linux/drivers/scsi/libsas/sas_expander.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Serial Attached SCSI (SAS) Expander discovery and configuration
   4 *
   5 * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
   6 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
   7 *
   8 * This file is licensed under GPLv2.
   9 */
  10
  11#include <linux/scatterlist.h>
  12#include <linux/blkdev.h>
  13#include <linux/slab.h>
  14#include <asm/unaligned.h>
  15
  16#include "sas_internal.h"
  17
  18#include <scsi/sas_ata.h>
  19#include <scsi/scsi_transport.h>
  20#include <scsi/scsi_transport_sas.h>
  21#include "../scsi_sas_internal.h"
  22
  23static int sas_discover_expander(struct domain_device *dev);
  24static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
  25static int sas_configure_phy(struct domain_device *dev, int phy_id,
  26                             u8 *sas_addr, int include);
  27static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
  28
  29/* ---------- SMP task management ---------- */
  30
  31static void smp_task_timedout(struct timer_list *t)
  32{
  33        struct sas_task_slow *slow = from_timer(slow, t, timer);
  34        struct sas_task *task = slow->task;
  35        unsigned long flags;
  36
  37        spin_lock_irqsave(&task->task_state_lock, flags);
  38        if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
  39                task->task_state_flags |= SAS_TASK_STATE_ABORTED;
  40                complete(&task->slow_task->completion);
  41        }
  42        spin_unlock_irqrestore(&task->task_state_lock, flags);
  43}
  44
  45static void smp_task_done(struct sas_task *task)
  46{
  47        del_timer(&task->slow_task->timer);
  48        complete(&task->slow_task->completion);
  49}
  50
  51/* Give it some long enough timeout. In seconds. */
  52#define SMP_TIMEOUT 10
  53
  54static int smp_execute_task_sg(struct domain_device *dev,
  55                struct scatterlist *req, struct scatterlist *resp)
  56{
  57        int res, retry;
  58        struct sas_task *task = NULL;
  59        struct sas_internal *i =
  60                to_sas_internal(dev->port->ha->core.shost->transportt);
  61
  62        mutex_lock(&dev->ex_dev.cmd_mutex);
  63        for (retry = 0; retry < 3; retry++) {
  64                if (test_bit(SAS_DEV_GONE, &dev->state)) {
  65                        res = -ECOMM;
  66                        break;
  67                }
  68
  69                task = sas_alloc_slow_task(GFP_KERNEL);
  70                if (!task) {
  71                        res = -ENOMEM;
  72                        break;
  73                }
  74                task->dev = dev;
  75                task->task_proto = dev->tproto;
  76                task->smp_task.smp_req = *req;
  77                task->smp_task.smp_resp = *resp;
  78
  79                task->task_done = smp_task_done;
  80
  81                task->slow_task->timer.function = smp_task_timedout;
  82                task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
  83                add_timer(&task->slow_task->timer);
  84
  85                res = i->dft->lldd_execute_task(task, GFP_KERNEL);
  86
  87                if (res) {
  88                        del_timer(&task->slow_task->timer);
  89                        pr_notice("executing SMP task failed:%d\n", res);
  90                        break;
  91                }
  92
  93                wait_for_completion(&task->slow_task->completion);
  94                res = -ECOMM;
  95                if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
  96                        pr_notice("smp task timed out or aborted\n");
  97                        i->dft->lldd_abort_task(task);
  98                        if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
  99                                pr_notice("SMP task aborted and not done\n");
 100                                break;
 101                        }
 102                }
 103                if (task->task_status.resp == SAS_TASK_COMPLETE &&
 104                    task->task_status.stat == SAM_STAT_GOOD) {
 105                        res = 0;
 106                        break;
 107                }
 108                if (task->task_status.resp == SAS_TASK_COMPLETE &&
 109                    task->task_status.stat == SAS_DATA_UNDERRUN) {
 110                        /* no error, but return the number of bytes of
 111                         * underrun */
 112                        res = task->task_status.residual;
 113                        break;
 114                }
 115                if (task->task_status.resp == SAS_TASK_COMPLETE &&
 116                    task->task_status.stat == SAS_DATA_OVERRUN) {
 117                        res = -EMSGSIZE;
 118                        break;
 119                }
 120                if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
 121                    task->task_status.stat == SAS_DEVICE_UNKNOWN)
 122                        break;
 123                else {
 124                        pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n",
 125                                  __func__,
 126                                  SAS_ADDR(dev->sas_addr),
 127                                  task->task_status.resp,
 128                                  task->task_status.stat);
 129                        sas_free_task(task);
 130                        task = NULL;
 131                }
 132        }
 133        mutex_unlock(&dev->ex_dev.cmd_mutex);
 134
 135        BUG_ON(retry == 3 && task != NULL);
 136        sas_free_task(task);
 137        return res;
 138}
 139
 140static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
 141                            void *resp, int resp_size)
 142{
 143        struct scatterlist req_sg;
 144        struct scatterlist resp_sg;
 145
 146        sg_init_one(&req_sg, req, req_size);
 147        sg_init_one(&resp_sg, resp, resp_size);
 148        return smp_execute_task_sg(dev, &req_sg, &resp_sg);
 149}
 150
 151/* ---------- Allocations ---------- */
 152
 153static inline void *alloc_smp_req(int size)
 154{
 155        u8 *p = kzalloc(size, GFP_KERNEL);
 156        if (p)
 157                p[0] = SMP_REQUEST;
 158        return p;
 159}
 160
 161static inline void *alloc_smp_resp(int size)
 162{
 163        return kzalloc(size, GFP_KERNEL);
 164}
 165
 166static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
 167{
 168        switch (phy->routing_attr) {
 169        case TABLE_ROUTING:
 170                if (dev->ex_dev.t2t_supp)
 171                        return 'U';
 172                else
 173                        return 'T';
 174        case DIRECT_ROUTING:
 175                return 'D';
 176        case SUBTRACTIVE_ROUTING:
 177                return 'S';
 178        default:
 179                return '?';
 180        }
 181}
 182
 183static enum sas_device_type to_dev_type(struct discover_resp *dr)
 184{
 185        /* This is detecting a failure to transmit initial dev to host
 186         * FIS as described in section J.5 of sas-2 r16
 187         */
 188        if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
 189            dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
 190                return SAS_SATA_PENDING;
 191        else
 192                return dr->attached_dev_type;
 193}
 194
 195static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
 196{
 197        enum sas_device_type dev_type;
 198        enum sas_linkrate linkrate;
 199        u8 sas_addr[SAS_ADDR_SIZE];
 200        struct smp_resp *resp = rsp;
 201        struct discover_resp *dr = &resp->disc;
 202        struct sas_ha_struct *ha = dev->port->ha;
 203        struct expander_device *ex = &dev->ex_dev;
 204        struct ex_phy *phy = &ex->ex_phy[phy_id];
 205        struct sas_rphy *rphy = dev->rphy;
 206        bool new_phy = !phy->phy;
 207        char *type;
 208
 209        if (new_phy) {
 210                if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
 211                        return;
 212                phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
 213
 214                /* FIXME: error_handling */
 215                BUG_ON(!phy->phy);
 216        }
 217
 218        switch (resp->result) {
 219        case SMP_RESP_PHY_VACANT:
 220                phy->phy_state = PHY_VACANT;
 221                break;
 222        default:
 223                phy->phy_state = PHY_NOT_PRESENT;
 224                break;
 225        case SMP_RESP_FUNC_ACC:
 226                phy->phy_state = PHY_EMPTY; /* do not know yet */
 227                break;
 228        }
 229
 230        /* check if anything important changed to squelch debug */
 231        dev_type = phy->attached_dev_type;
 232        linkrate  = phy->linkrate;
 233        memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 234
 235        /* Handle vacant phy - rest of dr data is not valid so skip it */
 236        if (phy->phy_state == PHY_VACANT) {
 237                memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 238                phy->attached_dev_type = SAS_PHY_UNUSED;
 239                if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
 240                        phy->phy_id = phy_id;
 241                        goto skip;
 242                } else
 243                        goto out;
 244        }
 245
 246        phy->attached_dev_type = to_dev_type(dr);
 247        if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 248                goto out;
 249        phy->phy_id = phy_id;
 250        phy->linkrate = dr->linkrate;
 251        phy->attached_sata_host = dr->attached_sata_host;
 252        phy->attached_sata_dev  = dr->attached_sata_dev;
 253        phy->attached_sata_ps   = dr->attached_sata_ps;
 254        phy->attached_iproto = dr->iproto << 1;
 255        phy->attached_tproto = dr->tproto << 1;
 256        /* help some expanders that fail to zero sas_address in the 'no
 257         * device' case
 258         */
 259        if (phy->attached_dev_type == SAS_PHY_UNUSED ||
 260            phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
 261                memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 262        else
 263                memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
 264        phy->attached_phy_id = dr->attached_phy_id;
 265        phy->phy_change_count = dr->change_count;
 266        phy->routing_attr = dr->routing_attr;
 267        phy->virtual = dr->virtual;
 268        phy->last_da_index = -1;
 269
 270        phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
 271        phy->phy->identify.device_type = dr->attached_dev_type;
 272        phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
 273        phy->phy->identify.target_port_protocols = phy->attached_tproto;
 274        if (!phy->attached_tproto && dr->attached_sata_dev)
 275                phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
 276        phy->phy->identify.phy_identifier = phy_id;
 277        phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
 278        phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
 279        phy->phy->minimum_linkrate = dr->pmin_linkrate;
 280        phy->phy->maximum_linkrate = dr->pmax_linkrate;
 281        phy->phy->negotiated_linkrate = phy->linkrate;
 282        phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
 283
 284 skip:
 285        if (new_phy)
 286                if (sas_phy_add(phy->phy)) {
 287                        sas_phy_free(phy->phy);
 288                        return;
 289                }
 290
 291 out:
 292        switch (phy->attached_dev_type) {
 293        case SAS_SATA_PENDING:
 294                type = "stp pending";
 295                break;
 296        case SAS_PHY_UNUSED:
 297                type = "no device";
 298                break;
 299        case SAS_END_DEVICE:
 300                if (phy->attached_iproto) {
 301                        if (phy->attached_tproto)
 302                                type = "host+target";
 303                        else
 304                                type = "host";
 305                } else {
 306                        if (dr->attached_sata_dev)
 307                                type = "stp";
 308                        else
 309                                type = "ssp";
 310                }
 311                break;
 312        case SAS_EDGE_EXPANDER_DEVICE:
 313        case SAS_FANOUT_EXPANDER_DEVICE:
 314                type = "smp";
 315                break;
 316        default:
 317                type = "unknown";
 318        }
 319
 320        /* this routine is polled by libata error recovery so filter
 321         * unimportant messages
 322         */
 323        if (new_phy || phy->attached_dev_type != dev_type ||
 324            phy->linkrate != linkrate ||
 325            SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
 326                /* pass */;
 327        else
 328                return;
 329
 330        /* if the attached device type changed and ata_eh is active,
 331         * make sure we run revalidation when eh completes (see:
 332         * sas_enable_revalidation)
 333         */
 334        if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 335                set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
 336
 337        pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
 338                 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
 339                 SAS_ADDR(dev->sas_addr), phy->phy_id,
 340                 sas_route_char(dev, phy), phy->linkrate,
 341                 SAS_ADDR(phy->attached_sas_addr), type);
 342}
 343
 344/* check if we have an existing attached ata device on this expander phy */
 345struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
 346{
 347        struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
 348        struct domain_device *dev;
 349        struct sas_rphy *rphy;
 350
 351        if (!ex_phy->port)
 352                return NULL;
 353
 354        rphy = ex_phy->port->rphy;
 355        if (!rphy)
 356                return NULL;
 357
 358        dev = sas_find_dev_by_rphy(rphy);
 359
 360        if (dev && dev_is_sata(dev))
 361                return dev;
 362
 363        return NULL;
 364}
 365
 366#define DISCOVER_REQ_SIZE  16
 367#define DISCOVER_RESP_SIZE 56
 368
 369static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
 370                                      u8 *disc_resp, int single)
 371{
 372        struct discover_resp *dr;
 373        int res;
 374
 375        disc_req[9] = single;
 376
 377        res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
 378                               disc_resp, DISCOVER_RESP_SIZE);
 379        if (res)
 380                return res;
 381        dr = &((struct smp_resp *)disc_resp)->disc;
 382        if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
 383                pr_notice("Found loopback topology, just ignore it!\n");
 384                return 0;
 385        }
 386        sas_set_ex_phy(dev, single, disc_resp);
 387        return 0;
 388}
 389
 390int sas_ex_phy_discover(struct domain_device *dev, int single)
 391{
 392        struct expander_device *ex = &dev->ex_dev;
 393        int  res = 0;
 394        u8   *disc_req;
 395        u8   *disc_resp;
 396
 397        disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
 398        if (!disc_req)
 399                return -ENOMEM;
 400
 401        disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
 402        if (!disc_resp) {
 403                kfree(disc_req);
 404                return -ENOMEM;
 405        }
 406
 407        disc_req[1] = SMP_DISCOVER;
 408
 409        if (0 <= single && single < ex->num_phys) {
 410                res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
 411        } else {
 412                int i;
 413
 414                for (i = 0; i < ex->num_phys; i++) {
 415                        res = sas_ex_phy_discover_helper(dev, disc_req,
 416                                                         disc_resp, i);
 417                        if (res)
 418                                goto out_err;
 419                }
 420        }
 421out_err:
 422        kfree(disc_resp);
 423        kfree(disc_req);
 424        return res;
 425}
 426
 427static int sas_expander_discover(struct domain_device *dev)
 428{
 429        struct expander_device *ex = &dev->ex_dev;
 430        int res;
 431
 432        ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
 433        if (!ex->ex_phy)
 434                return -ENOMEM;
 435
 436        res = sas_ex_phy_discover(dev, -1);
 437        if (res)
 438                goto out_err;
 439
 440        return 0;
 441 out_err:
 442        kfree(ex->ex_phy);
 443        ex->ex_phy = NULL;
 444        return res;
 445}
 446
 447#define MAX_EXPANDER_PHYS 128
 448
 449static void ex_assign_report_general(struct domain_device *dev,
 450                                            struct smp_resp *resp)
 451{
 452        struct report_general_resp *rg = &resp->rg;
 453
 454        dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
 455        dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
 456        dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
 457        dev->ex_dev.t2t_supp = rg->t2t_supp;
 458        dev->ex_dev.conf_route_table = rg->conf_route_table;
 459        dev->ex_dev.configuring = rg->configuring;
 460        memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
 461}
 462
 463#define RG_REQ_SIZE   8
 464#define RG_RESP_SIZE 32
 465
 466static int sas_ex_general(struct domain_device *dev)
 467{
 468        u8 *rg_req;
 469        struct smp_resp *rg_resp;
 470        int res;
 471        int i;
 472
 473        rg_req = alloc_smp_req(RG_REQ_SIZE);
 474        if (!rg_req)
 475                return -ENOMEM;
 476
 477        rg_resp = alloc_smp_resp(RG_RESP_SIZE);
 478        if (!rg_resp) {
 479                kfree(rg_req);
 480                return -ENOMEM;
 481        }
 482
 483        rg_req[1] = SMP_REPORT_GENERAL;
 484
 485        for (i = 0; i < 5; i++) {
 486                res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
 487                                       RG_RESP_SIZE);
 488
 489                if (res) {
 490                        pr_notice("RG to ex %016llx failed:0x%x\n",
 491                                  SAS_ADDR(dev->sas_addr), res);
 492                        goto out;
 493                } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
 494                        pr_debug("RG:ex %016llx returned SMP result:0x%x\n",
 495                                 SAS_ADDR(dev->sas_addr), rg_resp->result);
 496                        res = rg_resp->result;
 497                        goto out;
 498                }
 499
 500                ex_assign_report_general(dev, rg_resp);
 501
 502                if (dev->ex_dev.configuring) {
 503                        pr_debug("RG: ex %016llx self-configuring...\n",
 504                                 SAS_ADDR(dev->sas_addr));
 505                        schedule_timeout_interruptible(5*HZ);
 506                } else
 507                        break;
 508        }
 509out:
 510        kfree(rg_req);
 511        kfree(rg_resp);
 512        return res;
 513}
 514
 515static void ex_assign_manuf_info(struct domain_device *dev, void
 516                                        *_mi_resp)
 517{
 518        u8 *mi_resp = _mi_resp;
 519        struct sas_rphy *rphy = dev->rphy;
 520        struct sas_expander_device *edev = rphy_to_expander_device(rphy);
 521
 522        memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
 523        memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
 524        memcpy(edev->product_rev, mi_resp + 36,
 525               SAS_EXPANDER_PRODUCT_REV_LEN);
 526
 527        if (mi_resp[8] & 1) {
 528                memcpy(edev->component_vendor_id, mi_resp + 40,
 529                       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
 530                edev->component_id = mi_resp[48] << 8 | mi_resp[49];
 531                edev->component_revision_id = mi_resp[50];
 532        }
 533}
 534
 535#define MI_REQ_SIZE   8
 536#define MI_RESP_SIZE 64
 537
 538static int sas_ex_manuf_info(struct domain_device *dev)
 539{
 540        u8 *mi_req;
 541        u8 *mi_resp;
 542        int res;
 543
 544        mi_req = alloc_smp_req(MI_REQ_SIZE);
 545        if (!mi_req)
 546                return -ENOMEM;
 547
 548        mi_resp = alloc_smp_resp(MI_RESP_SIZE);
 549        if (!mi_resp) {
 550                kfree(mi_req);
 551                return -ENOMEM;
 552        }
 553
 554        mi_req[1] = SMP_REPORT_MANUF_INFO;
 555
 556        res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp, MI_RESP_SIZE);
 557        if (res) {
 558                pr_notice("MI: ex %016llx failed:0x%x\n",
 559                          SAS_ADDR(dev->sas_addr), res);
 560                goto out;
 561        } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
 562                pr_debug("MI ex %016llx returned SMP result:0x%x\n",
 563                         SAS_ADDR(dev->sas_addr), mi_resp[2]);
 564                goto out;
 565        }
 566
 567        ex_assign_manuf_info(dev, mi_resp);
 568out:
 569        kfree(mi_req);
 570        kfree(mi_resp);
 571        return res;
 572}
 573
 574#define PC_REQ_SIZE  44
 575#define PC_RESP_SIZE 8
 576
 577int sas_smp_phy_control(struct domain_device *dev, int phy_id,
 578                        enum phy_func phy_func,
 579                        struct sas_phy_linkrates *rates)
 580{
 581        u8 *pc_req;
 582        u8 *pc_resp;
 583        int res;
 584
 585        pc_req = alloc_smp_req(PC_REQ_SIZE);
 586        if (!pc_req)
 587                return -ENOMEM;
 588
 589        pc_resp = alloc_smp_resp(PC_RESP_SIZE);
 590        if (!pc_resp) {
 591                kfree(pc_req);
 592                return -ENOMEM;
 593        }
 594
 595        pc_req[1] = SMP_PHY_CONTROL;
 596        pc_req[9] = phy_id;
 597        pc_req[10] = phy_func;
 598        if (rates) {
 599                pc_req[32] = rates->minimum_linkrate << 4;
 600                pc_req[33] = rates->maximum_linkrate << 4;
 601        }
 602
 603        res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp, PC_RESP_SIZE);
 604        if (res) {
 605                pr_err("ex %016llx phy%02d PHY control failed: %d\n",
 606                       SAS_ADDR(dev->sas_addr), phy_id, res);
 607        } else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
 608                pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
 609                       SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
 610                res = pc_resp[2];
 611        }
 612        kfree(pc_resp);
 613        kfree(pc_req);
 614        return res;
 615}
 616
 617static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
 618{
 619        struct expander_device *ex = &dev->ex_dev;
 620        struct ex_phy *phy = &ex->ex_phy[phy_id];
 621
 622        sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
 623        phy->linkrate = SAS_PHY_DISABLED;
 624}
 625
 626static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
 627{
 628        struct expander_device *ex = &dev->ex_dev;
 629        int i;
 630
 631        for (i = 0; i < ex->num_phys; i++) {
 632                struct ex_phy *phy = &ex->ex_phy[i];
 633
 634                if (phy->phy_state == PHY_VACANT ||
 635                    phy->phy_state == PHY_NOT_PRESENT)
 636                        continue;
 637
 638                if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
 639                        sas_ex_disable_phy(dev, i);
 640        }
 641}
 642
 643static int sas_dev_present_in_domain(struct asd_sas_port *port,
 644                                            u8 *sas_addr)
 645{
 646        struct domain_device *dev;
 647
 648        if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
 649                return 1;
 650        list_for_each_entry(dev, &port->dev_list, dev_list_node) {
 651                if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
 652                        return 1;
 653        }
 654        return 0;
 655}
 656
 657#define RPEL_REQ_SIZE   16
 658#define RPEL_RESP_SIZE  32
 659int sas_smp_get_phy_events(struct sas_phy *phy)
 660{
 661        int res;
 662        u8 *req;
 663        u8 *resp;
 664        struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
 665        struct domain_device *dev = sas_find_dev_by_rphy(rphy);
 666
 667        req = alloc_smp_req(RPEL_REQ_SIZE);
 668        if (!req)
 669                return -ENOMEM;
 670
 671        resp = alloc_smp_resp(RPEL_RESP_SIZE);
 672        if (!resp) {
 673                kfree(req);
 674                return -ENOMEM;
 675        }
 676
 677        req[1] = SMP_REPORT_PHY_ERR_LOG;
 678        req[9] = phy->number;
 679
 680        res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
 681                               resp, RPEL_RESP_SIZE);
 682
 683        if (res)
 684                goto out;
 685
 686        phy->invalid_dword_count = get_unaligned_be32(&resp[12]);
 687        phy->running_disparity_error_count = get_unaligned_be32(&resp[16]);
 688        phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]);
 689        phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]);
 690
 691 out:
 692        kfree(req);
 693        kfree(resp);
 694        return res;
 695
 696}
 697
 698#ifdef CONFIG_SCSI_SAS_ATA
 699
 700#define RPS_REQ_SIZE  16
 701#define RPS_RESP_SIZE 60
 702
 703int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
 704                            struct smp_resp *rps_resp)
 705{
 706        int res;
 707        u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
 708        u8 *resp = (u8 *)rps_resp;
 709
 710        if (!rps_req)
 711                return -ENOMEM;
 712
 713        rps_req[1] = SMP_REPORT_PHY_SATA;
 714        rps_req[9] = phy_id;
 715
 716        res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
 717                               rps_resp, RPS_RESP_SIZE);
 718
 719        /* 0x34 is the FIS type for the D2H fis.  There's a potential
 720         * standards cockup here.  sas-2 explicitly specifies the FIS
 721         * should be encoded so that FIS type is in resp[24].
 722         * However, some expanders endian reverse this.  Undo the
 723         * reversal here */
 724        if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
 725                int i;
 726
 727                for (i = 0; i < 5; i++) {
 728                        int j = 24 + (i*4);
 729                        u8 a, b;
 730                        a = resp[j + 0];
 731                        b = resp[j + 1];
 732                        resp[j + 0] = resp[j + 3];
 733                        resp[j + 1] = resp[j + 2];
 734                        resp[j + 2] = b;
 735                        resp[j + 3] = a;
 736                }
 737        }
 738
 739        kfree(rps_req);
 740        return res;
 741}
 742#endif
 743
 744static void sas_ex_get_linkrate(struct domain_device *parent,
 745                                       struct domain_device *child,
 746                                       struct ex_phy *parent_phy)
 747{
 748        struct expander_device *parent_ex = &parent->ex_dev;
 749        struct sas_port *port;
 750        int i;
 751
 752        child->pathways = 0;
 753
 754        port = parent_phy->port;
 755
 756        for (i = 0; i < parent_ex->num_phys; i++) {
 757                struct ex_phy *phy = &parent_ex->ex_phy[i];
 758
 759                if (phy->phy_state == PHY_VACANT ||
 760                    phy->phy_state == PHY_NOT_PRESENT)
 761                        continue;
 762
 763                if (SAS_ADDR(phy->attached_sas_addr) ==
 764                    SAS_ADDR(child->sas_addr)) {
 765
 766                        child->min_linkrate = min(parent->min_linkrate,
 767                                                  phy->linkrate);
 768                        child->max_linkrate = max(parent->max_linkrate,
 769                                                  phy->linkrate);
 770                        child->pathways++;
 771                        sas_port_add_phy(port, phy->phy);
 772                }
 773        }
 774        child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
 775        child->pathways = min(child->pathways, parent->pathways);
 776}
 777
 778static struct domain_device *sas_ex_discover_end_dev(
 779        struct domain_device *parent, int phy_id)
 780{
 781        struct expander_device *parent_ex = &parent->ex_dev;
 782        struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
 783        struct domain_device *child = NULL;
 784        struct sas_rphy *rphy;
 785        int res;
 786
 787        if (phy->attached_sata_host || phy->attached_sata_ps)
 788                return NULL;
 789
 790        child = sas_alloc_device();
 791        if (!child)
 792                return NULL;
 793
 794        kref_get(&parent->kref);
 795        child->parent = parent;
 796        child->port   = parent->port;
 797        child->iproto = phy->attached_iproto;
 798        memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 799        sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 800        if (!phy->port) {
 801                phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 802                if (unlikely(!phy->port))
 803                        goto out_err;
 804                if (unlikely(sas_port_add(phy->port) != 0)) {
 805                        sas_port_free(phy->port);
 806                        goto out_err;
 807                }
 808        }
 809        sas_ex_get_linkrate(parent, child, phy);
 810        sas_device_set_phy(child, phy->port);
 811
 812#ifdef CONFIG_SCSI_SAS_ATA
 813        if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
 814                if (child->linkrate > parent->min_linkrate) {
 815                        struct sas_phy *cphy = child->phy;
 816                        enum sas_linkrate min_prate = cphy->minimum_linkrate,
 817                                parent_min_lrate = parent->min_linkrate,
 818                                min_linkrate = (min_prate > parent_min_lrate) ?
 819                                               parent_min_lrate : 0;
 820                        struct sas_phy_linkrates rates = {
 821                                .maximum_linkrate = parent->min_linkrate,
 822                                .minimum_linkrate = min_linkrate,
 823                        };
 824                        int ret;
 825
 826                        pr_notice("ex %016llx phy%02d SATA device linkrate > min pathway connection rate, attempting to lower device linkrate\n",
 827                                   SAS_ADDR(child->sas_addr), phy_id);
 828                        ret = sas_smp_phy_control(parent, phy_id,
 829                                                  PHY_FUNC_LINK_RESET, &rates);
 830                        if (ret) {
 831                                pr_err("ex %016llx phy%02d SATA device could not set linkrate (%d)\n",
 832                                       SAS_ADDR(child->sas_addr), phy_id, ret);
 833                                goto out_free;
 834                        }
 835                        pr_notice("ex %016llx phy%02d SATA device set linkrate successfully\n",
 836                                  SAS_ADDR(child->sas_addr), phy_id);
 837                        child->linkrate = child->min_linkrate;
 838                }
 839                res = sas_get_ata_info(child, phy);
 840                if (res)
 841                        goto out_free;
 842
 843                sas_init_dev(child);
 844                res = sas_ata_init(child);
 845                if (res)
 846                        goto out_free;
 847                rphy = sas_end_device_alloc(phy->port);
 848                if (!rphy)
 849                        goto out_free;
 850                rphy->identify.phy_identifier = phy_id;
 851
 852                child->rphy = rphy;
 853                get_device(&rphy->dev);
 854
 855                list_add_tail(&child->disco_list_node, &parent->port->disco_list);
 856
 857                res = sas_discover_sata(child);
 858                if (res) {
 859                        pr_notice("sas_discover_sata() for device %16llx at %016llx:%02d returned 0x%x\n",
 860                                  SAS_ADDR(child->sas_addr),
 861                                  SAS_ADDR(parent->sas_addr), phy_id, res);
 862                        goto out_list_del;
 863                }
 864        } else
 865#endif
 866          if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
 867                child->dev_type = SAS_END_DEVICE;
 868                rphy = sas_end_device_alloc(phy->port);
 869                /* FIXME: error handling */
 870                if (unlikely(!rphy))
 871                        goto out_free;
 872                child->tproto = phy->attached_tproto;
 873                sas_init_dev(child);
 874
 875                child->rphy = rphy;
 876                get_device(&rphy->dev);
 877                rphy->identify.phy_identifier = phy_id;
 878                sas_fill_in_rphy(child, rphy);
 879
 880                list_add_tail(&child->disco_list_node, &parent->port->disco_list);
 881
 882                res = sas_discover_end_dev(child);
 883                if (res) {
 884                        pr_notice("sas_discover_end_dev() for device %016llx at %016llx:%02d returned 0x%x\n",
 885                                  SAS_ADDR(child->sas_addr),
 886                                  SAS_ADDR(parent->sas_addr), phy_id, res);
 887                        goto out_list_del;
 888                }
 889        } else {
 890                pr_notice("target proto 0x%x at %016llx:0x%x not handled\n",
 891                          phy->attached_tproto, SAS_ADDR(parent->sas_addr),
 892                          phy_id);
 893                goto out_free;
 894        }
 895
 896        list_add_tail(&child->siblings, &parent_ex->children);
 897        return child;
 898
 899 out_list_del:
 900        sas_rphy_free(child->rphy);
 901        list_del(&child->disco_list_node);
 902        spin_lock_irq(&parent->port->dev_list_lock);
 903        list_del(&child->dev_list_node);
 904        spin_unlock_irq(&parent->port->dev_list_lock);
 905 out_free:
 906        sas_port_delete(phy->port);
 907 out_err:
 908        phy->port = NULL;
 909        sas_put_device(child);
 910        return NULL;
 911}
 912
 913/* See if this phy is part of a wide port */
 914static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
 915{
 916        struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 917        int i;
 918
 919        for (i = 0; i < parent->ex_dev.num_phys; i++) {
 920                struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
 921
 922                if (ephy == phy)
 923                        continue;
 924
 925                if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
 926                            SAS_ADDR_SIZE) && ephy->port) {
 927                        sas_port_add_phy(ephy->port, phy->phy);
 928                        phy->port = ephy->port;
 929                        phy->phy_state = PHY_DEVICE_DISCOVERED;
 930                        return true;
 931                }
 932        }
 933
 934        return false;
 935}
 936
 937static struct domain_device *sas_ex_discover_expander(
 938        struct domain_device *parent, int phy_id)
 939{
 940        struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
 941        struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 942        struct domain_device *child = NULL;
 943        struct sas_rphy *rphy;
 944        struct sas_expander_device *edev;
 945        struct asd_sas_port *port;
 946        int res;
 947
 948        if (phy->routing_attr == DIRECT_ROUTING) {
 949                pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n",
 950                        SAS_ADDR(parent->sas_addr), phy_id,
 951                        SAS_ADDR(phy->attached_sas_addr),
 952                        phy->attached_phy_id);
 953                return NULL;
 954        }
 955        child = sas_alloc_device();
 956        if (!child)
 957                return NULL;
 958
 959        phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 960        /* FIXME: better error handling */
 961        BUG_ON(sas_port_add(phy->port) != 0);
 962
 963
 964        switch (phy->attached_dev_type) {
 965        case SAS_EDGE_EXPANDER_DEVICE:
 966                rphy = sas_expander_alloc(phy->port,
 967                                          SAS_EDGE_EXPANDER_DEVICE);
 968                break;
 969        case SAS_FANOUT_EXPANDER_DEVICE:
 970                rphy = sas_expander_alloc(phy->port,
 971                                          SAS_FANOUT_EXPANDER_DEVICE);
 972                break;
 973        default:
 974                rphy = NULL;    /* shut gcc up */
 975                BUG();
 976        }
 977        port = parent->port;
 978        child->rphy = rphy;
 979        get_device(&rphy->dev);
 980        edev = rphy_to_expander_device(rphy);
 981        child->dev_type = phy->attached_dev_type;
 982        kref_get(&parent->kref);
 983        child->parent = parent;
 984        child->port = port;
 985        child->iproto = phy->attached_iproto;
 986        child->tproto = phy->attached_tproto;
 987        memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 988        sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 989        sas_ex_get_linkrate(parent, child, phy);
 990        edev->level = parent_ex->level + 1;
 991        parent->port->disc.max_level = max(parent->port->disc.max_level,
 992                                           edev->level);
 993        sas_init_dev(child);
 994        sas_fill_in_rphy(child, rphy);
 995        sas_rphy_add(rphy);
 996
 997        spin_lock_irq(&parent->port->dev_list_lock);
 998        list_add_tail(&child->dev_list_node, &parent->port->dev_list);
 999        spin_unlock_irq(&parent->port->dev_list_lock);
1000
1001        res = sas_discover_expander(child);
1002        if (res) {
1003                sas_rphy_delete(rphy);
1004                spin_lock_irq(&parent->port->dev_list_lock);
1005                list_del(&child->dev_list_node);
1006                spin_unlock_irq(&parent->port->dev_list_lock);
1007                sas_put_device(child);
1008                sas_port_delete(phy->port);
1009                phy->port = NULL;
1010                return NULL;
1011        }
1012        list_add_tail(&child->siblings, &parent->ex_dev.children);
1013        return child;
1014}
1015
1016static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
1017{
1018        struct expander_device *ex = &dev->ex_dev;
1019        struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
1020        struct domain_device *child = NULL;
1021        int res = 0;
1022
1023        /* Phy state */
1024        if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
1025                if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
1026                        res = sas_ex_phy_discover(dev, phy_id);
1027                if (res)
1028                        return res;
1029        }
1030
1031        /* Parent and domain coherency */
1032        if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1033                             SAS_ADDR(dev->port->sas_addr))) {
1034                sas_add_parent_port(dev, phy_id);
1035                return 0;
1036        }
1037        if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1038                            SAS_ADDR(dev->parent->sas_addr))) {
1039                sas_add_parent_port(dev, phy_id);
1040                if (ex_phy->routing_attr == TABLE_ROUTING)
1041                        sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1042                return 0;
1043        }
1044
1045        if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1046                sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1047
1048        if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1049                if (ex_phy->routing_attr == DIRECT_ROUTING) {
1050                        memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1051                        sas_configure_routing(dev, ex_phy->attached_sas_addr);
1052                }
1053                return 0;
1054        } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1055                return 0;
1056
1057        if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1058            ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1059            ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1060            ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1061                pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n",
1062                        ex_phy->attached_dev_type,
1063                        SAS_ADDR(dev->sas_addr),
1064                        phy_id);
1065                return 0;
1066        }
1067
1068        res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1069        if (res) {
1070                pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n",
1071                          SAS_ADDR(ex_phy->attached_sas_addr), res);
1072                sas_disable_routing(dev, ex_phy->attached_sas_addr);
1073                return res;
1074        }
1075
1076        if (sas_ex_join_wide_port(dev, phy_id)) {
1077                pr_debug("Attaching ex phy%02d to wide port %016llx\n",
1078                         phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1079                return res;
1080        }
1081
1082        switch (ex_phy->attached_dev_type) {
1083        case SAS_END_DEVICE:
1084        case SAS_SATA_PENDING:
1085                child = sas_ex_discover_end_dev(dev, phy_id);
1086                break;
1087        case SAS_FANOUT_EXPANDER_DEVICE:
1088                if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1089                        pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n",
1090                                 SAS_ADDR(ex_phy->attached_sas_addr),
1091                                 ex_phy->attached_phy_id,
1092                                 SAS_ADDR(dev->sas_addr),
1093                                 phy_id);
1094                        sas_ex_disable_phy(dev, phy_id);
1095                        return res;
1096                } else
1097                        memcpy(dev->port->disc.fanout_sas_addr,
1098                               ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1099                fallthrough;
1100        case SAS_EDGE_EXPANDER_DEVICE:
1101                child = sas_ex_discover_expander(dev, phy_id);
1102                break;
1103        default:
1104                break;
1105        }
1106
1107        if (!child)
1108                pr_notice("ex %016llx phy%02d failed to discover\n",
1109                          SAS_ADDR(dev->sas_addr), phy_id);
1110        return res;
1111}
1112
1113static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1114{
1115        struct expander_device *ex = &dev->ex_dev;
1116        int i;
1117
1118        for (i = 0; i < ex->num_phys; i++) {
1119                struct ex_phy *phy = &ex->ex_phy[i];
1120
1121                if (phy->phy_state == PHY_VACANT ||
1122                    phy->phy_state == PHY_NOT_PRESENT)
1123                        continue;
1124
1125                if (dev_is_expander(phy->attached_dev_type) &&
1126                    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1127
1128                        memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
1129
1130                        return 1;
1131                }
1132        }
1133        return 0;
1134}
1135
1136static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1137{
1138        struct expander_device *ex = &dev->ex_dev;
1139        struct domain_device *child;
1140        u8 sub_addr[SAS_ADDR_SIZE] = {0, };
1141
1142        list_for_each_entry(child, &ex->children, siblings) {
1143                if (!dev_is_expander(child->dev_type))
1144                        continue;
1145                if (sub_addr[0] == 0) {
1146                        sas_find_sub_addr(child, sub_addr);
1147                        continue;
1148                } else {
1149                        u8 s2[SAS_ADDR_SIZE];
1150
1151                        if (sas_find_sub_addr(child, s2) &&
1152                            (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1153
1154                                pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n",
1155                                          SAS_ADDR(dev->sas_addr),
1156                                          SAS_ADDR(child->sas_addr),
1157                                          SAS_ADDR(s2),
1158                                          SAS_ADDR(sub_addr));
1159
1160                                sas_ex_disable_port(child, s2);
1161                        }
1162                }
1163        }
1164        return 0;
1165}
1166/**
1167 * sas_ex_discover_devices - discover devices attached to this expander
1168 * @dev: pointer to the expander domain device
1169 * @single: if you want to do a single phy, else set to -1;
1170 *
1171 * Configure this expander for use with its devices and register the
1172 * devices of this expander.
1173 */
1174static int sas_ex_discover_devices(struct domain_device *dev, int single)
1175{
1176        struct expander_device *ex = &dev->ex_dev;
1177        int i = 0, end = ex->num_phys;
1178        int res = 0;
1179
1180        if (0 <= single && single < end) {
1181                i = single;
1182                end = i+1;
1183        }
1184
1185        for ( ; i < end; i++) {
1186                struct ex_phy *ex_phy = &ex->ex_phy[i];
1187
1188                if (ex_phy->phy_state == PHY_VACANT ||
1189                    ex_phy->phy_state == PHY_NOT_PRESENT ||
1190                    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1191                        continue;
1192
1193                switch (ex_phy->linkrate) {
1194                case SAS_PHY_DISABLED:
1195                case SAS_PHY_RESET_PROBLEM:
1196                case SAS_SATA_PORT_SELECTOR:
1197                        continue;
1198                default:
1199                        res = sas_ex_discover_dev(dev, i);
1200                        if (res)
1201                                break;
1202                        continue;
1203                }
1204        }
1205
1206        if (!res)
1207                sas_check_level_subtractive_boundary(dev);
1208
1209        return res;
1210}
1211
1212static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1213{
1214        struct expander_device *ex = &dev->ex_dev;
1215        int i;
1216        u8  *sub_sas_addr = NULL;
1217
1218        if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1219                return 0;
1220
1221        for (i = 0; i < ex->num_phys; i++) {
1222                struct ex_phy *phy = &ex->ex_phy[i];
1223
1224                if (phy->phy_state == PHY_VACANT ||
1225                    phy->phy_state == PHY_NOT_PRESENT)
1226                        continue;
1227
1228                if (dev_is_expander(phy->attached_dev_type) &&
1229                    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1230
1231                        if (!sub_sas_addr)
1232                                sub_sas_addr = &phy->attached_sas_addr[0];
1233                        else if (SAS_ADDR(sub_sas_addr) !=
1234                                 SAS_ADDR(phy->attached_sas_addr)) {
1235
1236                                pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n",
1237                                          SAS_ADDR(dev->sas_addr), i,
1238                                          SAS_ADDR(phy->attached_sas_addr),
1239                                          SAS_ADDR(sub_sas_addr));
1240                                sas_ex_disable_phy(dev, i);
1241                        }
1242                }
1243        }
1244        return 0;
1245}
1246
1247static void sas_print_parent_topology_bug(struct domain_device *child,
1248                                                 struct ex_phy *parent_phy,
1249                                                 struct ex_phy *child_phy)
1250{
1251        static const char *ex_type[] = {
1252                [SAS_EDGE_EXPANDER_DEVICE] = "edge",
1253                [SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1254        };
1255        struct domain_device *parent = child->parent;
1256
1257        pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n",
1258                  ex_type[parent->dev_type],
1259                  SAS_ADDR(parent->sas_addr),
1260                  parent_phy->phy_id,
1261
1262                  ex_type[child->dev_type],
1263                  SAS_ADDR(child->sas_addr),
1264                  child_phy->phy_id,
1265
1266                  sas_route_char(parent, parent_phy),
1267                  sas_route_char(child, child_phy));
1268}
1269
1270static int sas_check_eeds(struct domain_device *child,
1271                                 struct ex_phy *parent_phy,
1272                                 struct ex_phy *child_phy)
1273{
1274        int res = 0;
1275        struct domain_device *parent = child->parent;
1276
1277        if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1278                res = -ENODEV;
1279                pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n",
1280                        SAS_ADDR(parent->sas_addr),
1281                        parent_phy->phy_id,
1282                        SAS_ADDR(child->sas_addr),
1283                        child_phy->phy_id,
1284                        SAS_ADDR(parent->port->disc.fanout_sas_addr));
1285        } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1286                memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1287                       SAS_ADDR_SIZE);
1288                memcpy(parent->port->disc.eeds_b, child->sas_addr,
1289                       SAS_ADDR_SIZE);
1290        } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1291                    SAS_ADDR(parent->sas_addr)) ||
1292                   (SAS_ADDR(parent->port->disc.eeds_a) ==
1293                    SAS_ADDR(child->sas_addr)))
1294                   &&
1295                   ((SAS_ADDR(parent->port->disc.eeds_b) ==
1296                     SAS_ADDR(parent->sas_addr)) ||
1297                    (SAS_ADDR(parent->port->disc.eeds_b) ==
1298                     SAS_ADDR(child->sas_addr))))
1299                ;
1300        else {
1301                res = -ENODEV;
1302                pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n",
1303                        SAS_ADDR(parent->sas_addr),
1304                        parent_phy->phy_id,
1305                        SAS_ADDR(child->sas_addr),
1306                        child_phy->phy_id);
1307        }
1308
1309        return res;
1310}
1311
1312/* Here we spill over 80 columns.  It is intentional.
1313 */
1314static int sas_check_parent_topology(struct domain_device *child)
1315{
1316        struct expander_device *child_ex = &child->ex_dev;
1317        struct expander_device *parent_ex;
1318        int i;
1319        int res = 0;
1320
1321        if (!child->parent)
1322                return 0;
1323
1324        if (!dev_is_expander(child->parent->dev_type))
1325                return 0;
1326
1327        parent_ex = &child->parent->ex_dev;
1328
1329        for (i = 0; i < parent_ex->num_phys; i++) {
1330                struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1331                struct ex_phy *child_phy;
1332
1333                if (parent_phy->phy_state == PHY_VACANT ||
1334                    parent_phy->phy_state == PHY_NOT_PRESENT)
1335                        continue;
1336
1337                if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1338                        continue;
1339
1340                child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1341
1342                switch (child->parent->dev_type) {
1343                case SAS_EDGE_EXPANDER_DEVICE:
1344                        if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1345                                if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1346                                    child_phy->routing_attr != TABLE_ROUTING) {
1347                                        sas_print_parent_topology_bug(child, parent_phy, child_phy);
1348                                        res = -ENODEV;
1349                                }
1350                        } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1351                                if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1352                                        res = sas_check_eeds(child, parent_phy, child_phy);
1353                                } else if (child_phy->routing_attr != TABLE_ROUTING) {
1354                                        sas_print_parent_topology_bug(child, parent_phy, child_phy);
1355                                        res = -ENODEV;
1356                                }
1357                        } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1358                                if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1359                                    (child_phy->routing_attr == TABLE_ROUTING &&
1360                                     child_ex->t2t_supp && parent_ex->t2t_supp)) {
1361                                        /* All good */;
1362                                } else {
1363                                        sas_print_parent_topology_bug(child, parent_phy, child_phy);
1364                                        res = -ENODEV;
1365                                }
1366                        }
1367                        break;
1368                case SAS_FANOUT_EXPANDER_DEVICE:
1369                        if (parent_phy->routing_attr != TABLE_ROUTING ||
1370                            child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1371                                sas_print_parent_topology_bug(child, parent_phy, child_phy);
1372                                res = -ENODEV;
1373                        }
1374                        break;
1375                default:
1376                        break;
1377                }
1378        }
1379
1380        return res;
1381}
1382
1383#define RRI_REQ_SIZE  16
1384#define RRI_RESP_SIZE 44
1385
1386static int sas_configure_present(struct domain_device *dev, int phy_id,
1387                                 u8 *sas_addr, int *index, int *present)
1388{
1389        int i, res = 0;
1390        struct expander_device *ex = &dev->ex_dev;
1391        struct ex_phy *phy = &ex->ex_phy[phy_id];
1392        u8 *rri_req;
1393        u8 *rri_resp;
1394
1395        *present = 0;
1396        *index = 0;
1397
1398        rri_req = alloc_smp_req(RRI_REQ_SIZE);
1399        if (!rri_req)
1400                return -ENOMEM;
1401
1402        rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1403        if (!rri_resp) {
1404                kfree(rri_req);
1405                return -ENOMEM;
1406        }
1407
1408        rri_req[1] = SMP_REPORT_ROUTE_INFO;
1409        rri_req[9] = phy_id;
1410
1411        for (i = 0; i < ex->max_route_indexes ; i++) {
1412                *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1413                res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1414                                       RRI_RESP_SIZE);
1415                if (res)
1416                        goto out;
1417                res = rri_resp[2];
1418                if (res == SMP_RESP_NO_INDEX) {
1419                        pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1420                                SAS_ADDR(dev->sas_addr), phy_id, i);
1421                        goto out;
1422                } else if (res != SMP_RESP_FUNC_ACC) {
1423                        pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n",
1424                                  __func__, SAS_ADDR(dev->sas_addr), phy_id,
1425                                  i, res);
1426                        goto out;
1427                }
1428                if (SAS_ADDR(sas_addr) != 0) {
1429                        if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1430                                *index = i;
1431                                if ((rri_resp[12] & 0x80) == 0x80)
1432                                        *present = 0;
1433                                else
1434                                        *present = 1;
1435                                goto out;
1436                        } else if (SAS_ADDR(rri_resp+16) == 0) {
1437                                *index = i;
1438                                *present = 0;
1439                                goto out;
1440                        }
1441                } else if (SAS_ADDR(rri_resp+16) == 0 &&
1442                           phy->last_da_index < i) {
1443                        phy->last_da_index = i;
1444                        *index = i;
1445                        *present = 0;
1446                        goto out;
1447                }
1448        }
1449        res = -1;
1450out:
1451        kfree(rri_req);
1452        kfree(rri_resp);
1453        return res;
1454}
1455
1456#define CRI_REQ_SIZE  44
1457#define CRI_RESP_SIZE  8
1458
1459static int sas_configure_set(struct domain_device *dev, int phy_id,
1460                             u8 *sas_addr, int index, int include)
1461{
1462        int res;
1463        u8 *cri_req;
1464        u8 *cri_resp;
1465
1466        cri_req = alloc_smp_req(CRI_REQ_SIZE);
1467        if (!cri_req)
1468                return -ENOMEM;
1469
1470        cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1471        if (!cri_resp) {
1472                kfree(cri_req);
1473                return -ENOMEM;
1474        }
1475
1476        cri_req[1] = SMP_CONF_ROUTE_INFO;
1477        *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1478        cri_req[9] = phy_id;
1479        if (SAS_ADDR(sas_addr) == 0 || !include)
1480                cri_req[12] |= 0x80;
1481        memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1482
1483        res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1484                               CRI_RESP_SIZE);
1485        if (res)
1486                goto out;
1487        res = cri_resp[2];
1488        if (res == SMP_RESP_NO_INDEX) {
1489                pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1490                        SAS_ADDR(dev->sas_addr), phy_id, index);
1491        }
1492out:
1493        kfree(cri_req);
1494        kfree(cri_resp);
1495        return res;
1496}
1497
1498static int sas_configure_phy(struct domain_device *dev, int phy_id,
1499                                    u8 *sas_addr, int include)
1500{
1501        int index;
1502        int present;
1503        int res;
1504
1505        res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1506        if (res)
1507                return res;
1508        if (include ^ present)
1509                return sas_configure_set(dev, phy_id, sas_addr, index,
1510                                         include);
1511
1512        return res;
1513}
1514
1515/**
1516 * sas_configure_parent - configure routing table of parent
1517 * @parent: parent expander
1518 * @child: child expander
1519 * @sas_addr: SAS port identifier of device directly attached to child
1520 * @include: whether or not to include @child in the expander routing table
1521 */
1522static int sas_configure_parent(struct domain_device *parent,
1523                                struct domain_device *child,
1524                                u8 *sas_addr, int include)
1525{
1526        struct expander_device *ex_parent = &parent->ex_dev;
1527        int res = 0;
1528        int i;
1529
1530        if (parent->parent) {
1531                res = sas_configure_parent(parent->parent, parent, sas_addr,
1532                                           include);
1533                if (res)
1534                        return res;
1535        }
1536
1537        if (ex_parent->conf_route_table == 0) {
1538                pr_debug("ex %016llx has self-configuring routing table\n",
1539                         SAS_ADDR(parent->sas_addr));
1540                return 0;
1541        }
1542
1543        for (i = 0; i < ex_parent->num_phys; i++) {
1544                struct ex_phy *phy = &ex_parent->ex_phy[i];
1545
1546                if ((phy->routing_attr == TABLE_ROUTING) &&
1547                    (SAS_ADDR(phy->attached_sas_addr) ==
1548                     SAS_ADDR(child->sas_addr))) {
1549                        res = sas_configure_phy(parent, i, sas_addr, include);
1550                        if (res)
1551                                return res;
1552                }
1553        }
1554
1555        return res;
1556}
1557
1558/**
1559 * sas_configure_routing - configure routing
1560 * @dev: expander device
1561 * @sas_addr: port identifier of device directly attached to the expander device
1562 */
1563static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1564{
1565        if (dev->parent)
1566                return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1567        return 0;
1568}
1569
1570static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1571{
1572        if (dev->parent)
1573                return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1574        return 0;
1575}
1576
1577/**
1578 * sas_discover_expander - expander discovery
1579 * @dev: pointer to expander domain device
1580 *
1581 * See comment in sas_discover_sata().
1582 */
1583static int sas_discover_expander(struct domain_device *dev)
1584{
1585        int res;
1586
1587        res = sas_notify_lldd_dev_found(dev);
1588        if (res)
1589                return res;
1590
1591        res = sas_ex_general(dev);
1592        if (res)
1593                goto out_err;
1594        res = sas_ex_manuf_info(dev);
1595        if (res)
1596                goto out_err;
1597
1598        res = sas_expander_discover(dev);
1599        if (res) {
1600                pr_warn("expander %016llx discovery failed(0x%x)\n",
1601                        SAS_ADDR(dev->sas_addr), res);
1602                goto out_err;
1603        }
1604
1605        sas_check_ex_subtractive_boundary(dev);
1606        res = sas_check_parent_topology(dev);
1607        if (res)
1608                goto out_err;
1609        return 0;
1610out_err:
1611        sas_notify_lldd_dev_gone(dev);
1612        return res;
1613}
1614
1615static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1616{
1617        int res = 0;
1618        struct domain_device *dev;
1619
1620        list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1621                if (dev_is_expander(dev->dev_type)) {
1622                        struct sas_expander_device *ex =
1623                                rphy_to_expander_device(dev->rphy);
1624
1625                        if (level == ex->level)
1626                                res = sas_ex_discover_devices(dev, -1);
1627                        else if (level > 0)
1628                                res = sas_ex_discover_devices(port->port_dev, -1);
1629
1630                }
1631        }
1632
1633        return res;
1634}
1635
1636static int sas_ex_bfs_disc(struct asd_sas_port *port)
1637{
1638        int res;
1639        int level;
1640
1641        do {
1642                level = port->disc.max_level;
1643                res = sas_ex_level_discovery(port, level);
1644                mb();
1645        } while (level < port->disc.max_level);
1646
1647        return res;
1648}
1649
1650int sas_discover_root_expander(struct domain_device *dev)
1651{
1652        int res;
1653        struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1654
1655        res = sas_rphy_add(dev->rphy);
1656        if (res)
1657                goto out_err;
1658
1659        ex->level = dev->port->disc.max_level; /* 0 */
1660        res = sas_discover_expander(dev);
1661        if (res)
1662                goto out_err2;
1663
1664        sas_ex_bfs_disc(dev->port);
1665
1666        return res;
1667
1668out_err2:
1669        sas_rphy_remove(dev->rphy);
1670out_err:
1671        return res;
1672}
1673
1674/* ---------- Domain revalidation ---------- */
1675
1676static int sas_get_phy_discover(struct domain_device *dev,
1677                                int phy_id, struct smp_resp *disc_resp)
1678{
1679        int res;
1680        u8 *disc_req;
1681
1682        disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1683        if (!disc_req)
1684                return -ENOMEM;
1685
1686        disc_req[1] = SMP_DISCOVER;
1687        disc_req[9] = phy_id;
1688
1689        res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1690                               disc_resp, DISCOVER_RESP_SIZE);
1691        if (res)
1692                goto out;
1693        else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1694                res = disc_resp->result;
1695                goto out;
1696        }
1697out:
1698        kfree(disc_req);
1699        return res;
1700}
1701
1702static int sas_get_phy_change_count(struct domain_device *dev,
1703                                    int phy_id, int *pcc)
1704{
1705        int res;
1706        struct smp_resp *disc_resp;
1707
1708        disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1709        if (!disc_resp)
1710                return -ENOMEM;
1711
1712        res = sas_get_phy_discover(dev, phy_id, disc_resp);
1713        if (!res)
1714                *pcc = disc_resp->disc.change_count;
1715
1716        kfree(disc_resp);
1717        return res;
1718}
1719
1720static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1721                                    u8 *sas_addr, enum sas_device_type *type)
1722{
1723        int res;
1724        struct smp_resp *disc_resp;
1725        struct discover_resp *dr;
1726
1727        disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1728        if (!disc_resp)
1729                return -ENOMEM;
1730        dr = &disc_resp->disc;
1731
1732        res = sas_get_phy_discover(dev, phy_id, disc_resp);
1733        if (res == 0) {
1734                memcpy(sas_addr, disc_resp->disc.attached_sas_addr,
1735                       SAS_ADDR_SIZE);
1736                *type = to_dev_type(dr);
1737                if (*type == 0)
1738                        memset(sas_addr, 0, SAS_ADDR_SIZE);
1739        }
1740        kfree(disc_resp);
1741        return res;
1742}
1743
1744static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1745                              int from_phy, bool update)
1746{
1747        struct expander_device *ex = &dev->ex_dev;
1748        int res = 0;
1749        int i;
1750
1751        for (i = from_phy; i < ex->num_phys; i++) {
1752                int phy_change_count = 0;
1753
1754                res = sas_get_phy_change_count(dev, i, &phy_change_count);
1755                switch (res) {
1756                case SMP_RESP_PHY_VACANT:
1757                case SMP_RESP_NO_PHY:
1758                        continue;
1759                case SMP_RESP_FUNC_ACC:
1760                        break;
1761                default:
1762                        return res;
1763                }
1764
1765                if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1766                        if (update)
1767                                ex->ex_phy[i].phy_change_count =
1768                                        phy_change_count;
1769                        *phy_id = i;
1770                        return 0;
1771                }
1772        }
1773        return 0;
1774}
1775
1776static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1777{
1778        int res;
1779        u8  *rg_req;
1780        struct smp_resp  *rg_resp;
1781
1782        rg_req = alloc_smp_req(RG_REQ_SIZE);
1783        if (!rg_req)
1784                return -ENOMEM;
1785
1786        rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1787        if (!rg_resp) {
1788                kfree(rg_req);
1789                return -ENOMEM;
1790        }
1791
1792        rg_req[1] = SMP_REPORT_GENERAL;
1793
1794        res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1795                               RG_RESP_SIZE);
1796        if (res)
1797                goto out;
1798        if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1799                res = rg_resp->result;
1800                goto out;
1801        }
1802
1803        *ecc = be16_to_cpu(rg_resp->rg.change_count);
1804out:
1805        kfree(rg_resp);
1806        kfree(rg_req);
1807        return res;
1808}
1809/**
1810 * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1811 * @dev:domain device to be detect.
1812 * @src_dev: the device which originated BROADCAST(CHANGE).
1813 *
1814 * Add self-configuration expander support. Suppose two expander cascading,
1815 * when the first level expander is self-configuring, hotplug the disks in
1816 * second level expander, BROADCAST(CHANGE) will not only be originated
1817 * in the second level expander, but also be originated in the first level
1818 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1819 * expander changed count in two level expanders will all increment at least
1820 * once, but the phy which chang count has changed is the source device which
1821 * we concerned.
1822 */
1823
1824static int sas_find_bcast_dev(struct domain_device *dev,
1825                              struct domain_device **src_dev)
1826{
1827        struct expander_device *ex = &dev->ex_dev;
1828        int ex_change_count = -1;
1829        int phy_id = -1;
1830        int res;
1831        struct domain_device *ch;
1832
1833        res = sas_get_ex_change_count(dev, &ex_change_count);
1834        if (res)
1835                goto out;
1836        if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1837                /* Just detect if this expander phys phy change count changed,
1838                * in order to determine if this expander originate BROADCAST,
1839                * and do not update phy change count field in our structure.
1840                */
1841                res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1842                if (phy_id != -1) {
1843                        *src_dev = dev;
1844                        ex->ex_change_count = ex_change_count;
1845                        pr_info("ex %016llx phy%02d change count has changed\n",
1846                                SAS_ADDR(dev->sas_addr), phy_id);
1847                        return res;
1848                } else
1849                        pr_info("ex %016llx phys DID NOT change\n",
1850                                SAS_ADDR(dev->sas_addr));
1851        }
1852        list_for_each_entry(ch, &ex->children, siblings) {
1853                if (dev_is_expander(ch->dev_type)) {
1854                        res = sas_find_bcast_dev(ch, src_dev);
1855                        if (*src_dev)
1856                                return res;
1857                }
1858        }
1859out:
1860        return res;
1861}
1862
1863static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1864{
1865        struct expander_device *ex = &dev->ex_dev;
1866        struct domain_device *child, *n;
1867
1868        list_for_each_entry_safe(child, n, &ex->children, siblings) {
1869                set_bit(SAS_DEV_GONE, &child->state);
1870                if (dev_is_expander(child->dev_type))
1871                        sas_unregister_ex_tree(port, child);
1872                else
1873                        sas_unregister_dev(port, child);
1874        }
1875        sas_unregister_dev(port, dev);
1876}
1877
1878static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1879                                         int phy_id, bool last)
1880{
1881        struct expander_device *ex_dev = &parent->ex_dev;
1882        struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1883        struct domain_device *child, *n, *found = NULL;
1884        if (last) {
1885                list_for_each_entry_safe(child, n,
1886                        &ex_dev->children, siblings) {
1887                        if (SAS_ADDR(child->sas_addr) ==
1888                            SAS_ADDR(phy->attached_sas_addr)) {
1889                                set_bit(SAS_DEV_GONE, &child->state);
1890                                if (dev_is_expander(child->dev_type))
1891                                        sas_unregister_ex_tree(parent->port, child);
1892                                else
1893                                        sas_unregister_dev(parent->port, child);
1894                                found = child;
1895                                break;
1896                        }
1897                }
1898                sas_disable_routing(parent, phy->attached_sas_addr);
1899        }
1900        memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1901        if (phy->port) {
1902                sas_port_delete_phy(phy->port, phy->phy);
1903                sas_device_set_phy(found, phy->port);
1904                if (phy->port->num_phys == 0)
1905                        list_add_tail(&phy->port->del_list,
1906                                &parent->port->sas_port_del_list);
1907                phy->port = NULL;
1908        }
1909}
1910
1911static int sas_discover_bfs_by_root_level(struct domain_device *root,
1912                                          const int level)
1913{
1914        struct expander_device *ex_root = &root->ex_dev;
1915        struct domain_device *child;
1916        int res = 0;
1917
1918        list_for_each_entry(child, &ex_root->children, siblings) {
1919                if (dev_is_expander(child->dev_type)) {
1920                        struct sas_expander_device *ex =
1921                                rphy_to_expander_device(child->rphy);
1922
1923                        if (level > ex->level)
1924                                res = sas_discover_bfs_by_root_level(child,
1925                                                                     level);
1926                        else if (level == ex->level)
1927                                res = sas_ex_discover_devices(child, -1);
1928                }
1929        }
1930        return res;
1931}
1932
1933static int sas_discover_bfs_by_root(struct domain_device *dev)
1934{
1935        int res;
1936        struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1937        int level = ex->level+1;
1938
1939        res = sas_ex_discover_devices(dev, -1);
1940        if (res)
1941                goto out;
1942        do {
1943                res = sas_discover_bfs_by_root_level(dev, level);
1944                mb();
1945                level += 1;
1946        } while (level <= dev->port->disc.max_level);
1947out:
1948        return res;
1949}
1950
1951static int sas_discover_new(struct domain_device *dev, int phy_id)
1952{
1953        struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1954        struct domain_device *child;
1955        int res;
1956
1957        pr_debug("ex %016llx phy%02d new device attached\n",
1958                 SAS_ADDR(dev->sas_addr), phy_id);
1959        res = sas_ex_phy_discover(dev, phy_id);
1960        if (res)
1961                return res;
1962
1963        if (sas_ex_join_wide_port(dev, phy_id))
1964                return 0;
1965
1966        res = sas_ex_discover_devices(dev, phy_id);
1967        if (res)
1968                return res;
1969        list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1970                if (SAS_ADDR(child->sas_addr) ==
1971                    SAS_ADDR(ex_phy->attached_sas_addr)) {
1972                        if (dev_is_expander(child->dev_type))
1973                                res = sas_discover_bfs_by_root(child);
1974                        break;
1975                }
1976        }
1977        return res;
1978}
1979
1980static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1981{
1982        if (old == new)
1983                return true;
1984
1985        /* treat device directed resets as flutter, if we went
1986         * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1987         */
1988        if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1989            (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1990                return true;
1991
1992        return false;
1993}
1994
1995static int sas_rediscover_dev(struct domain_device *dev, int phy_id,
1996                              bool last, int sibling)
1997{
1998        struct expander_device *ex = &dev->ex_dev;
1999        struct ex_phy *phy = &ex->ex_phy[phy_id];
2000        enum sas_device_type type = SAS_PHY_UNUSED;
2001        u8 sas_addr[SAS_ADDR_SIZE];
2002        char msg[80] = "";
2003        int res;
2004
2005        if (!last)
2006                sprintf(msg, ", part of a wide port with phy%02d", sibling);
2007
2008        pr_debug("ex %016llx rediscovering phy%02d%s\n",
2009                 SAS_ADDR(dev->sas_addr), phy_id, msg);
2010
2011        memset(sas_addr, 0, SAS_ADDR_SIZE);
2012        res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2013        switch (res) {
2014        case SMP_RESP_NO_PHY:
2015                phy->phy_state = PHY_NOT_PRESENT;
2016                sas_unregister_devs_sas_addr(dev, phy_id, last);
2017                return res;
2018        case SMP_RESP_PHY_VACANT:
2019                phy->phy_state = PHY_VACANT;
2020                sas_unregister_devs_sas_addr(dev, phy_id, last);
2021                return res;
2022        case SMP_RESP_FUNC_ACC:
2023                break;
2024        case -ECOMM:
2025                break;
2026        default:
2027                return res;
2028        }
2029
2030        if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2031                phy->phy_state = PHY_EMPTY;
2032                sas_unregister_devs_sas_addr(dev, phy_id, last);
2033                /*
2034                 * Even though the PHY is empty, for convenience we discover
2035                 * the PHY to update the PHY info, like negotiated linkrate.
2036                 */
2037                sas_ex_phy_discover(dev, phy_id);
2038                return res;
2039        } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2040                   dev_type_flutter(type, phy->attached_dev_type)) {
2041                struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2042                char *action = "";
2043
2044                sas_ex_phy_discover(dev, phy_id);
2045
2046                if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2047                        action = ", needs recovery";
2048                pr_debug("ex %016llx phy%02d broadcast flutter%s\n",
2049                         SAS_ADDR(dev->sas_addr), phy_id, action);
2050                return res;
2051        }
2052
2053        /* we always have to delete the old device when we went here */
2054        pr_info("ex %016llx phy%02d replace %016llx\n",
2055                SAS_ADDR(dev->sas_addr), phy_id,
2056                SAS_ADDR(phy->attached_sas_addr));
2057        sas_unregister_devs_sas_addr(dev, phy_id, last);
2058
2059        return sas_discover_new(dev, phy_id);
2060}
2061
2062/**
2063 * sas_rediscover - revalidate the domain.
2064 * @dev:domain device to be detect.
2065 * @phy_id: the phy id will be detected.
2066 *
2067 * NOTE: this process _must_ quit (return) as soon as any connection
2068 * errors are encountered.  Connection recovery is done elsewhere.
2069 * Discover process only interrogates devices in order to discover the
2070 * domain.For plugging out, we un-register the device only when it is
2071 * the last phy in the port, for other phys in this port, we just delete it
2072 * from the port.For inserting, we do discovery when it is the
2073 * first phy,for other phys in this port, we add it to the port to
2074 * forming the wide-port.
2075 */
2076static int sas_rediscover(struct domain_device *dev, const int phy_id)
2077{
2078        struct expander_device *ex = &dev->ex_dev;
2079        struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2080        int res = 0;
2081        int i;
2082        bool last = true;       /* is this the last phy of the port */
2083
2084        pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n",
2085                 SAS_ADDR(dev->sas_addr), phy_id);
2086
2087        if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2088                for (i = 0; i < ex->num_phys; i++) {
2089                        struct ex_phy *phy = &ex->ex_phy[i];
2090
2091                        if (i == phy_id)
2092                                continue;
2093                        if (SAS_ADDR(phy->attached_sas_addr) ==
2094                            SAS_ADDR(changed_phy->attached_sas_addr)) {
2095                                last = false;
2096                                break;
2097                        }
2098                }
2099                res = sas_rediscover_dev(dev, phy_id, last, i);
2100        } else
2101                res = sas_discover_new(dev, phy_id);
2102        return res;
2103}
2104
2105/**
2106 * sas_ex_revalidate_domain - revalidate the domain
2107 * @port_dev: port domain device.
2108 *
2109 * NOTE: this process _must_ quit (return) as soon as any connection
2110 * errors are encountered.  Connection recovery is done elsewhere.
2111 * Discover process only interrogates devices in order to discover the
2112 * domain.
2113 */
2114int sas_ex_revalidate_domain(struct domain_device *port_dev)
2115{
2116        int res;
2117        struct domain_device *dev = NULL;
2118
2119        res = sas_find_bcast_dev(port_dev, &dev);
2120        if (res == 0 && dev) {
2121                struct expander_device *ex = &dev->ex_dev;
2122                int i = 0, phy_id;
2123
2124                do {
2125                        phy_id = -1;
2126                        res = sas_find_bcast_phy(dev, &phy_id, i, true);
2127                        if (phy_id == -1)
2128                                break;
2129                        res = sas_rediscover(dev, phy_id);
2130                        i = phy_id + 1;
2131                } while (i < ex->num_phys);
2132        }
2133        return res;
2134}
2135
2136void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2137                struct sas_rphy *rphy)
2138{
2139        struct domain_device *dev;
2140        unsigned int rcvlen = 0;
2141        int ret = -EINVAL;
2142
2143        /* no rphy means no smp target support (ie aic94xx host) */
2144        if (!rphy)
2145                return sas_smp_host_handler(job, shost);
2146
2147        switch (rphy->identify.device_type) {
2148        case SAS_EDGE_EXPANDER_DEVICE:
2149        case SAS_FANOUT_EXPANDER_DEVICE:
2150                break;
2151        default:
2152                pr_err("%s: can we send a smp request to a device?\n",
2153                       __func__);
2154                goto out;
2155        }
2156
2157        dev = sas_find_dev_by_rphy(rphy);
2158        if (!dev) {
2159                pr_err("%s: fail to find a domain_device?\n", __func__);
2160                goto out;
2161        }
2162
2163        /* do we need to support multiple segments? */
2164        if (job->request_payload.sg_cnt > 1 ||
2165            job->reply_payload.sg_cnt > 1) {
2166                pr_info("%s: multiple segments req %u, rsp %u\n",
2167                        __func__, job->request_payload.payload_len,
2168                        job->reply_payload.payload_len);
2169                goto out;
2170        }
2171
2172        ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2173                        job->reply_payload.sg_list);
2174        if (ret >= 0) {
2175                /* bsg_job_done() requires the length received  */
2176                rcvlen = job->reply_payload.payload_len - ret;
2177                ret = 0;
2178        }
2179
2180out:
2181        bsg_job_done(job, ret, rcvlen);
2182}
2183