linux/drivers/acpi/arm64/iort.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2016, Semihalf
   4 *      Author: Tomasz Nowicki <tn@semihalf.com>
   5 *
   6 * This file implements early detection/parsing of I/O mapping
   7 * reported to OS through firmware via I/O Remapping Table (IORT)
   8 * IORT document number: ARM DEN 0049A
   9 */
  10
  11#define pr_fmt(fmt)     "ACPI: IORT: " fmt
  12
  13#include <linux/acpi_iort.h>
  14#include <linux/bitfield.h>
  15#include <linux/iommu.h>
  16#include <linux/kernel.h>
  17#include <linux/list.h>
  18#include <linux/pci.h>
  19#include <linux/platform_device.h>
  20#include <linux/slab.h>
  21#include <linux/dma-map-ops.h>
  22
  23#define IORT_TYPE_MASK(type)    (1 << (type))
  24#define IORT_MSI_TYPE           (1 << ACPI_IORT_NODE_ITS_GROUP)
  25#define IORT_IOMMU_TYPE         ((1 << ACPI_IORT_NODE_SMMU) |   \
  26                                (1 << ACPI_IORT_NODE_SMMU_V3))
  27
  28struct iort_its_msi_chip {
  29        struct list_head        list;
  30        struct fwnode_handle    *fw_node;
  31        phys_addr_t             base_addr;
  32        u32                     translation_id;
  33};
  34
  35struct iort_fwnode {
  36        struct list_head list;
  37        struct acpi_iort_node *iort_node;
  38        struct fwnode_handle *fwnode;
  39};
  40static LIST_HEAD(iort_fwnode_list);
  41static DEFINE_SPINLOCK(iort_fwnode_lock);
  42
  43/**
  44 * iort_set_fwnode() - Create iort_fwnode and use it to register
  45 *                     iommu data in the iort_fwnode_list
  46 *
  47 * @iort_node: IORT table node associated with the IOMMU
  48 * @fwnode: fwnode associated with the IORT node
  49 *
  50 * Returns: 0 on success
  51 *          <0 on failure
  52 */
  53static inline int iort_set_fwnode(struct acpi_iort_node *iort_node,
  54                                  struct fwnode_handle *fwnode)
  55{
  56        struct iort_fwnode *np;
  57
  58        np = kzalloc(sizeof(struct iort_fwnode), GFP_ATOMIC);
  59
  60        if (WARN_ON(!np))
  61                return -ENOMEM;
  62
  63        INIT_LIST_HEAD(&np->list);
  64        np->iort_node = iort_node;
  65        np->fwnode = fwnode;
  66
  67        spin_lock(&iort_fwnode_lock);
  68        list_add_tail(&np->list, &iort_fwnode_list);
  69        spin_unlock(&iort_fwnode_lock);
  70
  71        return 0;
  72}
  73
  74/**
  75 * iort_get_fwnode() - Retrieve fwnode associated with an IORT node
  76 *
  77 * @node: IORT table node to be looked-up
  78 *
  79 * Returns: fwnode_handle pointer on success, NULL on failure
  80 */
  81static inline struct fwnode_handle *iort_get_fwnode(
  82                        struct acpi_iort_node *node)
  83{
  84        struct iort_fwnode *curr;
  85        struct fwnode_handle *fwnode = NULL;
  86
  87        spin_lock(&iort_fwnode_lock);
  88        list_for_each_entry(curr, &iort_fwnode_list, list) {
  89                if (curr->iort_node == node) {
  90                        fwnode = curr->fwnode;
  91                        break;
  92                }
  93        }
  94        spin_unlock(&iort_fwnode_lock);
  95
  96        return fwnode;
  97}
  98
  99/**
 100 * iort_delete_fwnode() - Delete fwnode associated with an IORT node
 101 *
 102 * @node: IORT table node associated with fwnode to delete
 103 */
 104static inline void iort_delete_fwnode(struct acpi_iort_node *node)
 105{
 106        struct iort_fwnode *curr, *tmp;
 107
 108        spin_lock(&iort_fwnode_lock);
 109        list_for_each_entry_safe(curr, tmp, &iort_fwnode_list, list) {
 110                if (curr->iort_node == node) {
 111                        list_del(&curr->list);
 112                        kfree(curr);
 113                        break;
 114                }
 115        }
 116        spin_unlock(&iort_fwnode_lock);
 117}
 118
 119/**
 120 * iort_get_iort_node() - Retrieve iort_node associated with an fwnode
 121 *
 122 * @fwnode: fwnode associated with device to be looked-up
 123 *
 124 * Returns: iort_node pointer on success, NULL on failure
 125 */
 126static inline struct acpi_iort_node *iort_get_iort_node(
 127                        struct fwnode_handle *fwnode)
 128{
 129        struct iort_fwnode *curr;
 130        struct acpi_iort_node *iort_node = NULL;
 131
 132        spin_lock(&iort_fwnode_lock);
 133        list_for_each_entry(curr, &iort_fwnode_list, list) {
 134                if (curr->fwnode == fwnode) {
 135                        iort_node = curr->iort_node;
 136                        break;
 137                }
 138        }
 139        spin_unlock(&iort_fwnode_lock);
 140
 141        return iort_node;
 142}
 143
 144typedef acpi_status (*iort_find_node_callback)
 145        (struct acpi_iort_node *node, void *context);
 146
 147/* Root pointer to the mapped IORT table */
 148static struct acpi_table_header *iort_table;
 149
 150static LIST_HEAD(iort_msi_chip_list);
 151static DEFINE_SPINLOCK(iort_msi_chip_lock);
 152
 153/**
 154 * iort_register_domain_token() - register domain token along with related
 155 * ITS ID and base address to the list from where we can get it back later on.
 156 * @trans_id: ITS ID.
 157 * @base: ITS base address.
 158 * @fw_node: Domain token.
 159 *
 160 * Returns: 0 on success, -ENOMEM if no memory when allocating list element
 161 */
 162int iort_register_domain_token(int trans_id, phys_addr_t base,
 163                               struct fwnode_handle *fw_node)
 164{
 165        struct iort_its_msi_chip *its_msi_chip;
 166
 167        its_msi_chip = kzalloc(sizeof(*its_msi_chip), GFP_KERNEL);
 168        if (!its_msi_chip)
 169                return -ENOMEM;
 170
 171        its_msi_chip->fw_node = fw_node;
 172        its_msi_chip->translation_id = trans_id;
 173        its_msi_chip->base_addr = base;
 174
 175        spin_lock(&iort_msi_chip_lock);
 176        list_add(&its_msi_chip->list, &iort_msi_chip_list);
 177        spin_unlock(&iort_msi_chip_lock);
 178
 179        return 0;
 180}
 181
 182/**
 183 * iort_deregister_domain_token() - Deregister domain token based on ITS ID
 184 * @trans_id: ITS ID.
 185 *
 186 * Returns: none.
 187 */
 188void iort_deregister_domain_token(int trans_id)
 189{
 190        struct iort_its_msi_chip *its_msi_chip, *t;
 191
 192        spin_lock(&iort_msi_chip_lock);
 193        list_for_each_entry_safe(its_msi_chip, t, &iort_msi_chip_list, list) {
 194                if (its_msi_chip->translation_id == trans_id) {
 195                        list_del(&its_msi_chip->list);
 196                        kfree(its_msi_chip);
 197                        break;
 198                }
 199        }
 200        spin_unlock(&iort_msi_chip_lock);
 201}
 202
 203/**
 204 * iort_find_domain_token() - Find domain token based on given ITS ID
 205 * @trans_id: ITS ID.
 206 *
 207 * Returns: domain token when find on the list, NULL otherwise
 208 */
 209struct fwnode_handle *iort_find_domain_token(int trans_id)
 210{
 211        struct fwnode_handle *fw_node = NULL;
 212        struct iort_its_msi_chip *its_msi_chip;
 213
 214        spin_lock(&iort_msi_chip_lock);
 215        list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) {
 216                if (its_msi_chip->translation_id == trans_id) {
 217                        fw_node = its_msi_chip->fw_node;
 218                        break;
 219                }
 220        }
 221        spin_unlock(&iort_msi_chip_lock);
 222
 223        return fw_node;
 224}
 225
 226static struct acpi_iort_node *iort_scan_node(enum acpi_iort_node_type type,
 227                                             iort_find_node_callback callback,
 228                                             void *context)
 229{
 230        struct acpi_iort_node *iort_node, *iort_end;
 231        struct acpi_table_iort *iort;
 232        int i;
 233
 234        if (!iort_table)
 235                return NULL;
 236
 237        /* Get the first IORT node */
 238        iort = (struct acpi_table_iort *)iort_table;
 239        iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
 240                                 iort->node_offset);
 241        iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
 242                                iort_table->length);
 243
 244        for (i = 0; i < iort->node_count; i++) {
 245                if (WARN_TAINT(iort_node >= iort_end, TAINT_FIRMWARE_WORKAROUND,
 246                               "IORT node pointer overflows, bad table!\n"))
 247                        return NULL;
 248
 249                if (iort_node->type == type &&
 250                    ACPI_SUCCESS(callback(iort_node, context)))
 251                        return iort_node;
 252
 253                iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
 254                                         iort_node->length);
 255        }
 256
 257        return NULL;
 258}
 259
 260static acpi_status iort_match_node_callback(struct acpi_iort_node *node,
 261                                            void *context)
 262{
 263        struct device *dev = context;
 264        acpi_status status = AE_NOT_FOUND;
 265
 266        if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT) {
 267                struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
 268                struct acpi_device *adev;
 269                struct acpi_iort_named_component *ncomp;
 270                struct device *nc_dev = dev;
 271
 272                /*
 273                 * Walk the device tree to find a device with an
 274                 * ACPI companion; there is no point in scanning
 275                 * IORT for a device matching a named component if
 276                 * the device does not have an ACPI companion to
 277                 * start with.
 278                 */
 279                do {
 280                        adev = ACPI_COMPANION(nc_dev);
 281                        if (adev)
 282                                break;
 283
 284                        nc_dev = nc_dev->parent;
 285                } while (nc_dev);
 286
 287                if (!adev)
 288                        goto out;
 289
 290                status = acpi_get_name(adev->handle, ACPI_FULL_PATHNAME, &buf);
 291                if (ACPI_FAILURE(status)) {
 292                        dev_warn(nc_dev, "Can't get device full path name\n");
 293                        goto out;
 294                }
 295
 296                ncomp = (struct acpi_iort_named_component *)node->node_data;
 297                status = !strcmp(ncomp->device_name, buf.pointer) ?
 298                                                        AE_OK : AE_NOT_FOUND;
 299                acpi_os_free(buf.pointer);
 300        } else if (node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
 301                struct acpi_iort_root_complex *pci_rc;
 302                struct pci_bus *bus;
 303
 304                bus = to_pci_bus(dev);
 305                pci_rc = (struct acpi_iort_root_complex *)node->node_data;
 306
 307                /*
 308                 * It is assumed that PCI segment numbers maps one-to-one
 309                 * with root complexes. Each segment number can represent only
 310                 * one root complex.
 311                 */
 312                status = pci_rc->pci_segment_number == pci_domain_nr(bus) ?
 313                                                        AE_OK : AE_NOT_FOUND;
 314        }
 315out:
 316        return status;
 317}
 318
 319static int iort_id_map(struct acpi_iort_id_mapping *map, u8 type, u32 rid_in,
 320                       u32 *rid_out, bool check_overlap)
 321{
 322        /* Single mapping does not care for input id */
 323        if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) {
 324                if (type == ACPI_IORT_NODE_NAMED_COMPONENT ||
 325                    type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
 326                        *rid_out = map->output_base;
 327                        return 0;
 328                }
 329
 330                pr_warn(FW_BUG "[map %p] SINGLE MAPPING flag not allowed for node type %d, skipping ID map\n",
 331                        map, type);
 332                return -ENXIO;
 333        }
 334
 335        if (rid_in < map->input_base ||
 336            (rid_in > map->input_base + map->id_count))
 337                return -ENXIO;
 338
 339        if (check_overlap) {
 340                /*
 341                 * We already found a mapping for this input ID at the end of
 342                 * another region. If it coincides with the start of this
 343                 * region, we assume the prior match was due to the off-by-1
 344                 * issue mentioned below, and allow it to be superseded.
 345                 * Otherwise, things are *really* broken, and we just disregard
 346                 * duplicate matches entirely to retain compatibility.
 347                 */
 348                pr_err(FW_BUG "[map %p] conflicting mapping for input ID 0x%x\n",
 349                       map, rid_in);
 350                if (rid_in != map->input_base)
 351                        return -ENXIO;
 352
 353                pr_err(FW_BUG "applying workaround.\n");
 354        }
 355
 356        *rid_out = map->output_base + (rid_in - map->input_base);
 357
 358        /*
 359         * Due to confusion regarding the meaning of the id_count field (which
 360         * carries the number of IDs *minus 1*), we may have to disregard this
 361         * match if it is at the end of the range, and overlaps with the start
 362         * of another one.
 363         */
 364        if (map->id_count > 0 && rid_in == map->input_base + map->id_count)
 365                return -EAGAIN;
 366        return 0;
 367}
 368
 369static struct acpi_iort_node *iort_node_get_id(struct acpi_iort_node *node,
 370                                               u32 *id_out, int index)
 371{
 372        struct acpi_iort_node *parent;
 373        struct acpi_iort_id_mapping *map;
 374
 375        if (!node->mapping_offset || !node->mapping_count ||
 376                                     index >= node->mapping_count)
 377                return NULL;
 378
 379        map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
 380                           node->mapping_offset + index * sizeof(*map));
 381
 382        /* Firmware bug! */
 383        if (!map->output_reference) {
 384                pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n",
 385                       node, node->type);
 386                return NULL;
 387        }
 388
 389        parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
 390                               map->output_reference);
 391
 392        if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) {
 393                if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT ||
 394                    node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX ||
 395                    node->type == ACPI_IORT_NODE_SMMU_V3 ||
 396                    node->type == ACPI_IORT_NODE_PMCG) {
 397                        *id_out = map->output_base;
 398                        return parent;
 399                }
 400        }
 401
 402        return NULL;
 403}
 404
 405static int iort_get_id_mapping_index(struct acpi_iort_node *node)
 406{
 407        struct acpi_iort_smmu_v3 *smmu;
 408        struct acpi_iort_pmcg *pmcg;
 409
 410        switch (node->type) {
 411        case ACPI_IORT_NODE_SMMU_V3:
 412                /*
 413                 * SMMUv3 dev ID mapping index was introduced in revision 1
 414                 * table, not available in revision 0
 415                 */
 416                if (node->revision < 1)
 417                        return -EINVAL;
 418
 419                smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
 420                /*
 421                 * ID mapping index is only ignored if all interrupts are
 422                 * GSIV based
 423                 */
 424                if (smmu->event_gsiv && smmu->pri_gsiv && smmu->gerr_gsiv
 425                    && smmu->sync_gsiv)
 426                        return -EINVAL;
 427
 428                if (smmu->id_mapping_index >= node->mapping_count) {
 429                        pr_err(FW_BUG "[node %p type %d] ID mapping index overflows valid mappings\n",
 430                               node, node->type);
 431                        return -EINVAL;
 432                }
 433
 434                return smmu->id_mapping_index;
 435        case ACPI_IORT_NODE_PMCG:
 436                pmcg = (struct acpi_iort_pmcg *)node->node_data;
 437                if (pmcg->overflow_gsiv || node->mapping_count == 0)
 438                        return -EINVAL;
 439
 440                return 0;
 441        default:
 442                return -EINVAL;
 443        }
 444}
 445
 446static struct acpi_iort_node *iort_node_map_id(struct acpi_iort_node *node,
 447                                               u32 id_in, u32 *id_out,
 448                                               u8 type_mask)
 449{
 450        u32 id = id_in;
 451
 452        /* Parse the ID mapping tree to find specified node type */
 453        while (node) {
 454                struct acpi_iort_id_mapping *map;
 455                int i, index, rc = 0;
 456                u32 out_ref = 0, map_id = id;
 457
 458                if (IORT_TYPE_MASK(node->type) & type_mask) {
 459                        if (id_out)
 460                                *id_out = id;
 461                        return node;
 462                }
 463
 464                if (!node->mapping_offset || !node->mapping_count)
 465                        goto fail_map;
 466
 467                map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
 468                                   node->mapping_offset);
 469
 470                /* Firmware bug! */
 471                if (!map->output_reference) {
 472                        pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n",
 473                               node, node->type);
 474                        goto fail_map;
 475                }
 476
 477                /*
 478                 * Get the special ID mapping index (if any) and skip its
 479                 * associated ID map to prevent erroneous multi-stage
 480                 * IORT ID translations.
 481                 */
 482                index = iort_get_id_mapping_index(node);
 483
 484                /* Do the ID translation */
 485                for (i = 0; i < node->mapping_count; i++, map++) {
 486                        /* if it is special mapping index, skip it */
 487                        if (i == index)
 488                                continue;
 489
 490                        rc = iort_id_map(map, node->type, map_id, &id, out_ref);
 491                        if (!rc)
 492                                break;
 493                        if (rc == -EAGAIN)
 494                                out_ref = map->output_reference;
 495                }
 496
 497                if (i == node->mapping_count && !out_ref)
 498                        goto fail_map;
 499
 500                node = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
 501                                    rc ? out_ref : map->output_reference);
 502        }
 503
 504fail_map:
 505        /* Map input ID to output ID unchanged on mapping failure */
 506        if (id_out)
 507                *id_out = id_in;
 508
 509        return NULL;
 510}
 511
 512static struct acpi_iort_node *iort_node_map_platform_id(
 513                struct acpi_iort_node *node, u32 *id_out, u8 type_mask,
 514                int index)
 515{
 516        struct acpi_iort_node *parent;
 517        u32 id;
 518
 519        /* step 1: retrieve the initial dev id */
 520        parent = iort_node_get_id(node, &id, index);
 521        if (!parent)
 522                return NULL;
 523
 524        /*
 525         * optional step 2: map the initial dev id if its parent is not
 526         * the target type we want, map it again for the use cases such
 527         * as NC (named component) -> SMMU -> ITS. If the type is matched,
 528         * return the initial dev id and its parent pointer directly.
 529         */
 530        if (!(IORT_TYPE_MASK(parent->type) & type_mask))
 531                parent = iort_node_map_id(parent, id, id_out, type_mask);
 532        else
 533                if (id_out)
 534                        *id_out = id;
 535
 536        return parent;
 537}
 538
 539static struct acpi_iort_node *iort_find_dev_node(struct device *dev)
 540{
 541        struct pci_bus *pbus;
 542
 543        if (!dev_is_pci(dev)) {
 544                struct acpi_iort_node *node;
 545                /*
 546                 * scan iort_fwnode_list to see if it's an iort platform
 547                 * device (such as SMMU, PMCG),its iort node already cached
 548                 * and associated with fwnode when iort platform devices
 549                 * were initialized.
 550                 */
 551                node = iort_get_iort_node(dev->fwnode);
 552                if (node)
 553                        return node;
 554                /*
 555                 * if not, then it should be a platform device defined in
 556                 * DSDT/SSDT (with Named Component node in IORT)
 557                 */
 558                return iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
 559                                      iort_match_node_callback, dev);
 560        }
 561
 562        pbus = to_pci_dev(dev)->bus;
 563
 564        return iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
 565                              iort_match_node_callback, &pbus->dev);
 566}
 567
 568/**
 569 * iort_msi_map_id() - Map a MSI input ID for a device
 570 * @dev: The device for which the mapping is to be done.
 571 * @input_id: The device input ID.
 572 *
 573 * Returns: mapped MSI ID on success, input ID otherwise
 574 */
 575u32 iort_msi_map_id(struct device *dev, u32 input_id)
 576{
 577        struct acpi_iort_node *node;
 578        u32 dev_id;
 579
 580        node = iort_find_dev_node(dev);
 581        if (!node)
 582                return input_id;
 583
 584        iort_node_map_id(node, input_id, &dev_id, IORT_MSI_TYPE);
 585        return dev_id;
 586}
 587
 588/**
 589 * iort_pmsi_get_dev_id() - Get the device id for a device
 590 * @dev: The device for which the mapping is to be done.
 591 * @dev_id: The device ID found.
 592 *
 593 * Returns: 0 for successful find a dev id, -ENODEV on error
 594 */
 595int iort_pmsi_get_dev_id(struct device *dev, u32 *dev_id)
 596{
 597        int i, index;
 598        struct acpi_iort_node *node;
 599
 600        node = iort_find_dev_node(dev);
 601        if (!node)
 602                return -ENODEV;
 603
 604        index = iort_get_id_mapping_index(node);
 605        /* if there is a valid index, go get the dev_id directly */
 606        if (index >= 0) {
 607                if (iort_node_get_id(node, dev_id, index))
 608                        return 0;
 609        } else {
 610                for (i = 0; i < node->mapping_count; i++) {
 611                        if (iort_node_map_platform_id(node, dev_id,
 612                                                      IORT_MSI_TYPE, i))
 613                                return 0;
 614                }
 615        }
 616
 617        return -ENODEV;
 618}
 619
 620static int __maybe_unused iort_find_its_base(u32 its_id, phys_addr_t *base)
 621{
 622        struct iort_its_msi_chip *its_msi_chip;
 623        int ret = -ENODEV;
 624
 625        spin_lock(&iort_msi_chip_lock);
 626        list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) {
 627                if (its_msi_chip->translation_id == its_id) {
 628                        *base = its_msi_chip->base_addr;
 629                        ret = 0;
 630                        break;
 631                }
 632        }
 633        spin_unlock(&iort_msi_chip_lock);
 634
 635        return ret;
 636}
 637
 638/**
 639 * iort_dev_find_its_id() - Find the ITS identifier for a device
 640 * @dev: The device.
 641 * @id: Device's ID
 642 * @idx: Index of the ITS identifier list.
 643 * @its_id: ITS identifier.
 644 *
 645 * Returns: 0 on success, appropriate error value otherwise
 646 */
 647static int iort_dev_find_its_id(struct device *dev, u32 id,
 648                                unsigned int idx, int *its_id)
 649{
 650        struct acpi_iort_its_group *its;
 651        struct acpi_iort_node *node;
 652
 653        node = iort_find_dev_node(dev);
 654        if (!node)
 655                return -ENXIO;
 656
 657        node = iort_node_map_id(node, id, NULL, IORT_MSI_TYPE);
 658        if (!node)
 659                return -ENXIO;
 660
 661        /* Move to ITS specific data */
 662        its = (struct acpi_iort_its_group *)node->node_data;
 663        if (idx >= its->its_count) {
 664                dev_err(dev, "requested ITS ID index [%d] overruns ITS entries [%d]\n",
 665                        idx, its->its_count);
 666                return -ENXIO;
 667        }
 668
 669        *its_id = its->identifiers[idx];
 670        return 0;
 671}
 672
 673/**
 674 * iort_get_device_domain() - Find MSI domain related to a device
 675 * @dev: The device.
 676 * @id: Requester ID for the device.
 677 * @bus_token: irq domain bus token.
 678 *
 679 * Returns: the MSI domain for this device, NULL otherwise
 680 */
 681struct irq_domain *iort_get_device_domain(struct device *dev, u32 id,
 682                                          enum irq_domain_bus_token bus_token)
 683{
 684        struct fwnode_handle *handle;
 685        int its_id;
 686
 687        if (iort_dev_find_its_id(dev, id, 0, &its_id))
 688                return NULL;
 689
 690        handle = iort_find_domain_token(its_id);
 691        if (!handle)
 692                return NULL;
 693
 694        return irq_find_matching_fwnode(handle, bus_token);
 695}
 696
 697static void iort_set_device_domain(struct device *dev,
 698                                   struct acpi_iort_node *node)
 699{
 700        struct acpi_iort_its_group *its;
 701        struct acpi_iort_node *msi_parent;
 702        struct acpi_iort_id_mapping *map;
 703        struct fwnode_handle *iort_fwnode;
 704        struct irq_domain *domain;
 705        int index;
 706
 707        index = iort_get_id_mapping_index(node);
 708        if (index < 0)
 709                return;
 710
 711        map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
 712                           node->mapping_offset + index * sizeof(*map));
 713
 714        /* Firmware bug! */
 715        if (!map->output_reference ||
 716            !(map->flags & ACPI_IORT_ID_SINGLE_MAPPING)) {
 717                pr_err(FW_BUG "[node %p type %d] Invalid MSI mapping\n",
 718                       node, node->type);
 719                return;
 720        }
 721
 722        msi_parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
 723                                  map->output_reference);
 724
 725        if (!msi_parent || msi_parent->type != ACPI_IORT_NODE_ITS_GROUP)
 726                return;
 727
 728        /* Move to ITS specific data */
 729        its = (struct acpi_iort_its_group *)msi_parent->node_data;
 730
 731        iort_fwnode = iort_find_domain_token(its->identifiers[0]);
 732        if (!iort_fwnode)
 733                return;
 734
 735        domain = irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI);
 736        if (domain)
 737                dev_set_msi_domain(dev, domain);
 738}
 739
 740/**
 741 * iort_get_platform_device_domain() - Find MSI domain related to a
 742 * platform device
 743 * @dev: the dev pointer associated with the platform device
 744 *
 745 * Returns: the MSI domain for this device, NULL otherwise
 746 */
 747static struct irq_domain *iort_get_platform_device_domain(struct device *dev)
 748{
 749        struct acpi_iort_node *node, *msi_parent = NULL;
 750        struct fwnode_handle *iort_fwnode;
 751        struct acpi_iort_its_group *its;
 752        int i;
 753
 754        /* find its associated iort node */
 755        node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
 756                              iort_match_node_callback, dev);
 757        if (!node)
 758                return NULL;
 759
 760        /* then find its msi parent node */
 761        for (i = 0; i < node->mapping_count; i++) {
 762                msi_parent = iort_node_map_platform_id(node, NULL,
 763                                                       IORT_MSI_TYPE, i);
 764                if (msi_parent)
 765                        break;
 766        }
 767
 768        if (!msi_parent)
 769                return NULL;
 770
 771        /* Move to ITS specific data */
 772        its = (struct acpi_iort_its_group *)msi_parent->node_data;
 773
 774        iort_fwnode = iort_find_domain_token(its->identifiers[0]);
 775        if (!iort_fwnode)
 776                return NULL;
 777
 778        return irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI);
 779}
 780
 781void acpi_configure_pmsi_domain(struct device *dev)
 782{
 783        struct irq_domain *msi_domain;
 784
 785        msi_domain = iort_get_platform_device_domain(dev);
 786        if (msi_domain)
 787                dev_set_msi_domain(dev, msi_domain);
 788}
 789
 790#ifdef CONFIG_IOMMU_API
 791static struct acpi_iort_node *iort_get_msi_resv_iommu(struct device *dev)
 792{
 793        struct acpi_iort_node *iommu;
 794        struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
 795
 796        iommu = iort_get_iort_node(fwspec->iommu_fwnode);
 797
 798        if (iommu && (iommu->type == ACPI_IORT_NODE_SMMU_V3)) {
 799                struct acpi_iort_smmu_v3 *smmu;
 800
 801                smmu = (struct acpi_iort_smmu_v3 *)iommu->node_data;
 802                if (smmu->model == ACPI_IORT_SMMU_V3_HISILICON_HI161X)
 803                        return iommu;
 804        }
 805
 806        return NULL;
 807}
 808
 809static inline const struct iommu_ops *iort_fwspec_iommu_ops(struct device *dev)
 810{
 811        struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
 812
 813        return (fwspec && fwspec->ops) ? fwspec->ops : NULL;
 814}
 815
 816static inline int iort_add_device_replay(struct device *dev)
 817{
 818        int err = 0;
 819
 820        if (dev->bus && !device_iommu_mapped(dev))
 821                err = iommu_probe_device(dev);
 822
 823        return err;
 824}
 825
 826/**
 827 * iort_iommu_msi_get_resv_regions - Reserved region driver helper
 828 * @dev: Device from iommu_get_resv_regions()
 829 * @head: Reserved region list from iommu_get_resv_regions()
 830 *
 831 * Returns: Number of msi reserved regions on success (0 if platform
 832 *          doesn't require the reservation or no associated msi regions),
 833 *          appropriate error value otherwise. The ITS interrupt translation
 834 *          spaces (ITS_base + SZ_64K, SZ_64K) associated with the device
 835 *          are the msi reserved regions.
 836 */
 837int iort_iommu_msi_get_resv_regions(struct device *dev, struct list_head *head)
 838{
 839        struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
 840        struct acpi_iort_its_group *its;
 841        struct acpi_iort_node *iommu_node, *its_node = NULL;
 842        int i, resv = 0;
 843
 844        iommu_node = iort_get_msi_resv_iommu(dev);
 845        if (!iommu_node)
 846                return 0;
 847
 848        /*
 849         * Current logic to reserve ITS regions relies on HW topologies
 850         * where a given PCI or named component maps its IDs to only one
 851         * ITS group; if a PCI or named component can map its IDs to
 852         * different ITS groups through IORT mappings this function has
 853         * to be reworked to ensure we reserve regions for all ITS groups
 854         * a given PCI or named component may map IDs to.
 855         */
 856
 857        for (i = 0; i < fwspec->num_ids; i++) {
 858                its_node = iort_node_map_id(iommu_node,
 859                                        fwspec->ids[i],
 860                                        NULL, IORT_MSI_TYPE);
 861                if (its_node)
 862                        break;
 863        }
 864
 865        if (!its_node)
 866                return 0;
 867
 868        /* Move to ITS specific data */
 869        its = (struct acpi_iort_its_group *)its_node->node_data;
 870
 871        for (i = 0; i < its->its_count; i++) {
 872                phys_addr_t base;
 873
 874                if (!iort_find_its_base(its->identifiers[i], &base)) {
 875                        int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
 876                        struct iommu_resv_region *region;
 877
 878                        region = iommu_alloc_resv_region(base + SZ_64K, SZ_64K,
 879                                                         prot, IOMMU_RESV_MSI);
 880                        if (region) {
 881                                list_add_tail(&region->list, head);
 882                                resv++;
 883                        }
 884                }
 885        }
 886
 887        return (resv == its->its_count) ? resv : -ENODEV;
 888}
 889
 890static inline bool iort_iommu_driver_enabled(u8 type)
 891{
 892        switch (type) {
 893        case ACPI_IORT_NODE_SMMU_V3:
 894                return IS_ENABLED(CONFIG_ARM_SMMU_V3);
 895        case ACPI_IORT_NODE_SMMU:
 896                return IS_ENABLED(CONFIG_ARM_SMMU);
 897        default:
 898                pr_warn("IORT node type %u does not describe an SMMU\n", type);
 899                return false;
 900        }
 901}
 902
 903static int arm_smmu_iort_xlate(struct device *dev, u32 streamid,
 904                               struct fwnode_handle *fwnode,
 905                               const struct iommu_ops *ops)
 906{
 907        int ret = iommu_fwspec_init(dev, fwnode, ops);
 908
 909        if (!ret)
 910                ret = iommu_fwspec_add_ids(dev, &streamid, 1);
 911
 912        return ret;
 913}
 914
 915static bool iort_pci_rc_supports_ats(struct acpi_iort_node *node)
 916{
 917        struct acpi_iort_root_complex *pci_rc;
 918
 919        pci_rc = (struct acpi_iort_root_complex *)node->node_data;
 920        return pci_rc->ats_attribute & ACPI_IORT_ATS_SUPPORTED;
 921}
 922
 923static int iort_iommu_xlate(struct device *dev, struct acpi_iort_node *node,
 924                            u32 streamid)
 925{
 926        const struct iommu_ops *ops;
 927        struct fwnode_handle *iort_fwnode;
 928
 929        if (!node)
 930                return -ENODEV;
 931
 932        iort_fwnode = iort_get_fwnode(node);
 933        if (!iort_fwnode)
 934                return -ENODEV;
 935
 936        /*
 937         * If the ops look-up fails, this means that either
 938         * the SMMU drivers have not been probed yet or that
 939         * the SMMU drivers are not built in the kernel;
 940         * Depending on whether the SMMU drivers are built-in
 941         * in the kernel or not, defer the IOMMU configuration
 942         * or just abort it.
 943         */
 944        ops = iommu_ops_from_fwnode(iort_fwnode);
 945        if (!ops)
 946                return iort_iommu_driver_enabled(node->type) ?
 947                       -EPROBE_DEFER : -ENODEV;
 948
 949        return arm_smmu_iort_xlate(dev, streamid, iort_fwnode, ops);
 950}
 951
 952struct iort_pci_alias_info {
 953        struct device *dev;
 954        struct acpi_iort_node *node;
 955};
 956
 957static int iort_pci_iommu_init(struct pci_dev *pdev, u16 alias, void *data)
 958{
 959        struct iort_pci_alias_info *info = data;
 960        struct acpi_iort_node *parent;
 961        u32 streamid;
 962
 963        parent = iort_node_map_id(info->node, alias, &streamid,
 964                                  IORT_IOMMU_TYPE);
 965        return iort_iommu_xlate(info->dev, parent, streamid);
 966}
 967
 968static void iort_named_component_init(struct device *dev,
 969                                      struct acpi_iort_node *node)
 970{
 971        struct property_entry props[2] = {};
 972        struct acpi_iort_named_component *nc;
 973
 974        nc = (struct acpi_iort_named_component *)node->node_data;
 975        props[0] = PROPERTY_ENTRY_U32("pasid-num-bits",
 976                                      FIELD_GET(ACPI_IORT_NC_PASID_BITS,
 977                                                nc->node_flags));
 978
 979        if (device_add_properties(dev, props))
 980                dev_warn(dev, "Could not add device properties\n");
 981}
 982
 983static int iort_nc_iommu_map(struct device *dev, struct acpi_iort_node *node)
 984{
 985        struct acpi_iort_node *parent;
 986        int err = -ENODEV, i = 0;
 987        u32 streamid = 0;
 988
 989        do {
 990
 991                parent = iort_node_map_platform_id(node, &streamid,
 992                                                   IORT_IOMMU_TYPE,
 993                                                   i++);
 994
 995                if (parent)
 996                        err = iort_iommu_xlate(dev, parent, streamid);
 997        } while (parent && !err);
 998
 999        return err;
1000}
1001
1002static int iort_nc_iommu_map_id(struct device *dev,
1003                                struct acpi_iort_node *node,
1004                                const u32 *in_id)
1005{
1006        struct acpi_iort_node *parent;
1007        u32 streamid;
1008
1009        parent = iort_node_map_id(node, *in_id, &streamid, IORT_IOMMU_TYPE);
1010        if (parent)
1011                return iort_iommu_xlate(dev, parent, streamid);
1012
1013        return -ENODEV;
1014}
1015
1016
1017/**
1018 * iort_iommu_configure_id - Set-up IOMMU configuration for a device.
1019 *
1020 * @dev: device to configure
1021 * @id_in: optional input id const value pointer
1022 *
1023 * Returns: iommu_ops pointer on configuration success
1024 *          NULL on configuration failure
1025 */
1026const struct iommu_ops *iort_iommu_configure_id(struct device *dev,
1027                                                const u32 *id_in)
1028{
1029        struct acpi_iort_node *node;
1030        const struct iommu_ops *ops;
1031        int err = -ENODEV;
1032
1033        /*
1034         * If we already translated the fwspec there
1035         * is nothing left to do, return the iommu_ops.
1036         */
1037        ops = iort_fwspec_iommu_ops(dev);
1038        if (ops)
1039                return ops;
1040
1041        if (dev_is_pci(dev)) {
1042                struct iommu_fwspec *fwspec;
1043                struct pci_bus *bus = to_pci_dev(dev)->bus;
1044                struct iort_pci_alias_info info = { .dev = dev };
1045
1046                node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
1047                                      iort_match_node_callback, &bus->dev);
1048                if (!node)
1049                        return NULL;
1050
1051                info.node = node;
1052                err = pci_for_each_dma_alias(to_pci_dev(dev),
1053                                             iort_pci_iommu_init, &info);
1054
1055                fwspec = dev_iommu_fwspec_get(dev);
1056                if (fwspec && iort_pci_rc_supports_ats(node))
1057                        fwspec->flags |= IOMMU_FWSPEC_PCI_RC_ATS;
1058        } else {
1059                node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
1060                                      iort_match_node_callback, dev);
1061                if (!node)
1062                        return NULL;
1063
1064                err = id_in ? iort_nc_iommu_map_id(dev, node, id_in) :
1065                              iort_nc_iommu_map(dev, node);
1066
1067                if (!err)
1068                        iort_named_component_init(dev, node);
1069        }
1070
1071        /*
1072         * If we have reason to believe the IOMMU driver missed the initial
1073         * add_device callback for dev, replay it to get things in order.
1074         */
1075        if (!err) {
1076                ops = iort_fwspec_iommu_ops(dev);
1077                err = iort_add_device_replay(dev);
1078        }
1079
1080        /* Ignore all other errors apart from EPROBE_DEFER */
1081        if (err == -EPROBE_DEFER) {
1082                ops = ERR_PTR(err);
1083        } else if (err) {
1084                dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
1085                ops = NULL;
1086        }
1087
1088        return ops;
1089}
1090
1091#else
1092int iort_iommu_msi_get_resv_regions(struct device *dev, struct list_head *head)
1093{ return 0; }
1094const struct iommu_ops *iort_iommu_configure_id(struct device *dev,
1095                                                const u32 *input_id)
1096{ return NULL; }
1097#endif
1098
1099static int nc_dma_get_range(struct device *dev, u64 *size)
1100{
1101        struct acpi_iort_node *node;
1102        struct acpi_iort_named_component *ncomp;
1103
1104        node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
1105                              iort_match_node_callback, dev);
1106        if (!node)
1107                return -ENODEV;
1108
1109        ncomp = (struct acpi_iort_named_component *)node->node_data;
1110
1111        if (!ncomp->memory_address_limit) {
1112                pr_warn(FW_BUG "Named component missing memory address limit\n");
1113                return -EINVAL;
1114        }
1115
1116        *size = ncomp->memory_address_limit >= 64 ? U64_MAX :
1117                        1ULL<<ncomp->memory_address_limit;
1118
1119        return 0;
1120}
1121
1122static int rc_dma_get_range(struct device *dev, u64 *size)
1123{
1124        struct acpi_iort_node *node;
1125        struct acpi_iort_root_complex *rc;
1126        struct pci_bus *pbus = to_pci_dev(dev)->bus;
1127
1128        node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
1129                              iort_match_node_callback, &pbus->dev);
1130        if (!node || node->revision < 1)
1131                return -ENODEV;
1132
1133        rc = (struct acpi_iort_root_complex *)node->node_data;
1134
1135        if (!rc->memory_address_limit) {
1136                pr_warn(FW_BUG "Root complex missing memory address limit\n");
1137                return -EINVAL;
1138        }
1139
1140        *size = rc->memory_address_limit >= 64 ? U64_MAX :
1141                        1ULL<<rc->memory_address_limit;
1142
1143        return 0;
1144}
1145
1146/**
1147 * iort_dma_setup() - Set-up device DMA parameters.
1148 *
1149 * @dev: device to configure
1150 * @dma_addr: device DMA address result pointer
1151 * @dma_size: DMA range size result pointer
1152 */
1153void iort_dma_setup(struct device *dev, u64 *dma_addr, u64 *dma_size)
1154{
1155        u64 end, mask, dmaaddr = 0, size = 0, offset = 0;
1156        int ret;
1157
1158        /*
1159         * If @dev is expected to be DMA-capable then the bus code that created
1160         * it should have initialised its dma_mask pointer by this point. For
1161         * now, we'll continue the legacy behaviour of coercing it to the
1162         * coherent mask if not, but we'll no longer do so quietly.
1163         */
1164        if (!dev->dma_mask) {
1165                dev_warn(dev, "DMA mask not set\n");
1166                dev->dma_mask = &dev->coherent_dma_mask;
1167        }
1168
1169        if (dev->coherent_dma_mask)
1170                size = max(dev->coherent_dma_mask, dev->coherent_dma_mask + 1);
1171        else
1172                size = 1ULL << 32;
1173
1174        ret = acpi_dma_get_range(dev, &dmaaddr, &offset, &size);
1175        if (ret == -ENODEV)
1176                ret = dev_is_pci(dev) ? rc_dma_get_range(dev, &size)
1177                                      : nc_dma_get_range(dev, &size);
1178
1179        if (!ret) {
1180                /*
1181                 * Limit coherent and dma mask based on size retrieved from
1182                 * firmware.
1183                 */
1184                end = dmaaddr + size - 1;
1185                mask = DMA_BIT_MASK(ilog2(end) + 1);
1186                dev->bus_dma_limit = end;
1187                dev->coherent_dma_mask = min(dev->coherent_dma_mask, mask);
1188                *dev->dma_mask = min(*dev->dma_mask, mask);
1189        }
1190
1191        *dma_addr = dmaaddr;
1192        *dma_size = size;
1193
1194        ret = dma_direct_set_offset(dev, dmaaddr + offset, dmaaddr, size);
1195
1196        dev_dbg(dev, "dma_offset(%#08llx)%s\n", offset, ret ? " failed!" : "");
1197}
1198
1199static void __init acpi_iort_register_irq(int hwirq, const char *name,
1200                                          int trigger,
1201                                          struct resource *res)
1202{
1203        int irq = acpi_register_gsi(NULL, hwirq, trigger,
1204                                    ACPI_ACTIVE_HIGH);
1205
1206        if (irq <= 0) {
1207                pr_err("could not register gsi hwirq %d name [%s]\n", hwirq,
1208                                                                      name);
1209                return;
1210        }
1211
1212        res->start = irq;
1213        res->end = irq;
1214        res->flags = IORESOURCE_IRQ;
1215        res->name = name;
1216}
1217
1218static int __init arm_smmu_v3_count_resources(struct acpi_iort_node *node)
1219{
1220        struct acpi_iort_smmu_v3 *smmu;
1221        /* Always present mem resource */
1222        int num_res = 1;
1223
1224        /* Retrieve SMMUv3 specific data */
1225        smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1226
1227        if (smmu->event_gsiv)
1228                num_res++;
1229
1230        if (smmu->pri_gsiv)
1231                num_res++;
1232
1233        if (smmu->gerr_gsiv)
1234                num_res++;
1235
1236        if (smmu->sync_gsiv)
1237                num_res++;
1238
1239        return num_res;
1240}
1241
1242static bool arm_smmu_v3_is_combined_irq(struct acpi_iort_smmu_v3 *smmu)
1243{
1244        /*
1245         * Cavium ThunderX2 implementation doesn't not support unique
1246         * irq line. Use single irq line for all the SMMUv3 interrupts.
1247         */
1248        if (smmu->model != ACPI_IORT_SMMU_V3_CAVIUM_CN99XX)
1249                return false;
1250
1251        /*
1252         * ThunderX2 doesn't support MSIs from the SMMU, so we're checking
1253         * SPI numbers here.
1254         */
1255        return smmu->event_gsiv == smmu->pri_gsiv &&
1256               smmu->event_gsiv == smmu->gerr_gsiv &&
1257               smmu->event_gsiv == smmu->sync_gsiv;
1258}
1259
1260static unsigned long arm_smmu_v3_resource_size(struct acpi_iort_smmu_v3 *smmu)
1261{
1262        /*
1263         * Override the size, for Cavium ThunderX2 implementation
1264         * which doesn't support the page 1 SMMU register space.
1265         */
1266        if (smmu->model == ACPI_IORT_SMMU_V3_CAVIUM_CN99XX)
1267                return SZ_64K;
1268
1269        return SZ_128K;
1270}
1271
1272static void __init arm_smmu_v3_init_resources(struct resource *res,
1273                                              struct acpi_iort_node *node)
1274{
1275        struct acpi_iort_smmu_v3 *smmu;
1276        int num_res = 0;
1277
1278        /* Retrieve SMMUv3 specific data */
1279        smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1280
1281        res[num_res].start = smmu->base_address;
1282        res[num_res].end = smmu->base_address +
1283                                arm_smmu_v3_resource_size(smmu) - 1;
1284        res[num_res].flags = IORESOURCE_MEM;
1285
1286        num_res++;
1287        if (arm_smmu_v3_is_combined_irq(smmu)) {
1288                if (smmu->event_gsiv)
1289                        acpi_iort_register_irq(smmu->event_gsiv, "combined",
1290                                               ACPI_EDGE_SENSITIVE,
1291                                               &res[num_res++]);
1292        } else {
1293
1294                if (smmu->event_gsiv)
1295                        acpi_iort_register_irq(smmu->event_gsiv, "eventq",
1296                                               ACPI_EDGE_SENSITIVE,
1297                                               &res[num_res++]);
1298
1299                if (smmu->pri_gsiv)
1300                        acpi_iort_register_irq(smmu->pri_gsiv, "priq",
1301                                               ACPI_EDGE_SENSITIVE,
1302                                               &res[num_res++]);
1303
1304                if (smmu->gerr_gsiv)
1305                        acpi_iort_register_irq(smmu->gerr_gsiv, "gerror",
1306                                               ACPI_EDGE_SENSITIVE,
1307                                               &res[num_res++]);
1308
1309                if (smmu->sync_gsiv)
1310                        acpi_iort_register_irq(smmu->sync_gsiv, "cmdq-sync",
1311                                               ACPI_EDGE_SENSITIVE,
1312                                               &res[num_res++]);
1313        }
1314}
1315
1316static void __init arm_smmu_v3_dma_configure(struct device *dev,
1317                                             struct acpi_iort_node *node)
1318{
1319        struct acpi_iort_smmu_v3 *smmu;
1320        enum dev_dma_attr attr;
1321
1322        /* Retrieve SMMUv3 specific data */
1323        smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1324
1325        attr = (smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE) ?
1326                        DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT;
1327
1328        /* We expect the dma masks to be equivalent for all SMMUv3 set-ups */
1329        dev->dma_mask = &dev->coherent_dma_mask;
1330
1331        /* Configure DMA for the page table walker */
1332        acpi_dma_configure(dev, attr);
1333}
1334
1335#if defined(CONFIG_ACPI_NUMA)
1336/*
1337 * set numa proximity domain for smmuv3 device
1338 */
1339static int  __init arm_smmu_v3_set_proximity(struct device *dev,
1340                                              struct acpi_iort_node *node)
1341{
1342        struct acpi_iort_smmu_v3 *smmu;
1343
1344        smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1345        if (smmu->flags & ACPI_IORT_SMMU_V3_PXM_VALID) {
1346                int dev_node = pxm_to_node(smmu->pxm);
1347
1348                if (dev_node != NUMA_NO_NODE && !node_online(dev_node))
1349                        return -EINVAL;
1350
1351                set_dev_node(dev, dev_node);
1352                pr_info("SMMU-v3[%llx] Mapped to Proximity domain %d\n",
1353                        smmu->base_address,
1354                        smmu->pxm);
1355        }
1356        return 0;
1357}
1358#else
1359#define arm_smmu_v3_set_proximity NULL
1360#endif
1361
1362static int __init arm_smmu_count_resources(struct acpi_iort_node *node)
1363{
1364        struct acpi_iort_smmu *smmu;
1365
1366        /* Retrieve SMMU specific data */
1367        smmu = (struct acpi_iort_smmu *)node->node_data;
1368
1369        /*
1370         * Only consider the global fault interrupt and ignore the
1371         * configuration access interrupt.
1372         *
1373         * MMIO address and global fault interrupt resources are always
1374         * present so add them to the context interrupt count as a static
1375         * value.
1376         */
1377        return smmu->context_interrupt_count + 2;
1378}
1379
1380static void __init arm_smmu_init_resources(struct resource *res,
1381                                           struct acpi_iort_node *node)
1382{
1383        struct acpi_iort_smmu *smmu;
1384        int i, hw_irq, trigger, num_res = 0;
1385        u64 *ctx_irq, *glb_irq;
1386
1387        /* Retrieve SMMU specific data */
1388        smmu = (struct acpi_iort_smmu *)node->node_data;
1389
1390        res[num_res].start = smmu->base_address;
1391        res[num_res].end = smmu->base_address + smmu->span - 1;
1392        res[num_res].flags = IORESOURCE_MEM;
1393        num_res++;
1394
1395        glb_irq = ACPI_ADD_PTR(u64, node, smmu->global_interrupt_offset);
1396        /* Global IRQs */
1397        hw_irq = IORT_IRQ_MASK(glb_irq[0]);
1398        trigger = IORT_IRQ_TRIGGER_MASK(glb_irq[0]);
1399
1400        acpi_iort_register_irq(hw_irq, "arm-smmu-global", trigger,
1401                                     &res[num_res++]);
1402
1403        /* Context IRQs */
1404        ctx_irq = ACPI_ADD_PTR(u64, node, smmu->context_interrupt_offset);
1405        for (i = 0; i < smmu->context_interrupt_count; i++) {
1406                hw_irq = IORT_IRQ_MASK(ctx_irq[i]);
1407                trigger = IORT_IRQ_TRIGGER_MASK(ctx_irq[i]);
1408
1409                acpi_iort_register_irq(hw_irq, "arm-smmu-context", trigger,
1410                                       &res[num_res++]);
1411        }
1412}
1413
1414static void __init arm_smmu_dma_configure(struct device *dev,
1415                                          struct acpi_iort_node *node)
1416{
1417        struct acpi_iort_smmu *smmu;
1418        enum dev_dma_attr attr;
1419
1420        /* Retrieve SMMU specific data */
1421        smmu = (struct acpi_iort_smmu *)node->node_data;
1422
1423        attr = (smmu->flags & ACPI_IORT_SMMU_COHERENT_WALK) ?
1424                        DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT;
1425
1426        /* We expect the dma masks to be equivalent for SMMU set-ups */
1427        dev->dma_mask = &dev->coherent_dma_mask;
1428
1429        /* Configure DMA for the page table walker */
1430        acpi_dma_configure(dev, attr);
1431}
1432
1433static int __init arm_smmu_v3_pmcg_count_resources(struct acpi_iort_node *node)
1434{
1435        struct acpi_iort_pmcg *pmcg;
1436
1437        /* Retrieve PMCG specific data */
1438        pmcg = (struct acpi_iort_pmcg *)node->node_data;
1439
1440        /*
1441         * There are always 2 memory resources.
1442         * If the overflow_gsiv is present then add that for a total of 3.
1443         */
1444        return pmcg->overflow_gsiv ? 3 : 2;
1445}
1446
1447static void __init arm_smmu_v3_pmcg_init_resources(struct resource *res,
1448                                                   struct acpi_iort_node *node)
1449{
1450        struct acpi_iort_pmcg *pmcg;
1451
1452        /* Retrieve PMCG specific data */
1453        pmcg = (struct acpi_iort_pmcg *)node->node_data;
1454
1455        res[0].start = pmcg->page0_base_address;
1456        res[0].end = pmcg->page0_base_address + SZ_4K - 1;
1457        res[0].flags = IORESOURCE_MEM;
1458        res[1].start = pmcg->page1_base_address;
1459        res[1].end = pmcg->page1_base_address + SZ_4K - 1;
1460        res[1].flags = IORESOURCE_MEM;
1461
1462        if (pmcg->overflow_gsiv)
1463                acpi_iort_register_irq(pmcg->overflow_gsiv, "overflow",
1464                                       ACPI_EDGE_SENSITIVE, &res[2]);
1465}
1466
1467static struct acpi_platform_list pmcg_plat_info[] __initdata = {
1468        /* HiSilicon Hip08 Platform */
1469        {"HISI  ", "HIP08   ", 0, ACPI_SIG_IORT, greater_than_or_equal,
1470         "Erratum #162001800", IORT_SMMU_V3_PMCG_HISI_HIP08},
1471        { }
1472};
1473
1474static int __init arm_smmu_v3_pmcg_add_platdata(struct platform_device *pdev)
1475{
1476        u32 model;
1477        int idx;
1478
1479        idx = acpi_match_platform_list(pmcg_plat_info);
1480        if (idx >= 0)
1481                model = pmcg_plat_info[idx].data;
1482        else
1483                model = IORT_SMMU_V3_PMCG_GENERIC;
1484
1485        return platform_device_add_data(pdev, &model, sizeof(model));
1486}
1487
1488struct iort_dev_config {
1489        const char *name;
1490        int (*dev_init)(struct acpi_iort_node *node);
1491        void (*dev_dma_configure)(struct device *dev,
1492                                  struct acpi_iort_node *node);
1493        int (*dev_count_resources)(struct acpi_iort_node *node);
1494        void (*dev_init_resources)(struct resource *res,
1495                                     struct acpi_iort_node *node);
1496        int (*dev_set_proximity)(struct device *dev,
1497                                    struct acpi_iort_node *node);
1498        int (*dev_add_platdata)(struct platform_device *pdev);
1499};
1500
1501static const struct iort_dev_config iort_arm_smmu_v3_cfg __initconst = {
1502        .name = "arm-smmu-v3",
1503        .dev_dma_configure = arm_smmu_v3_dma_configure,
1504        .dev_count_resources = arm_smmu_v3_count_resources,
1505        .dev_init_resources = arm_smmu_v3_init_resources,
1506        .dev_set_proximity = arm_smmu_v3_set_proximity,
1507};
1508
1509static const struct iort_dev_config iort_arm_smmu_cfg __initconst = {
1510        .name = "arm-smmu",
1511        .dev_dma_configure = arm_smmu_dma_configure,
1512        .dev_count_resources = arm_smmu_count_resources,
1513        .dev_init_resources = arm_smmu_init_resources,
1514};
1515
1516static const struct iort_dev_config iort_arm_smmu_v3_pmcg_cfg __initconst = {
1517        .name = "arm-smmu-v3-pmcg",
1518        .dev_count_resources = arm_smmu_v3_pmcg_count_resources,
1519        .dev_init_resources = arm_smmu_v3_pmcg_init_resources,
1520        .dev_add_platdata = arm_smmu_v3_pmcg_add_platdata,
1521};
1522
1523static __init const struct iort_dev_config *iort_get_dev_cfg(
1524                        struct acpi_iort_node *node)
1525{
1526        switch (node->type) {
1527        case ACPI_IORT_NODE_SMMU_V3:
1528                return &iort_arm_smmu_v3_cfg;
1529        case ACPI_IORT_NODE_SMMU:
1530                return &iort_arm_smmu_cfg;
1531        case ACPI_IORT_NODE_PMCG:
1532                return &iort_arm_smmu_v3_pmcg_cfg;
1533        default:
1534                return NULL;
1535        }
1536}
1537
1538/**
1539 * iort_add_platform_device() - Allocate a platform device for IORT node
1540 * @node: Pointer to device ACPI IORT node
1541 * @ops: Pointer to IORT device config struct
1542 *
1543 * Returns: 0 on success, <0 failure
1544 */
1545static int __init iort_add_platform_device(struct acpi_iort_node *node,
1546                                           const struct iort_dev_config *ops)
1547{
1548        struct fwnode_handle *fwnode;
1549        struct platform_device *pdev;
1550        struct resource *r;
1551        int ret, count;
1552
1553        pdev = platform_device_alloc(ops->name, PLATFORM_DEVID_AUTO);
1554        if (!pdev)
1555                return -ENOMEM;
1556
1557        if (ops->dev_set_proximity) {
1558                ret = ops->dev_set_proximity(&pdev->dev, node);
1559                if (ret)
1560                        goto dev_put;
1561        }
1562
1563        count = ops->dev_count_resources(node);
1564
1565        r = kcalloc(count, sizeof(*r), GFP_KERNEL);
1566        if (!r) {
1567                ret = -ENOMEM;
1568                goto dev_put;
1569        }
1570
1571        ops->dev_init_resources(r, node);
1572
1573        ret = platform_device_add_resources(pdev, r, count);
1574        /*
1575         * Resources are duplicated in platform_device_add_resources,
1576         * free their allocated memory
1577         */
1578        kfree(r);
1579
1580        if (ret)
1581                goto dev_put;
1582
1583        /*
1584         * Platform devices based on PMCG nodes uses platform_data to
1585         * pass the hardware model info to the driver. For others, add
1586         * a copy of IORT node pointer to platform_data to be used to
1587         * retrieve IORT data information.
1588         */
1589        if (ops->dev_add_platdata)
1590                ret = ops->dev_add_platdata(pdev);
1591        else
1592                ret = platform_device_add_data(pdev, &node, sizeof(node));
1593
1594        if (ret)
1595                goto dev_put;
1596
1597        fwnode = iort_get_fwnode(node);
1598
1599        if (!fwnode) {
1600                ret = -ENODEV;
1601                goto dev_put;
1602        }
1603
1604        pdev->dev.fwnode = fwnode;
1605
1606        if (ops->dev_dma_configure)
1607                ops->dev_dma_configure(&pdev->dev, node);
1608
1609        iort_set_device_domain(&pdev->dev, node);
1610
1611        ret = platform_device_add(pdev);
1612        if (ret)
1613                goto dma_deconfigure;
1614
1615        return 0;
1616
1617dma_deconfigure:
1618        arch_teardown_dma_ops(&pdev->dev);
1619dev_put:
1620        platform_device_put(pdev);
1621
1622        return ret;
1623}
1624
1625#ifdef CONFIG_PCI
1626static void __init iort_enable_acs(struct acpi_iort_node *iort_node)
1627{
1628        static bool acs_enabled __initdata;
1629
1630        if (acs_enabled)
1631                return;
1632
1633        if (iort_node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
1634                struct acpi_iort_node *parent;
1635                struct acpi_iort_id_mapping *map;
1636                int i;
1637
1638                map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, iort_node,
1639                                   iort_node->mapping_offset);
1640
1641                for (i = 0; i < iort_node->mapping_count; i++, map++) {
1642                        if (!map->output_reference)
1643                                continue;
1644
1645                        parent = ACPI_ADD_PTR(struct acpi_iort_node,
1646                                        iort_table,  map->output_reference);
1647                        /*
1648                         * If we detect a RC->SMMU mapping, make sure
1649                         * we enable ACS on the system.
1650                         */
1651                        if ((parent->type == ACPI_IORT_NODE_SMMU) ||
1652                                (parent->type == ACPI_IORT_NODE_SMMU_V3)) {
1653                                pci_request_acs();
1654                                acs_enabled = true;
1655                                return;
1656                        }
1657                }
1658        }
1659}
1660#else
1661static inline void iort_enable_acs(struct acpi_iort_node *iort_node) { }
1662#endif
1663
1664static void __init iort_init_platform_devices(void)
1665{
1666        struct acpi_iort_node *iort_node, *iort_end;
1667        struct acpi_table_iort *iort;
1668        struct fwnode_handle *fwnode;
1669        int i, ret;
1670        const struct iort_dev_config *ops;
1671
1672        /*
1673         * iort_table and iort both point to the start of IORT table, but
1674         * have different struct types
1675         */
1676        iort = (struct acpi_table_iort *)iort_table;
1677
1678        /* Get the first IORT node */
1679        iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1680                                 iort->node_offset);
1681        iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1682                                iort_table->length);
1683
1684        for (i = 0; i < iort->node_count; i++) {
1685                if (iort_node >= iort_end) {
1686                        pr_err("iort node pointer overflows, bad table\n");
1687                        return;
1688                }
1689
1690                iort_enable_acs(iort_node);
1691
1692                ops = iort_get_dev_cfg(iort_node);
1693                if (ops) {
1694                        fwnode = acpi_alloc_fwnode_static();
1695                        if (!fwnode)
1696                                return;
1697
1698                        iort_set_fwnode(iort_node, fwnode);
1699
1700                        ret = iort_add_platform_device(iort_node, ops);
1701                        if (ret) {
1702                                iort_delete_fwnode(iort_node);
1703                                acpi_free_fwnode_static(fwnode);
1704                                return;
1705                        }
1706                }
1707
1708                iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
1709                                         iort_node->length);
1710        }
1711}
1712
1713void __init acpi_iort_init(void)
1714{
1715        acpi_status status;
1716
1717        /* iort_table will be used at runtime after the iort init,
1718         * so we don't need to call acpi_put_table() to release
1719         * the IORT table mapping.
1720         */
1721        status = acpi_get_table(ACPI_SIG_IORT, 0, &iort_table);
1722        if (ACPI_FAILURE(status)) {
1723                if (status != AE_NOT_FOUND) {
1724                        const char *msg = acpi_format_exception(status);
1725
1726                        pr_err("Failed to get table, %s\n", msg);
1727                }
1728
1729                return;
1730        }
1731
1732        iort_init_platform_devices();
1733}
1734
1735#ifdef CONFIG_ZONE_DMA
1736/*
1737 * Extract the highest CPU physical address accessible to all DMA masters in
1738 * the system. PHYS_ADDR_MAX is returned when no constrained device is found.
1739 */
1740phys_addr_t __init acpi_iort_dma_get_max_cpu_address(void)
1741{
1742        phys_addr_t limit = PHYS_ADDR_MAX;
1743        struct acpi_iort_node *node, *end;
1744        struct acpi_table_iort *iort;
1745        acpi_status status;
1746        int i;
1747
1748        if (acpi_disabled)
1749                return limit;
1750
1751        status = acpi_get_table(ACPI_SIG_IORT, 0,
1752                                (struct acpi_table_header **)&iort);
1753        if (ACPI_FAILURE(status))
1754                return limit;
1755
1756        node = ACPI_ADD_PTR(struct acpi_iort_node, iort, iort->node_offset);
1757        end = ACPI_ADD_PTR(struct acpi_iort_node, iort, iort->header.length);
1758
1759        for (i = 0; i < iort->node_count; i++) {
1760                if (node >= end)
1761                        break;
1762
1763                switch (node->type) {
1764                        struct acpi_iort_named_component *ncomp;
1765                        struct acpi_iort_root_complex *rc;
1766                        phys_addr_t local_limit;
1767
1768                case ACPI_IORT_NODE_NAMED_COMPONENT:
1769                        ncomp = (struct acpi_iort_named_component *)node->node_data;
1770                        local_limit = DMA_BIT_MASK(ncomp->memory_address_limit);
1771                        limit = min_not_zero(limit, local_limit);
1772                        break;
1773
1774                case ACPI_IORT_NODE_PCI_ROOT_COMPLEX:
1775                        if (node->revision < 1)
1776                                break;
1777
1778                        rc = (struct acpi_iort_root_complex *)node->node_data;
1779                        local_limit = DMA_BIT_MASK(rc->memory_address_limit);
1780                        limit = min_not_zero(limit, local_limit);
1781                        break;
1782                }
1783                node = ACPI_ADD_PTR(struct acpi_iort_node, node, node->length);
1784        }
1785        acpi_put_table(&iort->header);
1786        return limit;
1787}
1788#endif
1789