linux/block/blk-core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 1991, 1992 Linus Torvalds
   4 * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
   5 * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
   6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
   7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
   8 *      -  July2000
   9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
  10 */
  11
  12/*
  13 * This handles all read/write requests to block devices
  14 */
  15#include <linux/kernel.h>
  16#include <linux/module.h>
  17#include <linux/backing-dev.h>
  18#include <linux/bio.h>
  19#include <linux/blkdev.h>
  20#include <linux/blk-mq.h>
  21#include <linux/blk-pm.h>
  22#include <linux/highmem.h>
  23#include <linux/mm.h>
  24#include <linux/pagemap.h>
  25#include <linux/kernel_stat.h>
  26#include <linux/string.h>
  27#include <linux/init.h>
  28#include <linux/completion.h>
  29#include <linux/slab.h>
  30#include <linux/swap.h>
  31#include <linux/writeback.h>
  32#include <linux/task_io_accounting_ops.h>
  33#include <linux/fault-inject.h>
  34#include <linux/list_sort.h>
  35#include <linux/delay.h>
  36#include <linux/ratelimit.h>
  37#include <linux/pm_runtime.h>
  38#include <linux/blk-cgroup.h>
  39#include <linux/t10-pi.h>
  40#include <linux/debugfs.h>
  41#include <linux/bpf.h>
  42#include <linux/psi.h>
  43#include <linux/sched/sysctl.h>
  44#include <linux/blk-crypto.h>
  45
  46#define CREATE_TRACE_POINTS
  47#include <trace/events/block.h>
  48
  49#include "blk.h"
  50#include "blk-mq.h"
  51#include "blk-mq-sched.h"
  52#include "blk-pm.h"
  53#include "blk-rq-qos.h"
  54
  55struct dentry *blk_debugfs_root;
  56
  57EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
  58EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
  59EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
  60EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
  61EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
  62EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
  63
  64DEFINE_IDA(blk_queue_ida);
  65
  66/*
  67 * For queue allocation
  68 */
  69struct kmem_cache *blk_requestq_cachep;
  70
  71/*
  72 * Controlling structure to kblockd
  73 */
  74static struct workqueue_struct *kblockd_workqueue;
  75
  76/**
  77 * blk_queue_flag_set - atomically set a queue flag
  78 * @flag: flag to be set
  79 * @q: request queue
  80 */
  81void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
  82{
  83        set_bit(flag, &q->queue_flags);
  84}
  85EXPORT_SYMBOL(blk_queue_flag_set);
  86
  87/**
  88 * blk_queue_flag_clear - atomically clear a queue flag
  89 * @flag: flag to be cleared
  90 * @q: request queue
  91 */
  92void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
  93{
  94        clear_bit(flag, &q->queue_flags);
  95}
  96EXPORT_SYMBOL(blk_queue_flag_clear);
  97
  98/**
  99 * blk_queue_flag_test_and_set - atomically test and set a queue flag
 100 * @flag: flag to be set
 101 * @q: request queue
 102 *
 103 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
 104 * the flag was already set.
 105 */
 106bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
 107{
 108        return test_and_set_bit(flag, &q->queue_flags);
 109}
 110EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
 111
 112void blk_rq_init(struct request_queue *q, struct request *rq)
 113{
 114        memset(rq, 0, sizeof(*rq));
 115
 116        INIT_LIST_HEAD(&rq->queuelist);
 117        rq->q = q;
 118        rq->__sector = (sector_t) -1;
 119        INIT_HLIST_NODE(&rq->hash);
 120        RB_CLEAR_NODE(&rq->rb_node);
 121        rq->tag = BLK_MQ_NO_TAG;
 122        rq->internal_tag = BLK_MQ_NO_TAG;
 123        rq->start_time_ns = ktime_get_ns();
 124        rq->part = NULL;
 125        blk_crypto_rq_set_defaults(rq);
 126}
 127EXPORT_SYMBOL(blk_rq_init);
 128
 129#define REQ_OP_NAME(name) [REQ_OP_##name] = #name
 130static const char *const blk_op_name[] = {
 131        REQ_OP_NAME(READ),
 132        REQ_OP_NAME(WRITE),
 133        REQ_OP_NAME(FLUSH),
 134        REQ_OP_NAME(DISCARD),
 135        REQ_OP_NAME(SECURE_ERASE),
 136        REQ_OP_NAME(ZONE_RESET),
 137        REQ_OP_NAME(ZONE_RESET_ALL),
 138        REQ_OP_NAME(ZONE_OPEN),
 139        REQ_OP_NAME(ZONE_CLOSE),
 140        REQ_OP_NAME(ZONE_FINISH),
 141        REQ_OP_NAME(ZONE_APPEND),
 142        REQ_OP_NAME(WRITE_SAME),
 143        REQ_OP_NAME(WRITE_ZEROES),
 144        REQ_OP_NAME(SCSI_IN),
 145        REQ_OP_NAME(SCSI_OUT),
 146        REQ_OP_NAME(DRV_IN),
 147        REQ_OP_NAME(DRV_OUT),
 148};
 149#undef REQ_OP_NAME
 150
 151/**
 152 * blk_op_str - Return string XXX in the REQ_OP_XXX.
 153 * @op: REQ_OP_XXX.
 154 *
 155 * Description: Centralize block layer function to convert REQ_OP_XXX into
 156 * string format. Useful in the debugging and tracing bio or request. For
 157 * invalid REQ_OP_XXX it returns string "UNKNOWN".
 158 */
 159inline const char *blk_op_str(unsigned int op)
 160{
 161        const char *op_str = "UNKNOWN";
 162
 163        if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
 164                op_str = blk_op_name[op];
 165
 166        return op_str;
 167}
 168EXPORT_SYMBOL_GPL(blk_op_str);
 169
 170static const struct {
 171        int             errno;
 172        const char      *name;
 173} blk_errors[] = {
 174        [BLK_STS_OK]            = { 0,          "" },
 175        [BLK_STS_NOTSUPP]       = { -EOPNOTSUPP, "operation not supported" },
 176        [BLK_STS_TIMEOUT]       = { -ETIMEDOUT, "timeout" },
 177        [BLK_STS_NOSPC]         = { -ENOSPC,    "critical space allocation" },
 178        [BLK_STS_TRANSPORT]     = { -ENOLINK,   "recoverable transport" },
 179        [BLK_STS_TARGET]        = { -EREMOTEIO, "critical target" },
 180        [BLK_STS_NEXUS]         = { -EBADE,     "critical nexus" },
 181        [BLK_STS_MEDIUM]        = { -ENODATA,   "critical medium" },
 182        [BLK_STS_PROTECTION]    = { -EILSEQ,    "protection" },
 183        [BLK_STS_RESOURCE]      = { -ENOMEM,    "kernel resource" },
 184        [BLK_STS_DEV_RESOURCE]  = { -EBUSY,     "device resource" },
 185        [BLK_STS_AGAIN]         = { -EAGAIN,    "nonblocking retry" },
 186
 187        /* device mapper special case, should not leak out: */
 188        [BLK_STS_DM_REQUEUE]    = { -EREMCHG, "dm internal retry" },
 189
 190        /* zone device specific errors */
 191        [BLK_STS_ZONE_OPEN_RESOURCE]    = { -ETOOMANYREFS, "open zones exceeded" },
 192        [BLK_STS_ZONE_ACTIVE_RESOURCE]  = { -EOVERFLOW, "active zones exceeded" },
 193
 194        /* everything else not covered above: */
 195        [BLK_STS_IOERR]         = { -EIO,       "I/O" },
 196};
 197
 198blk_status_t errno_to_blk_status(int errno)
 199{
 200        int i;
 201
 202        for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
 203                if (blk_errors[i].errno == errno)
 204                        return (__force blk_status_t)i;
 205        }
 206
 207        return BLK_STS_IOERR;
 208}
 209EXPORT_SYMBOL_GPL(errno_to_blk_status);
 210
 211int blk_status_to_errno(blk_status_t status)
 212{
 213        int idx = (__force int)status;
 214
 215        if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
 216                return -EIO;
 217        return blk_errors[idx].errno;
 218}
 219EXPORT_SYMBOL_GPL(blk_status_to_errno);
 220
 221static void print_req_error(struct request *req, blk_status_t status,
 222                const char *caller)
 223{
 224        int idx = (__force int)status;
 225
 226        if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
 227                return;
 228
 229        printk_ratelimited(KERN_ERR
 230                "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
 231                "phys_seg %u prio class %u\n",
 232                caller, blk_errors[idx].name,
 233                req->rq_disk ? req->rq_disk->disk_name : "?",
 234                blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
 235                req->cmd_flags & ~REQ_OP_MASK,
 236                req->nr_phys_segments,
 237                IOPRIO_PRIO_CLASS(req->ioprio));
 238}
 239
 240static void req_bio_endio(struct request *rq, struct bio *bio,
 241                          unsigned int nbytes, blk_status_t error)
 242{
 243        if (error)
 244                bio->bi_status = error;
 245
 246        if (unlikely(rq->rq_flags & RQF_QUIET))
 247                bio_set_flag(bio, BIO_QUIET);
 248
 249        bio_advance(bio, nbytes);
 250
 251        if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
 252                /*
 253                 * Partial zone append completions cannot be supported as the
 254                 * BIO fragments may end up not being written sequentially.
 255                 */
 256                if (bio->bi_iter.bi_size)
 257                        bio->bi_status = BLK_STS_IOERR;
 258                else
 259                        bio->bi_iter.bi_sector = rq->__sector;
 260        }
 261
 262        /* don't actually finish bio if it's part of flush sequence */
 263        if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
 264                bio_endio(bio);
 265}
 266
 267void blk_dump_rq_flags(struct request *rq, char *msg)
 268{
 269        printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
 270                rq->rq_disk ? rq->rq_disk->disk_name : "?",
 271                (unsigned long long) rq->cmd_flags);
 272
 273        printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
 274               (unsigned long long)blk_rq_pos(rq),
 275               blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
 276        printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
 277               rq->bio, rq->biotail, blk_rq_bytes(rq));
 278}
 279EXPORT_SYMBOL(blk_dump_rq_flags);
 280
 281/**
 282 * blk_sync_queue - cancel any pending callbacks on a queue
 283 * @q: the queue
 284 *
 285 * Description:
 286 *     The block layer may perform asynchronous callback activity
 287 *     on a queue, such as calling the unplug function after a timeout.
 288 *     A block device may call blk_sync_queue to ensure that any
 289 *     such activity is cancelled, thus allowing it to release resources
 290 *     that the callbacks might use. The caller must already have made sure
 291 *     that its ->submit_bio will not re-add plugging prior to calling
 292 *     this function.
 293 *
 294 *     This function does not cancel any asynchronous activity arising
 295 *     out of elevator or throttling code. That would require elevator_exit()
 296 *     and blkcg_exit_queue() to be called with queue lock initialized.
 297 *
 298 */
 299void blk_sync_queue(struct request_queue *q)
 300{
 301        del_timer_sync(&q->timeout);
 302        cancel_work_sync(&q->timeout_work);
 303}
 304EXPORT_SYMBOL(blk_sync_queue);
 305
 306/**
 307 * blk_set_pm_only - increment pm_only counter
 308 * @q: request queue pointer
 309 */
 310void blk_set_pm_only(struct request_queue *q)
 311{
 312        atomic_inc(&q->pm_only);
 313}
 314EXPORT_SYMBOL_GPL(blk_set_pm_only);
 315
 316void blk_clear_pm_only(struct request_queue *q)
 317{
 318        int pm_only;
 319
 320        pm_only = atomic_dec_return(&q->pm_only);
 321        WARN_ON_ONCE(pm_only < 0);
 322        if (pm_only == 0)
 323                wake_up_all(&q->mq_freeze_wq);
 324}
 325EXPORT_SYMBOL_GPL(blk_clear_pm_only);
 326
 327/**
 328 * blk_put_queue - decrement the request_queue refcount
 329 * @q: the request_queue structure to decrement the refcount for
 330 *
 331 * Decrements the refcount of the request_queue kobject. When this reaches 0
 332 * we'll have blk_release_queue() called.
 333 *
 334 * Context: Any context, but the last reference must not be dropped from
 335 *          atomic context.
 336 */
 337void blk_put_queue(struct request_queue *q)
 338{
 339        kobject_put(&q->kobj);
 340}
 341EXPORT_SYMBOL(blk_put_queue);
 342
 343void blk_set_queue_dying(struct request_queue *q)
 344{
 345        blk_queue_flag_set(QUEUE_FLAG_DYING, q);
 346
 347        /*
 348         * When queue DYING flag is set, we need to block new req
 349         * entering queue, so we call blk_freeze_queue_start() to
 350         * prevent I/O from crossing blk_queue_enter().
 351         */
 352        blk_freeze_queue_start(q);
 353
 354        if (queue_is_mq(q))
 355                blk_mq_wake_waiters(q);
 356
 357        /* Make blk_queue_enter() reexamine the DYING flag. */
 358        wake_up_all(&q->mq_freeze_wq);
 359}
 360EXPORT_SYMBOL_GPL(blk_set_queue_dying);
 361
 362/**
 363 * blk_cleanup_queue - shutdown a request queue
 364 * @q: request queue to shutdown
 365 *
 366 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
 367 * put it.  All future requests will be failed immediately with -ENODEV.
 368 *
 369 * Context: can sleep
 370 */
 371void blk_cleanup_queue(struct request_queue *q)
 372{
 373        /* cannot be called from atomic context */
 374        might_sleep();
 375
 376        WARN_ON_ONCE(blk_queue_registered(q));
 377
 378        /* mark @q DYING, no new request or merges will be allowed afterwards */
 379        blk_set_queue_dying(q);
 380
 381        blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
 382        blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
 383
 384        /*
 385         * Drain all requests queued before DYING marking. Set DEAD flag to
 386         * prevent that blk_mq_run_hw_queues() accesses the hardware queues
 387         * after draining finished.
 388         */
 389        blk_freeze_queue(q);
 390
 391        rq_qos_exit(q);
 392
 393        blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
 394
 395        /* for synchronous bio-based driver finish in-flight integrity i/o */
 396        blk_flush_integrity();
 397
 398        /* @q won't process any more request, flush async actions */
 399        del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
 400        blk_sync_queue(q);
 401
 402        if (queue_is_mq(q))
 403                blk_mq_exit_queue(q);
 404
 405        /*
 406         * In theory, request pool of sched_tags belongs to request queue.
 407         * However, the current implementation requires tag_set for freeing
 408         * requests, so free the pool now.
 409         *
 410         * Queue has become frozen, there can't be any in-queue requests, so
 411         * it is safe to free requests now.
 412         */
 413        mutex_lock(&q->sysfs_lock);
 414        if (q->elevator)
 415                blk_mq_sched_free_requests(q);
 416        mutex_unlock(&q->sysfs_lock);
 417
 418        percpu_ref_exit(&q->q_usage_counter);
 419
 420        /* @q is and will stay empty, shutdown and put */
 421        blk_put_queue(q);
 422}
 423EXPORT_SYMBOL(blk_cleanup_queue);
 424
 425/**
 426 * blk_queue_enter() - try to increase q->q_usage_counter
 427 * @q: request queue pointer
 428 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
 429 */
 430int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
 431{
 432        const bool pm = flags & BLK_MQ_REQ_PM;
 433
 434        while (true) {
 435                bool success = false;
 436
 437                rcu_read_lock();
 438                if (percpu_ref_tryget_live(&q->q_usage_counter)) {
 439                        /*
 440                         * The code that increments the pm_only counter is
 441                         * responsible for ensuring that that counter is
 442                         * globally visible before the queue is unfrozen.
 443                         */
 444                        if ((pm && queue_rpm_status(q) != RPM_SUSPENDED) ||
 445                            !blk_queue_pm_only(q)) {
 446                                success = true;
 447                        } else {
 448                                percpu_ref_put(&q->q_usage_counter);
 449                        }
 450                }
 451                rcu_read_unlock();
 452
 453                if (success)
 454                        return 0;
 455
 456                if (flags & BLK_MQ_REQ_NOWAIT)
 457                        return -EBUSY;
 458
 459                /*
 460                 * read pair of barrier in blk_freeze_queue_start(),
 461                 * we need to order reading __PERCPU_REF_DEAD flag of
 462                 * .q_usage_counter and reading .mq_freeze_depth or
 463                 * queue dying flag, otherwise the following wait may
 464                 * never return if the two reads are reordered.
 465                 */
 466                smp_rmb();
 467
 468                wait_event(q->mq_freeze_wq,
 469                           (!q->mq_freeze_depth &&
 470                            blk_pm_resume_queue(pm, q)) ||
 471                           blk_queue_dying(q));
 472                if (blk_queue_dying(q))
 473                        return -ENODEV;
 474        }
 475}
 476
 477static inline int bio_queue_enter(struct bio *bio)
 478{
 479        struct request_queue *q = bio->bi_bdev->bd_disk->queue;
 480        bool nowait = bio->bi_opf & REQ_NOWAIT;
 481        int ret;
 482
 483        ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0);
 484        if (unlikely(ret)) {
 485                if (nowait && !blk_queue_dying(q))
 486                        bio_wouldblock_error(bio);
 487                else
 488                        bio_io_error(bio);
 489        }
 490
 491        return ret;
 492}
 493
 494void blk_queue_exit(struct request_queue *q)
 495{
 496        percpu_ref_put(&q->q_usage_counter);
 497}
 498
 499static void blk_queue_usage_counter_release(struct percpu_ref *ref)
 500{
 501        struct request_queue *q =
 502                container_of(ref, struct request_queue, q_usage_counter);
 503
 504        wake_up_all(&q->mq_freeze_wq);
 505}
 506
 507static void blk_rq_timed_out_timer(struct timer_list *t)
 508{
 509        struct request_queue *q = from_timer(q, t, timeout);
 510
 511        kblockd_schedule_work(&q->timeout_work);
 512}
 513
 514static void blk_timeout_work(struct work_struct *work)
 515{
 516}
 517
 518struct request_queue *blk_alloc_queue(int node_id)
 519{
 520        struct request_queue *q;
 521        int ret;
 522
 523        q = kmem_cache_alloc_node(blk_requestq_cachep,
 524                                GFP_KERNEL | __GFP_ZERO, node_id);
 525        if (!q)
 526                return NULL;
 527
 528        q->last_merge = NULL;
 529
 530        q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
 531        if (q->id < 0)
 532                goto fail_q;
 533
 534        ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, 0);
 535        if (ret)
 536                goto fail_id;
 537
 538        q->backing_dev_info = bdi_alloc(node_id);
 539        if (!q->backing_dev_info)
 540                goto fail_split;
 541
 542        q->stats = blk_alloc_queue_stats();
 543        if (!q->stats)
 544                goto fail_stats;
 545
 546        q->node = node_id;
 547
 548        atomic_set(&q->nr_active_requests_shared_sbitmap, 0);
 549
 550        timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
 551                    laptop_mode_timer_fn, 0);
 552        timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
 553        INIT_WORK(&q->timeout_work, blk_timeout_work);
 554        INIT_LIST_HEAD(&q->icq_list);
 555#ifdef CONFIG_BLK_CGROUP
 556        INIT_LIST_HEAD(&q->blkg_list);
 557#endif
 558
 559        kobject_init(&q->kobj, &blk_queue_ktype);
 560
 561        mutex_init(&q->debugfs_mutex);
 562        mutex_init(&q->sysfs_lock);
 563        mutex_init(&q->sysfs_dir_lock);
 564        spin_lock_init(&q->queue_lock);
 565
 566        init_waitqueue_head(&q->mq_freeze_wq);
 567        mutex_init(&q->mq_freeze_lock);
 568
 569        /*
 570         * Init percpu_ref in atomic mode so that it's faster to shutdown.
 571         * See blk_register_queue() for details.
 572         */
 573        if (percpu_ref_init(&q->q_usage_counter,
 574                                blk_queue_usage_counter_release,
 575                                PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
 576                goto fail_bdi;
 577
 578        if (blkcg_init_queue(q))
 579                goto fail_ref;
 580
 581        blk_queue_dma_alignment(q, 511);
 582        blk_set_default_limits(&q->limits);
 583        q->nr_requests = BLKDEV_MAX_RQ;
 584
 585        return q;
 586
 587fail_ref:
 588        percpu_ref_exit(&q->q_usage_counter);
 589fail_bdi:
 590        blk_free_queue_stats(q->stats);
 591fail_stats:
 592        bdi_put(q->backing_dev_info);
 593fail_split:
 594        bioset_exit(&q->bio_split);
 595fail_id:
 596        ida_simple_remove(&blk_queue_ida, q->id);
 597fail_q:
 598        kmem_cache_free(blk_requestq_cachep, q);
 599        return NULL;
 600}
 601EXPORT_SYMBOL(blk_alloc_queue);
 602
 603/**
 604 * blk_get_queue - increment the request_queue refcount
 605 * @q: the request_queue structure to increment the refcount for
 606 *
 607 * Increment the refcount of the request_queue kobject.
 608 *
 609 * Context: Any context.
 610 */
 611bool blk_get_queue(struct request_queue *q)
 612{
 613        if (likely(!blk_queue_dying(q))) {
 614                __blk_get_queue(q);
 615                return true;
 616        }
 617
 618        return false;
 619}
 620EXPORT_SYMBOL(blk_get_queue);
 621
 622/**
 623 * blk_get_request - allocate a request
 624 * @q: request queue to allocate a request for
 625 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
 626 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
 627 */
 628struct request *blk_get_request(struct request_queue *q, unsigned int op,
 629                                blk_mq_req_flags_t flags)
 630{
 631        struct request *req;
 632
 633        WARN_ON_ONCE(op & REQ_NOWAIT);
 634        WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PM));
 635
 636        req = blk_mq_alloc_request(q, op, flags);
 637        if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
 638                q->mq_ops->initialize_rq_fn(req);
 639
 640        return req;
 641}
 642EXPORT_SYMBOL(blk_get_request);
 643
 644void blk_put_request(struct request *req)
 645{
 646        blk_mq_free_request(req);
 647}
 648EXPORT_SYMBOL(blk_put_request);
 649
 650static void handle_bad_sector(struct bio *bio, sector_t maxsector)
 651{
 652        char b[BDEVNAME_SIZE];
 653
 654        pr_info_ratelimited("attempt to access beyond end of device\n"
 655                            "%s: rw=%d, want=%llu, limit=%llu\n",
 656                            bio_devname(bio, b), bio->bi_opf,
 657                            bio_end_sector(bio), maxsector);
 658}
 659
 660#ifdef CONFIG_FAIL_MAKE_REQUEST
 661
 662static DECLARE_FAULT_ATTR(fail_make_request);
 663
 664static int __init setup_fail_make_request(char *str)
 665{
 666        return setup_fault_attr(&fail_make_request, str);
 667}
 668__setup("fail_make_request=", setup_fail_make_request);
 669
 670static bool should_fail_request(struct block_device *part, unsigned int bytes)
 671{
 672        return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
 673}
 674
 675static int __init fail_make_request_debugfs(void)
 676{
 677        struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
 678                                                NULL, &fail_make_request);
 679
 680        return PTR_ERR_OR_ZERO(dir);
 681}
 682
 683late_initcall(fail_make_request_debugfs);
 684
 685#else /* CONFIG_FAIL_MAKE_REQUEST */
 686
 687static inline bool should_fail_request(struct block_device *part,
 688                                        unsigned int bytes)
 689{
 690        return false;
 691}
 692
 693#endif /* CONFIG_FAIL_MAKE_REQUEST */
 694
 695static inline bool bio_check_ro(struct bio *bio)
 696{
 697        if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
 698                char b[BDEVNAME_SIZE];
 699
 700                if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
 701                        return false;
 702
 703                WARN_ONCE(1,
 704                       "Trying to write to read-only block-device %s (partno %d)\n",
 705                        bio_devname(bio, b), bio->bi_bdev->bd_partno);
 706                /* Older lvm-tools actually trigger this */
 707                return false;
 708        }
 709
 710        return false;
 711}
 712
 713static noinline int should_fail_bio(struct bio *bio)
 714{
 715        if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
 716                return -EIO;
 717        return 0;
 718}
 719ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
 720
 721/*
 722 * Check whether this bio extends beyond the end of the device or partition.
 723 * This may well happen - the kernel calls bread() without checking the size of
 724 * the device, e.g., when mounting a file system.
 725 */
 726static inline int bio_check_eod(struct bio *bio)
 727{
 728        sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
 729        unsigned int nr_sectors = bio_sectors(bio);
 730
 731        if (nr_sectors && maxsector &&
 732            (nr_sectors > maxsector ||
 733             bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
 734                handle_bad_sector(bio, maxsector);
 735                return -EIO;
 736        }
 737        return 0;
 738}
 739
 740/*
 741 * Remap block n of partition p to block n+start(p) of the disk.
 742 */
 743static int blk_partition_remap(struct bio *bio)
 744{
 745        struct block_device *p = bio->bi_bdev;
 746
 747        if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
 748                return -EIO;
 749        if (bio_sectors(bio)) {
 750                bio->bi_iter.bi_sector += p->bd_start_sect;
 751                trace_block_bio_remap(bio, p->bd_dev,
 752                                      bio->bi_iter.bi_sector -
 753                                      p->bd_start_sect);
 754        }
 755        bio_set_flag(bio, BIO_REMAPPED);
 756        return 0;
 757}
 758
 759/*
 760 * Check write append to a zoned block device.
 761 */
 762static inline blk_status_t blk_check_zone_append(struct request_queue *q,
 763                                                 struct bio *bio)
 764{
 765        sector_t pos = bio->bi_iter.bi_sector;
 766        int nr_sectors = bio_sectors(bio);
 767
 768        /* Only applicable to zoned block devices */
 769        if (!blk_queue_is_zoned(q))
 770                return BLK_STS_NOTSUPP;
 771
 772        /* The bio sector must point to the start of a sequential zone */
 773        if (pos & (blk_queue_zone_sectors(q) - 1) ||
 774            !blk_queue_zone_is_seq(q, pos))
 775                return BLK_STS_IOERR;
 776
 777        /*
 778         * Not allowed to cross zone boundaries. Otherwise, the BIO will be
 779         * split and could result in non-contiguous sectors being written in
 780         * different zones.
 781         */
 782        if (nr_sectors > q->limits.chunk_sectors)
 783                return BLK_STS_IOERR;
 784
 785        /* Make sure the BIO is small enough and will not get split */
 786        if (nr_sectors > q->limits.max_zone_append_sectors)
 787                return BLK_STS_IOERR;
 788
 789        bio->bi_opf |= REQ_NOMERGE;
 790
 791        return BLK_STS_OK;
 792}
 793
 794static noinline_for_stack bool submit_bio_checks(struct bio *bio)
 795{
 796        struct block_device *bdev = bio->bi_bdev;
 797        struct request_queue *q = bdev->bd_disk->queue;
 798        blk_status_t status = BLK_STS_IOERR;
 799        struct blk_plug *plug;
 800
 801        might_sleep();
 802
 803        plug = blk_mq_plug(q, bio);
 804        if (plug && plug->nowait)
 805                bio->bi_opf |= REQ_NOWAIT;
 806
 807        /*
 808         * For a REQ_NOWAIT based request, return -EOPNOTSUPP
 809         * if queue does not support NOWAIT.
 810         */
 811        if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
 812                goto not_supported;
 813
 814        if (should_fail_bio(bio))
 815                goto end_io;
 816        if (unlikely(bio_check_ro(bio)))
 817                goto end_io;
 818        if (!bio_flagged(bio, BIO_REMAPPED)) {
 819                if (unlikely(bio_check_eod(bio)))
 820                        goto end_io;
 821                if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
 822                        goto end_io;
 823        }
 824
 825        /*
 826         * Filter flush bio's early so that bio based drivers without flush
 827         * support don't have to worry about them.
 828         */
 829        if (op_is_flush(bio->bi_opf) &&
 830            !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
 831                bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
 832                if (!bio_sectors(bio)) {
 833                        status = BLK_STS_OK;
 834                        goto end_io;
 835                }
 836        }
 837
 838        if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
 839                bio->bi_opf &= ~REQ_HIPRI;
 840
 841        switch (bio_op(bio)) {
 842        case REQ_OP_DISCARD:
 843                if (!blk_queue_discard(q))
 844                        goto not_supported;
 845                break;
 846        case REQ_OP_SECURE_ERASE:
 847                if (!blk_queue_secure_erase(q))
 848                        goto not_supported;
 849                break;
 850        case REQ_OP_WRITE_SAME:
 851                if (!q->limits.max_write_same_sectors)
 852                        goto not_supported;
 853                break;
 854        case REQ_OP_ZONE_APPEND:
 855                status = blk_check_zone_append(q, bio);
 856                if (status != BLK_STS_OK)
 857                        goto end_io;
 858                break;
 859        case REQ_OP_ZONE_RESET:
 860        case REQ_OP_ZONE_OPEN:
 861        case REQ_OP_ZONE_CLOSE:
 862        case REQ_OP_ZONE_FINISH:
 863                if (!blk_queue_is_zoned(q))
 864                        goto not_supported;
 865                break;
 866        case REQ_OP_ZONE_RESET_ALL:
 867                if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
 868                        goto not_supported;
 869                break;
 870        case REQ_OP_WRITE_ZEROES:
 871                if (!q->limits.max_write_zeroes_sectors)
 872                        goto not_supported;
 873                break;
 874        default:
 875                break;
 876        }
 877
 878        /*
 879         * Various block parts want %current->io_context, so allocate it up
 880         * front rather than dealing with lots of pain to allocate it only
 881         * where needed. This may fail and the block layer knows how to live
 882         * with it.
 883         */
 884        if (unlikely(!current->io_context))
 885                create_task_io_context(current, GFP_ATOMIC, q->node);
 886
 887        if (blk_throtl_bio(bio)) {
 888                blkcg_bio_issue_init(bio);
 889                return false;
 890        }
 891
 892        blk_cgroup_bio_start(bio);
 893        blkcg_bio_issue_init(bio);
 894
 895        if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
 896                trace_block_bio_queue(bio);
 897                /* Now that enqueuing has been traced, we need to trace
 898                 * completion as well.
 899                 */
 900                bio_set_flag(bio, BIO_TRACE_COMPLETION);
 901        }
 902        return true;
 903
 904not_supported:
 905        status = BLK_STS_NOTSUPP;
 906end_io:
 907        bio->bi_status = status;
 908        bio_endio(bio);
 909        return false;
 910}
 911
 912static blk_qc_t __submit_bio(struct bio *bio)
 913{
 914        struct gendisk *disk = bio->bi_bdev->bd_disk;
 915        blk_qc_t ret = BLK_QC_T_NONE;
 916
 917        if (blk_crypto_bio_prep(&bio)) {
 918                if (!disk->fops->submit_bio)
 919                        return blk_mq_submit_bio(bio);
 920                ret = disk->fops->submit_bio(bio);
 921        }
 922        blk_queue_exit(disk->queue);
 923        return ret;
 924}
 925
 926/*
 927 * The loop in this function may be a bit non-obvious, and so deserves some
 928 * explanation:
 929 *
 930 *  - Before entering the loop, bio->bi_next is NULL (as all callers ensure
 931 *    that), so we have a list with a single bio.
 932 *  - We pretend that we have just taken it off a longer list, so we assign
 933 *    bio_list to a pointer to the bio_list_on_stack, thus initialising the
 934 *    bio_list of new bios to be added.  ->submit_bio() may indeed add some more
 935 *    bios through a recursive call to submit_bio_noacct.  If it did, we find a
 936 *    non-NULL value in bio_list and re-enter the loop from the top.
 937 *  - In this case we really did just take the bio of the top of the list (no
 938 *    pretending) and so remove it from bio_list, and call into ->submit_bio()
 939 *    again.
 940 *
 941 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
 942 * bio_list_on_stack[1] contains bios that were submitted before the current
 943 *      ->submit_bio_bio, but that haven't been processed yet.
 944 */
 945static blk_qc_t __submit_bio_noacct(struct bio *bio)
 946{
 947        struct bio_list bio_list_on_stack[2];
 948        blk_qc_t ret = BLK_QC_T_NONE;
 949
 950        BUG_ON(bio->bi_next);
 951
 952        bio_list_init(&bio_list_on_stack[0]);
 953        current->bio_list = bio_list_on_stack;
 954
 955        do {
 956                struct request_queue *q = bio->bi_bdev->bd_disk->queue;
 957                struct bio_list lower, same;
 958
 959                if (unlikely(bio_queue_enter(bio) != 0))
 960                        continue;
 961
 962                /*
 963                 * Create a fresh bio_list for all subordinate requests.
 964                 */
 965                bio_list_on_stack[1] = bio_list_on_stack[0];
 966                bio_list_init(&bio_list_on_stack[0]);
 967
 968                ret = __submit_bio(bio);
 969
 970                /*
 971                 * Sort new bios into those for a lower level and those for the
 972                 * same level.
 973                 */
 974                bio_list_init(&lower);
 975                bio_list_init(&same);
 976                while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
 977                        if (q == bio->bi_bdev->bd_disk->queue)
 978                                bio_list_add(&same, bio);
 979                        else
 980                                bio_list_add(&lower, bio);
 981
 982                /*
 983                 * Now assemble so we handle the lowest level first.
 984                 */
 985                bio_list_merge(&bio_list_on_stack[0], &lower);
 986                bio_list_merge(&bio_list_on_stack[0], &same);
 987                bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
 988        } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
 989
 990        current->bio_list = NULL;
 991        return ret;
 992}
 993
 994static blk_qc_t __submit_bio_noacct_mq(struct bio *bio)
 995{
 996        struct bio_list bio_list[2] = { };
 997        blk_qc_t ret = BLK_QC_T_NONE;
 998
 999        current->bio_list = bio_list;
1000
1001        do {
1002                struct gendisk *disk = bio->bi_bdev->bd_disk;
1003
1004                if (unlikely(bio_queue_enter(bio) != 0))
1005                        continue;
1006
1007                if (!blk_crypto_bio_prep(&bio)) {
1008                        blk_queue_exit(disk->queue);
1009                        ret = BLK_QC_T_NONE;
1010                        continue;
1011                }
1012
1013                ret = blk_mq_submit_bio(bio);
1014        } while ((bio = bio_list_pop(&bio_list[0])));
1015
1016        current->bio_list = NULL;
1017        return ret;
1018}
1019
1020/**
1021 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
1022 * @bio:  The bio describing the location in memory and on the device.
1023 *
1024 * This is a version of submit_bio() that shall only be used for I/O that is
1025 * resubmitted to lower level drivers by stacking block drivers.  All file
1026 * systems and other upper level users of the block layer should use
1027 * submit_bio() instead.
1028 */
1029blk_qc_t submit_bio_noacct(struct bio *bio)
1030{
1031        if (!submit_bio_checks(bio))
1032                return BLK_QC_T_NONE;
1033
1034        /*
1035         * We only want one ->submit_bio to be active at a time, else stack
1036         * usage with stacked devices could be a problem.  Use current->bio_list
1037         * to collect a list of requests submited by a ->submit_bio method while
1038         * it is active, and then process them after it returned.
1039         */
1040        if (current->bio_list) {
1041                bio_list_add(&current->bio_list[0], bio);
1042                return BLK_QC_T_NONE;
1043        }
1044
1045        if (!bio->bi_bdev->bd_disk->fops->submit_bio)
1046                return __submit_bio_noacct_mq(bio);
1047        return __submit_bio_noacct(bio);
1048}
1049EXPORT_SYMBOL(submit_bio_noacct);
1050
1051/**
1052 * submit_bio - submit a bio to the block device layer for I/O
1053 * @bio: The &struct bio which describes the I/O
1054 *
1055 * submit_bio() is used to submit I/O requests to block devices.  It is passed a
1056 * fully set up &struct bio that describes the I/O that needs to be done.  The
1057 * bio will be send to the device described by the bi_bdev field.
1058 *
1059 * The success/failure status of the request, along with notification of
1060 * completion, is delivered asynchronously through the ->bi_end_io() callback
1061 * in @bio.  The bio must NOT be touched by thecaller until ->bi_end_io() has
1062 * been called.
1063 */
1064blk_qc_t submit_bio(struct bio *bio)
1065{
1066        if (blkcg_punt_bio_submit(bio))
1067                return BLK_QC_T_NONE;
1068
1069        /*
1070         * If it's a regular read/write or a barrier with data attached,
1071         * go through the normal accounting stuff before submission.
1072         */
1073        if (bio_has_data(bio)) {
1074                unsigned int count;
1075
1076                if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1077                        count = queue_logical_block_size(
1078                                        bio->bi_bdev->bd_disk->queue) >> 9;
1079                else
1080                        count = bio_sectors(bio);
1081
1082                if (op_is_write(bio_op(bio))) {
1083                        count_vm_events(PGPGOUT, count);
1084                } else {
1085                        task_io_account_read(bio->bi_iter.bi_size);
1086                        count_vm_events(PGPGIN, count);
1087                }
1088
1089                if (unlikely(block_dump)) {
1090                        char b[BDEVNAME_SIZE];
1091                        printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1092                        current->comm, task_pid_nr(current),
1093                                op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1094                                (unsigned long long)bio->bi_iter.bi_sector,
1095                                bio_devname(bio, b), count);
1096                }
1097        }
1098
1099        /*
1100         * If we're reading data that is part of the userspace workingset, count
1101         * submission time as memory stall.  When the device is congested, or
1102         * the submitting cgroup IO-throttled, submission can be a significant
1103         * part of overall IO time.
1104         */
1105        if (unlikely(bio_op(bio) == REQ_OP_READ &&
1106            bio_flagged(bio, BIO_WORKINGSET))) {
1107                unsigned long pflags;
1108                blk_qc_t ret;
1109
1110                psi_memstall_enter(&pflags);
1111                ret = submit_bio_noacct(bio);
1112                psi_memstall_leave(&pflags);
1113
1114                return ret;
1115        }
1116
1117        return submit_bio_noacct(bio);
1118}
1119EXPORT_SYMBOL(submit_bio);
1120
1121/**
1122 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1123 *                              for the new queue limits
1124 * @q:  the queue
1125 * @rq: the request being checked
1126 *
1127 * Description:
1128 *    @rq may have been made based on weaker limitations of upper-level queues
1129 *    in request stacking drivers, and it may violate the limitation of @q.
1130 *    Since the block layer and the underlying device driver trust @rq
1131 *    after it is inserted to @q, it should be checked against @q before
1132 *    the insertion using this generic function.
1133 *
1134 *    Request stacking drivers like request-based dm may change the queue
1135 *    limits when retrying requests on other queues. Those requests need
1136 *    to be checked against the new queue limits again during dispatch.
1137 */
1138static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
1139                                      struct request *rq)
1140{
1141        unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
1142
1143        if (blk_rq_sectors(rq) > max_sectors) {
1144                /*
1145                 * SCSI device does not have a good way to return if
1146                 * Write Same/Zero is actually supported. If a device rejects
1147                 * a non-read/write command (discard, write same,etc.) the
1148                 * low-level device driver will set the relevant queue limit to
1149                 * 0 to prevent blk-lib from issuing more of the offending
1150                 * operations. Commands queued prior to the queue limit being
1151                 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
1152                 * errors being propagated to upper layers.
1153                 */
1154                if (max_sectors == 0)
1155                        return BLK_STS_NOTSUPP;
1156
1157                printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1158                        __func__, blk_rq_sectors(rq), max_sectors);
1159                return BLK_STS_IOERR;
1160        }
1161
1162        /*
1163         * The queue settings related to segment counting may differ from the
1164         * original queue.
1165         */
1166        rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1167        if (rq->nr_phys_segments > queue_max_segments(q)) {
1168                printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1169                        __func__, rq->nr_phys_segments, queue_max_segments(q));
1170                return BLK_STS_IOERR;
1171        }
1172
1173        return BLK_STS_OK;
1174}
1175
1176/**
1177 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1178 * @q:  the queue to submit the request
1179 * @rq: the request being queued
1180 */
1181blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1182{
1183        blk_status_t ret;
1184
1185        ret = blk_cloned_rq_check_limits(q, rq);
1186        if (ret != BLK_STS_OK)
1187                return ret;
1188
1189        if (rq->rq_disk &&
1190            should_fail_request(rq->rq_disk->part0, blk_rq_bytes(rq)))
1191                return BLK_STS_IOERR;
1192
1193        if (blk_crypto_insert_cloned_request(rq))
1194                return BLK_STS_IOERR;
1195
1196        if (blk_queue_io_stat(q))
1197                blk_account_io_start(rq);
1198
1199        /*
1200         * Since we have a scheduler attached on the top device,
1201         * bypass a potential scheduler on the bottom device for
1202         * insert.
1203         */
1204        return blk_mq_request_issue_directly(rq, true);
1205}
1206EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1207
1208/**
1209 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1210 * @rq: request to examine
1211 *
1212 * Description:
1213 *     A request could be merge of IOs which require different failure
1214 *     handling.  This function determines the number of bytes which
1215 *     can be failed from the beginning of the request without
1216 *     crossing into area which need to be retried further.
1217 *
1218 * Return:
1219 *     The number of bytes to fail.
1220 */
1221unsigned int blk_rq_err_bytes(const struct request *rq)
1222{
1223        unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1224        unsigned int bytes = 0;
1225        struct bio *bio;
1226
1227        if (!(rq->rq_flags & RQF_MIXED_MERGE))
1228                return blk_rq_bytes(rq);
1229
1230        /*
1231         * Currently the only 'mixing' which can happen is between
1232         * different fastfail types.  We can safely fail portions
1233         * which have all the failfast bits that the first one has -
1234         * the ones which are at least as eager to fail as the first
1235         * one.
1236         */
1237        for (bio = rq->bio; bio; bio = bio->bi_next) {
1238                if ((bio->bi_opf & ff) != ff)
1239                        break;
1240                bytes += bio->bi_iter.bi_size;
1241        }
1242
1243        /* this could lead to infinite loop */
1244        BUG_ON(blk_rq_bytes(rq) && !bytes);
1245        return bytes;
1246}
1247EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1248
1249static void update_io_ticks(struct block_device *part, unsigned long now,
1250                bool end)
1251{
1252        unsigned long stamp;
1253again:
1254        stamp = READ_ONCE(part->bd_stamp);
1255        if (unlikely(time_after(now, stamp))) {
1256                if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp))
1257                        __part_stat_add(part, io_ticks, end ? now - stamp : 1);
1258        }
1259        if (part->bd_partno) {
1260                part = bdev_whole(part);
1261                goto again;
1262        }
1263}
1264
1265static void blk_account_io_completion(struct request *req, unsigned int bytes)
1266{
1267        if (req->part && blk_do_io_stat(req)) {
1268                const int sgrp = op_stat_group(req_op(req));
1269
1270                part_stat_lock();
1271                part_stat_add(req->part, sectors[sgrp], bytes >> 9);
1272                part_stat_unlock();
1273        }
1274}
1275
1276void blk_account_io_done(struct request *req, u64 now)
1277{
1278        /*
1279         * Account IO completion.  flush_rq isn't accounted as a
1280         * normal IO on queueing nor completion.  Accounting the
1281         * containing request is enough.
1282         */
1283        if (req->part && blk_do_io_stat(req) &&
1284            !(req->rq_flags & RQF_FLUSH_SEQ)) {
1285                const int sgrp = op_stat_group(req_op(req));
1286
1287                part_stat_lock();
1288                update_io_ticks(req->part, jiffies, true);
1289                part_stat_inc(req->part, ios[sgrp]);
1290                part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1291                part_stat_unlock();
1292        }
1293}
1294
1295void blk_account_io_start(struct request *rq)
1296{
1297        if (!blk_do_io_stat(rq))
1298                return;
1299
1300        /* passthrough requests can hold bios that do not have ->bi_bdev set */
1301        if (rq->bio && rq->bio->bi_bdev)
1302                rq->part = rq->bio->bi_bdev;
1303        else
1304                rq->part = rq->rq_disk->part0;
1305
1306        part_stat_lock();
1307        update_io_ticks(rq->part, jiffies, false);
1308        part_stat_unlock();
1309}
1310
1311static unsigned long __part_start_io_acct(struct block_device *part,
1312                                          unsigned int sectors, unsigned int op)
1313{
1314        const int sgrp = op_stat_group(op);
1315        unsigned long now = READ_ONCE(jiffies);
1316
1317        part_stat_lock();
1318        update_io_ticks(part, now, false);
1319        part_stat_inc(part, ios[sgrp]);
1320        part_stat_add(part, sectors[sgrp], sectors);
1321        part_stat_local_inc(part, in_flight[op_is_write(op)]);
1322        part_stat_unlock();
1323
1324        return now;
1325}
1326
1327/**
1328 * bio_start_io_acct - start I/O accounting for bio based drivers
1329 * @bio:        bio to start account for
1330 *
1331 * Returns the start time that should be passed back to bio_end_io_acct().
1332 */
1333unsigned long bio_start_io_acct(struct bio *bio)
1334{
1335        return __part_start_io_acct(bio->bi_bdev, bio_sectors(bio), bio_op(bio));
1336}
1337EXPORT_SYMBOL_GPL(bio_start_io_acct);
1338
1339unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1340                                 unsigned int op)
1341{
1342        return __part_start_io_acct(disk->part0, sectors, op);
1343}
1344EXPORT_SYMBOL(disk_start_io_acct);
1345
1346static void __part_end_io_acct(struct block_device *part, unsigned int op,
1347                               unsigned long start_time)
1348{
1349        const int sgrp = op_stat_group(op);
1350        unsigned long now = READ_ONCE(jiffies);
1351        unsigned long duration = now - start_time;
1352
1353        part_stat_lock();
1354        update_io_ticks(part, now, true);
1355        part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1356        part_stat_local_dec(part, in_flight[op_is_write(op)]);
1357        part_stat_unlock();
1358}
1359
1360void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1361                struct block_device *orig_bdev)
1362{
1363        __part_end_io_acct(orig_bdev, bio_op(bio), start_time);
1364}
1365EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
1366
1367void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1368                      unsigned long start_time)
1369{
1370        __part_end_io_acct(disk->part0, op, start_time);
1371}
1372EXPORT_SYMBOL(disk_end_io_acct);
1373
1374/*
1375 * Steal bios from a request and add them to a bio list.
1376 * The request must not have been partially completed before.
1377 */
1378void blk_steal_bios(struct bio_list *list, struct request *rq)
1379{
1380        if (rq->bio) {
1381                if (list->tail)
1382                        list->tail->bi_next = rq->bio;
1383                else
1384                        list->head = rq->bio;
1385                list->tail = rq->biotail;
1386
1387                rq->bio = NULL;
1388                rq->biotail = NULL;
1389        }
1390
1391        rq->__data_len = 0;
1392}
1393EXPORT_SYMBOL_GPL(blk_steal_bios);
1394
1395/**
1396 * blk_update_request - Special helper function for request stacking drivers
1397 * @req:      the request being processed
1398 * @error:    block status code
1399 * @nr_bytes: number of bytes to complete @req
1400 *
1401 * Description:
1402 *     Ends I/O on a number of bytes attached to @req, but doesn't complete
1403 *     the request structure even if @req doesn't have leftover.
1404 *     If @req has leftover, sets it up for the next range of segments.
1405 *
1406 *     This special helper function is only for request stacking drivers
1407 *     (e.g. request-based dm) so that they can handle partial completion.
1408 *     Actual device drivers should use blk_mq_end_request instead.
1409 *
1410 *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1411 *     %false return from this function.
1412 *
1413 * Note:
1414 *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1415 *      blk_rq_bytes() and in blk_update_request().
1416 *
1417 * Return:
1418 *     %false - this request doesn't have any more data
1419 *     %true  - this request has more data
1420 **/
1421bool blk_update_request(struct request *req, blk_status_t error,
1422                unsigned int nr_bytes)
1423{
1424        int total_bytes;
1425
1426        trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1427
1428        if (!req->bio)
1429                return false;
1430
1431#ifdef CONFIG_BLK_DEV_INTEGRITY
1432        if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1433            error == BLK_STS_OK)
1434                req->q->integrity.profile->complete_fn(req, nr_bytes);
1435#endif
1436
1437        if (unlikely(error && !blk_rq_is_passthrough(req) &&
1438                     !(req->rq_flags & RQF_QUIET)))
1439                print_req_error(req, error, __func__);
1440
1441        blk_account_io_completion(req, nr_bytes);
1442
1443        total_bytes = 0;
1444        while (req->bio) {
1445                struct bio *bio = req->bio;
1446                unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1447
1448                if (bio_bytes == bio->bi_iter.bi_size)
1449                        req->bio = bio->bi_next;
1450
1451                /* Completion has already been traced */
1452                bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1453                req_bio_endio(req, bio, bio_bytes, error);
1454
1455                total_bytes += bio_bytes;
1456                nr_bytes -= bio_bytes;
1457
1458                if (!nr_bytes)
1459                        break;
1460        }
1461
1462        /*
1463         * completely done
1464         */
1465        if (!req->bio) {
1466                /*
1467                 * Reset counters so that the request stacking driver
1468                 * can find how many bytes remain in the request
1469                 * later.
1470                 */
1471                req->__data_len = 0;
1472                return false;
1473        }
1474
1475        req->__data_len -= total_bytes;
1476
1477        /* update sector only for requests with clear definition of sector */
1478        if (!blk_rq_is_passthrough(req))
1479                req->__sector += total_bytes >> 9;
1480
1481        /* mixed attributes always follow the first bio */
1482        if (req->rq_flags & RQF_MIXED_MERGE) {
1483                req->cmd_flags &= ~REQ_FAILFAST_MASK;
1484                req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1485        }
1486
1487        if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1488                /*
1489                 * If total number of sectors is less than the first segment
1490                 * size, something has gone terribly wrong.
1491                 */
1492                if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1493                        blk_dump_rq_flags(req, "request botched");
1494                        req->__data_len = blk_rq_cur_bytes(req);
1495                }
1496
1497                /* recalculate the number of segments */
1498                req->nr_phys_segments = blk_recalc_rq_segments(req);
1499        }
1500
1501        return true;
1502}
1503EXPORT_SYMBOL_GPL(blk_update_request);
1504
1505#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1506/**
1507 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1508 * @rq: the request to be flushed
1509 *
1510 * Description:
1511 *     Flush all pages in @rq.
1512 */
1513void rq_flush_dcache_pages(struct request *rq)
1514{
1515        struct req_iterator iter;
1516        struct bio_vec bvec;
1517
1518        rq_for_each_segment(bvec, rq, iter)
1519                flush_dcache_page(bvec.bv_page);
1520}
1521EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1522#endif
1523
1524/**
1525 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1526 * @q : the queue of the device being checked
1527 *
1528 * Description:
1529 *    Check if underlying low-level drivers of a device are busy.
1530 *    If the drivers want to export their busy state, they must set own
1531 *    exporting function using blk_queue_lld_busy() first.
1532 *
1533 *    Basically, this function is used only by request stacking drivers
1534 *    to stop dispatching requests to underlying devices when underlying
1535 *    devices are busy.  This behavior helps more I/O merging on the queue
1536 *    of the request stacking driver and prevents I/O throughput regression
1537 *    on burst I/O load.
1538 *
1539 * Return:
1540 *    0 - Not busy (The request stacking driver should dispatch request)
1541 *    1 - Busy (The request stacking driver should stop dispatching request)
1542 */
1543int blk_lld_busy(struct request_queue *q)
1544{
1545        if (queue_is_mq(q) && q->mq_ops->busy)
1546                return q->mq_ops->busy(q);
1547
1548        return 0;
1549}
1550EXPORT_SYMBOL_GPL(blk_lld_busy);
1551
1552/**
1553 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1554 * @rq: the clone request to be cleaned up
1555 *
1556 * Description:
1557 *     Free all bios in @rq for a cloned request.
1558 */
1559void blk_rq_unprep_clone(struct request *rq)
1560{
1561        struct bio *bio;
1562
1563        while ((bio = rq->bio) != NULL) {
1564                rq->bio = bio->bi_next;
1565
1566                bio_put(bio);
1567        }
1568}
1569EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1570
1571/**
1572 * blk_rq_prep_clone - Helper function to setup clone request
1573 * @rq: the request to be setup
1574 * @rq_src: original request to be cloned
1575 * @bs: bio_set that bios for clone are allocated from
1576 * @gfp_mask: memory allocation mask for bio
1577 * @bio_ctr: setup function to be called for each clone bio.
1578 *           Returns %0 for success, non %0 for failure.
1579 * @data: private data to be passed to @bio_ctr
1580 *
1581 * Description:
1582 *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1583 *     Also, pages which the original bios are pointing to are not copied
1584 *     and the cloned bios just point same pages.
1585 *     So cloned bios must be completed before original bios, which means
1586 *     the caller must complete @rq before @rq_src.
1587 */
1588int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1589                      struct bio_set *bs, gfp_t gfp_mask,
1590                      int (*bio_ctr)(struct bio *, struct bio *, void *),
1591                      void *data)
1592{
1593        struct bio *bio, *bio_src;
1594
1595        if (!bs)
1596                bs = &fs_bio_set;
1597
1598        __rq_for_each_bio(bio_src, rq_src) {
1599                bio = bio_clone_fast(bio_src, gfp_mask, bs);
1600                if (!bio)
1601                        goto free_and_out;
1602
1603                if (bio_ctr && bio_ctr(bio, bio_src, data))
1604                        goto free_and_out;
1605
1606                if (rq->bio) {
1607                        rq->biotail->bi_next = bio;
1608                        rq->biotail = bio;
1609                } else {
1610                        rq->bio = rq->biotail = bio;
1611                }
1612                bio = NULL;
1613        }
1614
1615        /* Copy attributes of the original request to the clone request. */
1616        rq->__sector = blk_rq_pos(rq_src);
1617        rq->__data_len = blk_rq_bytes(rq_src);
1618        if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1619                rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1620                rq->special_vec = rq_src->special_vec;
1621        }
1622        rq->nr_phys_segments = rq_src->nr_phys_segments;
1623        rq->ioprio = rq_src->ioprio;
1624
1625        if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
1626                goto free_and_out;
1627
1628        return 0;
1629
1630free_and_out:
1631        if (bio)
1632                bio_put(bio);
1633        blk_rq_unprep_clone(rq);
1634
1635        return -ENOMEM;
1636}
1637EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1638
1639int kblockd_schedule_work(struct work_struct *work)
1640{
1641        return queue_work(kblockd_workqueue, work);
1642}
1643EXPORT_SYMBOL(kblockd_schedule_work);
1644
1645int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1646                                unsigned long delay)
1647{
1648        return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1649}
1650EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1651
1652/**
1653 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1654 * @plug:       The &struct blk_plug that needs to be initialized
1655 *
1656 * Description:
1657 *   blk_start_plug() indicates to the block layer an intent by the caller
1658 *   to submit multiple I/O requests in a batch.  The block layer may use
1659 *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1660 *   is called.  However, the block layer may choose to submit requests
1661 *   before a call to blk_finish_plug() if the number of queued I/Os
1662 *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1663 *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1664 *   the task schedules (see below).
1665 *
1666 *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1667 *   pending I/O should the task end up blocking between blk_start_plug() and
1668 *   blk_finish_plug(). This is important from a performance perspective, but
1669 *   also ensures that we don't deadlock. For instance, if the task is blocking
1670 *   for a memory allocation, memory reclaim could end up wanting to free a
1671 *   page belonging to that request that is currently residing in our private
1672 *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1673 *   this kind of deadlock.
1674 */
1675void blk_start_plug(struct blk_plug *plug)
1676{
1677        struct task_struct *tsk = current;
1678
1679        /*
1680         * If this is a nested plug, don't actually assign it.
1681         */
1682        if (tsk->plug)
1683                return;
1684
1685        INIT_LIST_HEAD(&plug->mq_list);
1686        INIT_LIST_HEAD(&plug->cb_list);
1687        plug->rq_count = 0;
1688        plug->multiple_queues = false;
1689        plug->nowait = false;
1690
1691        /*
1692         * Store ordering should not be needed here, since a potential
1693         * preempt will imply a full memory barrier
1694         */
1695        tsk->plug = plug;
1696}
1697EXPORT_SYMBOL(blk_start_plug);
1698
1699static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1700{
1701        LIST_HEAD(callbacks);
1702
1703        while (!list_empty(&plug->cb_list)) {
1704                list_splice_init(&plug->cb_list, &callbacks);
1705
1706                while (!list_empty(&callbacks)) {
1707                        struct blk_plug_cb *cb = list_first_entry(&callbacks,
1708                                                          struct blk_plug_cb,
1709                                                          list);
1710                        list_del(&cb->list);
1711                        cb->callback(cb, from_schedule);
1712                }
1713        }
1714}
1715
1716struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1717                                      int size)
1718{
1719        struct blk_plug *plug = current->plug;
1720        struct blk_plug_cb *cb;
1721
1722        if (!plug)
1723                return NULL;
1724
1725        list_for_each_entry(cb, &plug->cb_list, list)
1726                if (cb->callback == unplug && cb->data == data)
1727                        return cb;
1728
1729        /* Not currently on the callback list */
1730        BUG_ON(size < sizeof(*cb));
1731        cb = kzalloc(size, GFP_ATOMIC);
1732        if (cb) {
1733                cb->data = data;
1734                cb->callback = unplug;
1735                list_add(&cb->list, &plug->cb_list);
1736        }
1737        return cb;
1738}
1739EXPORT_SYMBOL(blk_check_plugged);
1740
1741void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1742{
1743        flush_plug_callbacks(plug, from_schedule);
1744
1745        if (!list_empty(&plug->mq_list))
1746                blk_mq_flush_plug_list(plug, from_schedule);
1747}
1748
1749/**
1750 * blk_finish_plug - mark the end of a batch of submitted I/O
1751 * @plug:       The &struct blk_plug passed to blk_start_plug()
1752 *
1753 * Description:
1754 * Indicate that a batch of I/O submissions is complete.  This function
1755 * must be paired with an initial call to blk_start_plug().  The intent
1756 * is to allow the block layer to optimize I/O submission.  See the
1757 * documentation for blk_start_plug() for more information.
1758 */
1759void blk_finish_plug(struct blk_plug *plug)
1760{
1761        if (plug != current->plug)
1762                return;
1763        blk_flush_plug_list(plug, false);
1764
1765        current->plug = NULL;
1766}
1767EXPORT_SYMBOL(blk_finish_plug);
1768
1769void blk_io_schedule(void)
1770{
1771        /* Prevent hang_check timer from firing at us during very long I/O */
1772        unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1773
1774        if (timeout)
1775                io_schedule_timeout(timeout);
1776        else
1777                io_schedule();
1778}
1779EXPORT_SYMBOL_GPL(blk_io_schedule);
1780
1781int __init blk_dev_init(void)
1782{
1783        BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1784        BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1785                        sizeof_field(struct request, cmd_flags));
1786        BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1787                        sizeof_field(struct bio, bi_opf));
1788
1789        /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1790        kblockd_workqueue = alloc_workqueue("kblockd",
1791                                            WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1792        if (!kblockd_workqueue)
1793                panic("Failed to create kblockd\n");
1794
1795        blk_requestq_cachep = kmem_cache_create("request_queue",
1796                        sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1797
1798        blk_debugfs_root = debugfs_create_dir("block", NULL);
1799
1800        return 0;
1801}
1802