467
1468        return sprintf(buf, "%u\n", sw->boot);
1469}
1470static DEVICE_ATTR_RO(boot);
1471
1472static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1473                           char *buf)
1474{
1475        struct tb_switch *sw = tb_to_switch(dev);
1476
1477        return sprintf(buf, "%#x\n", sw->device);
1478}
1479static DEVICE_ATTR_RO(device);
1480
1481static ssize_t
1482device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1483{
1484        struct tb_switch *sw = tb_to_switch(dev);
1485
1486        return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
1487}
1488static DEVICE_ATTR_RO(device_name);
1489
1490static ssize_t
1491generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1492{
1493        struct tb_switch *sw = tb_to_switch(dev);
1494
1495        return sprintf(buf, "%u\n", sw->generation);
1496}
1497static DEVICE_ATTR_RO(generation);
1498
1499static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1500                        char *buf)
1501{
1502        struct tb_switch *sw = tb_to_switch(dev);
1503        ssize_t ret;
1504
1505        if (!mutex_trylock(&sw->tb->lock))
1506                return restart_syscall();
1507
1508        if (sw->key)
1509                ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1510        else
1511                ret = sprintf(buf, "\n");
1512
1513        mutex_unlock(&sw->tb->lock);
1514        return ret;
1515}
1516
1517static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1518                         const char *buf, size_t count)
1519{
1520        struct tb_switch *sw = tb_to_switch(dev);
1521        u8 key[TB_SWITCH_KEY_SIZE];
1522        ssize_t ret = count;
1523        bool clear = false;
1524
1525        if (!strcmp(buf, "\n"))
1526                clear = true;
1527        else if (hex2bin(key, buf, sizeof(key)))
1528                return -EINVAL;
1529
1530        if (!mutex_trylock(&sw->tb->lock))
1531                return restart_syscall();
1532
1533        if (sw->authorized) {
1534                ret = -EBUSY;
1535        } else {
1536                kfree(sw->key);
1537                if (clear) {
1538                        sw->key = NULL;
1539                } else {
1540                        sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1541                        if (!sw->key)
1542                                ret = -ENOMEM;
1543                }
1544        }
1545
1546        mutex_unlock(&sw->tb->lock);
1547        return ret;
1548}
1549static DEVICE_ATTR(key, 0600, key_show, key_store);
1550
1551static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1552                          char *buf)
1553{
1554        struct tb_switch *sw = tb_to_switch(dev);
1555
1556        return sprintf(buf, "%u.0 Gb/s\n", sw->link_speed);
1557}
1558
1559/*
1560 * Currently all lanes must run at the same speed but we expose here
1561 * both directions to allow possible asymmetric links in the future.
1562 */
1563static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1564static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1565
1566static ssize_t lanes_show(struct device *dev, struct device_attribute *attr,
1567                          char *buf)
1568{
1569        struct tb_switch *sw = tb_to_switch(dev);
1570
1571        return sprintf(buf, "%u\n", sw->link_width);
1572}
1573
1574/*
1575 * Currently link has same amount of lanes both directions (1 or 2) but
1576 * expose them separately to allow possible asymmetric links in the future.
1577 */
1578static DEVICE_ATTR(rx_lanes, 0444, lanes_show, NULL);
1579static DEVICE_ATTR(tx_lanes, 0444, lanes_show, NULL);
1580
1581static ssize_t nvm_authenticate_show(struct device *dev,
1582        struct device_attribute *attr, char *buf)
1583{
1584        struct tb_switch *sw = tb_to_switch(dev);
1585        u32 status;
1586
1587        nvm_get_auth_status(sw, &status);
1588        return sprintf(buf, "%#x\n", status);
1589}
1590
1591static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
1592                                      bool disconnect)
1593{
1594        struct tb_switch *sw = tb_to_switch(dev);
1595        int val;
1596        int ret;
1597
1598        pm_runtime_get_sync(&sw->dev);
1599
1600        if (!mutex_trylock(&sw->tb->lock)) {
1601                ret = restart_syscall();
1602                goto exit_rpm;
1603        }
1604
1605        /* If NVMem devices are not yet added */
1606        if (!sw->nvm) {
1607                ret = -EAGAIN;
1608                goto exit_unlock;
1609        }
1610
1611        ret = kstrtoint(buf, 10, &val);
1612        if (ret)
1613                goto exit_unlock;
1614
1615        /* Always clear the authentication status */
1616        nvm_clear_auth_status(sw);
1617
1618        if (val > 0) {
1619                if (!sw->nvm->flushed) {
1620                        if (!sw->nvm->buf) {
1621                                ret = -EINVAL;
1622                                goto exit_unlock;
1623                        }
1624
1625                        ret = nvm_validate_and_write(sw);
1626                        if (ret || val == WRITE_ONLY)
1627                                goto exit_unlock;
1628                }
1629                if (val == WRITE_AND_AUTHENTICATE) {
1630                        if (disconnect) {
1631                                ret = tb_lc_force_power(sw);
1632                        } else {
1633                                sw->nvm->authenticating = true;
1634                                ret = nvm_authenticate(sw);
1635                        }
1636                }
1637        }
1638
1639exit_unlock:
1640        mutex_unlock(&sw->tb->lock);
1641exit_rpm:
1642        pm_runtime_mark_last_busy(&sw->dev);
1643        pm_runtime_put_autosuspend(&sw->dev);
1644
1645        return ret;
1646}
1647
1648static ssize_t nvm_authenticate_store(struct device *dev,
1649        struct device_attribute *attr, const char *buf, size_t count)
1650{
1651        int ret = nvm_authenticate_sysfs(dev, buf, false);
1652        if (ret)
1653                return ret;
1654        return count;
1655}
1656static DEVICE_ATTR_RW(nvm_authenticate);
1657
1658static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
1659        struct device_attribute *attr, char *buf)
1660{
1661        return nvm_authenticate_show(dev, attr, buf);
1662}
1663
1664static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
1665        struct device_attribute *attr, const char *buf, size_t count)
1666{
1667        int ret;
1668
1669        ret = nvm_authenticate_sysfs(dev, buf, true);
1670        return ret ? ret : count;
1671}
1672static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
1673
1674static ssize_t nvm_version_show(struct device *dev,
1675                                struct device_attribute *attr, char *buf)
1676{
1677        struct tb_switch *sw = tb_to_switch(dev);
1678        int ret;
1679
1680        if (!mutex_trylock(&sw->tb->lock))
1681                return restart_syscall();
1682
1683        if (sw->safe_mode)
1684                ret = -ENODATA;
1685        else if (!sw->nvm)
1686                ret = -EAGAIN;
1687        else
1688                ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
1689
1690        mutex_unlock(&sw->tb->lock);
1691
1692        return ret;
1693}
1694static DEVICE_ATTR_RO(nvm_version);
1695
1696static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
1697                           char *buf)
1698{
1699        struct tb_switch *sw = tb_to_switch(dev);
1700
1701        return sprintf(buf, "%#x\n", sw->vendor);
1702}
1703static DEVICE_ATTR_RO(vendor);
1704
1705static ssize_t
1706vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1707{
1708        struct tb_switch *sw = tb_to_switch(dev);
1709
1710        return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
1711}
1712static DEVICE_ATTR_RO(vendor_name);
1713
1714static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
1715                              char *buf)
1716{
1717        struct tb_switch *sw = tb_to_switch(dev);
1718
1719        return sprintf(buf, "%pUb\n", sw->uuid);
1720}
1721static DEVICE_ATTR_RO(unique_id);
1722
1723static struct attribute *switch_attrs[] = {
1724        &dev_attr_authorized.attr,
1725        &dev_attr_boot.attr,
1726        &dev_attr_device.attr,
1727        &dev_attr_device_name.attr,
1728        &dev_attr_generation.attr,
1729        &dev_attr_key.attr,
1730        &dev_attr_nvm_authenticate.attr,
1731        &dev_attr_nvm_authenticate_on_disconnect.attr,
1732        &dev_attr_nvm_version.attr,
1733        &dev_attr_rx_speed.attr,
1734        &dev_attr_rx_lanes.attr,
1735        &dev_attr_tx_speed.attr,
1736        &dev_attr_tx_lanes.attr,
1737        &dev_attr_vendor.attr,
1738        &dev_attr_vendor_name.attr,
1739        &dev_attr_unique_id.attr,
1740        NULL,
1741};
1742
1743static umode_t switch_attr_is_visible(struct kobject *kobj,
1744                                      struct attribute *attr, int n)
1745{
1746        struct device *dev = kobj_to_dev(kobj);
1747        struct tb_switch *sw = tb_to_switch(dev);
1748
1749        if (attr == &dev_attr_authorized.attr) {
1750                if (sw->tb->security_level == TB_SECURITY_NOPCIE ||
1751                    sw->tb->security_level == TB_SECURITY_DPONLY)
1752                        return 0;
1753        } else if (attr == &dev_attr_device.attr) {
1754                if (!sw->device)
1755                        return 0;
1756        } else if (attr == &dev_attr_device_name.attr) {
1757                if (!sw->device_name)
1758                        return 0;
1759        } else if (attr == &dev_attr_vendor.attr)  {
1760                if (!sw->vendor)
1761                        return 0;
1762        } else if (attr == &dev_attr_vendor_name.attr)  {
1763                if (!sw->vendor_name)
1764                        return 0;
1765        } else if (attr == &dev_attr_key.attr) {
1766                if (tb_route(sw) &&
1767                    sw->tb->security_level == TB_SECURITY_SECURE &&
1768                    sw->security_level == TB_SECURITY_SECURE)
1769                        return attr->mode;
1770                return 0;
1771        } else if (attr == &dev_attr_rx_speed.attr ||
1772                   attr == &dev_attr_rx_lanes.attr ||
1773                   attr == &dev_attr_tx_speed.attr ||
1774                   attr == &dev_attr_tx_lanes.attr) {
1775                if (tb_route(sw))
1776                        return attr->mode;
1777                return 0;
1778        } else if (attr == &dev_attr_nvm_authenticate.attr) {
1779                if (nvm_upgradeable(sw))
1780                        return attr->mode;
1781                return 0;
1782        } else if (attr == &dev_attr_nvm_version.attr) {
1783                if (nvm_readable(sw))
1784                        return attr->mode;
1785                return 0;
1786        } else if (attr == &dev_attr_boot.attr) {
1787                if (tb_route(sw))
1788                        return attr->mode;
1789                return 0;
1790        } else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
1791                if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
1792                        return attr->mode;
1793                return 0;
1794        }
1795
1796        return sw->safe_mode ? 0 : attr->mode;
1797}
1798
1799static const struct attribute_group switch_group = {
1800        .is_visible = switch_attr_is_visible,
1801        .attrs = switch_attrs,
1802};
1803
1804static const struct attribute_group *switch_groups[] = {
1805        &switch_group,
1806        NULL,
1807};
1808
1809static void tb_switch_release(struct device *dev)
1810{
1811        struct tb_switch *sw = tb_to_switch(dev);
1812        struct tb_port *port;
1813
1814        dma_port_free(sw->dma_port);
1815
1816        tb_switch_for_each_port(sw, port) {
1817                ida_destroy(&port->in_hopids);
1818                ida_destroy(&port->out_hopids);
1819        }
1820
1821        kfree(sw->uuid);
1822        kfree(sw->device_name);
1823        kfree(sw->vendor_name);
1824        kfree(sw->ports);
1825        kfree(sw->drom);
1826        kfree(sw->key);
1827        kfree(sw);
1828}
1829
1830static int tb_switch_uevent(struct device *dev, struct kobj_uevent_env *env)
1831{
1832        struct tb_switch *sw = tb_to_switch(dev);
1833        const char *type;
1834
1835        if (sw->config.thunderbolt_version == USB4_VERSION_1_0) {
1836                if (add_uevent_var(env, "USB4_VERSION=1.0"))
1837                        return -ENOMEM;
1838        }
1839
1840        if (!tb_route(sw)) {
1841                type = "host";
1842        } else {
1843                const struct tb_port *port;
1844                bool hub = false;
1845
1846                /* Device is hub if it has any downstream ports */
1847                tb_switch_for_each_port(sw, port) {
1848                        if (!port->disabled && !tb_is_upstream_port(port) &&
1849                             tb_port_is_null(port)) {
1850                                hub = true;
1851                                break;
1852                        }
1853                }
1854
1855                type = hub ? "hub" : "device";
1856        }
1857
1858        if (add_uevent_var(env, "USB4_TYPE=%s", type))
1859                return -ENOMEM;
1860        return 0;
1861}
1862
1863/*
1864 * Currently only need to provide the callbacks. Everything else is handled
1865 * in the connection manager.
1866 */
1867static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
1868{
1869        struct tb_switch *sw = tb_to_switch(dev);
1870        const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1871
1872        if (cm_ops->runtime_suspend_switch)
1873                return cm_ops->runtime_suspend_switch(sw);
1874
1875        return 0;
1876}
1877
1878static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
1879{
1880        struct tb_switch *sw = tb_to_switch(dev);
1881        const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1882
1883        if (cm_ops->runtime_resume_switch)
1884                return cm_ops->runtime_resume_switch(sw);
1885        return 0;
1886}
1887
1888static const struct dev_pm_ops tb_switch_pm_ops = {
1889        SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
1890                           NULL)
1891};
1892
1893struct device_type tb_switch_type = {
1894        .name = "thunderbolt_device",
1895        .release = tb_switch_release,
1896        .uevent = tb_switch_uevent,
1897        .pm = &tb_switch_pm_ops,
1898};
1899
1900static int tb_switch_get_generation(struct tb_switch *sw)
1901{
1902        switch (sw->config.device_id) {
1903        case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1904        case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1905        case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
1906        case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
1907        case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1908        case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1909        case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
1910        case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
1911                return 1;
1912
1913        case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
1914        case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
1915        case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
1916                return 2;
1917
1918        case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
1919        case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
1920        case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
1921        case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
1922        case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
1923        case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
1924        case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
1925        case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
1926        case PCI_DEVICE_ID_INTEL_ICL_NHI0:
1927        case PCI_DEVICE_ID_INTEL_ICL_NHI1:
1928                return 3;
1929
1930        default:
1931                if (tb_switch_is_usb4(sw))
1932                        return 4;
1933
1934                /*
1935                 * For unknown switches assume generation to be 1 to be
1936                 * on the safe side.
1937                 */
1938                tb_sw_warn(sw, "unsupported switch device id %#x\n",
1939                           sw->config.device_id);
1940                return 1;
1941        }
1942}
1943
1944static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
1945{
1946        int max_depth;
1947
1948        if (tb_switch_is_usb4(sw) ||
1949            (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
1950                max_depth = USB4_SWITCH_MAX_DEPTH;
1951        else
1952                max_depth = TB_SWITCH_MAX_DEPTH;
1953
1954        return depth > max_depth;
1955}
1956
1957/**
1958 * tb_switch_alloc() - allocate a switch
1959 * @tb: Pointer to the owning domain
1960 * @parent: Parent device for this switch
1961 * @route: Route string for this switch
1962 *
1963 * Allocates and initializes a switch. Will not upload configuration to
1964 * the switch. For that you need to call tb_switch_configure()
1965 * separately. The returned switch should be released by calling
1966 * tb_switch_put().
1967 *
1968 * Return: Pointer to the allocated switch or ERR_PTR() in case of
1969 * failure.
1970 */
1971struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
1972                                  u64 route)
1973{
1974        struct tb_switch *sw;
1975        int upstream_port;
1976        int i, ret, depth;
1977
1978        /* Unlock the downstream port so we can access the switch below */
1979        if (route) {
1980                struct tb_switch *parent_sw = tb_to_switch(parent);
1981                struct tb_port *down;
1982
1983                down = tb_port_at(route, parent_sw);
1984                tb_port_unlock(down);
1985        }
1986
1987        depth = tb_route_length(route);
1988
1989        upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
1990        if (upstream_port < 0)
1991                return ERR_PTR(upstream_port);
1992
1993        sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1994        if (!sw)
1995                return ERR_PTR(-ENOMEM);
1996
1997        sw->tb = tb;
1998        ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
1999        if (ret)
2000                goto err_free_sw_ports;
2001
2002        sw->generation = tb_switch_get_generation(sw);
2003
2004        tb_dbg(tb, "current switch config:\n");
2005        tb_dump_switch(tb, sw);
2006
2007        /* configure switch */
2008        sw->config.upstream_port_number = upstream_port;
2009        sw->config.depth = depth;
2010        sw->config.route_hi = upper_32_bits(route);
2011        sw->config.route_lo = lower_32_bits(route);
2012        sw->config.enabled = 0;
2013
2014        /* Make sure we do not exceed maximum topology limit */
2015        if (tb_switch_exceeds_max_depth(sw, depth)) {
2016                ret = -EADDRNOTAVAIL;
2017                goto err_free_sw_ports;
2018        }
2019
2020        /* initialize ports */
2021        sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
2022                                GFP_KERNEL);
2023        if (!sw->ports) {
2024                ret = -ENOMEM;
2025                goto err_free_sw_ports;
2026        }
2027
2028        for (i = 0; i <= sw->config.max_port_number; i++) {
2029                /* minimum setup for tb_find_cap and tb_drom_read to work */
2030                sw->ports[i].sw = sw;
2031                sw->ports[i].port = i;
2032
2033                /* Control port does not need HopID allocation */
2034                if (i) {
2035                        ida_init(&sw->ports[i].in_hopids);
2036                        ida_init(&sw->ports[i].out_hopids);
2037                }
2038        }
2039
2040        ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
2041        if (ret > 0)
2042                sw->cap_plug_events = ret;
2043
2044        ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
2045        if (ret > 0)
2046                sw->cap_lc = ret;
2047
2048        /* Root switch is always authorized */
2049        if (!route)
2050                sw->authorized = true;
2051
2052        device_initialize(&sw->dev);
2053        sw->dev.parent = parent;
2054        sw->dev.bus = &tb_bus_type;
2055        sw->dev.type = &tb_switch_type;
2056        sw->dev.groups = switch_groups;
2057        dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2058
2059        return sw;
2060
2061err_free_sw_ports:
2062        kfree(sw->ports);
2063        kfree(sw);
2064
2065        return ERR_PTR(ret);
2066}
2067
2068/**
2069 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
2070 * @tb: Pointer to the owning domain
2071 * @parent: Parent device for this switch
2072 * @route: Route string for this switch
2073 *
2074 * This creates a switch in safe mode. This means the switch pretty much
2075 * lacks all capabilities except DMA configuration port before it is
2076 * flashed with a valid NVM firmware.
2077 *
2078 * The returned switch must be released by calling tb_switch_put().
2079 *
2080 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
2081 */
2082struct tb_switch *
2083tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
2084{
2085        struct tb_switch *sw;
2086
2087        sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2088        if (!sw)
2089                return ERR_PTR(-ENOMEM);
2090
2091        sw->tb = tb;
2092        sw->config.depth = tb_route_length(route);
2093        sw->config.route_hi = upper_32_bits(route);
2094        sw->config.route_lo = lower_32_bits(route);
2095        sw->safe_mode = true;
2096
2097        device_initialize(&sw->dev);
2098        sw->dev.parent = parent;
2099        sw->dev.bus = &tb_bus_type;
2100        sw->dev.type = &tb_switch_type;
2101        sw->dev.groups = switch_groups;
2102        dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2103
2104        return sw;
2105}
2106
2107/**
2108 * tb_switch_configure() - Uploads configuration to the switch
2109 * @sw: Switch to configure
2110 *
2111 * Call this function before the switch is added to the system. It will
2112 * upload configuration to the switch and makes it available for the
2113 * connection manager to use. Can be called to the switch again after
2114 * resume from low power states to re-initialize it.
2115 *
2116 * Return: %0 in case of success and negative errno in case of failure
2117 */
2118int tb_switch_configure(struct tb_switch *sw)
2119{
2120        struct tb *tb = sw->tb;
2121        u64 route;
2122        int ret;
2123
2124        route = tb_route(sw);
2125
2126        tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
2127               sw->config.enabled ? "restoring" : "initializing", route,
2128               tb_route_length(route), sw->config.upstream_port_number);
2129
2130        sw->config.enabled = 1;
2131
2132        if (tb_switch_is_usb4(sw)) {
2133                /*
2134                 * For USB4 devices, we need to program the CM version
2135                 * accordingly so that it knows to expose all the
2136                 * additional capabilities.
2137                 */
2138                sw->config.cmuv = USB4_VERSION_1_0;
2139
2140                /* Enumerate the switch */
2141                ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2142                                  ROUTER_CS_1, 4);
2143                if (ret)
2144                        return ret;
2145
2146                ret = usb4_switch_setup(sw);
2147        } else {
2148                if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2149                        tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2150                                   sw->config.vendor_id);
2151
2152                if (!sw->cap_plug_events) {
2153                        tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2154                        return -ENODEV;
2155                }
2156
2157                /* Enumerate the switch */
2158                ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2159                                  ROUTER_CS_1, 3);
2160        }
2161        if (ret)
2162                return ret;
2163
2164        return tb_plug_events_active(sw, true);
2165}
2166
2167static int tb_switch_set_uuid(struct tb_switch *sw)
2168{
2169        bool uid = false;
2170        u32 uuid[4];
2171        int ret;
2172
2173        if (sw->uuid)
2174                return 0;
2175
2176        if (tb_switch_is_usb4(sw)) {
2177                ret = usb4_switch_read_uid(sw, &sw->uid);
2178                if (ret)
2179                        return ret;
2180                uid = true;
2181        } else {
2182                /*
2183                 * The newer controllers include fused UUID as part of
2184                 * link controller specific registers
2185                 */
2186                ret = tb_lc_read_uuid(sw, uuid);
2187                if (ret) {
2188                        if (ret != -EINVAL)
2189                                return ret;
2190                        uid = true;
2191                }
2192        }
2193
2194        if (uid) {
2195                /*
2196                 * ICM generates UUID based on UID and fills the upper
2197                 * two words with ones. This is not strictly following
2198                 * UUID format but we want to be compatible with it so
2199                 * we do the same here.
2200                 */
2201                uuid[0] = sw->uid & 0xffffffff;
2202                uuid[1] = (sw->uid >> 32) & 0xffffffff;
2203                uuid[2] = 0xffffffff;
2204                uuid[3] = 0xffffffff;
2205        }
2206
2207        sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2208        if (!sw->uuid)
2209                return -ENOMEM;
2210        return 0;
2211}
2212
2213static int tb_switch_add_dma_port(struct tb_switch *sw)
2214{
2215        u32 status;
2216        int ret;
2217
2218        switch (sw->generation) {
2219        case 2:
2220                /* Only root switch can be upgraded */
2221                if (tb_route(sw))
2222                        return 0;
2223
2224                fallthrough;
2225        case 3:
2226        case 4:
2227                ret = tb_switch_set_uuid(sw);
2228                if (ret)
2229                        return ret;
2230                break;
2231
2232        default:
2233                /*
2234                 * DMA port is the only thing available when the switch
2235                 * is in safe mode.
2236                 */
2237                if (!sw->safe_mode)
2238                        return 0;
2239                break;
2240        }
2241
2242        if (sw->no_nvm_upgrade)
2243                return 0;
2244
2245        if (tb_switch_is_usb4(sw)) {
2246                ret = usb4_switch_nvm_authenticate_status(sw, &status);
2247                if (ret)
2248                        return ret;
2249
2250                if (status) {
2251                        tb_sw_info(sw, "switch flash authentication failed\n");
2252                        nvm_set_auth_status(sw, status);
2253                }
2254
2255                return 0;
2256        }
2257
2258        /* Root switch DMA port requires running firmware */
2259        if (!tb_route(sw) && !tb_switch_is_icm(sw))
2260                return 0;
2261
2262        sw->dma_port = dma_port_alloc(sw);
2263        if (!sw->dma_port)
2264                return 0;
2265
2266        /*
2267         * If there is status already set then authentication failed
2268         * when the dma_port_flash_update_auth() returned. Power cycling
2269         * is not needed (it was done already) so only thing we do here
2270         * is to unblock runtime PM of the root port.
2271         */
2272        nvm_get_auth_status(sw, &status);
2273        if (status) {
2274                if (!tb_route(sw))
2275                        nvm_authenticate_complete_dma_port(sw);
2276                return 0;
2277        }
2278
2279        /*
2280         * Check status of the previous flash authentication. If there
2281         * is one we need to power cycle the switch in any case to make
2282         * it functional again.
2283         */
2284        ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2285        if (ret <= 0)
2286                return ret;
2287
2288        /* Now we can allow root port to suspend again */
2289        if (!tb_route(sw))
2290                nvm_authenticate_complete_dma_port(sw);
2291
2292        if (status) {
2293                tb_sw_info(sw, "switch flash authentication failed\n");
2294                nvm_set_auth_status(sw, status);
2295        }
2296
2297        tb_sw_info(sw, "power cycling the switch now\n");
2298        dma_port_power_cycle(sw->dma_port);
2299
2300        /*
2301         * We return error here which causes the switch adding failure.
2302         * It should appear back after power cycle is complete.
2303         */
2304        return -ESHUTDOWN;
2305}
2306
2307static void tb_switch_default_link_ports(struct tb_switch *sw)
2308{
2309        int i;
2310
2311        for (i = 1; i <= sw->config.max_port_number; i += 2) {
2312                struct tb_port *port = &sw->ports[i];
2313                struct tb_port *subordinate;
2314
2315                if (!tb_port_is_null(port))
2316                        continue;
2317
2318                /* Check for the subordinate port */
2319                if (i == sw->config.max_port_number ||
2320                    !tb_port_is_null(&sw->ports[i + 1]))
2321                        continue;
2322
2323                /* Link them if not already done so (by DROM) */
2324                subordinate = &sw->ports[i + 1];
2325                if (!port->dual_link_port && !subordinate->dual_link_port) {
2326                        port->link_nr = 0;
2327                        port->dual_link_port = subordinate;
2328                        subordinate->link_nr = 1;
2329                        subordinate->dual_link_port = port;
2330
2331                        tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2332                                  port->port, subordinate->port);
2333                }
2334        }
2335}
2336
2337static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2338{
2339        const struct tb_port *up = tb_upstream_port(sw);
2340
2341        if (!up->dual_link_port || !up->dual_link_port->remote)
2342                return false;
2343
2344        if (tb_switch_is_usb4(sw))
2345                return usb4_switch_lane_bonding_possible(sw);
2346        return tb_lc_lane_bonding_possible(sw);
2347}
2348
2349static int tb_switch_update_link_attributes(struct tb_switch *sw)
2350{
2351        struct tb_port *up;
2352        bool change = false;
2353        int ret;
2354
2355        if (!tb_route(sw) || tb_switch_is_icm(sw))
2356                return 0;
2357
2358        up = tb_upstream_port(sw);
2359
2360        ret = tb_port_get_link_speed(up);
2361        if (ret < 0)
2362                return ret;
2363        if (sw->link_speed != ret)
2364                change = true;
2365        sw->link_speed = ret;
2366
2367        ret = tb_port_get_link_width(up);
2368        if (ret < 0)
2369                return ret;
2370        if (sw->link_width != ret)
2371                change = true;
2372        sw->link_width = ret;
2373
2374        /* Notify userspace that there is possible link attribute change */
2375        if (device_is_registered(&sw->dev) && change)
2376                kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2377
2378        return 0;
2379}
2380
2381/**
2382 * tb_switch_lane_bonding_enable() - Enable lane bonding
2383 * @sw: Switch to enable lane bonding
2384 *
2385 * Connection manager can call this function to enable lane bonding of a
2386 * switch. If conditions are correct and both switches support the feature,
2387 * lanes are bonded. It is safe to call this to any switch.
2388 */
2389int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2390{
2391        struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2392        struct tb_port *up, *down;
2393        u64 route = tb_route(sw);
2394        int ret;
2395
2396        if (!route)
2397                return 0;
2398
2399        if (!tb_switch_lane_bonding_possible(sw))
2400                return 0;
2401
2402        up = tb_upstream_port(sw);
2403        down = tb_port_at(route, parent);
2404
2405        if (!tb_port_is_width_supported(up, 2) ||
2406            !tb_port_is_width_supported(down, 2))
2407                return 0;
2408
2409        ret = tb_port_lane_bonding_enable(up);
2410        if (ret) {
2411                tb_port_warn(up, "failed to enable lane bonding\n");
2412                return ret;
2413        }
2414
2415        ret = tb_port_lane_bonding_enable(down);
2416        if (ret) {
2417                tb_port_warn(down, "failed to enable lane bonding\n");
2418                tb_port_lane_bonding_disable(up);
2419                return ret;
2420        }
2421
2422        tb_switch_update_link_attributes(sw);
2423
2424        tb_sw_dbg(sw, "lane bonding enabled\n");
2425        return ret;
2426}
2427
2428/**
2429 * tb_switch_lane_bonding_disable() - Disable lane bonding
2430 * @sw: Switch whose lane bonding to disable
2431 *
2432 * Disables lane bonding between @sw and parent. This can be called even
2433 * if lanes were not bonded originally.
2434 */
2435void tb_switch_lane_bonding_disable(struct tb_switch *sw)
2436{
2437        struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2438        struct tb_port *up, *down;
2439
2440        if (!tb_route(sw))
2441                return;
2442
2443        up = tb_upstream_port(sw);
2444        if (!up->bonded)
2445                return;
2446
2447        down = tb_port_at(tb_route(sw), parent);
2448
2449        tb_port_lane_bonding_disable(up);
2450        tb_port_lane_bonding_disable(down);
2451
2452        tb_switch_update_link_attributes(sw);
2453        tb_sw_dbg(sw, "lane bonding disabled\n");
2454}
2455
2456/**
2457 * tb_switch_configure_link() - Set link configured
2458 * @sw: Switch whose link is configured
2459 *
2460 * Sets the link upstream from @sw configured (from both ends) so that
2461 * it will not be disconnected when the domain exits sleep. Can be
2462 * called for any switch.
2463 *
2464 * It is recommended that this is called after lane bonding is enabled.
2465 *
2466 * Returns %0 on success and negative errno in case of error.
2467 */
2468int tb_switch_configure_link(struct tb_switch *sw)
2469{
2470        struct tb_port *up, *down;
2471        int ret;
2472
2473        if (!tb_route(sw) || tb_switch_is_icm(sw))
2474                return 0;
2475
2476        up = tb_upstream_port(sw);
2477        if (tb_switch_is_usb4(up->sw))
2478                ret = usb4_port_configure(up);
2479        else
2480                ret = tb_lc_configure_port(up);
2481        if (ret)
2482                return ret;
2483
2484        down = up->remote;
2485        if (tb_switch_is_usb4(down->sw))
2486                return usb4_port_configure(down);
2487        return tb_lc_configure_port(down);
2488}
2489
2490/**
2491 * tb_switch_unconfigure_link() - Unconfigure link
2492 * @sw: Switch whose link is unconfigured
2493 *
2494 * Sets the link unconfigured so the @sw will be disconnected if the
2495 * domain exists sleep.
2496 */
2497void tb_switch_unconfigure_link(struct tb_switch *sw)
2498{
2499        struct tb_port *up, *down;
2500
2501        if (sw->is_unplugged)
2502                return;
2503        if (!tb_route(sw) || tb_switch_is_icm(sw))
2504                return;
2505
2506        up = tb_upstream_port(sw);
2507        if (tb_switch_is_usb4(up->sw))
2508                usb4_port_unconfigure(up);
2509        else
2510                tb_lc_unconfigure_port(up);
2511
2512        down = up->remote;
2513        if (tb_switch_is_usb4(down->sw))
2514                usb4_port_unconfigure(down);
2515        else
2516                tb_lc_unconfigure_port(down);
2517}
2518
2519/**
2520 * tb_switch_add() - Add a switch to the domain
2521 * @sw: Switch to add
2522 *
2523 * This is the last step in adding switch to the domain. It will read
2524 * identification information from DROM and initializes ports so that
2525 * they can be used to connect other switches. The switch will be
2526 * exposed to the userspace when this function successfully returns. To
2527 * remove and release the switch, call tb_switch_remove().
2528 *
2529 * Return: %0 in case of success and negative errno in case of failure
2530 */
2531int tb_switch_add(struct tb_switch *sw)
2532{
2533        int i, ret;
2534
2535        /*
2536         * Initialize DMA control port now before we read DROM. Recent
2537         * host controllers have more complete DROM on NVM that includes
2538         * vendor and model identification strings which we then expose
2539         * to the userspace. NVM can be accessed through DMA
2540         * configuration based mailbox.
2541         */
2542        ret = tb_switch_add_dma_port(sw);
2543        if (ret) {
2544                dev_err(&sw->dev, "failed to add DMA port\n");
2545                return ret;
2546        }
2547
2548        if (!sw->safe_mode) {
2549                /* read drom */
2550                ret = tb_drom_read(sw);
2551                if (ret) {
2552                        dev_err(&sw->dev, "reading DROM failed\n");
2553                        return ret;
2554                }
2555                tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
2556
2557                tb_check_quirks(sw);
2558
2559                ret = tb_switch_set_uuid(sw);
2560                if (ret) {
2561                        dev_err(&sw->dev, "failed to set UUID\n");
2562                        return ret;
2563                }
2564
2565                for (i = 0; i <= sw->config.max_port_number; i++) {
2566                        if (sw->ports[i].disabled) {
2567                                tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
2568                                continue;
2569                        }
2570                        ret = tb_init_port(&sw->ports[i]);
2571                        if (ret) {
2572                                dev_err(&sw->dev, "failed to initialize port %d\n", i);
2573                                return ret;
2574                        }
2575                }
2576
2577                tb_switch_default_link_ports(sw);
2578
2579                ret = tb_switch_update_link_attributes(sw);
2580                if (ret)
2581                        return ret;
2582
2583                ret = tb_switch_tmu_init(sw);
2584                if (ret)
2585                        return ret;
2586        }
2587
2588        ret = device_add(&sw->dev);
2589        if (ret) {
2590                dev_err(&sw->dev, "failed to add device: %d\n", ret);
2591                return ret;
2592        }
2593
2594        if (tb_route(sw)) {
2595                dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
2596                         sw->vendor, sw->device);
2597                if (sw->vendor_name && sw->device_name)
2598                        dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
2599                                 sw->device_name);
2600        }
2601
2602        ret = tb_switch_nvm_add(sw);
2603        if (ret) {
2604                dev_err(&sw->dev, "failed to add NVM devices\n");
2605                device_del(&sw->dev);
2606                return ret;
2607        }
2608
2609        /*
2610         * Thunderbolt routers do not generate wakeups themselves but
2611         * they forward wakeups from tunneled protocols, so enable it
2612         * here.
2613         */
2614        device_init_wakeup(&sw->dev, true);
2615
2616        pm_runtime_set_active(&sw->dev);
2617        if (sw->rpm) {
2618                pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
2619                pm_runtime_use_autosuspend(&sw->dev);
2620                pm_runtime_mark_last_busy(&sw->dev);
2621                pm_runtime_enable(&sw->dev);
2622                pm_request_autosuspend(&sw->dev);
2623        }
2624
2625        tb_switch_debugfs_init(sw);
2626        return 0;
2627}
2628
2629/**
2630 * tb_switch_remove() - Remove and release a switch
2631 * @sw: Switch to remove
2632 *
2633 * This will remove the switch from the domain and release it after last
2634 * reference count drops to zero. If there are switches connected below
2635 * this switch, they will be removed as well.
2636 */
2637void tb_switch_remove(struct tb_switch *sw)
2638{
2639        struct tb_port *port;
2640
2641        tb_switch_debugfs_remove(sw);
2642
2643        if (sw->rpm) {
2644                pm_runtime_get_sync(&sw->dev);
2645                pm_runtime_disable(&sw->dev);
2646        }
2647
2648        /* port 0 is the switch itself and never has a remote */
2649        tb_switch_for_each_port(sw, port) {
2650                if (tb_port_has_remote(port)) {
2651                        tb_switch_remove(port->remote->sw);
2652                        port->remote = NULL;
2653                } else if (port->xdomain) {
2654                        tb_xdomain_remove(port->xdomain);
2655                        port->xdomain = NULL;
2656                }
2657
2658                /* Remove any downstream retimers */
2659                tb_retimer_remove_all(port);
2660        }
2661
2662        if (!sw->is_unplugged)
2663                tb_plug_events_active(sw, false);
2664
2665        tb_switch_nvm_remove(sw);
2666
2667        if (tb_route(sw))
2668                dev_info(&sw->dev, "device disconnected\n");
2669        device_unregister(&sw->dev);
2670}
2671
2672/**
2673 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
2674 * @sw: Router to mark unplugged
2675 */
2676void tb_sw_set_unplugged(struct tb_switch *sw)
2677{
2678        struct tb_port *port;
2679
2680        if (sw == sw->tb->root_switch) {
2681                tb_sw_WARN(sw, "cannot unplug root switch\n");
2682                return;
2683        }
2684        if (sw->is_unplugged) {
2685                tb_sw_WARN(sw, "is_unplugged already set\n");
2686                return;
2687        }
2688        sw->is_unplugged = true;
2689        tb_switch_for_each_port(sw, port) {
2690                if (tb_port_has_remote(port))
2691                        tb_sw_set_unplugged(port->remote->sw);
2692                else if (port->xdomain)
2693                        port->xdomain->is_unplugged = true;
2694        }
2695}
2696
2697static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags)
2698{
2699        if (flags)
2700                tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags);
2701        else
2702                tb_sw_dbg(sw, "disabling wakeup\n");
2703
2704        if (tb_switch_is_usb4(sw))
2705                return usb4_switch_set_wake(sw, flags);
2706        return tb_lc_set_wake(sw, flags);
2707}
2708
2709int tb_switch_resume(struct tb_switch *sw)
2710{
2711        struct tb_port *port;
2712        int err;
2713
2714        tb_sw_dbg(sw, "resuming switch\n");
2715
2716        /*
2717         * Check for UID of the connected switches except for root
2718         * switch which we assume cannot be removed.
2719         */
2720        if (tb_route(sw)) {
2721                u64 uid;
2722
2723                /*
2724                 * Check first that we can still read the switch config
2725                 * space. It may be that there is now another domain
2726                 * connected.
2727                 */
2728                err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
2729                if (err < 0) {
2730                        tb_sw_info(sw, "switch not present anymore\n");
2731                        return err;
2732                }
2733
2734                if (tb_switch_is_usb4(sw))
2735                        err = usb4_switch_read_uid(sw, &uid);
2736                else
2737                        err = tb_drom_read_uid_only(sw, &uid);
2738                if (err) {
2739                        tb_sw_warn(sw, "uid read failed\n");
2740                        return err;
2741                }
2742                if (sw->uid != uid) {
2743                        tb_sw_info(sw,
2744                                "changed while suspended (uid %#llx -> %#llx)\n",
2745                                sw->uid, uid);
2746                        return -ENODEV;
2747                }
2748        }
2749
2750        err = tb_switch_configure(sw);
2751        if (err)
2752                return err;
2753
2754        /* Disable wakes */
2755        tb_switch_set_wake(sw, 0);
2756
2757        err = tb_switch_tmu_init(sw);
2758        if (err)
2759                return err;
2760
2761        /* check for surviving downstream switches */
2762        tb_switch_for_each_port(sw, port) {
2763                if (!tb_port_has_remote(port) && !port->xdomain) {
2764                        /*
2765                         * For disconnected downstream lane adapters
2766                         * start lane initialization now so we detect
2767                         * future connects.
2768                         */
2769                        if (!tb_is_upstream_port(port) && tb_port_is_null(port))
2770                                tb_port_start_lane_initialization(port);
2771                        continue;
2772                } else if (port->xdomain) {
2773                        /*
2774                         * Start lane initialization for XDomain so the
2775                         * link gets re-established.
2776                         */
2777                        tb_port_start_lane_initialization(port);
2778                }
2779
2780                if (tb_wait_for_port(port, true) <= 0) {
2781                        tb_port_warn(port,
2782                                     "lost during suspend, disconnecting\n");
2783                        if (tb_port_has_remote(port))
2784                                tb_sw_set_unplugged(port->remote->sw);
2785                        else if (port->xdomain)
2786                                port->xdomain->is_unplugged = true;
2787                } else if (tb_port_has_remote(port) || port->xdomain) {
2788                        /*
2789                         * Always unlock the port so the downstream
2790                         * switch/domain is accessible.
2791                         */
2792                        if (tb_port_unlock(port))
2793                                tb_port_warn(port, "failed to unlock port\n");
2794                        if (port->remote && tb_switch_resume(port->remote->sw)) {
2795                                tb_port_warn(port,
2796                                             "lost during suspend, disconnecting\n");
2797                                tb_sw_set_unplugged(port->remote->sw);
2798                        }
2799                }
2800        }
2801        return 0;
2802}
2803
2804/**
2805 * tb_switch_suspend() - Put a switch to sleep
2806 * @sw: Switch to suspend
2807 * @runtime: Is this runtime suspend or system sleep
2808 *
2809 * Suspends router and all its children. Enables wakes according to
2810 * value of @runtime and then sets sleep bit for the router. If @sw is
2811 * host router the domain is ready to go to sleep once this function
2812 * returns.
2813 */
2814void tb_switch_suspend(struct tb_switch *sw, bool runtime)
2815{
2816        unsigned int flags = 0;
2817        struct tb_port *port;
2818        int err;
2819
2820        tb_sw_dbg(sw, "suspending switch\n");
2821
2822        err = tb_plug_events_active(sw, false);
2823        if (err)
2824                return;
2825
2826        tb_switch_for_each_port(sw, port) {
2827                if (tb_port_has_remote(port))
2828                        tb_switch_suspend(port->remote->sw, runtime);
2829        }
2830
2831        if (runtime) {
2832                /* Trigger wake when something is plugged in/out */
2833                flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT;
2834                flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
2835        } else if (device_may_wakeup(&sw->dev)) {
2836                flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
2837        }
2838
2839        tb_switch_set_wake(sw, flags);
2840
2841        if (tb_switch_is_usb4(sw))
2842                usb4_switch_set_sleep(sw);
2843        else
2844                tb_lc_set_sleep(sw);
2845}
2846
2847/**
2848 * tb_switch_query_dp_resource() - Query availability of DP resource
2849 * @sw: Switch whose DP resource is queried
2850 * @in: DP IN port
2851 *
2852 * Queries availability of DP resource for DP tunneling using switch
2853 * specific means. Returns %true if resource is available.
2854 */
2855bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
2856{
2857        if (tb_switch_is_usb4(sw))
2858                return usb4_switch_query_dp_resource(sw, in);
2859        return tb_lc_dp_sink_query(sw, in);
2860}
2861
2862/**
2863 * tb_switch_alloc_dp_resource() - Allocate available DP resource
2864 * @sw: Switch whose DP resource is allocated
2865 * @in: DP IN port
2866 *
2867 * Allocates DP resource for DP tunneling. The resource must be
2868 * available for this to succeed (see tb_switch_query_dp_resource()).
2869 * Returns %0 in success and negative errno otherwise.
2870 */
2871int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2872{
2873        if (tb_switch_is_usb4(sw))
2874                return usb4_switch_alloc_dp_resource(sw, in);
2875        return tb_lc_dp_sink_alloc(sw, in);
2876}
2877
2878/**
2879 * tb_switch_dealloc_dp_resource() - De-allocate DP resource
2880 * @sw: Switch whose DP resource is de-allocated
2881 * @in: DP IN port
2882 *
2883 * De-allocates DP resource that was previously allocated for DP
2884 * tunneling.
2885 */
2886void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2887{
2888        int ret;
2889
2890        if (tb_switch_is_usb4(sw))
2891                ret = usb4_switch_dealloc_dp_resource(sw, in);
2892        else
2893                ret = tb_lc_dp_sink_dealloc(sw, in);
2894
2895        if (ret)
2896                tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
2897                           in->port);
2898}
2899
2900struct tb_sw_lookup {
2901        struct tb *tb;
2902        u8 link;
2903        u8 depth;
2904        const uuid_t *uuid;
2905        u64 route;
2906};
2907
2908static int tb_switch_match(struct device *dev, const void *data)
2909{
2910        struct tb_switch *sw = tb_to_switch(dev);
2911        const struct tb_sw_lookup *lookup = data;
2912
2913        if (!sw)
2914                return 0;
2915        if (sw->tb != lookup->tb)
2916                return 0;
2917
2918        if (lookup->uuid)
2919                return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
2920
2921        if (lookup->route) {
2922                return sw->config.route_lo == lower_32_bits(lookup->route) &&
2923                       sw->config.route_hi == upper_32_bits(lookup->route);
2924        }
2925
2926        /* Root switch is matched only by depth */
2927        if (!lookup->depth)
2928                return !sw->depth;
2929
2930        return sw->link == lookup->link && sw->depth == lookup->depth;
2931}
2932
2933/**
2934 * tb_switch_find_by_link_depth() - Find switch by link and depth
2935 * @tb: Domain the switch belongs
2936 * @link: Link number the switch is connected
2937 * @depth: Depth of the switch in link
2938 *
2939 * Returned switch has reference count increased so the caller needs to
2940 * call tb_switch_put() when done with the switch.
2941 */
2942struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
2943{
2944        struct tb_sw_lookup lookup;
2945        struct device *dev;
2946
2947        memset(&lookup, 0, sizeof(lookup));
2948        lookup.tb = tb;
2949        lookup.link = link;
2950        lookup.depth = depth;
2951
2952        dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2953        if (dev)
2954                return tb_to_switch(dev);
2955
2956        return NULL;
2957}
2958
2959/**
2960 * tb_switch_find_by_uuid() - Find switch by UUID
2961 * @tb: Domain the switch belongs
2962 * @uuid: UUID to look for
2963 *
2964 * Returned switch has reference count increased so the caller needs to
2965 * call tb_switch_put() when done with the switch.
2966 */
2967struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
2968{
2969        struct tb_sw_lookup lookup;
2970        struct device *dev;
2971
2972        memset(&lookup, 0, sizeof(lookup));
2973        lookup.tb = tb;
2974        lookup.uuid = uuid;
2975
2976        dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2977        if (dev)
2978                return tb_to_switch(dev);
2979
2980        return NULL;
2981}
2982
2983/**
2984 * tb_switch_find_by_route() - Find switch by route string
2985 * @tb: Domain the switch belongs
2986 * @route: Route string to look for
2987 *
2988 * Returned switch has reference count increased so the caller needs to
2989 * call tb_switch_put() when done with the switch.
2990 */
2991struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
2992{
2993        struct tb_sw_lookup lookup;
2994        struct device *dev;
2995
2996        if (!route)
2997                return tb_switch_get(tb->root_switch);
2998
2999        memset(&lookup, 0, sizeof(lookup));
3000        lookup.tb = tb;
3001        lookup.route = route;
3002
3003        dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3004        if (dev)
3005                return tb_to_switch(dev);
3006
3007        return NULL;
3008}
3009
3010/**
3011 * tb_switch_find_port() - return the first port of @type on @sw or NULL
3012 * @sw: Switch to find the port from
3013 * @type: Port type to look for
3014 */
3015struct tb_port *tb_switch_find_port(struct tb_switch *sw,
3016                                    enum tb_port_type type)
3017{
3018        struct tb_port *port;
3019
3020        tb_switch_for_each_port(sw, port) {
3021                if (port->config.type == type)
3022                        return port;
3023        }
3024
3025        return NULL;
3026}
3027