linux/net/socket.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * NET          An implementation of the SOCKET network access protocol.
   4 *
   5 * Version:     @(#)socket.c    1.1.93  18/02/95
   6 *
   7 * Authors:     Orest Zborowski, <obz@Kodak.COM>
   8 *              Ross Biro
   9 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *
  11 * Fixes:
  12 *              Anonymous       :       NOTSOCK/BADF cleanup. Error fix in
  13 *                                      shutdown()
  14 *              Alan Cox        :       verify_area() fixes
  15 *              Alan Cox        :       Removed DDI
  16 *              Jonathan Kamens :       SOCK_DGRAM reconnect bug
  17 *              Alan Cox        :       Moved a load of checks to the very
  18 *                                      top level.
  19 *              Alan Cox        :       Move address structures to/from user
  20 *                                      mode above the protocol layers.
  21 *              Rob Janssen     :       Allow 0 length sends.
  22 *              Alan Cox        :       Asynchronous I/O support (cribbed from the
  23 *                                      tty drivers).
  24 *              Niibe Yutaka    :       Asynchronous I/O for writes (4.4BSD style)
  25 *              Jeff Uphoff     :       Made max number of sockets command-line
  26 *                                      configurable.
  27 *              Matti Aarnio    :       Made the number of sockets dynamic,
  28 *                                      to be allocated when needed, and mr.
  29 *                                      Uphoff's max is used as max to be
  30 *                                      allowed to allocate.
  31 *              Linus           :       Argh. removed all the socket allocation
  32 *                                      altogether: it's in the inode now.
  33 *              Alan Cox        :       Made sock_alloc()/sock_release() public
  34 *                                      for NetROM and future kernel nfsd type
  35 *                                      stuff.
  36 *              Alan Cox        :       sendmsg/recvmsg basics.
  37 *              Tom Dyas        :       Export net symbols.
  38 *              Marcin Dalecki  :       Fixed problems with CONFIG_NET="n".
  39 *              Alan Cox        :       Added thread locking to sys_* calls
  40 *                                      for sockets. May have errors at the
  41 *                                      moment.
  42 *              Kevin Buhr      :       Fixed the dumb errors in the above.
  43 *              Andi Kleen      :       Some small cleanups, optimizations,
  44 *                                      and fixed a copy_from_user() bug.
  45 *              Tigran Aivazian :       sys_send(args) calls sys_sendto(args, NULL, 0)
  46 *              Tigran Aivazian :       Made listen(2) backlog sanity checks
  47 *                                      protocol-independent
  48 *
  49 *      This module is effectively the top level interface to the BSD socket
  50 *      paradigm.
  51 *
  52 *      Based upon Swansea University Computer Society NET3.039
  53 */
  54
  55#include <linux/ethtool.h>
  56#include <linux/mm.h>
  57#include <linux/socket.h>
  58#include <linux/file.h>
  59#include <linux/net.h>
  60#include <linux/interrupt.h>
  61#include <linux/thread_info.h>
  62#include <linux/rcupdate.h>
  63#include <linux/netdevice.h>
  64#include <linux/proc_fs.h>
  65#include <linux/seq_file.h>
  66#include <linux/mutex.h>
  67#include <linux/if_bridge.h>
  68#include <linux/if_vlan.h>
  69#include <linux/ptp_classify.h>
  70#include <linux/init.h>
  71#include <linux/poll.h>
  72#include <linux/cache.h>
  73#include <linux/module.h>
  74#include <linux/highmem.h>
  75#include <linux/mount.h>
  76#include <linux/pseudo_fs.h>
  77#include <linux/security.h>
  78#include <linux/syscalls.h>
  79#include <linux/compat.h>
  80#include <linux/kmod.h>
  81#include <linux/audit.h>
  82#include <linux/wireless.h>
  83#include <linux/nsproxy.h>
  84#include <linux/magic.h>
  85#include <linux/slab.h>
  86#include <linux/xattr.h>
  87#include <linux/nospec.h>
  88#include <linux/indirect_call_wrapper.h>
  89
  90#include <linux/uaccess.h>
  91#include <asm/unistd.h>
  92
  93#include <net/compat.h>
  94#include <net/wext.h>
  95#include <net/cls_cgroup.h>
  96
  97#include <net/sock.h>
  98#include <linux/netfilter.h>
  99
 100#include <linux/if_tun.h>
 101#include <linux/ipv6_route.h>
 102#include <linux/route.h>
 103#include <linux/termios.h>
 104#include <linux/sockios.h>
 105#include <net/busy_poll.h>
 106#include <linux/errqueue.h>
 107
 108#ifdef CONFIG_NET_RX_BUSY_POLL
 109unsigned int sysctl_net_busy_read __read_mostly;
 110unsigned int sysctl_net_busy_poll __read_mostly;
 111#endif
 112
 113static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
 114static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
 115static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 116
 117static int sock_close(struct inode *inode, struct file *file);
 118static __poll_t sock_poll(struct file *file,
 119                              struct poll_table_struct *wait);
 120static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 121#ifdef CONFIG_COMPAT
 122static long compat_sock_ioctl(struct file *file,
 123                              unsigned int cmd, unsigned long arg);
 124#endif
 125static int sock_fasync(int fd, struct file *filp, int on);
 126static ssize_t sock_sendpage(struct file *file, struct page *page,
 127                             int offset, size_t size, loff_t *ppos, int more);
 128static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 129                                struct pipe_inode_info *pipe, size_t len,
 130                                unsigned int flags);
 131
 132#ifdef CONFIG_PROC_FS
 133static void sock_show_fdinfo(struct seq_file *m, struct file *f)
 134{
 135        struct socket *sock = f->private_data;
 136
 137        if (sock->ops->show_fdinfo)
 138                sock->ops->show_fdinfo(m, sock);
 139}
 140#else
 141#define sock_show_fdinfo NULL
 142#endif
 143
 144/*
 145 *      Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 146 *      in the operation structures but are done directly via the socketcall() multiplexor.
 147 */
 148
 149static const struct file_operations socket_file_ops = {
 150        .owner =        THIS_MODULE,
 151        .llseek =       no_llseek,
 152        .read_iter =    sock_read_iter,
 153        .write_iter =   sock_write_iter,
 154        .poll =         sock_poll,
 155        .unlocked_ioctl = sock_ioctl,
 156#ifdef CONFIG_COMPAT
 157        .compat_ioctl = compat_sock_ioctl,
 158#endif
 159        .mmap =         sock_mmap,
 160        .release =      sock_close,
 161        .fasync =       sock_fasync,
 162        .sendpage =     sock_sendpage,
 163        .splice_write = generic_splice_sendpage,
 164        .splice_read =  sock_splice_read,
 165        .show_fdinfo =  sock_show_fdinfo,
 166};
 167
 168/*
 169 *      The protocol list. Each protocol is registered in here.
 170 */
 171
 172static DEFINE_SPINLOCK(net_family_lock);
 173static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 174
 175/*
 176 * Support routines.
 177 * Move socket addresses back and forth across the kernel/user
 178 * divide and look after the messy bits.
 179 */
 180
 181/**
 182 *      move_addr_to_kernel     -       copy a socket address into kernel space
 183 *      @uaddr: Address in user space
 184 *      @kaddr: Address in kernel space
 185 *      @ulen: Length in user space
 186 *
 187 *      The address is copied into kernel space. If the provided address is
 188 *      too long an error code of -EINVAL is returned. If the copy gives
 189 *      invalid addresses -EFAULT is returned. On a success 0 is returned.
 190 */
 191
 192int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 193{
 194        if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 195                return -EINVAL;
 196        if (ulen == 0)
 197                return 0;
 198        if (copy_from_user(kaddr, uaddr, ulen))
 199                return -EFAULT;
 200        return audit_sockaddr(ulen, kaddr);
 201}
 202
 203/**
 204 *      move_addr_to_user       -       copy an address to user space
 205 *      @kaddr: kernel space address
 206 *      @klen: length of address in kernel
 207 *      @uaddr: user space address
 208 *      @ulen: pointer to user length field
 209 *
 210 *      The value pointed to by ulen on entry is the buffer length available.
 211 *      This is overwritten with the buffer space used. -EINVAL is returned
 212 *      if an overlong buffer is specified or a negative buffer size. -EFAULT
 213 *      is returned if either the buffer or the length field are not
 214 *      accessible.
 215 *      After copying the data up to the limit the user specifies, the true
 216 *      length of the data is written over the length limit the user
 217 *      specified. Zero is returned for a success.
 218 */
 219
 220static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 221                             void __user *uaddr, int __user *ulen)
 222{
 223        int err;
 224        int len;
 225
 226        BUG_ON(klen > sizeof(struct sockaddr_storage));
 227        err = get_user(len, ulen);
 228        if (err)
 229                return err;
 230        if (len > klen)
 231                len = klen;
 232        if (len < 0)
 233                return -EINVAL;
 234        if (len) {
 235                if (audit_sockaddr(klen, kaddr))
 236                        return -ENOMEM;
 237                if (copy_to_user(uaddr, kaddr, len))
 238                        return -EFAULT;
 239        }
 240        /*
 241         *      "fromlen shall refer to the value before truncation.."
 242         *                      1003.1g
 243         */
 244        return __put_user(klen, ulen);
 245}
 246
 247static struct kmem_cache *sock_inode_cachep __ro_after_init;
 248
 249static struct inode *sock_alloc_inode(struct super_block *sb)
 250{
 251        struct socket_alloc *ei;
 252
 253        ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 254        if (!ei)
 255                return NULL;
 256        init_waitqueue_head(&ei->socket.wq.wait);
 257        ei->socket.wq.fasync_list = NULL;
 258        ei->socket.wq.flags = 0;
 259
 260        ei->socket.state = SS_UNCONNECTED;
 261        ei->socket.flags = 0;
 262        ei->socket.ops = NULL;
 263        ei->socket.sk = NULL;
 264        ei->socket.file = NULL;
 265
 266        return &ei->vfs_inode;
 267}
 268
 269static void sock_free_inode(struct inode *inode)
 270{
 271        struct socket_alloc *ei;
 272
 273        ei = container_of(inode, struct socket_alloc, vfs_inode);
 274        kmem_cache_free(sock_inode_cachep, ei);
 275}
 276
 277static void init_once(void *foo)
 278{
 279        struct socket_alloc *ei = (struct socket_alloc *)foo;
 280
 281        inode_init_once(&ei->vfs_inode);
 282}
 283
 284static void init_inodecache(void)
 285{
 286        sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 287                                              sizeof(struct socket_alloc),
 288                                              0,
 289                                              (SLAB_HWCACHE_ALIGN |
 290                                               SLAB_RECLAIM_ACCOUNT |
 291                                               SLAB_MEM_SPREAD | SLAB_ACCOUNT),
 292                                              init_once);
 293        BUG_ON(sock_inode_cachep == NULL);
 294}
 295
 296static const struct super_operations sockfs_ops = {
 297        .alloc_inode    = sock_alloc_inode,
 298        .free_inode     = sock_free_inode,
 299        .statfs         = simple_statfs,
 300};
 301
 302/*
 303 * sockfs_dname() is called from d_path().
 304 */
 305static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 306{
 307        return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 308                                d_inode(dentry)->i_ino);
 309}
 310
 311static const struct dentry_operations sockfs_dentry_operations = {
 312        .d_dname  = sockfs_dname,
 313};
 314
 315static int sockfs_xattr_get(const struct xattr_handler *handler,
 316                            struct dentry *dentry, struct inode *inode,
 317                            const char *suffix, void *value, size_t size)
 318{
 319        if (value) {
 320                if (dentry->d_name.len + 1 > size)
 321                        return -ERANGE;
 322                memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
 323        }
 324        return dentry->d_name.len + 1;
 325}
 326
 327#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
 328#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
 329#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
 330
 331static const struct xattr_handler sockfs_xattr_handler = {
 332        .name = XATTR_NAME_SOCKPROTONAME,
 333        .get = sockfs_xattr_get,
 334};
 335
 336static int sockfs_security_xattr_set(const struct xattr_handler *handler,
 337                                     struct user_namespace *mnt_userns,
 338                                     struct dentry *dentry, struct inode *inode,
 339                                     const char *suffix, const void *value,
 340                                     size_t size, int flags)
 341{
 342        /* Handled by LSM. */
 343        return -EAGAIN;
 344}
 345
 346static const struct xattr_handler sockfs_security_xattr_handler = {
 347        .prefix = XATTR_SECURITY_PREFIX,
 348        .set = sockfs_security_xattr_set,
 349};
 350
 351static const struct xattr_handler *sockfs_xattr_handlers[] = {
 352        &sockfs_xattr_handler,
 353        &sockfs_security_xattr_handler,
 354        NULL
 355};
 356
 357static int sockfs_init_fs_context(struct fs_context *fc)
 358{
 359        struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
 360        if (!ctx)
 361                return -ENOMEM;
 362        ctx->ops = &sockfs_ops;
 363        ctx->dops = &sockfs_dentry_operations;
 364        ctx->xattr = sockfs_xattr_handlers;
 365        return 0;
 366}
 367
 368static struct vfsmount *sock_mnt __read_mostly;
 369
 370static struct file_system_type sock_fs_type = {
 371        .name =         "sockfs",
 372        .init_fs_context = sockfs_init_fs_context,
 373        .kill_sb =      kill_anon_super,
 374};
 375
 376/*
 377 *      Obtains the first available file descriptor and sets it up for use.
 378 *
 379 *      These functions create file structures and maps them to fd space
 380 *      of the current process. On success it returns file descriptor
 381 *      and file struct implicitly stored in sock->file.
 382 *      Note that another thread may close file descriptor before we return
 383 *      from this function. We use the fact that now we do not refer
 384 *      to socket after mapping. If one day we will need it, this
 385 *      function will increment ref. count on file by 1.
 386 *
 387 *      In any case returned fd MAY BE not valid!
 388 *      This race condition is unavoidable
 389 *      with shared fd spaces, we cannot solve it inside kernel,
 390 *      but we take care of internal coherence yet.
 391 */
 392
 393/**
 394 *      sock_alloc_file - Bind a &socket to a &file
 395 *      @sock: socket
 396 *      @flags: file status flags
 397 *      @dname: protocol name
 398 *
 399 *      Returns the &file bound with @sock, implicitly storing it
 400 *      in sock->file. If dname is %NULL, sets to "".
 401 *      On failure the return is a ERR pointer (see linux/err.h).
 402 *      This function uses GFP_KERNEL internally.
 403 */
 404
 405struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
 406{
 407        struct file *file;
 408
 409        if (!dname)
 410                dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
 411
 412        file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
 413                                O_RDWR | (flags & O_NONBLOCK),
 414                                &socket_file_ops);
 415        if (IS_ERR(file)) {
 416                sock_release(sock);
 417                return file;
 418        }
 419
 420        sock->file = file;
 421        file->private_data = sock;
 422        stream_open(SOCK_INODE(sock), file);
 423        return file;
 424}
 425EXPORT_SYMBOL(sock_alloc_file);
 426
 427static int sock_map_fd(struct socket *sock, int flags)
 428{
 429        struct file *newfile;
 430        int fd = get_unused_fd_flags(flags);
 431        if (unlikely(fd < 0)) {
 432                sock_release(sock);
 433                return fd;
 434        }
 435
 436        newfile = sock_alloc_file(sock, flags, NULL);
 437        if (!IS_ERR(newfile)) {
 438                fd_install(fd, newfile);
 439                return fd;
 440        }
 441
 442        put_unused_fd(fd);
 443        return PTR_ERR(newfile);
 444}
 445
 446/**
 447 *      sock_from_file - Return the &socket bounded to @file.
 448 *      @file: file
 449 *
 450 *      On failure returns %NULL.
 451 */
 452
 453struct socket *sock_from_file(struct file *file)
 454{
 455        if (file->f_op == &socket_file_ops)
 456                return file->private_data;      /* set in sock_map_fd */
 457
 458        return NULL;
 459}
 460EXPORT_SYMBOL(sock_from_file);
 461
 462/**
 463 *      sockfd_lookup - Go from a file number to its socket slot
 464 *      @fd: file handle
 465 *      @err: pointer to an error code return
 466 *
 467 *      The file handle passed in is locked and the socket it is bound
 468 *      to is returned. If an error occurs the err pointer is overwritten
 469 *      with a negative errno code and NULL is returned. The function checks
 470 *      for both invalid handles and passing a handle which is not a socket.
 471 *
 472 *      On a success the socket object pointer is returned.
 473 */
 474
 475struct socket *sockfd_lookup(int fd, int *err)
 476{
 477        struct file *file;
 478        struct socket *sock;
 479
 480        file = fget(fd);
 481        if (!file) {
 482                *err = -EBADF;
 483                return NULL;
 484        }
 485
 486        sock = sock_from_file(file);
 487        if (!sock) {
 488                *err = -ENOTSOCK;
 489                fput(file);
 490        }
 491        return sock;
 492}
 493EXPORT_SYMBOL(sockfd_lookup);
 494
 495static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 496{
 497        struct fd f = fdget(fd);
 498        struct socket *sock;
 499
 500        *err = -EBADF;
 501        if (f.file) {
 502                sock = sock_from_file(f.file);
 503                if (likely(sock)) {
 504                        *fput_needed = f.flags & FDPUT_FPUT;
 505                        return sock;
 506                }
 507                *err = -ENOTSOCK;
 508                fdput(f);
 509        }
 510        return NULL;
 511}
 512
 513static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
 514                                size_t size)
 515{
 516        ssize_t len;
 517        ssize_t used = 0;
 518
 519        len = security_inode_listsecurity(d_inode(dentry), buffer, size);
 520        if (len < 0)
 521                return len;
 522        used += len;
 523        if (buffer) {
 524                if (size < used)
 525                        return -ERANGE;
 526                buffer += len;
 527        }
 528
 529        len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
 530        used += len;
 531        if (buffer) {
 532                if (size < used)
 533                        return -ERANGE;
 534                memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
 535                buffer += len;
 536        }
 537
 538        return used;
 539}
 540
 541static int sockfs_setattr(struct user_namespace *mnt_userns,
 542                          struct dentry *dentry, struct iattr *iattr)
 543{
 544        int err = simple_setattr(&init_user_ns, dentry, iattr);
 545
 546        if (!err && (iattr->ia_valid & ATTR_UID)) {
 547                struct socket *sock = SOCKET_I(d_inode(dentry));
 548
 549                if (sock->sk)
 550                        sock->sk->sk_uid = iattr->ia_uid;
 551                else
 552                        err = -ENOENT;
 553        }
 554
 555        return err;
 556}
 557
 558static const struct inode_operations sockfs_inode_ops = {
 559        .listxattr = sockfs_listxattr,
 560        .setattr = sockfs_setattr,
 561};
 562
 563/**
 564 *      sock_alloc - allocate a socket
 565 *
 566 *      Allocate a new inode and socket object. The two are bound together
 567 *      and initialised. The socket is then returned. If we are out of inodes
 568 *      NULL is returned. This functions uses GFP_KERNEL internally.
 569 */
 570
 571struct socket *sock_alloc(void)
 572{
 573        struct inode *inode;
 574        struct socket *sock;
 575
 576        inode = new_inode_pseudo(sock_mnt->mnt_sb);
 577        if (!inode)
 578                return NULL;
 579
 580        sock = SOCKET_I(inode);
 581
 582        inode->i_ino = get_next_ino();
 583        inode->i_mode = S_IFSOCK | S_IRWXUGO;
 584        inode->i_uid = current_fsuid();
 585        inode->i_gid = current_fsgid();
 586        inode->i_op = &sockfs_inode_ops;
 587
 588        return sock;
 589}
 590EXPORT_SYMBOL(sock_alloc);
 591
 592static void __sock_release(struct socket *sock, struct inode *inode)
 593{
 594        if (sock->ops) {
 595                struct module *owner = sock->ops->owner;
 596
 597                if (inode)
 598                        inode_lock(inode);
 599                sock->ops->release(sock);
 600                sock->sk = NULL;
 601                if (inode)
 602                        inode_unlock(inode);
 603                sock->ops = NULL;
 604                module_put(owner);
 605        }
 606
 607        if (sock->wq.fasync_list)
 608                pr_err("%s: fasync list not empty!\n", __func__);
 609
 610        if (!sock->file) {
 611                iput(SOCK_INODE(sock));
 612                return;
 613        }
 614        sock->file = NULL;
 615}
 616
 617/**
 618 *      sock_release - close a socket
 619 *      @sock: socket to close
 620 *
 621 *      The socket is released from the protocol stack if it has a release
 622 *      callback, and the inode is then released if the socket is bound to
 623 *      an inode not a file.
 624 */
 625void sock_release(struct socket *sock)
 626{
 627        __sock_release(sock, NULL);
 628}
 629EXPORT_SYMBOL(sock_release);
 630
 631void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
 632{
 633        u8 flags = *tx_flags;
 634
 635        if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
 636                flags |= SKBTX_HW_TSTAMP;
 637
 638        if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
 639                flags |= SKBTX_SW_TSTAMP;
 640
 641        if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
 642                flags |= SKBTX_SCHED_TSTAMP;
 643
 644        *tx_flags = flags;
 645}
 646EXPORT_SYMBOL(__sock_tx_timestamp);
 647
 648INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
 649                                           size_t));
 650INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
 651                                            size_t));
 652static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
 653{
 654        int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
 655                                     inet_sendmsg, sock, msg,
 656                                     msg_data_left(msg));
 657        BUG_ON(ret == -EIOCBQUEUED);
 658        return ret;
 659}
 660
 661/**
 662 *      sock_sendmsg - send a message through @sock
 663 *      @sock: socket
 664 *      @msg: message to send
 665 *
 666 *      Sends @msg through @sock, passing through LSM.
 667 *      Returns the number of bytes sent, or an error code.
 668 */
 669int sock_sendmsg(struct socket *sock, struct msghdr *msg)
 670{
 671        int err = security_socket_sendmsg(sock, msg,
 672                                          msg_data_left(msg));
 673
 674        return err ?: sock_sendmsg_nosec(sock, msg);
 675}
 676EXPORT_SYMBOL(sock_sendmsg);
 677
 678/**
 679 *      kernel_sendmsg - send a message through @sock (kernel-space)
 680 *      @sock: socket
 681 *      @msg: message header
 682 *      @vec: kernel vec
 683 *      @num: vec array length
 684 *      @size: total message data size
 685 *
 686 *      Builds the message data with @vec and sends it through @sock.
 687 *      Returns the number of bytes sent, or an error code.
 688 */
 689
 690int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 691                   struct kvec *vec, size_t num, size_t size)
 692{
 693        iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
 694        return sock_sendmsg(sock, msg);
 695}
 696EXPORT_SYMBOL(kernel_sendmsg);
 697
 698/**
 699 *      kernel_sendmsg_locked - send a message through @sock (kernel-space)
 700 *      @sk: sock
 701 *      @msg: message header
 702 *      @vec: output s/g array
 703 *      @num: output s/g array length
 704 *      @size: total message data size
 705 *
 706 *      Builds the message data with @vec and sends it through @sock.
 707 *      Returns the number of bytes sent, or an error code.
 708 *      Caller must hold @sk.
 709 */
 710
 711int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
 712                          struct kvec *vec, size_t num, size_t size)
 713{
 714        struct socket *sock = sk->sk_socket;
 715
 716        if (!sock->ops->sendmsg_locked)
 717                return sock_no_sendmsg_locked(sk, msg, size);
 718
 719        iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
 720
 721        return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
 722}
 723EXPORT_SYMBOL(kernel_sendmsg_locked);
 724
 725static bool skb_is_err_queue(const struct sk_buff *skb)
 726{
 727        /* pkt_type of skbs enqueued on the error queue are set to
 728         * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
 729         * in recvmsg, since skbs received on a local socket will never
 730         * have a pkt_type of PACKET_OUTGOING.
 731         */
 732        return skb->pkt_type == PACKET_OUTGOING;
 733}
 734
 735/* On transmit, software and hardware timestamps are returned independently.
 736 * As the two skb clones share the hardware timestamp, which may be updated
 737 * before the software timestamp is received, a hardware TX timestamp may be
 738 * returned only if there is no software TX timestamp. Ignore false software
 739 * timestamps, which may be made in the __sock_recv_timestamp() call when the
 740 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
 741 * hardware timestamp.
 742 */
 743static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
 744{
 745        return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
 746}
 747
 748static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
 749{
 750        struct scm_ts_pktinfo ts_pktinfo;
 751        struct net_device *orig_dev;
 752
 753        if (!skb_mac_header_was_set(skb))
 754                return;
 755
 756        memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
 757
 758        rcu_read_lock();
 759        orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
 760        if (orig_dev)
 761                ts_pktinfo.if_index = orig_dev->ifindex;
 762        rcu_read_unlock();
 763
 764        ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
 765        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
 766                 sizeof(ts_pktinfo), &ts_pktinfo);
 767}
 768
 769/*
 770 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 771 */
 772void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 773        struct sk_buff *skb)
 774{
 775        int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 776        int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
 777        struct scm_timestamping_internal tss;
 778
 779        int empty = 1, false_tstamp = 0;
 780        struct skb_shared_hwtstamps *shhwtstamps =
 781                skb_hwtstamps(skb);
 782
 783        /* Race occurred between timestamp enabling and packet
 784           receiving.  Fill in the current time for now. */
 785        if (need_software_tstamp && skb->tstamp == 0) {
 786                __net_timestamp(skb);
 787                false_tstamp = 1;
 788        }
 789
 790        if (need_software_tstamp) {
 791                if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 792                        if (new_tstamp) {
 793                                struct __kernel_sock_timeval tv;
 794
 795                                skb_get_new_timestamp(skb, &tv);
 796                                put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
 797                                         sizeof(tv), &tv);
 798                        } else {
 799                                struct __kernel_old_timeval tv;
 800
 801                                skb_get_timestamp(skb, &tv);
 802                                put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
 803                                         sizeof(tv), &tv);
 804                        }
 805                } else {
 806                        if (new_tstamp) {
 807                                struct __kernel_timespec ts;
 808
 809                                skb_get_new_timestampns(skb, &ts);
 810                                put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
 811                                         sizeof(ts), &ts);
 812                        } else {
 813                                struct __kernel_old_timespec ts;
 814
 815                                skb_get_timestampns(skb, &ts);
 816                                put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
 817                                         sizeof(ts), &ts);
 818                        }
 819                }
 820        }
 821
 822        memset(&tss, 0, sizeof(tss));
 823        if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
 824            ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
 825                empty = 0;
 826        if (shhwtstamps &&
 827            (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
 828            !skb_is_swtx_tstamp(skb, false_tstamp) &&
 829            ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
 830                empty = 0;
 831                if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
 832                    !skb_is_err_queue(skb))
 833                        put_ts_pktinfo(msg, skb);
 834        }
 835        if (!empty) {
 836                if (sock_flag(sk, SOCK_TSTAMP_NEW))
 837                        put_cmsg_scm_timestamping64(msg, &tss);
 838                else
 839                        put_cmsg_scm_timestamping(msg, &tss);
 840
 841                if (skb_is_err_queue(skb) && skb->len &&
 842                    SKB_EXT_ERR(skb)->opt_stats)
 843                        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
 844                                 skb->len, skb->data);
 845        }
 846}
 847EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 848
 849void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 850        struct sk_buff *skb)
 851{
 852        int ack;
 853
 854        if (!sock_flag(sk, SOCK_WIFI_STATUS))
 855                return;
 856        if (!skb->wifi_acked_valid)
 857                return;
 858
 859        ack = skb->wifi_acked;
 860
 861        put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 862}
 863EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 864
 865static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 866                                   struct sk_buff *skb)
 867{
 868        if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
 869                put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 870                        sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
 871}
 872
 873void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
 874        struct sk_buff *skb)
 875{
 876        sock_recv_timestamp(msg, sk, skb);
 877        sock_recv_drops(msg, sk, skb);
 878}
 879EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
 880
 881INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
 882                                           size_t, int));
 883INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
 884                                            size_t, int));
 885static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 886                                     int flags)
 887{
 888        return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
 889                                  inet_recvmsg, sock, msg, msg_data_left(msg),
 890                                  flags);
 891}
 892
 893/**
 894 *      sock_recvmsg - receive a message from @sock
 895 *      @sock: socket
 896 *      @msg: message to receive
 897 *      @flags: message flags
 898 *
 899 *      Receives @msg from @sock, passing through LSM. Returns the total number
 900 *      of bytes received, or an error.
 901 */
 902int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
 903{
 904        int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
 905
 906        return err ?: sock_recvmsg_nosec(sock, msg, flags);
 907}
 908EXPORT_SYMBOL(sock_recvmsg);
 909
 910/**
 911 *      kernel_recvmsg - Receive a message from a socket (kernel space)
 912 *      @sock: The socket to receive the message from
 913 *      @msg: Received message
 914 *      @vec: Input s/g array for message data
 915 *      @num: Size of input s/g array
 916 *      @size: Number of bytes to read
 917 *      @flags: Message flags (MSG_DONTWAIT, etc...)
 918 *
 919 *      On return the msg structure contains the scatter/gather array passed in the
 920 *      vec argument. The array is modified so that it consists of the unfilled
 921 *      portion of the original array.
 922 *
 923 *      The returned value is the total number of bytes received, or an error.
 924 */
 925
 926int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 927                   struct kvec *vec, size_t num, size_t size, int flags)
 928{
 929        msg->msg_control_is_user = false;
 930        iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
 931        return sock_recvmsg(sock, msg, flags);
 932}
 933EXPORT_SYMBOL(kernel_recvmsg);
 934
 935static ssize_t sock_sendpage(struct file *file, struct page *page,
 936                             int offset, size_t size, loff_t *ppos, int more)
 937{
 938        struct socket *sock;
 939        int flags;
 940
 941        sock = file->private_data;
 942
 943        flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 944        /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
 945        flags |= more;
 946
 947        return kernel_sendpage(sock, page, offset, size, flags);
 948}
 949
 950static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 951                                struct pipe_inode_info *pipe, size_t len,
 952                                unsigned int flags)
 953{
 954        struct socket *sock = file->private_data;
 955
 956        if (unlikely(!sock->ops->splice_read))
 957                return generic_file_splice_read(file, ppos, pipe, len, flags);
 958
 959        return sock->ops->splice_read(sock, ppos, pipe, len, flags);
 960}
 961
 962static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
 963{
 964        struct file *file = iocb->ki_filp;
 965        struct socket *sock = file->private_data;
 966        struct msghdr msg = {.msg_iter = *to,
 967                             .msg_iocb = iocb};
 968        ssize_t res;
 969
 970        if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
 971                msg.msg_flags = MSG_DONTWAIT;
 972
 973        if (iocb->ki_pos != 0)
 974                return -ESPIPE;
 975
 976        if (!iov_iter_count(to))        /* Match SYS5 behaviour */
 977                return 0;
 978
 979        res = sock_recvmsg(sock, &msg, msg.msg_flags);
 980        *to = msg.msg_iter;
 981        return res;
 982}
 983
 984static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
 985{
 986        struct file *file = iocb->ki_filp;
 987        struct socket *sock = file->private_data;
 988        struct msghdr msg = {.msg_iter = *from,
 989                             .msg_iocb = iocb};
 990        ssize_t res;
 991
 992        if (iocb->ki_pos != 0)
 993                return -ESPIPE;
 994
 995        if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
 996                msg.msg_flags = MSG_DONTWAIT;
 997
 998        if (sock->type == SOCK_SEQPACKET)
 999                msg.msg_flags |= MSG_EOR;
1000
1001        res = sock_sendmsg(sock, &msg);
1002        *from = msg.msg_iter;
1003        return res;
1004}
1005
1006/*
1007 * Atomic setting of ioctl hooks to avoid race
1008 * with module unload.
1009 */
1010
1011static DEFINE_MUTEX(br_ioctl_mutex);
1012static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1013
1014void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1015{
1016        mutex_lock(&br_ioctl_mutex);
1017        br_ioctl_hook = hook;
1018        mutex_unlock(&br_ioctl_mutex);
1019}
1020EXPORT_SYMBOL(brioctl_set);
1021
1022static DEFINE_MUTEX(vlan_ioctl_mutex);
1023static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1024
1025void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1026{
1027        mutex_lock(&vlan_ioctl_mutex);
1028        vlan_ioctl_hook = hook;
1029        mutex_unlock(&vlan_ioctl_mutex);
1030}
1031EXPORT_SYMBOL(vlan_ioctl_set);
1032
1033static long sock_do_ioctl(struct net *net, struct socket *sock,
1034                          unsigned int cmd, unsigned long arg)
1035{
1036        int err;
1037        void __user *argp = (void __user *)arg;
1038
1039        err = sock->ops->ioctl(sock, cmd, arg);
1040
1041        /*
1042         * If this ioctl is unknown try to hand it down
1043         * to the NIC driver.
1044         */
1045        if (err != -ENOIOCTLCMD)
1046                return err;
1047
1048        if (cmd == SIOCGIFCONF) {
1049                struct ifconf ifc;
1050                if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1051                        return -EFAULT;
1052                rtnl_lock();
1053                err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1054                rtnl_unlock();
1055                if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1056                        err = -EFAULT;
1057        } else {
1058                struct ifreq ifr;
1059                bool need_copyout;
1060                if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1061                        return -EFAULT;
1062                err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1063                if (!err && need_copyout)
1064                        if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1065                                return -EFAULT;
1066        }
1067        return err;
1068}
1069
1070/*
1071 *      With an ioctl, arg may well be a user mode pointer, but we don't know
1072 *      what to do with it - that's up to the protocol still.
1073 */
1074
1075static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1076{
1077        struct socket *sock;
1078        struct sock *sk;
1079        void __user *argp = (void __user *)arg;
1080        int pid, err;
1081        struct net *net;
1082
1083        sock = file->private_data;
1084        sk = sock->sk;
1085        net = sock_net(sk);
1086        if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1087                struct ifreq ifr;
1088                bool need_copyout;
1089                if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1090                        return -EFAULT;
1091                err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1092                if (!err && need_copyout)
1093                        if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1094                                return -EFAULT;
1095        } else
1096#ifdef CONFIG_WEXT_CORE
1097        if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1098                err = wext_handle_ioctl(net, cmd, argp);
1099        } else
1100#endif
1101                switch (cmd) {
1102                case FIOSETOWN:
1103                case SIOCSPGRP:
1104                        err = -EFAULT;
1105                        if (get_user(pid, (int __user *)argp))
1106                                break;
1107                        err = f_setown(sock->file, pid, 1);
1108                        break;
1109                case FIOGETOWN:
1110                case SIOCGPGRP:
1111                        err = put_user(f_getown(sock->file),
1112                                       (int __user *)argp);
1113                        break;
1114                case SIOCGIFBR:
1115                case SIOCSIFBR:
1116                case SIOCBRADDBR:
1117                case SIOCBRDELBR:
1118                        err = -ENOPKG;
1119                        if (!br_ioctl_hook)
1120                                request_module("bridge");
1121
1122                        mutex_lock(&br_ioctl_mutex);
1123                        if (br_ioctl_hook)
1124                                err = br_ioctl_hook(net, cmd, argp);
1125                        mutex_unlock(&br_ioctl_mutex);
1126                        break;
1127                case SIOCGIFVLAN:
1128                case SIOCSIFVLAN:
1129                        err = -ENOPKG;
1130                        if (!vlan_ioctl_hook)
1131                                request_module("8021q");
1132
1133                        mutex_lock(&vlan_ioctl_mutex);
1134                        if (vlan_ioctl_hook)
1135                                err = vlan_ioctl_hook(net, argp);
1136                        mutex_unlock(&vlan_ioctl_mutex);
1137                        break;
1138                case SIOCGSKNS:
1139                        err = -EPERM;
1140                        if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1141                                break;
1142
1143                        err = open_related_ns(&net->ns, get_net_ns);
1144                        break;
1145                case SIOCGSTAMP_OLD:
1146                case SIOCGSTAMPNS_OLD:
1147                        if (!sock->ops->gettstamp) {
1148                                err = -ENOIOCTLCMD;
1149                                break;
1150                        }
1151                        err = sock->ops->gettstamp(sock, argp,
1152                                                   cmd == SIOCGSTAMP_OLD,
1153                                                   !IS_ENABLED(CONFIG_64BIT));
1154                        break;
1155                case SIOCGSTAMP_NEW:
1156                case SIOCGSTAMPNS_NEW:
1157                        if (!sock->ops->gettstamp) {
1158                                err = -ENOIOCTLCMD;
1159                                break;
1160                        }
1161                        err = sock->ops->gettstamp(sock, argp,
1162                                                   cmd == SIOCGSTAMP_NEW,
1163                                                   false);
1164                        break;
1165                default:
1166                        err = sock_do_ioctl(net, sock, cmd, arg);
1167                        break;
1168                }
1169        return err;
1170}
1171
1172/**
1173 *      sock_create_lite - creates a socket
1174 *      @family: protocol family (AF_INET, ...)
1175 *      @type: communication type (SOCK_STREAM, ...)
1176 *      @protocol: protocol (0, ...)
1177 *      @res: new socket
1178 *
1179 *      Creates a new socket and assigns it to @res, passing through LSM.
1180 *      The new socket initialization is not complete, see kernel_accept().
1181 *      Returns 0 or an error. On failure @res is set to %NULL.
1182 *      This function internally uses GFP_KERNEL.
1183 */
1184
1185int sock_create_lite(int family, int type, int protocol, struct socket **res)
1186{
1187        int err;
1188        struct socket *sock = NULL;
1189
1190        err = security_socket_create(family, type, protocol, 1);
1191        if (err)
1192                goto out;
1193
1194        sock = sock_alloc();
1195        if (!sock) {
1196                err = -ENOMEM;
1197                goto out;
1198        }
1199
1200        sock->type = type;
1201        err = security_socket_post_create(sock, family, type, protocol, 1);
1202        if (err)
1203                goto out_release;
1204
1205out:
1206        *res = sock;
1207        return err;
1208out_release:
1209        sock_release(sock);
1210        sock = NULL;
1211        goto out;
1212}
1213EXPORT_SYMBOL(sock_create_lite);
1214
1215/* No kernel lock held - perfect */
1216static __poll_t sock_poll(struct file *file, poll_table *wait)
1217{
1218        struct socket *sock = file->private_data;
1219        __poll_t events = poll_requested_events(wait), flag = 0;
1220
1221        if (!sock->ops->poll)
1222                return 0;
1223
1224        if (sk_can_busy_loop(sock->sk)) {
1225                /* poll once if requested by the syscall */
1226                if (events & POLL_BUSY_LOOP)
1227                        sk_busy_loop(sock->sk, 1);
1228
1229                /* if this socket can poll_ll, tell the system call */
1230                flag = POLL_BUSY_LOOP;
1231        }
1232
1233        return sock->ops->poll(file, sock, wait) | flag;
1234}
1235
1236static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1237{
1238        struct socket *sock = file->private_data;
1239
1240        return sock->ops->mmap(file, sock, vma);
1241}
1242
1243static int sock_close(struct inode *inode, struct file *filp)
1244{
1245        __sock_release(SOCKET_I(inode), inode);
1246        return 0;
1247}
1248
1249/*
1250 *      Update the socket async list
1251 *
1252 *      Fasync_list locking strategy.
1253 *
1254 *      1. fasync_list is modified only under process context socket lock
1255 *         i.e. under semaphore.
1256 *      2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1257 *         or under socket lock
1258 */
1259
1260static int sock_fasync(int fd, struct file *filp, int on)
1261{
1262        struct socket *sock = filp->private_data;
1263        struct sock *sk = sock->sk;
1264        struct socket_wq *wq = &sock->wq;
1265
1266        if (sk == NULL)
1267                return -EINVAL;
1268
1269        lock_sock(sk);
1270        fasync_helper(fd, filp, on, &wq->fasync_list);
1271
1272        if (!wq->fasync_list)
1273                sock_reset_flag(sk, SOCK_FASYNC);
1274        else
1275                sock_set_flag(sk, SOCK_FASYNC);
1276
1277        release_sock(sk);
1278        return 0;
1279}
1280
1281/* This function may be called only under rcu_lock */
1282
1283int sock_wake_async(struct socket_wq *wq, int how, int band)
1284{
1285        if (!wq || !wq->fasync_list)
1286                return -1;
1287
1288        switch (how) {
1289        case SOCK_WAKE_WAITD:
1290                if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1291                        break;
1292                goto call_kill;
1293        case SOCK_WAKE_SPACE:
1294                if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1295                        break;
1296                fallthrough;
1297        case SOCK_WAKE_IO:
1298call_kill:
1299                kill_fasync(&wq->fasync_list, SIGIO, band);
1300                break;
1301        case SOCK_WAKE_URG:
1302                kill_fasync(&wq->fasync_list, SIGURG, band);
1303        }
1304
1305        return 0;
1306}
1307EXPORT_SYMBOL(sock_wake_async);
1308
1309/**
1310 *      __sock_create - creates a socket
1311 *      @net: net namespace
1312 *      @family: protocol family (AF_INET, ...)
1313 *      @type: communication type (SOCK_STREAM, ...)
1314 *      @protocol: protocol (0, ...)
1315 *      @res: new socket
1316 *      @kern: boolean for kernel space sockets
1317 *
1318 *      Creates a new socket and assigns it to @res, passing through LSM.
1319 *      Returns 0 or an error. On failure @res is set to %NULL. @kern must
1320 *      be set to true if the socket resides in kernel space.
1321 *      This function internally uses GFP_KERNEL.
1322 */
1323
1324int __sock_create(struct net *net, int family, int type, int protocol,
1325                         struct socket **res, int kern)
1326{
1327        int err;
1328        struct socket *sock;
1329        const struct net_proto_family *pf;
1330
1331        /*
1332         *      Check protocol is in range
1333         */
1334        if (family < 0 || family >= NPROTO)
1335                return -EAFNOSUPPORT;
1336        if (type < 0 || type >= SOCK_MAX)
1337                return -EINVAL;
1338
1339        /* Compatibility.
1340
1341           This uglymoron is moved from INET layer to here to avoid
1342           deadlock in module load.
1343         */
1344        if (family == PF_INET && type == SOCK_PACKET) {
1345                pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1346                             current->comm);
1347                family = PF_PACKET;
1348        }
1349
1350        err = security_socket_create(family, type, protocol, kern);
1351        if (err)
1352                return err;
1353
1354        /*
1355         *      Allocate the socket and allow the family to set things up. if
1356         *      the protocol is 0, the family is instructed to select an appropriate
1357         *      default.
1358         */
1359        sock = sock_alloc();
1360        if (!sock) {
1361                net_warn_ratelimited("socket: no more sockets\n");
1362                return -ENFILE; /* Not exactly a match, but its the
1363                                   closest posix thing */
1364        }
1365
1366        sock->type = type;
1367
1368#ifdef CONFIG_MODULES
1369        /* Attempt to load a protocol module if the find failed.
1370         *
1371         * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1372         * requested real, full-featured networking support upon configuration.
1373         * Otherwise module support will break!
1374         */
1375        if (rcu_access_pointer(net_families[family]) == NULL)
1376                request_module("net-pf-%d", family);
1377#endif
1378
1379        rcu_read_lock();
1380        pf = rcu_dereference(net_families[family]);
1381        err = -EAFNOSUPPORT;
1382        if (!pf)
1383                goto out_release;
1384
1385        /*
1386         * We will call the ->create function, that possibly is in a loadable
1387         * module, so we have to bump that loadable module refcnt first.
1388         */
1389        if (!try_module_get(pf->owner))
1390                goto out_release;
1391
1392        /* Now protected by module ref count */
1393        rcu_read_unlock();
1394
1395        err = pf->create(net, sock, protocol, kern);
1396        if (err < 0)
1397                goto out_module_put;
1398
1399        /*
1400         * Now to bump the refcnt of the [loadable] module that owns this
1401         * socket at sock_release time we decrement its refcnt.
1402         */
1403        if (!try_module_get(sock->ops->owner))
1404                goto out_module_busy;
1405
1406        /*
1407         * Now that we're done with the ->create function, the [loadable]
1408         * module can have its refcnt decremented
1409         */
1410        module_put(pf->owner);
1411        err = security_socket_post_create(sock, family, type, protocol, kern);
1412        if (err)
1413                goto out_sock_release;
1414        *res = sock;
1415
1416        return 0;
1417
1418out_module_busy:
1419        err = -EAFNOSUPPORT;
1420out_module_put:
1421        sock->ops = NULL;
1422        module_put(pf->owner);
1423out_sock_release:
1424        sock_release(sock);
1425        return err;
1426
1427out_release:
1428        rcu_read_unlock();
1429        goto out_sock_release;
1430}
1431EXPORT_SYMBOL(__sock_create);
1432
1433/**
1434 *      sock_create - creates a socket
1435 *      @family: protocol family (AF_INET, ...)
1436 *      @type: communication type (SOCK_STREAM, ...)
1437 *      @protocol: protocol (0, ...)
1438 *      @res: new socket
1439 *
1440 *      A wrapper around __sock_create().
1441 *      Returns 0 or an error. This function internally uses GFP_KERNEL.
1442 */
1443
1444int sock_create(int family, int type, int protocol, struct socket **res)
1445{
1446        return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1447}
1448EXPORT_SYMBOL(sock_create);
1449
1450/**
1451 *      sock_create_kern - creates a socket (kernel space)
1452 *      @net: net namespace
1453 *      @family: protocol family (AF_INET, ...)
1454 *      @type: communication type (SOCK_STREAM, ...)
1455 *      @protocol: protocol (0, ...)
1456 *      @res: new socket
1457 *
1458 *      A wrapper around __sock_create().
1459 *      Returns 0 or an error. This function internally uses GFP_KERNEL.
1460 */
1461
1462int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1463{
1464        return __sock_create(net, family, type, protocol, res, 1);
1465}
1466EXPORT_SYMBOL(sock_create_kern);
1467
1468int __sys_socket(int family, int type, int protocol)
1469{
1470        int retval;
1471        struct socket *sock;
1472        int flags;
1473
1474        /* Check the SOCK_* constants for consistency.  */
1475        BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1476        BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1477        BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1478        BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1479
1480        flags = type & ~SOCK_TYPE_MASK;
1481        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1482                return -EINVAL;
1483        type &= SOCK_TYPE_MASK;
1484
1485        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1486                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1487
1488        retval = sock_create(family, type, protocol, &sock);
1489        if (retval < 0)
1490                return retval;
1491
1492        return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1493}
1494
1495SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1496{
1497        return __sys_socket(family, type, protocol);
1498}
1499
1500/*
1501 *      Create a pair of connected sockets.
1502 */
1503
1504int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1505{
1506        struct socket *sock1, *sock2;
1507        int fd1, fd2, err;
1508        struct file *newfile1, *newfile2;
1509        int flags;
1510
1511        flags = type & ~SOCK_TYPE_MASK;
1512        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1513                return -EINVAL;
1514        type &= SOCK_TYPE_MASK;
1515
1516        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1517                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1518
1519        /*
1520         * reserve descriptors and make sure we won't fail
1521         * to return them to userland.
1522         */
1523        fd1 = get_unused_fd_flags(flags);
1524        if (unlikely(fd1 < 0))
1525                return fd1;
1526
1527        fd2 = get_unused_fd_flags(flags);
1528        if (unlikely(fd2 < 0)) {
1529                put_unused_fd(fd1);
1530                return fd2;
1531        }
1532
1533        err = put_user(fd1, &usockvec[0]);
1534        if (err)
1535                goto out;
1536
1537        err = put_user(fd2, &usockvec[1]);
1538        if (err)
1539                goto out;
1540
1541        /*
1542         * Obtain the first socket and check if the underlying protocol
1543         * supports the socketpair call.
1544         */
1545
1546        err = sock_create(family, type, protocol, &sock1);
1547        if (unlikely(err < 0))
1548                goto out;
1549
1550        err = sock_create(family, type, protocol, &sock2);
1551        if (unlikely(err < 0)) {
1552                sock_release(sock1);
1553                goto out;
1554        }
1555
1556        err = security_socket_socketpair(sock1, sock2);
1557        if (unlikely(err)) {
1558                sock_release(sock2);
1559                sock_release(sock1);
1560                goto out;
1561        }
1562
1563        err = sock1->ops->socketpair(sock1, sock2);
1564        if (unlikely(err < 0)) {
1565                sock_release(sock2);
1566                sock_release(sock1);
1567                goto out;
1568        }
1569
1570        newfile1 = sock_alloc_file(sock1, flags, NULL);
1571        if (IS_ERR(newfile1)) {
1572                err = PTR_ERR(newfile1);
1573                sock_release(sock2);
1574                goto out;
1575        }
1576
1577        newfile2 = sock_alloc_file(sock2, flags, NULL);
1578        if (IS_ERR(newfile2)) {
1579                err = PTR_ERR(newfile2);
1580                fput(newfile1);
1581                goto out;
1582        }
1583
1584        audit_fd_pair(fd1, fd2);
1585
1586        fd_install(fd1, newfile1);
1587        fd_install(fd2, newfile2);
1588        return 0;
1589
1590out:
1591        put_unused_fd(fd2);
1592        put_unused_fd(fd1);
1593        return err;
1594}
1595
1596SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1597                int __user *, usockvec)
1598{
1599        return __sys_socketpair(family, type, protocol, usockvec);
1600}
1601
1602/*
1603 *      Bind a name to a socket. Nothing much to do here since it's
1604 *      the protocol's responsibility to handle the local address.
1605 *
1606 *      We move the socket address to kernel space before we call
1607 *      the protocol layer (having also checked the address is ok).
1608 */
1609
1610int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1611{
1612        struct socket *sock;
1613        struct sockaddr_storage address;
1614        int err, fput_needed;
1615
1616        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1617        if (sock) {
1618                err = move_addr_to_kernel(umyaddr, addrlen, &address);
1619                if (!err) {
1620                        err = security_socket_bind(sock,
1621                                                   (struct sockaddr *)&address,
1622                                                   addrlen);
1623                        if (!err)
1624                                err = sock->ops->bind(sock,
1625                                                      (struct sockaddr *)
1626                                                      &address, addrlen);
1627                }
1628                fput_light(sock->file, fput_needed);
1629        }
1630        return err;
1631}
1632
1633SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1634{
1635        return __sys_bind(fd, umyaddr, addrlen);
1636}
1637
1638/*
1639 *      Perform a listen. Basically, we allow the protocol to do anything
1640 *      necessary for a listen, and if that works, we mark the socket as
1641 *      ready for listening.
1642 */
1643
1644int __sys_listen(int fd, int backlog)
1645{
1646        struct socket *sock;
1647        int err, fput_needed;
1648        int somaxconn;
1649
1650        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1651        if (sock) {
1652                somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1653                if ((unsigned int)backlog > somaxconn)
1654                        backlog = somaxconn;
1655
1656                err = security_socket_listen(sock, backlog);
1657                if (!err)
1658                        err = sock->ops->listen(sock, backlog);
1659
1660                fput_light(sock->file, fput_needed);
1661        }
1662        return err;
1663}
1664
1665SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1666{
1667        return __sys_listen(fd, backlog);
1668}
1669
1670int __sys_accept4_file(struct file *file, unsigned file_flags,
1671                       struct sockaddr __user *upeer_sockaddr,
1672                       int __user *upeer_addrlen, int flags,
1673                       unsigned long nofile)
1674{
1675        struct socket *sock, *newsock;
1676        struct file *newfile;
1677        int err, len, newfd;
1678        struct sockaddr_storage address;
1679
1680        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1681                return -EINVAL;
1682
1683        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1684                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1685
1686        sock = sock_from_file(file);
1687        if (!sock) {
1688                err = -ENOTSOCK;
1689                goto out;
1690        }
1691
1692        err = -ENFILE;
1693        newsock = sock_alloc();
1694        if (!newsock)
1695                goto out;
1696
1697        newsock->type = sock->type;
1698        newsock->ops = sock->ops;
1699
1700        /*
1701         * We don't need try_module_get here, as the listening socket (sock)
1702         * has the protocol module (sock->ops->owner) held.
1703         */
1704        __module_get(newsock->ops->owner);
1705
1706        newfd = __get_unused_fd_flags(flags, nofile);
1707        if (unlikely(newfd < 0)) {
1708                err = newfd;
1709                sock_release(newsock);
1710                goto out;
1711        }
1712        newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1713        if (IS_ERR(newfile)) {
1714                err = PTR_ERR(newfile);
1715                put_unused_fd(newfd);
1716                goto out;
1717        }
1718
1719        err = security_socket_accept(sock, newsock);
1720        if (err)
1721                goto out_fd;
1722
1723        err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1724                                        false);
1725        if (err < 0)
1726                goto out_fd;
1727
1728        if (upeer_sockaddr) {
1729                len = newsock->ops->getname(newsock,
1730                                        (struct sockaddr *)&address, 2);
1731                if (len < 0) {
1732                        err = -ECONNABORTED;
1733                        goto out_fd;
1734                }
1735                err = move_addr_to_user(&address,
1736                                        len, upeer_sockaddr, upeer_addrlen);
1737                if (err < 0)
1738                        goto out_fd;
1739        }
1740
1741        /* File flags are not inherited via accept() unlike another OSes. */
1742
1743        fd_install(newfd, newfile);
1744        err = newfd;
1745out:
1746        return err;
1747out_fd:
1748        fput(newfile);
1749        put_unused_fd(newfd);
1750        goto out;
1751
1752}
1753
1754/*
1755 *      For accept, we attempt to create a new socket, set up the link
1756 *      with the client, wake up the client, then return the new
1757 *      connected fd. We collect the address of the connector in kernel
1758 *      space and move it to user at the very end. This is unclean because
1759 *      we open the socket then return an error.
1760 *
1761 *      1003.1g adds the ability to recvmsg() to query connection pending
1762 *      status to recvmsg. We need to add that support in a way thats
1763 *      clean when we restructure accept also.
1764 */
1765
1766int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1767                  int __user *upeer_addrlen, int flags)
1768{
1769        int ret = -EBADF;
1770        struct fd f;
1771
1772        f = fdget(fd);
1773        if (f.file) {
1774                ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1775                                                upeer_addrlen, flags,
1776                                                rlimit(RLIMIT_NOFILE));
1777                fdput(f);
1778        }
1779
1780        return ret;
1781}
1782
1783SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1784                int __user *, upeer_addrlen, int, flags)
1785{
1786        return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1787}
1788
1789SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1790                int __user *, upeer_addrlen)
1791{
1792        return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1793}
1794
1795/*
1796 *      Attempt to connect to a socket with the server address.  The address
1797 *      is in user space so we verify it is OK and move it to kernel space.
1798 *
1799 *      For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1800 *      break bindings
1801 *
1802 *      NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1803 *      other SEQPACKET protocols that take time to connect() as it doesn't
1804 *      include the -EINPROGRESS status for such sockets.
1805 */
1806
1807int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1808                       int addrlen, int file_flags)
1809{
1810        struct socket *sock;
1811        int err;
1812
1813        sock = sock_from_file(file);
1814        if (!sock) {
1815                err = -ENOTSOCK;
1816                goto out;
1817        }
1818
1819        err =
1820            security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1821        if (err)
1822                goto out;
1823
1824        err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1825                                 sock->file->f_flags | file_flags);
1826out:
1827        return err;
1828}
1829
1830int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1831{
1832        int ret = -EBADF;
1833        struct fd f;
1834
1835        f = fdget(fd);
1836        if (f.file) {
1837                struct sockaddr_storage address;
1838
1839                ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1840                if (!ret)
1841                        ret = __sys_connect_file(f.file, &address, addrlen, 0);
1842                fdput(f);
1843        }
1844
1845        return ret;
1846}
1847
1848SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1849                int, addrlen)
1850{
1851        return __sys_connect(fd, uservaddr, addrlen);
1852}
1853
1854/*
1855 *      Get the local address ('name') of a socket object. Move the obtained
1856 *      name to user space.
1857 */
1858
1859int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1860                      int __user *usockaddr_len)
1861{
1862        struct socket *sock;
1863        struct sockaddr_storage address;
1864        int err, fput_needed;
1865
1866        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1867        if (!sock)
1868                goto out;
1869
1870        err = security_socket_getsockname(sock);
1871        if (err)
1872                goto out_put;
1873
1874        err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1875        if (err < 0)
1876                goto out_put;
1877        /* "err" is actually length in this case */
1878        err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1879
1880out_put:
1881        fput_light(sock->file, fput_needed);
1882out:
1883        return err;
1884}
1885
1886SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1887                int __user *, usockaddr_len)
1888{
1889        return __sys_getsockname(fd, usockaddr, usockaddr_len);
1890}
1891
1892/*
1893 *      Get the remote address ('name') of a socket object. Move the obtained
1894 *      name to user space.
1895 */
1896
1897int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1898                      int __user *usockaddr_len)
1899{
1900        struct socket *sock;
1901        struct sockaddr_storage address;
1902        int err, fput_needed;
1903
1904        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1905        if (sock != NULL) {
1906                err = security_socket_getpeername(sock);
1907                if (err) {
1908                        fput_light(sock->file, fput_needed);
1909                        return err;
1910                }
1911
1912                err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1913                if (err >= 0)
1914                        /* "err" is actually length in this case */
1915                        err = move_addr_to_user(&address, err, usockaddr,
1916                                                usockaddr_len);
1917                fput_light(sock->file, fput_needed);
1918        }
1919        return err;
1920}
1921
1922SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1923                int __user *, usockaddr_len)
1924{
1925        return __sys_getpeername(fd, usockaddr, usockaddr_len);
1926}
1927
1928/*
1929 *      Send a datagram to a given address. We move the address into kernel
1930 *      space and check the user space data area is readable before invoking
1931 *      the protocol.
1932 */
1933int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1934                 struct sockaddr __user *addr,  int addr_len)
1935{
1936        struct socket *sock;
1937        struct sockaddr_storage address;
1938        int err;
1939        struct msghdr msg;
1940        struct iovec iov;
1941        int fput_needed;
1942
1943        err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1944        if (unlikely(err))
1945                return err;
1946        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1947        if (!sock)
1948                goto out;
1949
1950        msg.msg_name = NULL;
1951        msg.msg_control = NULL;
1952        msg.msg_controllen = 0;
1953        msg.msg_namelen = 0;
1954        if (addr) {
1955                err = move_addr_to_kernel(addr, addr_len, &address);
1956                if (err < 0)
1957                        goto out_put;
1958                msg.msg_name = (struct sockaddr *)&address;
1959                msg.msg_namelen = addr_len;
1960        }
1961        if (sock->file->f_flags & O_NONBLOCK)
1962                flags |= MSG_DONTWAIT;
1963        msg.msg_flags = flags;
1964        err = sock_sendmsg(sock, &msg);
1965
1966out_put:
1967        fput_light(sock->file, fput_needed);
1968out:
1969        return err;
1970}
1971
1972SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1973                unsigned int, flags, struct sockaddr __user *, addr,
1974                int, addr_len)
1975{
1976        return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1977}
1978
1979/*
1980 *      Send a datagram down a socket.
1981 */
1982
1983SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1984                unsigned int, flags)
1985{
1986        return __sys_sendto(fd, buff, len, flags, NULL, 0);
1987}
1988
1989/*
1990 *      Receive a frame from the socket and optionally record the address of the
1991 *      sender. We verify the buffers are writable and if needed move the
1992 *      sender address from kernel to user space.
1993 */
1994int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1995                   struct sockaddr __user *addr, int __user *addr_len)
1996{
1997        struct socket *sock;
1998        struct iovec iov;
1999        struct msghdr msg;
2000        struct sockaddr_storage address;
2001        int err, err2;
2002        int fput_needed;
2003
2004        err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2005        if (unlikely(err))
2006                return err;
2007        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2008        if (!sock)
2009                goto out;
2010
2011        msg.msg_control = NULL;
2012        msg.msg_controllen = 0;
2013        /* Save some cycles and don't copy the address if not needed */
2014        msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2015        /* We assume all kernel code knows the size of sockaddr_storage */
2016        msg.msg_namelen = 0;
2017        msg.msg_iocb = NULL;
2018        msg.msg_flags = 0;
2019        if (sock->file->f_flags & O_NONBLOCK)
2020                flags |= MSG_DONTWAIT;
2021        err = sock_recvmsg(sock, &msg, flags);
2022
2023        if (err >= 0 && addr != NULL) {
2024                err2 = move_addr_to_user(&address,
2025                                         msg.msg_namelen, addr, addr_len);
2026                if (err2 < 0)
2027                        err = err2;
2028        }
2029
2030        fput_light(sock->file, fput_needed);
2031out:
2032        return err;
2033}
2034
2035SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2036                unsigned int, flags, struct sockaddr __user *, addr,
2037                int __user *, addr_len)
2038{
2039        return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2040}
2041
2042/*
2043 *      Receive a datagram from a socket.
2044 */
2045
2046SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2047                unsigned int, flags)
2048{
2049        return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2050}
2051
2052static bool sock_use_custom_sol_socket(const struct socket *sock)
2053{
2054        const struct sock *sk = sock->sk;
2055
2056        /* Use sock->ops->setsockopt() for MPTCP */
2057        return IS_ENABLED(CONFIG_MPTCP) &&
2058               sk->sk_protocol == IPPROTO_MPTCP &&
2059               sk->sk_type == SOCK_STREAM &&
2060               (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2061}
2062
2063/*
2064 *      Set a socket option. Because we don't know the option lengths we have
2065 *      to pass the user mode parameter for the protocols to sort out.
2066 */
2067int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2068                int optlen)
2069{
2070        sockptr_t optval = USER_SOCKPTR(user_optval);
2071        char *kernel_optval = NULL;
2072        int err, fput_needed;
2073        struct socket *sock;
2074
2075        if (optlen < 0)
2076                return -EINVAL;
2077
2078        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2079        if (!sock)
2080                return err;
2081
2082        err = security_socket_setsockopt(sock, level, optname);
2083        if (err)
2084                goto out_put;
2085
2086        if (!in_compat_syscall())
2087                err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2088                                                     user_optval, &optlen,
2089                                                     &kernel_optval);
2090        if (err < 0)
2091                goto out_put;
2092        if (err > 0) {
2093                err = 0;
2094                goto out_put;
2095        }
2096
2097        if (kernel_optval)
2098                optval = KERNEL_SOCKPTR(kernel_optval);
2099        if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2100                err = sock_setsockopt(sock, level, optname, optval, optlen);
2101        else if (unlikely(!sock->ops->setsockopt))
2102                err = -EOPNOTSUPP;
2103        else
2104                err = sock->ops->setsockopt(sock, level, optname, optval,
2105                                            optlen);
2106        kfree(kernel_optval);
2107out_put:
2108        fput_light(sock->file, fput_needed);
2109        return err;
2110}
2111
2112SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2113                char __user *, optval, int, optlen)
2114{
2115        return __sys_setsockopt(fd, level, optname, optval, optlen);
2116}
2117
2118INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2119                                                         int optname));
2120
2121/*
2122 *      Get a socket option. Because we don't know the option lengths we have
2123 *      to pass a user mode parameter for the protocols to sort out.
2124 */
2125int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2126                int __user *optlen)
2127{
2128        int err, fput_needed;
2129        struct socket *sock;
2130        int max_optlen;
2131
2132        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2133        if (!sock)
2134                return err;
2135
2136        err = security_socket_getsockopt(sock, level, optname);
2137        if (err)
2138                goto out_put;
2139
2140        if (!in_compat_syscall())
2141                max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2142
2143        if (level == SOL_SOCKET)
2144                err = sock_getsockopt(sock, level, optname, optval, optlen);
2145        else if (unlikely(!sock->ops->getsockopt))
2146                err = -EOPNOTSUPP;
2147        else
2148                err = sock->ops->getsockopt(sock, level, optname, optval,
2149                                            optlen);
2150
2151        if (!in_compat_syscall())
2152                err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2153                                                     optval, optlen, max_optlen,
2154                                                     err);
2155out_put:
2156        fput_light(sock->file, fput_needed);
2157        return err;
2158}
2159
2160SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2161                char __user *, optval, int __user *, optlen)
2162{
2163        return __sys_getsockopt(fd, level, optname, optval, optlen);
2164}
2165
2166/*
2167 *      Shutdown a socket.
2168 */
2169
2170int __sys_shutdown_sock(struct socket *sock, int how)
2171{
2172        int err;
2173
2174        err = security_socket_shutdown(sock, how);
2175        if (!err)
2176                err = sock->ops->shutdown(sock, how);
2177
2178        return err;
2179}
2180
2181int __sys_shutdown(int fd, int how)
2182{
2183        int err, fput_needed;
2184        struct socket *sock;
2185
2186        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2187        if (sock != NULL) {
2188                err = __sys_shutdown_sock(sock, how);
2189                fput_light(sock->file, fput_needed);
2190        }
2191        return err;
2192}
2193
2194SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2195{
2196        return __sys_shutdown(fd, how);
2197}
2198
2199/* A couple of helpful macros for getting the address of the 32/64 bit
2200 * fields which are the same type (int / unsigned) on our platforms.
2201 */
2202#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2203#define COMPAT_NAMELEN(msg)     COMPAT_MSG(msg, msg_namelen)
2204#define COMPAT_FLAGS(msg)       COMPAT_MSG(msg, msg_flags)
2205
2206struct used_address {
2207        struct sockaddr_storage name;
2208        unsigned int name_len;
2209};
2210
2211int __copy_msghdr_from_user(struct msghdr *kmsg,
2212                            struct user_msghdr __user *umsg,
2213                            struct sockaddr __user **save_addr,
2214                            struct iovec __user **uiov, size_t *nsegs)
2215{
2216        struct user_msghdr msg;
2217        ssize_t err;
2218
2219        if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2220                return -EFAULT;
2221
2222        kmsg->msg_control_is_user = true;
2223        kmsg->msg_control_user = msg.msg_control;
2224        kmsg->msg_controllen = msg.msg_controllen;
2225        kmsg->msg_flags = msg.msg_flags;
2226
2227        kmsg->msg_namelen = msg.msg_namelen;
2228        if (!msg.msg_name)
2229                kmsg->msg_namelen = 0;
2230
2231        if (kmsg->msg_namelen < 0)
2232                return -EINVAL;
2233
2234        if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2235                kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2236
2237        if (save_addr)
2238                *save_addr = msg.msg_name;
2239
2240        if (msg.msg_name && kmsg->msg_namelen) {
2241                if (!save_addr) {
2242                        err = move_addr_to_kernel(msg.msg_name,
2243                                                  kmsg->msg_namelen,
2244                                                  kmsg->msg_name);
2245                        if (err < 0)
2246                                return err;
2247                }
2248        } else {
2249                kmsg->msg_name = NULL;
2250                kmsg->msg_namelen = 0;
2251        }
2252
2253        if (msg.msg_iovlen > UIO_MAXIOV)
2254                return -EMSGSIZE;
2255
2256        kmsg->msg_iocb = NULL;
2257        *uiov = msg.msg_iov;
2258        *nsegs = msg.msg_iovlen;
2259        return 0;
2260}
2261
2262static int copy_msghdr_from_user(struct msghdr *kmsg,
2263                                 struct user_msghdr __user *umsg,
2264                                 struct sockaddr __user **save_addr,
2265                                 struct iovec **iov)
2266{
2267        struct user_msghdr msg;
2268        ssize_t err;
2269
2270        err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2271                                        &msg.msg_iovlen);
2272        if (err)
2273                return err;
2274
2275        err = import_iovec(save_addr ? READ : WRITE,
2276                            msg.msg_iov, msg.msg_iovlen,
2277                            UIO_FASTIOV, iov, &kmsg->msg_iter);
2278        return err < 0 ? err : 0;
2279}
2280
2281static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2282                           unsigned int flags, struct used_address *used_address,
2283                           unsigned int allowed_msghdr_flags)
2284{
2285        unsigned char ctl[sizeof(struct cmsghdr) + 20]
2286                                __aligned(sizeof(__kernel_size_t));
2287        /* 20 is size of ipv6_pktinfo */
2288        unsigned char *ctl_buf = ctl;
2289        int ctl_len;
2290        ssize_t err;
2291
2292        err = -ENOBUFS;
2293
2294        if (msg_sys->msg_controllen > INT_MAX)
2295                goto out;
2296        flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2297        ctl_len = msg_sys->msg_controllen;
2298        if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2299                err =
2300                    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2301                                                     sizeof(ctl));
2302                if (err)
2303                        goto out;
2304                ctl_buf = msg_sys->msg_control;
2305                ctl_len = msg_sys->msg_controllen;
2306        } else if (ctl_len) {
2307                BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2308                             CMSG_ALIGN(sizeof(struct cmsghdr)));
2309                if (ctl_len > sizeof(ctl)) {
2310                        ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2311                        if (ctl_buf == NULL)
2312                                goto out;
2313                }
2314                err = -EFAULT;
2315                if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2316                        goto out_freectl;
2317                msg_sys->msg_control = ctl_buf;
2318                msg_sys->msg_control_is_user = false;
2319        }
2320        msg_sys->msg_flags = flags;
2321
2322        if (sock->file->f_flags & O_NONBLOCK)
2323                msg_sys->msg_flags |= MSG_DONTWAIT;
2324        /*
2325         * If this is sendmmsg() and current destination address is same as
2326         * previously succeeded address, omit asking LSM's decision.
2327         * used_address->name_len is initialized to UINT_MAX so that the first
2328         * destination address never matches.
2329         */
2330        if (used_address && msg_sys->msg_name &&
2331            used_address->name_len == msg_sys->msg_namelen &&
2332            !memcmp(&used_address->name, msg_sys->msg_name,
2333                    used_address->name_len)) {
2334                err = sock_sendmsg_nosec(sock, msg_sys);
2335                goto out_freectl;
2336        }
2337        err = sock_sendmsg(sock, msg_sys);
2338        /*
2339         * If this is sendmmsg() and sending to current destination address was
2340         * successful, remember it.
2341         */
2342        if (used_address && err >= 0) {
2343                used_address->name_len = msg_sys->msg_namelen;
2344                if (msg_sys->msg_name)
2345                        memcpy(&used_address->name, msg_sys->msg_name,
2346                               used_address->name_len);
2347        }
2348
2349out_freectl:
2350        if (ctl_buf != ctl)
2351                sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2352out:
2353        return err;
2354}
2355
2356int sendmsg_copy_msghdr(struct msghdr *msg,
2357                        struct user_msghdr __user *umsg, unsigned flags,
2358                        struct iovec **iov)
2359{
2360        int err;
2361
2362        if (flags & MSG_CMSG_COMPAT) {
2363                struct compat_msghdr __user *msg_compat;
2364
2365                msg_compat = (struct compat_msghdr __user *) umsg;
2366                err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2367        } else {
2368                err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2369        }
2370        if (err < 0)
2371                return err;
2372
2373        return 0;
2374}
2375
2376static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2377                         struct msghdr *msg_sys, unsigned int flags,
2378                         struct used_address *used_address,
2379                         unsigned int allowed_msghdr_flags)
2380{
2381        struct sockaddr_storage address;
2382        struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2383        ssize_t err;
2384
2385        msg_sys->msg_name = &address;
2386
2387        err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2388        if (err < 0)
2389                return err;
2390
2391        err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2392                                allowed_msghdr_flags);
2393        kfree(iov);
2394        return err;
2395}
2396
2397/*
2398 *      BSD sendmsg interface
2399 */
2400long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2401                        unsigned int flags)
2402{
2403        return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2404}
2405
2406long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2407                   bool forbid_cmsg_compat)
2408{
2409        int fput_needed, err;
2410        struct msghdr msg_sys;
2411        struct socket *sock;
2412
2413        if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2414                return -EINVAL;
2415
2416        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2417        if (!sock)
2418                goto out;
2419
2420        err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2421
2422        fput_light(sock->file, fput_needed);
2423out:
2424        return err;
2425}
2426
2427SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2428{
2429        return __sys_sendmsg(fd, msg, flags, true);
2430}
2431
2432/*
2433 *      Linux sendmmsg interface
2434 */
2435
2436int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2437                   unsigned int flags, bool forbid_cmsg_compat)
2438{
2439        int fput_needed, err, datagrams;
2440        struct socket *sock;
2441        struct mmsghdr __user *entry;
2442        struct compat_mmsghdr __user *compat_entry;
2443        struct msghdr msg_sys;
2444        struct used_address used_address;
2445        unsigned int oflags = flags;
2446
2447        if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2448                return -EINVAL;
2449
2450        if (vlen > UIO_MAXIOV)
2451                vlen = UIO_MAXIOV;
2452
2453        datagrams = 0;
2454
2455        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2456        if (!sock)
2457                return err;
2458
2459        used_address.name_len = UINT_MAX;
2460        entry = mmsg;
2461        compat_entry = (struct compat_mmsghdr __user *)mmsg;
2462        err = 0;
2463        flags |= MSG_BATCH;
2464
2465        while (datagrams < vlen) {
2466                if (datagrams == vlen - 1)
2467                        flags = oflags;
2468
2469                if (MSG_CMSG_COMPAT & flags) {
2470                        err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2471                                             &msg_sys, flags, &used_address, MSG_EOR);
2472                        if (err < 0)
2473                                break;
2474                        err = __put_user(err, &compat_entry->msg_len);
2475                        ++compat_entry;
2476                } else {
2477                        err = ___sys_sendmsg(sock,
2478                                             (struct user_msghdr __user *)entry,
2479                                             &msg_sys, flags, &used_address, MSG_EOR);
2480                        if (err < 0)
2481                                break;
2482                        err = put_user(err, &entry->msg_len);
2483                        ++entry;
2484                }
2485
2486                if (err)
2487                        break;
2488                ++datagrams;
2489                if (msg_data_left(&msg_sys))
2490                        break;
2491                cond_resched();
2492        }
2493
2494        fput_light(sock->file, fput_needed);
2495
2496        /* We only return an error if no datagrams were able to be sent */
2497        if (datagrams != 0)
2498                return datagrams;
2499
2500        return err;
2501}
2502
2503SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2504                unsigned int, vlen, unsigned int, flags)
2505{
2506        return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2507}
2508
2509int recvmsg_copy_msghdr(struct msghdr *msg,
2510                        struct user_msghdr __user *umsg, unsigned flags,
2511                        struct sockaddr __user **uaddr,
2512                        struct iovec **iov)
2513{
2514        ssize_t err;
2515
2516        if (MSG_CMSG_COMPAT & flags) {
2517                struct compat_msghdr __user *msg_compat;
2518
2519                msg_compat = (struct compat_msghdr __user *) umsg;
2520                err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2521        } else {
2522                err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2523        }
2524        if (err < 0)
2525                return err;
2526
2527        return 0;
2528}
2529
2530static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2531                           struct user_msghdr __user *msg,
2532                           struct sockaddr __user *uaddr,
2533                           unsigned int flags, int nosec)
2534{
2535        struct compat_msghdr __user *msg_compat =
2536                                        (struct compat_msghdr __user *) msg;
2537        int __user *uaddr_len = COMPAT_NAMELEN(msg);
2538        struct sockaddr_storage addr;
2539        unsigned long cmsg_ptr;
2540        int len;
2541        ssize_t err;
2542
2543        msg_sys->msg_name = &addr;
2544        cmsg_ptr = (unsigned long)msg_sys->msg_control;
2545        msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2546
2547        /* We assume all kernel code knows the size of sockaddr_storage */
2548        msg_sys->msg_namelen = 0;
2549
2550        if (sock->file->f_flags & O_NONBLOCK)
2551                flags |= MSG_DONTWAIT;
2552
2553        if (unlikely(nosec))
2554                err = sock_recvmsg_nosec(sock, msg_sys, flags);
2555        else
2556                err = sock_recvmsg(sock, msg_sys, flags);
2557
2558        if (err < 0)
2559                goto out;
2560        len = err;
2561
2562        if (uaddr != NULL) {
2563                err = move_addr_to_user(&addr,
2564                                        msg_sys->msg_namelen, uaddr,
2565                                        uaddr_len);
2566                if (err < 0)
2567                        goto out;
2568        }
2569        err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2570                         COMPAT_FLAGS(msg));
2571        if (err)
2572                goto out;
2573        if (MSG_CMSG_COMPAT & flags)
2574                err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2575                                 &msg_compat->msg_controllen);
2576        else
2577                err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2578                                 &msg->msg_controllen);
2579        if (err)
2580                goto out;
2581        err = len;
2582out:
2583        return err;
2584}
2585
2586static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2587                         struct msghdr *msg_sys, unsigned int flags, int nosec)
2588{
2589        struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2590        /* user mode address pointers */
2591        struct sockaddr __user *uaddr;
2592        ssize_t err;
2593
2594        err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2595        if (err < 0)
2596                return err;
2597
2598        err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2599        kfree(iov);
2600        return err;
2601}
2602
2603/*
2604 *      BSD recvmsg interface
2605 */
2606
2607long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2608                        struct user_msghdr __user *umsg,
2609                        struct sockaddr __user *uaddr, unsigned int flags)
2610{
2611        return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2612}
2613
2614long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2615                   bool forbid_cmsg_compat)
2616{
2617        int fput_needed, err;
2618        struct msghdr msg_sys;
2619        struct socket *sock;
2620
2621        if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2622                return -EINVAL;
2623
2624        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2625        if (!sock)
2626                goto out;
2627
2628        err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2629
2630        fput_light(sock->file, fput_needed);
2631out:
2632        return err;
2633}
2634
2635SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2636                unsigned int, flags)
2637{
2638        return __sys_recvmsg(fd, msg, flags, true);
2639}
2640
2641/*
2642 *     Linux recvmmsg interface
2643 */
2644
2645static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2646                          unsigned int vlen, unsigned int flags,
2647                          struct timespec64 *timeout)
2648{
2649        int fput_needed, err, datagrams;
2650        struct socket *sock;
2651        struct mmsghdr __user *entry;
2652        struct compat_mmsghdr __user *compat_entry;
2653        struct msghdr msg_sys;
2654        struct timespec64 end_time;
2655        struct timespec64 timeout64;
2656
2657        if (timeout &&
2658            poll_select_set_timeout(&end_time, timeout->tv_sec,
2659                                    timeout->tv_nsec))
2660                return -EINVAL;
2661
2662        datagrams = 0;
2663
2664        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2665        if (!sock)
2666                return err;
2667
2668        if (likely(!(flags & MSG_ERRQUEUE))) {
2669                err = sock_error(sock->sk);
2670                if (err) {
2671                        datagrams = err;
2672                        goto out_put;
2673                }
2674        }
2675
2676        entry = mmsg;
2677        compat_entry = (struct compat_mmsghdr __user *)mmsg;
2678
2679        while (datagrams < vlen) {
2680                /*
2681                 * No need to ask LSM for more than the first datagram.
2682                 */
2683                if (MSG_CMSG_COMPAT & flags) {
2684                        err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2685                                             &msg_sys, flags & ~MSG_WAITFORONE,
2686                                             datagrams);
2687                        if (err < 0)
2688                                break;
2689                        err = __put_user(err, &compat_entry->msg_len);
2690                        ++compat_entry;
2691                } else {
2692                        err = ___sys_recvmsg(sock,
2693                                             (struct user_msghdr __user *)entry,
2694                                             &msg_sys, flags & ~MSG_WAITFORONE,
2695                                             datagrams);
2696                        if (err < 0)
2697                                break;
2698                        err = put_user(err, &entry->msg_len);
2699                        ++entry;
2700                }
2701
2702                if (err)
2703                        break;
2704                ++datagrams;
2705
2706                /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2707                if (flags & MSG_WAITFORONE)
2708                        flags |= MSG_DONTWAIT;
2709
2710                if (timeout) {
2711                        ktime_get_ts64(&timeout64);
2712                        *timeout = timespec64_sub(end_time, timeout64);
2713                        if (timeout->tv_sec < 0) {
2714                                timeout->tv_sec = timeout->tv_nsec = 0;
2715                                break;
2716                        }
2717
2718                        /* Timeout, return less than vlen datagrams */
2719                        if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2720                                break;
2721                }
2722
2723                /* Out of band data, return right away */
2724                if (msg_sys.msg_flags & MSG_OOB)
2725                        break;
2726                cond_resched();
2727        }
2728
2729        if (err == 0)
2730                goto out_put;
2731
2732        if (datagrams == 0) {
2733                datagrams = err;
2734                goto out_put;
2735        }
2736
2737        /*
2738         * We may return less entries than requested (vlen) if the
2739         * sock is non block and there aren't enough datagrams...
2740         */
2741        if (err != -EAGAIN) {
2742                /*
2743                 * ... or  if recvmsg returns an error after we
2744                 * received some datagrams, where we record the
2745                 * error to return on the next call or if the
2746                 * app asks about it using getsockopt(SO_ERROR).
2747                 */
2748                sock->sk->sk_err = -err;
2749        }
2750out_put:
2751        fput_light(sock->file, fput_needed);
2752
2753        return datagrams;
2754}
2755
2756int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2757                   unsigned int vlen, unsigned int flags,
2758                   struct __kernel_timespec __user *timeout,
2759                   struct old_timespec32 __user *timeout32)
2760{
2761        int datagrams;
2762        struct timespec64 timeout_sys;
2763
2764        if (timeout && get_timespec64(&timeout_sys, timeout))
2765                return -EFAULT;
2766
2767        if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2768                return -EFAULT;
2769
2770        if (!timeout && !timeout32)
2771                return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2772
2773        datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2774
2775        if (datagrams <= 0)
2776                return datagrams;
2777
2778        if (timeout && put_timespec64(&timeout_sys, timeout))
2779                datagrams = -EFAULT;
2780
2781        if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2782                datagrams = -EFAULT;
2783
2784        return datagrams;
2785}
2786
2787SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2788                unsigned int, vlen, unsigned int, flags,
2789                struct __kernel_timespec __user *, timeout)
2790{
2791        if (flags & MSG_CMSG_COMPAT)
2792                return -EINVAL;
2793
2794        return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2795}
2796
2797#ifdef CONFIG_COMPAT_32BIT_TIME
2798SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2799                unsigned int, vlen, unsigned int, flags,
2800                struct old_timespec32 __user *, timeout)
2801{
2802        if (flags & MSG_CMSG_COMPAT)
2803                return -EINVAL;
2804
2805        return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2806}
2807#endif
2808
2809#ifdef __ARCH_WANT_SYS_SOCKETCALL
2810/* Argument list sizes for sys_socketcall */
2811#define AL(x) ((x) * sizeof(unsigned long))
2812static const unsigned char nargs[21] = {
2813        AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2814        AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2815        AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2816        AL(4), AL(5), AL(4)
2817};
2818
2819#undef AL
2820
2821/*
2822 *      System call vectors.
2823 *
2824 *      Argument checking cleaned up. Saved 20% in size.
2825 *  This function doesn't need to set the kernel lock because
2826 *  it is set by the callees.
2827 */
2828
2829SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2830{
2831        unsigned long a[AUDITSC_ARGS];
2832        unsigned long a0, a1;
2833        int err;
2834        unsigned int len;
2835
2836        if (call < 1 || call > SYS_SENDMMSG)
2837                return -EINVAL;
2838        call = array_index_nospec(call, SYS_SENDMMSG + 1);
2839
2840        len = nargs[call];
2841        if (len > sizeof(a))
2842                return -EINVAL;
2843
2844        /* copy_from_user should be SMP safe. */
2845        if (copy_from_user(a, args, len))
2846                return -EFAULT;
2847
2848        err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2849        if (err)
2850                return err;
2851
2852        a0 = a[0];
2853        a1 = a[1];
2854
2855        switch (call) {
2856        case SYS_SOCKET:
2857                err = __sys_socket(a0, a1, a[2]);
2858                break;
2859        case SYS_BIND:
2860                err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2861                break;
2862        case SYS_CONNECT:
2863                err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2864                break;
2865        case SYS_LISTEN:
2866                err = __sys_listen(a0, a1);
2867                break;
2868        case SYS_ACCEPT:
2869                err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2870                                    (int __user *)a[2], 0);
2871                break;
2872        case SYS_GETSOCKNAME:
2873                err =
2874                    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2875                                      (int __user *)a[2]);
2876                break;
2877        case SYS_GETPEERNAME:
2878                err =
2879                    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2880                                      (int __user *)a[2]);
2881                break;
2882        case SYS_SOCKETPAIR:
2883                err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2884                break;
2885        case SYS_SEND:
2886                err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2887                                   NULL, 0);
2888                break;
2889        case SYS_SENDTO:
2890                err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2891                                   (struct sockaddr __user *)a[4], a[5]);
2892                break;
2893        case SYS_RECV:
2894                err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2895                                     NULL, NULL);
2896                break;
2897        case SYS_RECVFROM:
2898                err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2899                                     (struct sockaddr __user *)a[4],
2900                                     (int __user *)a[5]);
2901                break;
2902        case SYS_SHUTDOWN:
2903                err = __sys_shutdown(a0, a1);
2904                break;
2905        case SYS_SETSOCKOPT:
2906                err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2907                                       a[4]);
2908                break;
2909        case SYS_GETSOCKOPT:
2910                err =
2911                    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2912                                     (int __user *)a[4]);
2913                break;
2914        case SYS_SENDMSG:
2915                err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2916                                    a[2], true);
2917                break;
2918        case SYS_SENDMMSG:
2919                err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2920                                     a[3], true);
2921                break;
2922        case SYS_RECVMSG:
2923                err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2924                                    a[2], true);
2925                break;
2926        case SYS_RECVMMSG:
2927                if (IS_ENABLED(CONFIG_64BIT))
2928                        err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2929                                             a[2], a[3],
2930                                             (struct __kernel_timespec __user *)a[4],
2931                                             NULL);
2932                else
2933                        err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2934                                             a[2], a[3], NULL,
2935                                             (struct old_timespec32 __user *)a[4]);
2936                break;
2937        case SYS_ACCEPT4:
2938                err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2939                                    (int __user *)a[2], a[3]);
2940                break;
2941        default:
2942                err = -EINVAL;
2943                break;
2944        }
2945        return err;
2946}
2947
2948#endif                          /* __ARCH_WANT_SYS_SOCKETCALL */
2949
2950/**
2951 *      sock_register - add a socket protocol handler
2952 *      @ops: description of protocol
2953 *
2954 *      This function is called by a protocol handler that wants to
2955 *      advertise its address family, and have it linked into the
2956 *      socket interface. The value ops->family corresponds to the
2957 *      socket system call protocol family.
2958 */
2959int sock_register(const struct net_proto_family *ops)
2960{
2961        int err;
2962
2963        if (ops->family >= NPROTO) {
2964                pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2965                return -ENOBUFS;
2966        }
2967
2968        spin_lock(&net_family_lock);
2969        if (rcu_dereference_protected(net_families[ops->family],
2970                                      lockdep_is_held(&net_family_lock)))
2971                err = -EEXIST;
2972        else {
2973                rcu_assign_pointer(net_families[ops->family], ops);
2974                err = 0;
2975        }
2976        spin_unlock(&net_family_lock);
2977
2978        pr_info("NET: Registered protocol family %d\n", ops->family);
2979        return err;
2980}
2981EXPORT_SYMBOL(sock_register);
2982
2983/**
2984 *      sock_unregister - remove a protocol handler
2985 *      @family: protocol family to remove
2986 *
2987 *      This function is called by a protocol handler that wants to
2988 *      remove its address family, and have it unlinked from the
2989 *      new socket creation.
2990 *
2991 *      If protocol handler is a module, then it can use module reference
2992 *      counts to protect against new references. If protocol handler is not
2993 *      a module then it needs to provide its own protection in
2994 *      the ops->create routine.
2995 */
2996void sock_unregister(int family)
2997{
2998        BUG_ON(family < 0 || family >= NPROTO);
2999
3000        spin_lock(&net_family_lock);
3001        RCU_INIT_POINTER(net_families[family], NULL);
3002        spin_unlock(&net_family_lock);
3003
3004        synchronize_rcu();
3005
3006        pr_info("NET: Unregistered protocol family %d\n", family);
3007}
3008EXPORT_SYMBOL(sock_unregister);
3009
3010bool sock_is_registered(int family)
3011{
3012        return family < NPROTO && rcu_access_pointer(net_families[family]);
3013}
3014
3015static int __init sock_init(void)
3016{
3017        int err;
3018        /*
3019         *      Initialize the network sysctl infrastructure.
3020         */
3021        err = net_sysctl_init();
3022        if (err)
3023                goto out;
3024
3025        /*
3026         *      Initialize skbuff SLAB cache
3027         */
3028        skb_init();
3029
3030        /*
3031         *      Initialize the protocols module.
3032         */
3033
3034        init_inodecache();
3035
3036        err = register_filesystem(&sock_fs_type);
3037        if (err)
3038                goto out;
3039        sock_mnt = kern_mount(&sock_fs_type);
3040        if (IS_ERR(sock_mnt)) {
3041                err = PTR_ERR(sock_mnt);
3042                goto out_mount;
3043        }
3044
3045        /* The real protocol initialization is performed in later initcalls.
3046         */
3047
3048#ifdef CONFIG_NETFILTER
3049        err = netfilter_init();
3050        if (err)
3051                goto out;
3052#endif
3053
3054        ptp_classifier_init();
3055
3056out:
3057        return err;
3058
3059out_mount:
3060        unregister_filesystem(&sock_fs_type);
3061        goto out;
3062}
3063
3064core_initcall(sock_init);       /* early initcall */
3065
3066#ifdef CONFIG_PROC_FS
3067void socket_seq_show(struct seq_file *seq)
3068{
3069        seq_printf(seq, "sockets: used %d\n",
3070                   sock_inuse_get(seq->private));
3071}
3072#endif                          /* CONFIG_PROC_FS */
3073
3074#ifdef CONFIG_COMPAT
3075static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
3076{
3077        struct compat_ifconf ifc32;
3078        struct ifconf ifc;
3079        int err;
3080
3081        if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
3082                return -EFAULT;
3083
3084        ifc.ifc_len = ifc32.ifc_len;
3085        ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
3086
3087        rtnl_lock();
3088        err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
3089        rtnl_unlock();
3090        if (err)
3091                return err;
3092
3093        ifc32.ifc_len = ifc.ifc_len;
3094        if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3095                return -EFAULT;
3096
3097        return 0;
3098}
3099
3100static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
3101{
3102        struct compat_ethtool_rxnfc __user *compat_rxnfc;
3103        bool convert_in = false, convert_out = false;
3104        size_t buf_size = 0;
3105        struct ethtool_rxnfc __user *rxnfc = NULL;
3106        struct ifreq ifr;
3107        u32 rule_cnt = 0, actual_rule_cnt;
3108        u32 ethcmd;
3109        u32 data;
3110        int ret;
3111
3112        if (get_user(data, &ifr32->ifr_ifru.ifru_data))
3113                return -EFAULT;
3114
3115        compat_rxnfc = compat_ptr(data);
3116
3117        if (get_user(ethcmd, &compat_rxnfc->cmd))
3118                return -EFAULT;
3119
3120        /* Most ethtool structures are defined without padding.
3121         * Unfortunately struct ethtool_rxnfc is an exception.
3122         */
3123        switch (ethcmd) {
3124        default:
3125                break;
3126        case ETHTOOL_GRXCLSRLALL:
3127                /* Buffer size is variable */
3128                if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
3129                        return -EFAULT;
3130                if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
3131                        return -ENOMEM;
3132                buf_size += rule_cnt * sizeof(u32);
3133                fallthrough;
3134        case ETHTOOL_GRXRINGS:
3135        case ETHTOOL_GRXCLSRLCNT:
3136        case ETHTOOL_GRXCLSRULE:
3137        case ETHTOOL_SRXCLSRLINS:
3138                convert_out = true;
3139                fallthrough;
3140        case ETHTOOL_SRXCLSRLDEL:
3141                buf_size += sizeof(struct ethtool_rxnfc);
3142                convert_in = true;
3143                rxnfc = compat_alloc_user_space(buf_size);
3144                break;
3145        }
3146
3147        if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
3148                return -EFAULT;
3149
3150        ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
3151
3152        if (convert_in) {
3153                /* We expect there to be holes between fs.m_ext and
3154                 * fs.ring_cookie and at the end of fs, but nowhere else.
3155                 */
3156                BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
3157                             sizeof(compat_rxnfc->fs.m_ext) !=
3158                             offsetof(struct ethtool_rxnfc, fs.m_ext) +
3159                             sizeof(rxnfc->fs.m_ext));
3160                BUILD_BUG_ON(
3161                        offsetof(struct compat_ethtool_rxnfc, fs.location) -
3162                        offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
3163                        offsetof(struct ethtool_rxnfc, fs.location) -
3164                        offsetof(struct ethtool_rxnfc, fs.ring_cookie));
3165
3166                if (copy_in_user(rxnfc, compat_rxnfc,
3167                                 (void __user *)(&rxnfc->fs.m_ext + 1) -
3168                                 (void __user *)rxnfc) ||
3169                    copy_in_user(&rxnfc->fs.ring_cookie,
3170                                 &compat_rxnfc->fs.ring_cookie,
3171                                 (void __user *)(&rxnfc->fs.location + 1) -
3172                                 (void __user *)&rxnfc->fs.ring_cookie))
3173                        return -EFAULT;
3174                if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3175                        if (put_user(rule_cnt, &rxnfc->rule_cnt))
3176                                return -EFAULT;
3177                } else if (copy_in_user(&rxnfc->rule_cnt,
3178                                        &compat_rxnfc->rule_cnt,
3179                                        sizeof(rxnfc->rule_cnt)))
3180                        return -EFAULT;
3181        }
3182
3183        ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
3184        if (ret)
3185                return ret;
3186
3187        if (convert_out) {
3188                if (copy_in_user(compat_rxnfc, rxnfc,
3189                                 (const void __user *)(&rxnfc->fs.m_ext + 1) -
3190                                 (const void __user *)rxnfc) ||
3191                    copy_in_user(&compat_rxnfc->fs.ring_cookie,
3192                                 &rxnfc->fs.ring_cookie,
3193                                 (const void __user *)(&rxnfc->fs.location + 1) -
3194                                 (const void __user *)&rxnfc->fs.ring_cookie) ||
3195                    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
3196                                 sizeof(rxnfc->rule_cnt)))
3197                        return -EFAULT;
3198
3199                if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3200                        /* As an optimisation, we only copy the actual
3201                         * number of rules that the underlying
3202                         * function returned.  Since Mallory might
3203                         * change the rule count in user memory, we
3204                         * check that it is less than the rule count
3205                         * originally given (as the user buffer size),
3206                         * which has been range-checked.
3207                         */
3208                        if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
3209                                return -EFAULT;
3210                        if (actual_rule_cnt < rule_cnt)
3211                                rule_cnt = actual_rule_cnt;
3212                        if (copy_in_user(&compat_rxnfc->rule_locs[0],
3213                                         &rxnfc->rule_locs[0],
3214                                         rule_cnt * sizeof(u32)))
3215                                return -EFAULT;
3216                }
3217        }
3218
3219        return 0;
3220}
3221
3222static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3223{
3224        compat_uptr_t uptr32;
3225        struct ifreq ifr;
3226        void __user *saved;
3227        int err;
3228
3229        if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3230                return -EFAULT;
3231
3232        if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3233                return -EFAULT;
3234
3235        saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3236        ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3237
3238        err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3239        if (!err) {
3240                ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3241                if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3242                        err = -EFAULT;
3243        }
3244        return err;
3245}
3246
3247/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3248static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3249                                 struct compat_ifreq __user *u_ifreq32)
3250{
3251        struct ifreq ifreq;
3252        u32 data32;
3253
3254        if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3255                return -EFAULT;
3256        if (get_user(data32, &u_ifreq32->ifr_data))
3257                return -EFAULT;
3258        ifreq.ifr_data = compat_ptr(data32);
3259
3260        return dev_ioctl(net, cmd, &ifreq, NULL);
3261}
3262
3263static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3264                              unsigned int cmd,
3265                              struct compat_ifreq __user *uifr32)
3266{
3267        struct ifreq __user *uifr;
3268        int err;
3269
3270        /* Handle the fact that while struct ifreq has the same *layout* on
3271         * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3272         * which are handled elsewhere, it still has different *size* due to
3273         * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3274         * resulting in struct ifreq being 32 and 40 bytes respectively).
3275         * As a result, if the struct happens to be at the end of a page and
3276         * the next page isn't readable/writable, we get a fault. To prevent
3277         * that, copy back and forth to the full size.
3278         */
3279
3280        uifr = compat_alloc_user_space(sizeof(*uifr));
3281        if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3282                return -EFAULT;
3283
3284        err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3285
3286        if (!err) {
3287                switch (cmd) {
3288                case SIOCGIFFLAGS:
3289                case SIOCGIFMETRIC:
3290                case SIOCGIFMTU:
3291                case SIOCGIFMEM:
3292                case SIOCGIFHWADDR:
3293                case SIOCGIFINDEX:
3294                case SIOCGIFADDR:
3295                case SIOCGIFBRDADDR:
3296                case SIOCGIFDSTADDR:
3297                case SIOCGIFNETMASK:
3298                case SIOCGIFPFLAGS:
3299                case SIOCGIFTXQLEN:
3300                case SIOCGMIIPHY:
3301                case SIOCGMIIREG:
3302                case SIOCGIFNAME:
3303                        if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3304                                err = -EFAULT;
3305                        break;
3306                }
3307        }
3308        return err;
3309}
3310
3311static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3312                        struct compat_ifreq __user *uifr32)
3313{
3314        struct ifreq ifr;
3315        struct compat_ifmap __user *uifmap32;
3316        int err;
3317
3318        uifmap32 = &uifr32->ifr_ifru.ifru_map;
3319        err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3320        err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3321        err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3322        err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3323        err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3324        err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3325        err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3326        if (err)
3327                return -EFAULT;
3328
3329        err = dev_ioctl(net, cmd, &ifr, NULL);
3330
3331        if (cmd == SIOCGIFMAP && !err) {
3332                err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3333                err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3334                err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3335                err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3336                err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3337                err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3338                err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3339                if (err)
3340                        err = -EFAULT;
3341        }
3342        return err;
3343}
3344
3345/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3346 * for some operations; this forces use of the newer bridge-utils that
3347 * use compatible ioctls
3348 */
3349static int old_bridge_ioctl(compat_ulong_t __user *argp)
3350{
3351        compat_ulong_t tmp;
3352
3353        if (get_user(tmp, argp))
3354                return -EFAULT;
3355        if (tmp == BRCTL_GET_VERSION)
3356                return BRCTL_VERSION + 1;
3357        return -EINVAL;
3358}
3359
3360static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3361                         unsigned int cmd, unsigned long arg)
3362{
3363        void __user *argp = compat_ptr(arg);
3364        struct sock *sk = sock->sk;
3365        struct net *net = sock_net(sk);
3366
3367        if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3368                return compat_ifr_data_ioctl(net, cmd, argp);
3369
3370        switch (cmd) {
3371        case SIOCSIFBR:
3372        case SIOCGIFBR:
3373                return old_bridge_ioctl(argp);
3374        case SIOCGIFCONF:
3375                return compat_dev_ifconf(net, argp);
3376        case SIOCETHTOOL:
3377                return ethtool_ioctl(net, argp);
3378        case SIOCWANDEV:
3379                return compat_siocwandev(net, argp);
3380        case SIOCGIFMAP:
3381        case SIOCSIFMAP:
3382                return compat_sioc_ifmap(net, cmd, argp);
3383        case SIOCGSTAMP_OLD:
3384        case SIOCGSTAMPNS_OLD:
3385                if (!sock->ops->gettstamp)
3386                        return -ENOIOCTLCMD;
3387                return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3388                                            !COMPAT_USE_64BIT_TIME);
3389
3390        case SIOCBONDSLAVEINFOQUERY:
3391        case SIOCBONDINFOQUERY:
3392        case SIOCSHWTSTAMP:
3393        case SIOCGHWTSTAMP:
3394                return compat_ifr_data_ioctl(net, cmd, argp);
3395
3396        case FIOSETOWN:
3397        case SIOCSPGRP:
3398        case FIOGETOWN:
3399        case SIOCGPGRP:
3400        case SIOCBRADDBR:
3401        case SIOCBRDELBR:
3402        case SIOCGIFVLAN:
3403        case SIOCSIFVLAN:
3404        case SIOCGSKNS:
3405        case SIOCGSTAMP_NEW:
3406        case SIOCGSTAMPNS_NEW:
3407                return sock_ioctl(file, cmd, arg);
3408
3409        case SIOCGIFFLAGS:
3410        case SIOCSIFFLAGS:
3411        case SIOCGIFMETRIC:
3412        case SIOCSIFMETRIC:
3413        case SIOCGIFMTU:
3414        case SIOCSIFMTU:
3415        case SIOCGIFMEM:
3416        case SIOCSIFMEM:
3417        case SIOCGIFHWADDR:
3418        case SIOCSIFHWADDR:
3419        case SIOCADDMULTI:
3420        case SIOCDELMULTI:
3421        case SIOCGIFINDEX:
3422        case SIOCGIFADDR:
3423        case SIOCSIFADDR:
3424        case SIOCSIFHWBROADCAST:
3425        case SIOCDIFADDR:
3426        case SIOCGIFBRDADDR:
3427        case SIOCSIFBRDADDR:
3428        case SIOCGIFDSTADDR:
3429        case SIOCSIFDSTADDR:
3430        case SIOCGIFNETMASK:
3431        case SIOCSIFNETMASK:
3432        case SIOCSIFPFLAGS:
3433        case SIOCGIFPFLAGS:
3434        case SIOCGIFTXQLEN:
3435        case SIOCSIFTXQLEN:
3436        case SIOCBRADDIF:
3437        case SIOCBRDELIF:
3438        case SIOCGIFNAME:
3439        case SIOCSIFNAME:
3440        case SIOCGMIIPHY:
3441        case SIOCGMIIREG:
3442        case SIOCSMIIREG:
3443        case SIOCBONDENSLAVE:
3444        case SIOCBONDRELEASE:
3445        case SIOCBONDSETHWADDR:
3446        case SIOCBONDCHANGEACTIVE:
3447                return compat_ifreq_ioctl(net, sock, cmd, argp);
3448
3449        case SIOCSARP:
3450        case SIOCGARP:
3451        case SIOCDARP:
3452        case SIOCOUTQ:
3453        case SIOCOUTQNSD:
3454        case SIOCATMARK:
3455                return sock_do_ioctl(net, sock, cmd, arg);
3456        }
3457
3458        return -ENOIOCTLCMD;
3459}
3460
3461static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3462                              unsigned long arg)
3463{
3464        struct socket *sock = file->private_data;
3465        int ret = -ENOIOCTLCMD;
3466        struct sock *sk;
3467        struct net *net;
3468
3469        sk = sock->sk;
3470        net = sock_net(sk);
3471
3472        if (sock->ops->compat_ioctl)
3473                ret = sock->ops->compat_ioctl(sock, cmd, arg);
3474
3475        if (ret == -ENOIOCTLCMD &&
3476            (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3477                ret = compat_wext_handle_ioctl(net, cmd, arg);
3478
3479        if (ret == -ENOIOCTLCMD)
3480                ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3481
3482        return ret;
3483}
3484#endif
3485
3486/**
3487 *      kernel_bind - bind an address to a socket (kernel space)
3488 *      @sock: socket
3489 *      @addr: address
3490 *      @addrlen: length of address
3491 *
3492 *      Returns 0 or an error.
3493 */
3494
3495int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3496{
3497        return sock->ops->bind(sock, addr, addrlen);
3498}
3499EXPORT_SYMBOL(kernel_bind);
3500
3501/**
3502 *      kernel_listen - move socket to listening state (kernel space)
3503 *      @sock: socket
3504 *      @backlog: pending connections queue size
3505 *
3506 *      Returns 0 or an error.
3507 */
3508
3509int kernel_listen(struct socket *sock, int backlog)
3510{
3511        return sock->ops->listen(sock, backlog);
3512}
3513EXPORT_SYMBOL(kernel_listen);
3514
3515/**
3516 *      kernel_accept - accept a connection (kernel space)
3517 *      @sock: listening socket
3518 *      @newsock: new connected socket
3519 *      @flags: flags
3520 *
3521 *      @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3522 *      If it fails, @newsock is guaranteed to be %NULL.
3523 *      Returns 0 or an error.
3524 */
3525
3526int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3527{
3528        struct sock *sk = sock->sk;
3529        int err;
3530
3531        err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3532                               newsock);
3533        if (err < 0)
3534                goto done;
3535
3536        err = sock->ops->accept(sock, *newsock, flags, true);
3537        if (err < 0) {
3538                sock_release(*newsock);
3539                *newsock = NULL;
3540                goto done;
3541        }
3542
3543        (*newsock)->ops = sock->ops;
3544        __module_get((*newsock)->ops->owner);
3545
3546done:
3547        return err;
3548}
3549EXPORT_SYMBOL(kernel_accept);
3550
3551/**
3552 *      kernel_connect - connect a socket (kernel space)
3553 *      @sock: socket
3554 *      @addr: address
3555 *      @addrlen: address length
3556 *      @flags: flags (O_NONBLOCK, ...)
3557 *
3558 *      For datagram sockets, @addr is the address to which datagrams are sent
3559 *      by default, and the only address from which datagrams are received.
3560 *      For stream sockets, attempts to connect to @addr.
3561 *      Returns 0 or an error code.
3562 */
3563
3564int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3565                   int flags)
3566{
3567        return sock->ops->connect(sock, addr, addrlen, flags);
3568}
3569EXPORT_SYMBOL(kernel_connect);
3570
3571/**
3572 *      kernel_getsockname - get the address which the socket is bound (kernel space)
3573 *      @sock: socket
3574 *      @addr: address holder
3575 *
3576 *      Fills the @addr pointer with the address which the socket is bound.
3577 *      Returns 0 or an error code.
3578 */
3579
3580int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3581{
3582        return sock->ops->getname(sock, addr, 0);
3583}
3584EXPORT_SYMBOL(kernel_getsockname);
3585
3586/**
3587 *      kernel_getpeername - get the address which the socket is connected (kernel space)
3588 *      @sock: socket
3589 *      @addr: address holder
3590 *
3591 *      Fills the @addr pointer with the address which the socket is connected.
3592 *      Returns 0 or an error code.
3593 */
3594
3595int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3596{
3597        return sock->ops->getname(sock, addr, 1);
3598}
3599EXPORT_SYMBOL(kernel_getpeername);
3600
3601/**
3602 *      kernel_sendpage - send a &page through a socket (kernel space)
3603 *      @sock: socket
3604 *      @page: page
3605 *      @offset: page offset
3606 *      @size: total size in bytes
3607 *      @flags: flags (MSG_DONTWAIT, ...)
3608 *
3609 *      Returns the total amount sent in bytes or an error.
3610 */
3611
3612int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3613                    size_t size, int flags)
3614{
3615        if (sock->ops->sendpage) {
3616                /* Warn in case the improper page to zero-copy send */
3617                WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3618                return sock->ops->sendpage(sock, page, offset, size, flags);
3619        }
3620        return sock_no_sendpage(sock, page, offset, size, flags);
3621}
3622EXPORT_SYMBOL(kernel_sendpage);
3623
3624/**
3625 *      kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3626 *      @sk: sock
3627 *      @page: page
3628 *      @offset: page offset
3629 *      @size: total size in bytes
3630 *      @flags: flags (MSG_DONTWAIT, ...)
3631 *
3632 *      Returns the total amount sent in bytes or an error.
3633 *      Caller must hold @sk.
3634 */
3635
3636int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3637                           size_t size, int flags)
3638{
3639        struct socket *sock = sk->sk_socket;
3640
3641        if (sock->ops->sendpage_locked)
3642                return sock->ops->sendpage_locked(sk, page, offset, size,
3643                                                  flags);
3644
3645        return sock_no_sendpage_locked(sk, page, offset, size, flags);
3646}
3647EXPORT_SYMBOL(kernel_sendpage_locked);
3648
3649/**
3650 *      kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3651 *      @sock: socket
3652 *      @how: connection part
3653 *
3654 *      Returns 0 or an error.
3655 */
3656
3657int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3658{
3659        return sock->ops->shutdown(sock, how);
3660}
3661EXPORT_SYMBOL(kernel_sock_shutdown);
3662
3663/**
3664 *      kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3665 *      @sk: socket
3666 *
3667 *      This routine returns the IP overhead imposed by a socket i.e.
3668 *      the length of the underlying IP header, depending on whether
3669 *      this is an IPv4 or IPv6 socket and the length from IP options turned
3670 *      on at the socket. Assumes that the caller has a lock on the socket.
3671 */
3672
3673u32 kernel_sock_ip_overhead(struct sock *sk)
3674{
3675        struct inet_sock *inet;
3676        struct ip_options_rcu *opt;
3677        u32 overhead = 0;
3678#if IS_ENABLED(CONFIG_IPV6)
3679        struct ipv6_pinfo *np;
3680        struct ipv6_txoptions *optv6 = NULL;
3681#endif /* IS_ENABLED(CONFIG_IPV6) */
3682
3683        if (!sk)
3684                return overhead;
3685
3686        switch (sk->sk_family) {
3687        case AF_INET:
3688                inet = inet_sk(sk);
3689                overhead += sizeof(struct iphdr);
3690                opt = rcu_dereference_protected(inet->inet_opt,
3691                                                sock_owned_by_user(sk));
3692                if (opt)
3693                        overhead += opt->opt.optlen;
3694                return overhead;
3695#if IS_ENABLED(CONFIG_IPV6)
3696        case AF_INET6:
3697                np = inet6_sk(sk);
3698                overhead += sizeof(struct ipv6hdr);
3699                if (np)
3700                        optv6 = rcu_dereference_protected(np->opt,
3701                                                          sock_owned_by_user(sk));
3702                if (optv6)
3703                        overhead += (optv6->opt_flen + optv6->opt_nflen);
3704                return overhead;
3705#endif /* IS_ENABLED(CONFIG_IPV6) */
3706        default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3707                return overhead;
3708        }
3709}
3710EXPORT_SYMBOL(kernel_sock_ip_overhead);
3711