linux/block/blk-settings.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Functions related to setting various queue properties from drivers
   4 */
   5#include <linux/kernel.h>
   6#include <linux/module.h>
   7#include <linux/init.h>
   8#include <linux/bio.h>
   9#include <linux/blkdev.h>
  10#include <linux/pagemap.h>
  11#include <linux/gcd.h>
  12#include <linux/lcm.h>
  13#include <linux/jiffies.h>
  14#include <linux/gfp.h>
  15#include <linux/dma-mapping.h>
  16
  17#include "blk.h"
  18#include "blk-wbt.h"
  19
  20void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
  21{
  22        q->rq_timeout = timeout;
  23}
  24EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
  25
  26/**
  27 * blk_set_default_limits - reset limits to default values
  28 * @lim:  the queue_limits structure to reset
  29 *
  30 * Description:
  31 *   Returns a queue_limit struct to its default state.
  32 */
  33void blk_set_default_limits(struct queue_limits *lim)
  34{
  35        lim->max_segments = BLK_MAX_SEGMENTS;
  36        lim->max_discard_segments = 1;
  37        lim->max_integrity_segments = 0;
  38        lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
  39        lim->virt_boundary_mask = 0;
  40        lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
  41        lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
  42        lim->max_dev_sectors = 0;
  43        lim->chunk_sectors = 0;
  44        lim->max_write_same_sectors = 0;
  45        lim->max_write_zeroes_sectors = 0;
  46        lim->max_zone_append_sectors = 0;
  47        lim->max_discard_sectors = 0;
  48        lim->max_hw_discard_sectors = 0;
  49        lim->discard_granularity = 0;
  50        lim->discard_alignment = 0;
  51        lim->discard_misaligned = 0;
  52        lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
  53        lim->bounce = BLK_BOUNCE_NONE;
  54        lim->alignment_offset = 0;
  55        lim->io_opt = 0;
  56        lim->misaligned = 0;
  57        lim->zoned = BLK_ZONED_NONE;
  58        lim->zone_write_granularity = 0;
  59}
  60EXPORT_SYMBOL(blk_set_default_limits);
  61
  62/**
  63 * blk_set_stacking_limits - set default limits for stacking devices
  64 * @lim:  the queue_limits structure to reset
  65 *
  66 * Description:
  67 *   Returns a queue_limit struct to its default state. Should be used
  68 *   by stacking drivers like DM that have no internal limits.
  69 */
  70void blk_set_stacking_limits(struct queue_limits *lim)
  71{
  72        blk_set_default_limits(lim);
  73
  74        /* Inherit limits from component devices */
  75        lim->max_segments = USHRT_MAX;
  76        lim->max_discard_segments = USHRT_MAX;
  77        lim->max_hw_sectors = UINT_MAX;
  78        lim->max_segment_size = UINT_MAX;
  79        lim->max_sectors = UINT_MAX;
  80        lim->max_dev_sectors = UINT_MAX;
  81        lim->max_write_same_sectors = UINT_MAX;
  82        lim->max_write_zeroes_sectors = UINT_MAX;
  83        lim->max_zone_append_sectors = UINT_MAX;
  84}
  85EXPORT_SYMBOL(blk_set_stacking_limits);
  86
  87/**
  88 * blk_queue_bounce_limit - set bounce buffer limit for queue
  89 * @q: the request queue for the device
  90 * @bounce: bounce limit to enforce
  91 *
  92 * Description:
  93 *    Force bouncing for ISA DMA ranges or highmem.
  94 *
  95 *    DEPRECATED, don't use in new code.
  96 **/
  97void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce bounce)
  98{
  99        q->limits.bounce = bounce;
 100}
 101EXPORT_SYMBOL(blk_queue_bounce_limit);
 102
 103/**
 104 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
 105 * @q:  the request queue for the device
 106 * @max_hw_sectors:  max hardware sectors in the usual 512b unit
 107 *
 108 * Description:
 109 *    Enables a low level driver to set a hard upper limit,
 110 *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
 111 *    the device driver based upon the capabilities of the I/O
 112 *    controller.
 113 *
 114 *    max_dev_sectors is a hard limit imposed by the storage device for
 115 *    READ/WRITE requests. It is set by the disk driver.
 116 *
 117 *    max_sectors is a soft limit imposed by the block layer for
 118 *    filesystem type requests.  This value can be overridden on a
 119 *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
 120 *    The soft limit can not exceed max_hw_sectors.
 121 **/
 122void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
 123{
 124        struct queue_limits *limits = &q->limits;
 125        unsigned int max_sectors;
 126
 127        if ((max_hw_sectors << 9) < PAGE_SIZE) {
 128                max_hw_sectors = 1 << (PAGE_SHIFT - 9);
 129                printk(KERN_INFO "%s: set to minimum %d\n",
 130                       __func__, max_hw_sectors);
 131        }
 132
 133        max_hw_sectors = round_down(max_hw_sectors,
 134                                    limits->logical_block_size >> SECTOR_SHIFT);
 135        limits->max_hw_sectors = max_hw_sectors;
 136
 137        max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
 138        max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
 139        max_sectors = round_down(max_sectors,
 140                                 limits->logical_block_size >> SECTOR_SHIFT);
 141        limits->max_sectors = max_sectors;
 142
 143        q->backing_dev_info->io_pages = max_sectors >> (PAGE_SHIFT - 9);
 144}
 145EXPORT_SYMBOL(blk_queue_max_hw_sectors);
 146
 147/**
 148 * blk_queue_chunk_sectors - set size of the chunk for this queue
 149 * @q:  the request queue for the device
 150 * @chunk_sectors:  chunk sectors in the usual 512b unit
 151 *
 152 * Description:
 153 *    If a driver doesn't want IOs to cross a given chunk size, it can set
 154 *    this limit and prevent merging across chunks. Note that the block layer
 155 *    must accept a page worth of data at any offset. So if the crossing of
 156 *    chunks is a hard limitation in the driver, it must still be prepared
 157 *    to split single page bios.
 158 **/
 159void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
 160{
 161        q->limits.chunk_sectors = chunk_sectors;
 162}
 163EXPORT_SYMBOL(blk_queue_chunk_sectors);
 164
 165/**
 166 * blk_queue_max_discard_sectors - set max sectors for a single discard
 167 * @q:  the request queue for the device
 168 * @max_discard_sectors: maximum number of sectors to discard
 169 **/
 170void blk_queue_max_discard_sectors(struct request_queue *q,
 171                unsigned int max_discard_sectors)
 172{
 173        q->limits.max_hw_discard_sectors = max_discard_sectors;
 174        q->limits.max_discard_sectors = max_discard_sectors;
 175}
 176EXPORT_SYMBOL(blk_queue_max_discard_sectors);
 177
 178/**
 179 * blk_queue_max_write_same_sectors - set max sectors for a single write same
 180 * @q:  the request queue for the device
 181 * @max_write_same_sectors: maximum number of sectors to write per command
 182 **/
 183void blk_queue_max_write_same_sectors(struct request_queue *q,
 184                                      unsigned int max_write_same_sectors)
 185{
 186        q->limits.max_write_same_sectors = max_write_same_sectors;
 187}
 188EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
 189
 190/**
 191 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
 192 *                                      write zeroes
 193 * @q:  the request queue for the device
 194 * @max_write_zeroes_sectors: maximum number of sectors to write per command
 195 **/
 196void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
 197                unsigned int max_write_zeroes_sectors)
 198{
 199        q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
 200}
 201EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
 202
 203/**
 204 * blk_queue_max_zone_append_sectors - set max sectors for a single zone append
 205 * @q:  the request queue for the device
 206 * @max_zone_append_sectors: maximum number of sectors to write per command
 207 **/
 208void blk_queue_max_zone_append_sectors(struct request_queue *q,
 209                unsigned int max_zone_append_sectors)
 210{
 211        unsigned int max_sectors;
 212
 213        if (WARN_ON(!blk_queue_is_zoned(q)))
 214                return;
 215
 216        max_sectors = min(q->limits.max_hw_sectors, max_zone_append_sectors);
 217        max_sectors = min(q->limits.chunk_sectors, max_sectors);
 218
 219        /*
 220         * Signal eventual driver bugs resulting in the max_zone_append sectors limit
 221         * being 0 due to a 0 argument, the chunk_sectors limit (zone size) not set,
 222         * or the max_hw_sectors limit not set.
 223         */
 224        WARN_ON(!max_sectors);
 225
 226        q->limits.max_zone_append_sectors = max_sectors;
 227}
 228EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors);
 229
 230/**
 231 * blk_queue_max_segments - set max hw segments for a request for this queue
 232 * @q:  the request queue for the device
 233 * @max_segments:  max number of segments
 234 *
 235 * Description:
 236 *    Enables a low level driver to set an upper limit on the number of
 237 *    hw data segments in a request.
 238 **/
 239void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
 240{
 241        if (!max_segments) {
 242                max_segments = 1;
 243                printk(KERN_INFO "%s: set to minimum %d\n",
 244                       __func__, max_segments);
 245        }
 246
 247        q->limits.max_segments = max_segments;
 248}
 249EXPORT_SYMBOL(blk_queue_max_segments);
 250
 251/**
 252 * blk_queue_max_discard_segments - set max segments for discard requests
 253 * @q:  the request queue for the device
 254 * @max_segments:  max number of segments
 255 *
 256 * Description:
 257 *    Enables a low level driver to set an upper limit on the number of
 258 *    segments in a discard request.
 259 **/
 260void blk_queue_max_discard_segments(struct request_queue *q,
 261                unsigned short max_segments)
 262{
 263        q->limits.max_discard_segments = max_segments;
 264}
 265EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
 266
 267/**
 268 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
 269 * @q:  the request queue for the device
 270 * @max_size:  max size of segment in bytes
 271 *
 272 * Description:
 273 *    Enables a low level driver to set an upper limit on the size of a
 274 *    coalesced segment
 275 **/
 276void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
 277{
 278        if (max_size < PAGE_SIZE) {
 279                max_size = PAGE_SIZE;
 280                printk(KERN_INFO "%s: set to minimum %d\n",
 281                       __func__, max_size);
 282        }
 283
 284        /* see blk_queue_virt_boundary() for the explanation */
 285        WARN_ON_ONCE(q->limits.virt_boundary_mask);
 286
 287        q->limits.max_segment_size = max_size;
 288}
 289EXPORT_SYMBOL(blk_queue_max_segment_size);
 290
 291/**
 292 * blk_queue_logical_block_size - set logical block size for the queue
 293 * @q:  the request queue for the device
 294 * @size:  the logical block size, in bytes
 295 *
 296 * Description:
 297 *   This should be set to the lowest possible block size that the
 298 *   storage device can address.  The default of 512 covers most
 299 *   hardware.
 300 **/
 301void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
 302{
 303        struct queue_limits *limits = &q->limits;
 304
 305        limits->logical_block_size = size;
 306
 307        if (limits->physical_block_size < size)
 308                limits->physical_block_size = size;
 309
 310        if (limits->io_min < limits->physical_block_size)
 311                limits->io_min = limits->physical_block_size;
 312
 313        limits->max_hw_sectors =
 314                round_down(limits->max_hw_sectors, size >> SECTOR_SHIFT);
 315        limits->max_sectors =
 316                round_down(limits->max_sectors, size >> SECTOR_SHIFT);
 317}
 318EXPORT_SYMBOL(blk_queue_logical_block_size);
 319
 320/**
 321 * blk_queue_physical_block_size - set physical block size for the queue
 322 * @q:  the request queue for the device
 323 * @size:  the physical block size, in bytes
 324 *
 325 * Description:
 326 *   This should be set to the lowest possible sector size that the
 327 *   hardware can operate on without reverting to read-modify-write
 328 *   operations.
 329 */
 330void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
 331{
 332        q->limits.physical_block_size = size;
 333
 334        if (q->limits.physical_block_size < q->limits.logical_block_size)
 335                q->limits.physical_block_size = q->limits.logical_block_size;
 336
 337        if (q->limits.io_min < q->limits.physical_block_size)
 338                q->limits.io_min = q->limits.physical_block_size;
 339}
 340EXPORT_SYMBOL(blk_queue_physical_block_size);
 341
 342/**
 343 * blk_queue_zone_write_granularity - set zone write granularity for the queue
 344 * @q:  the request queue for the zoned device
 345 * @size:  the zone write granularity size, in bytes
 346 *
 347 * Description:
 348 *   This should be set to the lowest possible size allowing to write in
 349 *   sequential zones of a zoned block device.
 350 */
 351void blk_queue_zone_write_granularity(struct request_queue *q,
 352                                      unsigned int size)
 353{
 354        if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
 355                return;
 356
 357        q->limits.zone_write_granularity = size;
 358
 359        if (q->limits.zone_write_granularity < q->limits.logical_block_size)
 360                q->limits.zone_write_granularity = q->limits.logical_block_size;
 361}
 362EXPORT_SYMBOL_GPL(blk_queue_zone_write_granularity);
 363
 364/**
 365 * blk_queue_alignment_offset - set physical block alignment offset
 366 * @q:  the request queue for the device
 367 * @offset: alignment offset in bytes
 368 *
 369 * Description:
 370 *   Some devices are naturally misaligned to compensate for things like
 371 *   the legacy DOS partition table 63-sector offset.  Low-level drivers
 372 *   should call this function for devices whose first sector is not
 373 *   naturally aligned.
 374 */
 375void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
 376{
 377        q->limits.alignment_offset =
 378                offset & (q->limits.physical_block_size - 1);
 379        q->limits.misaligned = 0;
 380}
 381EXPORT_SYMBOL(blk_queue_alignment_offset);
 382
 383void blk_queue_update_readahead(struct request_queue *q)
 384{
 385        /*
 386         * For read-ahead of large files to be effective, we need to read ahead
 387         * at least twice the optimal I/O size.
 388         */
 389        q->backing_dev_info->ra_pages =
 390                max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
 391        q->backing_dev_info->io_pages =
 392                queue_max_sectors(q) >> (PAGE_SHIFT - 9);
 393}
 394EXPORT_SYMBOL_GPL(blk_queue_update_readahead);
 395
 396/**
 397 * blk_limits_io_min - set minimum request size for a device
 398 * @limits: the queue limits
 399 * @min:  smallest I/O size in bytes
 400 *
 401 * Description:
 402 *   Some devices have an internal block size bigger than the reported
 403 *   hardware sector size.  This function can be used to signal the
 404 *   smallest I/O the device can perform without incurring a performance
 405 *   penalty.
 406 */
 407void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
 408{
 409        limits->io_min = min;
 410
 411        if (limits->io_min < limits->logical_block_size)
 412                limits->io_min = limits->logical_block_size;
 413
 414        if (limits->io_min < limits->physical_block_size)
 415                limits->io_min = limits->physical_block_size;
 416}
 417EXPORT_SYMBOL(blk_limits_io_min);
 418
 419/**
 420 * blk_queue_io_min - set minimum request size for the queue
 421 * @q:  the request queue for the device
 422 * @min:  smallest I/O size in bytes
 423 *
 424 * Description:
 425 *   Storage devices may report a granularity or preferred minimum I/O
 426 *   size which is the smallest request the device can perform without
 427 *   incurring a performance penalty.  For disk drives this is often the
 428 *   physical block size.  For RAID arrays it is often the stripe chunk
 429 *   size.  A properly aligned multiple of minimum_io_size is the
 430 *   preferred request size for workloads where a high number of I/O
 431 *   operations is desired.
 432 */
 433void blk_queue_io_min(struct request_queue *q, unsigned int min)
 434{
 435        blk_limits_io_min(&q->limits, min);
 436}
 437EXPORT_SYMBOL(blk_queue_io_min);
 438
 439/**
 440 * blk_limits_io_opt - set optimal request size for a device
 441 * @limits: the queue limits
 442 * @opt:  smallest I/O size in bytes
 443 *
 444 * Description:
 445 *   Storage devices may report an optimal I/O size, which is the
 446 *   device's preferred unit for sustained I/O.  This is rarely reported
 447 *   for disk drives.  For RAID arrays it is usually the stripe width or
 448 *   the internal track size.  A properly aligned multiple of
 449 *   optimal_io_size is the preferred request size for workloads where
 450 *   sustained throughput is desired.
 451 */
 452void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
 453{
 454        limits->io_opt = opt;
 455}
 456EXPORT_SYMBOL(blk_limits_io_opt);
 457
 458/**
 459 * blk_queue_io_opt - set optimal request size for the queue
 460 * @q:  the request queue for the device
 461 * @opt:  optimal request size in bytes
 462 *
 463 * Description:
 464 *   Storage devices may report an optimal I/O size, which is the
 465 *   device's preferred unit for sustained I/O.  This is rarely reported
 466 *   for disk drives.  For RAID arrays it is usually the stripe width or
 467 *   the internal track size.  A properly aligned multiple of
 468 *   optimal_io_size is the preferred request size for workloads where
 469 *   sustained throughput is desired.
 470 */
 471void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
 472{
 473        blk_limits_io_opt(&q->limits, opt);
 474        q->backing_dev_info->ra_pages =
 475                max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
 476}
 477EXPORT_SYMBOL(blk_queue_io_opt);
 478
 479static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
 480{
 481        sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
 482        if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
 483                sectors = PAGE_SIZE >> SECTOR_SHIFT;
 484        return sectors;
 485}
 486
 487/**
 488 * blk_stack_limits - adjust queue_limits for stacked devices
 489 * @t:  the stacking driver limits (top device)
 490 * @b:  the underlying queue limits (bottom, component device)
 491 * @start:  first data sector within component device
 492 *
 493 * Description:
 494 *    This function is used by stacking drivers like MD and DM to ensure
 495 *    that all component devices have compatible block sizes and
 496 *    alignments.  The stacking driver must provide a queue_limits
 497 *    struct (top) and then iteratively call the stacking function for
 498 *    all component (bottom) devices.  The stacking function will
 499 *    attempt to combine the values and ensure proper alignment.
 500 *
 501 *    Returns 0 if the top and bottom queue_limits are compatible.  The
 502 *    top device's block sizes and alignment offsets may be adjusted to
 503 *    ensure alignment with the bottom device. If no compatible sizes
 504 *    and alignments exist, -1 is returned and the resulting top
 505 *    queue_limits will have the misaligned flag set to indicate that
 506 *    the alignment_offset is undefined.
 507 */
 508int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
 509                     sector_t start)
 510{
 511        unsigned int top, bottom, alignment, ret = 0;
 512
 513        t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
 514        t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
 515        t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
 516        t->max_write_same_sectors = min(t->max_write_same_sectors,
 517                                        b->max_write_same_sectors);
 518        t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
 519                                        b->max_write_zeroes_sectors);
 520        t->max_zone_append_sectors = min(t->max_zone_append_sectors,
 521                                        b->max_zone_append_sectors);
 522        t->bounce = max(t->bounce, b->bounce);
 523
 524        t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
 525                                            b->seg_boundary_mask);
 526        t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
 527                                            b->virt_boundary_mask);
 528
 529        t->max_segments = min_not_zero(t->max_segments, b->max_segments);
 530        t->max_discard_segments = min_not_zero(t->max_discard_segments,
 531                                               b->max_discard_segments);
 532        t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
 533                                                 b->max_integrity_segments);
 534
 535        t->max_segment_size = min_not_zero(t->max_segment_size,
 536                                           b->max_segment_size);
 537
 538        t->misaligned |= b->misaligned;
 539
 540        alignment = queue_limit_alignment_offset(b, start);
 541
 542        /* Bottom device has different alignment.  Check that it is
 543         * compatible with the current top alignment.
 544         */
 545        if (t->alignment_offset != alignment) {
 546
 547                top = max(t->physical_block_size, t->io_min)
 548                        + t->alignment_offset;
 549                bottom = max(b->physical_block_size, b->io_min) + alignment;
 550
 551                /* Verify that top and bottom intervals line up */
 552                if (max(top, bottom) % min(top, bottom)) {
 553                        t->misaligned = 1;
 554                        ret = -1;
 555                }
 556        }
 557
 558        t->logical_block_size = max(t->logical_block_size,
 559                                    b->logical_block_size);
 560
 561        t->physical_block_size = max(t->physical_block_size,
 562                                     b->physical_block_size);
 563
 564        t->io_min = max(t->io_min, b->io_min);
 565        t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
 566
 567        /* Set non-power-of-2 compatible chunk_sectors boundary */
 568        if (b->chunk_sectors)
 569                t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
 570
 571        /* Physical block size a multiple of the logical block size? */
 572        if (t->physical_block_size & (t->logical_block_size - 1)) {
 573                t->physical_block_size = t->logical_block_size;
 574                t->misaligned = 1;
 575                ret = -1;
 576        }
 577
 578        /* Minimum I/O a multiple of the physical block size? */
 579        if (t->io_min & (t->physical_block_size - 1)) {
 580                t->io_min = t->physical_block_size;
 581                t->misaligned = 1;
 582                ret = -1;
 583        }
 584
 585        /* Optimal I/O a multiple of the physical block size? */
 586        if (t->io_opt & (t->physical_block_size - 1)) {
 587                t->io_opt = 0;
 588                t->misaligned = 1;
 589                ret = -1;
 590        }
 591
 592        /* chunk_sectors a multiple of the physical block size? */
 593        if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) {
 594                t->chunk_sectors = 0;
 595                t->misaligned = 1;
 596                ret = -1;
 597        }
 598
 599        t->raid_partial_stripes_expensive =
 600                max(t->raid_partial_stripes_expensive,
 601                    b->raid_partial_stripes_expensive);
 602
 603        /* Find lowest common alignment_offset */
 604        t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
 605                % max(t->physical_block_size, t->io_min);
 606
 607        /* Verify that new alignment_offset is on a logical block boundary */
 608        if (t->alignment_offset & (t->logical_block_size - 1)) {
 609                t->misaligned = 1;
 610                ret = -1;
 611        }
 612
 613        t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
 614        t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
 615        t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
 616
 617        /* Discard alignment and granularity */
 618        if (b->discard_granularity) {
 619                alignment = queue_limit_discard_alignment(b, start);
 620
 621                if (t->discard_granularity != 0 &&
 622                    t->discard_alignment != alignment) {
 623                        top = t->discard_granularity + t->discard_alignment;
 624                        bottom = b->discard_granularity + alignment;
 625
 626                        /* Verify that top and bottom intervals line up */
 627                        if ((max(top, bottom) % min(top, bottom)) != 0)
 628                                t->discard_misaligned = 1;
 629                }
 630
 631                t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
 632                                                      b->max_discard_sectors);
 633                t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
 634                                                         b->max_hw_discard_sectors);
 635                t->discard_granularity = max(t->discard_granularity,
 636                                             b->discard_granularity);
 637                t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
 638                        t->discard_granularity;
 639        }
 640
 641        t->zone_write_granularity = max(t->zone_write_granularity,
 642                                        b->zone_write_granularity);
 643        t->zoned = max(t->zoned, b->zoned);
 644        return ret;
 645}
 646EXPORT_SYMBOL(blk_stack_limits);
 647
 648/**
 649 * disk_stack_limits - adjust queue limits for stacked drivers
 650 * @disk:  MD/DM gendisk (top)
 651 * @bdev:  the underlying block device (bottom)
 652 * @offset:  offset to beginning of data within component device
 653 *
 654 * Description:
 655 *    Merges the limits for a top level gendisk and a bottom level
 656 *    block_device.
 657 */
 658void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
 659                       sector_t offset)
 660{
 661        struct request_queue *t = disk->queue;
 662
 663        if (blk_stack_limits(&t->limits, &bdev_get_queue(bdev)->limits,
 664                        get_start_sect(bdev) + (offset >> 9)) < 0) {
 665                char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
 666
 667                disk_name(disk, 0, top);
 668                bdevname(bdev, bottom);
 669
 670                printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
 671                       top, bottom);
 672        }
 673
 674        blk_queue_update_readahead(disk->queue);
 675}
 676EXPORT_SYMBOL(disk_stack_limits);
 677
 678/**
 679 * blk_queue_update_dma_pad - update pad mask
 680 * @q:     the request queue for the device
 681 * @mask:  pad mask
 682 *
 683 * Update dma pad mask.
 684 *
 685 * Appending pad buffer to a request modifies the last entry of a
 686 * scatter list such that it includes the pad buffer.
 687 **/
 688void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
 689{
 690        if (mask > q->dma_pad_mask)
 691                q->dma_pad_mask = mask;
 692}
 693EXPORT_SYMBOL(blk_queue_update_dma_pad);
 694
 695/**
 696 * blk_queue_segment_boundary - set boundary rules for segment merging
 697 * @q:  the request queue for the device
 698 * @mask:  the memory boundary mask
 699 **/
 700void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
 701{
 702        if (mask < PAGE_SIZE - 1) {
 703                mask = PAGE_SIZE - 1;
 704                printk(KERN_INFO "%s: set to minimum %lx\n",
 705                       __func__, mask);
 706        }
 707
 708        q->limits.seg_boundary_mask = mask;
 709}
 710EXPORT_SYMBOL(blk_queue_segment_boundary);
 711
 712/**
 713 * blk_queue_virt_boundary - set boundary rules for bio merging
 714 * @q:  the request queue for the device
 715 * @mask:  the memory boundary mask
 716 **/
 717void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
 718{
 719        q->limits.virt_boundary_mask = mask;
 720
 721        /*
 722         * Devices that require a virtual boundary do not support scatter/gather
 723         * I/O natively, but instead require a descriptor list entry for each
 724         * page (which might not be idential to the Linux PAGE_SIZE).  Because
 725         * of that they are not limited by our notion of "segment size".
 726         */
 727        if (mask)
 728                q->limits.max_segment_size = UINT_MAX;
 729}
 730EXPORT_SYMBOL(blk_queue_virt_boundary);
 731
 732/**
 733 * blk_queue_dma_alignment - set dma length and memory alignment
 734 * @q:     the request queue for the device
 735 * @mask:  alignment mask
 736 *
 737 * description:
 738 *    set required memory and length alignment for direct dma transactions.
 739 *    this is used when building direct io requests for the queue.
 740 *
 741 **/
 742void blk_queue_dma_alignment(struct request_queue *q, int mask)
 743{
 744        q->dma_alignment = mask;
 745}
 746EXPORT_SYMBOL(blk_queue_dma_alignment);
 747
 748/**
 749 * blk_queue_update_dma_alignment - update dma length and memory alignment
 750 * @q:     the request queue for the device
 751 * @mask:  alignment mask
 752 *
 753 * description:
 754 *    update required memory and length alignment for direct dma transactions.
 755 *    If the requested alignment is larger than the current alignment, then
 756 *    the current queue alignment is updated to the new value, otherwise it
 757 *    is left alone.  The design of this is to allow multiple objects
 758 *    (driver, device, transport etc) to set their respective
 759 *    alignments without having them interfere.
 760 *
 761 **/
 762void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
 763{
 764        BUG_ON(mask > PAGE_SIZE);
 765
 766        if (mask > q->dma_alignment)
 767                q->dma_alignment = mask;
 768}
 769EXPORT_SYMBOL(blk_queue_update_dma_alignment);
 770
 771/**
 772 * blk_set_queue_depth - tell the block layer about the device queue depth
 773 * @q:          the request queue for the device
 774 * @depth:              queue depth
 775 *
 776 */
 777void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
 778{
 779        q->queue_depth = depth;
 780        rq_qos_queue_depth_changed(q);
 781}
 782EXPORT_SYMBOL(blk_set_queue_depth);
 783
 784/**
 785 * blk_queue_write_cache - configure queue's write cache
 786 * @q:          the request queue for the device
 787 * @wc:         write back cache on or off
 788 * @fua:        device supports FUA writes, if true
 789 *
 790 * Tell the block layer about the write cache of @q.
 791 */
 792void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
 793{
 794        if (wc)
 795                blk_queue_flag_set(QUEUE_FLAG_WC, q);
 796        else
 797                blk_queue_flag_clear(QUEUE_FLAG_WC, q);
 798        if (fua)
 799                blk_queue_flag_set(QUEUE_FLAG_FUA, q);
 800        else
 801                blk_queue_flag_clear(QUEUE_FLAG_FUA, q);
 802
 803        wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
 804}
 805EXPORT_SYMBOL_GPL(blk_queue_write_cache);
 806
 807/**
 808 * blk_queue_required_elevator_features - Set a queue required elevator features
 809 * @q:          the request queue for the target device
 810 * @features:   Required elevator features OR'ed together
 811 *
 812 * Tell the block layer that for the device controlled through @q, only the
 813 * only elevators that can be used are those that implement at least the set of
 814 * features specified by @features.
 815 */
 816void blk_queue_required_elevator_features(struct request_queue *q,
 817                                          unsigned int features)
 818{
 819        q->required_elevator_features = features;
 820}
 821EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features);
 822
 823/**
 824 * blk_queue_can_use_dma_map_merging - configure queue for merging segments.
 825 * @q:          the request queue for the device
 826 * @dev:        the device pointer for dma
 827 *
 828 * Tell the block layer about merging the segments by dma map of @q.
 829 */
 830bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
 831                                       struct device *dev)
 832{
 833        unsigned long boundary = dma_get_merge_boundary(dev);
 834
 835        if (!boundary)
 836                return false;
 837
 838        /* No need to update max_segment_size. see blk_queue_virt_boundary() */
 839        blk_queue_virt_boundary(q, boundary);
 840
 841        return true;
 842}
 843EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging);
 844
 845/**
 846 * blk_queue_set_zoned - configure a disk queue zoned model.
 847 * @disk:       the gendisk of the queue to configure
 848 * @model:      the zoned model to set
 849 *
 850 * Set the zoned model of the request queue of @disk according to @model.
 851 * When @model is BLK_ZONED_HM (host managed), this should be called only
 852 * if zoned block device support is enabled (CONFIG_BLK_DEV_ZONED option).
 853 * If @model specifies BLK_ZONED_HA (host aware), the effective model used
 854 * depends on CONFIG_BLK_DEV_ZONED settings and on the existence of partitions
 855 * on the disk.
 856 */
 857void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model)
 858{
 859        struct request_queue *q = disk->queue;
 860
 861        switch (model) {
 862        case BLK_ZONED_HM:
 863                /*
 864                 * Host managed devices are supported only if
 865                 * CONFIG_BLK_DEV_ZONED is enabled.
 866                 */
 867                WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED));
 868                break;
 869        case BLK_ZONED_HA:
 870                /*
 871                 * Host aware devices can be treated either as regular block
 872                 * devices (similar to drive managed devices) or as zoned block
 873                 * devices to take advantage of the zone command set, similarly
 874                 * to host managed devices. We try the latter if there are no
 875                 * partitions and zoned block device support is enabled, else
 876                 * we do nothing special as far as the block layer is concerned.
 877                 */
 878                if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) ||
 879                    !xa_empty(&disk->part_tbl))
 880                        model = BLK_ZONED_NONE;
 881                break;
 882        case BLK_ZONED_NONE:
 883        default:
 884                if (WARN_ON_ONCE(model != BLK_ZONED_NONE))
 885                        model = BLK_ZONED_NONE;
 886                break;
 887        }
 888
 889        q->limits.zoned = model;
 890        if (model != BLK_ZONED_NONE) {
 891                /*
 892                 * Set the zone write granularity to the device logical block
 893                 * size by default. The driver can change this value if needed.
 894                 */
 895                blk_queue_zone_write_granularity(q,
 896                                                queue_logical_block_size(q));
 897        } else {
 898                blk_queue_clear_zone_settings(q);
 899        }
 900}
 901EXPORT_SYMBOL_GPL(blk_queue_set_zoned);
 902