linux/security/security.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Security plug functions
   4 *
   5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
   6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
   7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
   8 * Copyright (C) 2016 Mellanox Technologies
   9 */
  10
  11#define pr_fmt(fmt) "LSM: " fmt
  12
  13#include <linux/bpf.h>
  14#include <linux/capability.h>
  15#include <linux/dcache.h>
  16#include <linux/export.h>
  17#include <linux/init.h>
  18#include <linux/kernel.h>
  19#include <linux/kernel_read_file.h>
  20#include <linux/lsm_hooks.h>
  21#include <linux/integrity.h>
  22#include <linux/ima.h>
  23#include <linux/evm.h>
  24#include <linux/fsnotify.h>
  25#include <linux/mman.h>
  26#include <linux/mount.h>
  27#include <linux/personality.h>
  28#include <linux/backing-dev.h>
  29#include <linux/string.h>
  30#include <linux/msg.h>
  31#include <net/flow.h>
  32
  33#define MAX_LSM_EVM_XATTR       2
  34
  35/* How many LSMs were built into the kernel? */
  36#define LSM_COUNT (__end_lsm_info - __start_lsm_info)
  37
  38/*
  39 * These are descriptions of the reasons that can be passed to the
  40 * security_locked_down() LSM hook. Placing this array here allows
  41 * all security modules to use the same descriptions for auditing
  42 * purposes.
  43 */
  44const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
  45        [LOCKDOWN_NONE] = "none",
  46        [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
  47        [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
  48        [LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
  49        [LOCKDOWN_KEXEC] = "kexec of unsigned images",
  50        [LOCKDOWN_HIBERNATION] = "hibernation",
  51        [LOCKDOWN_PCI_ACCESS] = "direct PCI access",
  52        [LOCKDOWN_IOPORT] = "raw io port access",
  53        [LOCKDOWN_MSR] = "raw MSR access",
  54        [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
  55        [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
  56        [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
  57        [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
  58        [LOCKDOWN_MMIOTRACE] = "unsafe mmio",
  59        [LOCKDOWN_DEBUGFS] = "debugfs access",
  60        [LOCKDOWN_XMON_WR] = "xmon write access",
  61        [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
  62        [LOCKDOWN_INTEGRITY_MAX] = "integrity",
  63        [LOCKDOWN_KCORE] = "/proc/kcore access",
  64        [LOCKDOWN_KPROBES] = "use of kprobes",
  65        [LOCKDOWN_BPF_READ] = "use of bpf to read kernel RAM",
  66        [LOCKDOWN_PERF] = "unsafe use of perf",
  67        [LOCKDOWN_TRACEFS] = "use of tracefs",
  68        [LOCKDOWN_XMON_RW] = "xmon read and write access",
  69        [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
  70        [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
  71};
  72
  73struct security_hook_heads security_hook_heads __lsm_ro_after_init;
  74static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
  75
  76static struct kmem_cache *lsm_file_cache;
  77static struct kmem_cache *lsm_inode_cache;
  78
  79char *lsm_names;
  80static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
  81
  82/* Boot-time LSM user choice */
  83static __initdata const char *chosen_lsm_order;
  84static __initdata const char *chosen_major_lsm;
  85
  86static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
  87
  88/* Ordered list of LSMs to initialize. */
  89static __initdata struct lsm_info **ordered_lsms;
  90static __initdata struct lsm_info *exclusive;
  91
  92static __initdata bool debug;
  93#define init_debug(...)                                         \
  94        do {                                                    \
  95                if (debug)                                      \
  96                        pr_info(__VA_ARGS__);                   \
  97        } while (0)
  98
  99static bool __init is_enabled(struct lsm_info *lsm)
 100{
 101        if (!lsm->enabled)
 102                return false;
 103
 104        return *lsm->enabled;
 105}
 106
 107/* Mark an LSM's enabled flag. */
 108static int lsm_enabled_true __initdata = 1;
 109static int lsm_enabled_false __initdata = 0;
 110static void __init set_enabled(struct lsm_info *lsm, bool enabled)
 111{
 112        /*
 113         * When an LSM hasn't configured an enable variable, we can use
 114         * a hard-coded location for storing the default enabled state.
 115         */
 116        if (!lsm->enabled) {
 117                if (enabled)
 118                        lsm->enabled = &lsm_enabled_true;
 119                else
 120                        lsm->enabled = &lsm_enabled_false;
 121        } else if (lsm->enabled == &lsm_enabled_true) {
 122                if (!enabled)
 123                        lsm->enabled = &lsm_enabled_false;
 124        } else if (lsm->enabled == &lsm_enabled_false) {
 125                if (enabled)
 126                        lsm->enabled = &lsm_enabled_true;
 127        } else {
 128                *lsm->enabled = enabled;
 129        }
 130}
 131
 132/* Is an LSM already listed in the ordered LSMs list? */
 133static bool __init exists_ordered_lsm(struct lsm_info *lsm)
 134{
 135        struct lsm_info **check;
 136
 137        for (check = ordered_lsms; *check; check++)
 138                if (*check == lsm)
 139                        return true;
 140
 141        return false;
 142}
 143
 144/* Append an LSM to the list of ordered LSMs to initialize. */
 145static int last_lsm __initdata;
 146static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
 147{
 148        /* Ignore duplicate selections. */
 149        if (exists_ordered_lsm(lsm))
 150                return;
 151
 152        if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
 153                return;
 154
 155        /* Enable this LSM, if it is not already set. */
 156        if (!lsm->enabled)
 157                lsm->enabled = &lsm_enabled_true;
 158        ordered_lsms[last_lsm++] = lsm;
 159
 160        init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
 161                   is_enabled(lsm) ? "en" : "dis");
 162}
 163
 164/* Is an LSM allowed to be initialized? */
 165static bool __init lsm_allowed(struct lsm_info *lsm)
 166{
 167        /* Skip if the LSM is disabled. */
 168        if (!is_enabled(lsm))
 169                return false;
 170
 171        /* Not allowed if another exclusive LSM already initialized. */
 172        if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
 173                init_debug("exclusive disabled: %s\n", lsm->name);
 174                return false;
 175        }
 176
 177        return true;
 178}
 179
 180static void __init lsm_set_blob_size(int *need, int *lbs)
 181{
 182        int offset;
 183
 184        if (*need > 0) {
 185                offset = *lbs;
 186                *lbs += *need;
 187                *need = offset;
 188        }
 189}
 190
 191static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
 192{
 193        if (!needed)
 194                return;
 195
 196        lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
 197        lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
 198        /*
 199         * The inode blob gets an rcu_head in addition to
 200         * what the modules might need.
 201         */
 202        if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
 203                blob_sizes.lbs_inode = sizeof(struct rcu_head);
 204        lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
 205        lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
 206        lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
 207        lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
 208        lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
 209}
 210
 211/* Prepare LSM for initialization. */
 212static void __init prepare_lsm(struct lsm_info *lsm)
 213{
 214        int enabled = lsm_allowed(lsm);
 215
 216        /* Record enablement (to handle any following exclusive LSMs). */
 217        set_enabled(lsm, enabled);
 218
 219        /* If enabled, do pre-initialization work. */
 220        if (enabled) {
 221                if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
 222                        exclusive = lsm;
 223                        init_debug("exclusive chosen: %s\n", lsm->name);
 224                }
 225
 226                lsm_set_blob_sizes(lsm->blobs);
 227        }
 228}
 229
 230/* Initialize a given LSM, if it is enabled. */
 231static void __init initialize_lsm(struct lsm_info *lsm)
 232{
 233        if (is_enabled(lsm)) {
 234                int ret;
 235
 236                init_debug("initializing %s\n", lsm->name);
 237                ret = lsm->init();
 238                WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
 239        }
 240}
 241
 242/* Populate ordered LSMs list from comma-separated LSM name list. */
 243static void __init ordered_lsm_parse(const char *order, const char *origin)
 244{
 245        struct lsm_info *lsm;
 246        char *sep, *name, *next;
 247
 248        /* LSM_ORDER_FIRST is always first. */
 249        for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 250                if (lsm->order == LSM_ORDER_FIRST)
 251                        append_ordered_lsm(lsm, "first");
 252        }
 253
 254        /* Process "security=", if given. */
 255        if (chosen_major_lsm) {
 256                struct lsm_info *major;
 257
 258                /*
 259                 * To match the original "security=" behavior, this
 260                 * explicitly does NOT fallback to another Legacy Major
 261                 * if the selected one was separately disabled: disable
 262                 * all non-matching Legacy Major LSMs.
 263                 */
 264                for (major = __start_lsm_info; major < __end_lsm_info;
 265                     major++) {
 266                        if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
 267                            strcmp(major->name, chosen_major_lsm) != 0) {
 268                                set_enabled(major, false);
 269                                init_debug("security=%s disabled: %s\n",
 270                                           chosen_major_lsm, major->name);
 271                        }
 272                }
 273        }
 274
 275        sep = kstrdup(order, GFP_KERNEL);
 276        next = sep;
 277        /* Walk the list, looking for matching LSMs. */
 278        while ((name = strsep(&next, ",")) != NULL) {
 279                bool found = false;
 280
 281                for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 282                        if (lsm->order == LSM_ORDER_MUTABLE &&
 283                            strcmp(lsm->name, name) == 0) {
 284                                append_ordered_lsm(lsm, origin);
 285                                found = true;
 286                        }
 287                }
 288
 289                if (!found)
 290                        init_debug("%s ignored: %s\n", origin, name);
 291        }
 292
 293        /* Process "security=", if given. */
 294        if (chosen_major_lsm) {
 295                for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 296                        if (exists_ordered_lsm(lsm))
 297                                continue;
 298                        if (strcmp(lsm->name, chosen_major_lsm) == 0)
 299                                append_ordered_lsm(lsm, "security=");
 300                }
 301        }
 302
 303        /* Disable all LSMs not in the ordered list. */
 304        for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 305                if (exists_ordered_lsm(lsm))
 306                        continue;
 307                set_enabled(lsm, false);
 308                init_debug("%s disabled: %s\n", origin, lsm->name);
 309        }
 310
 311        kfree(sep);
 312}
 313
 314static void __init lsm_early_cred(struct cred *cred);
 315static void __init lsm_early_task(struct task_struct *task);
 316
 317static int lsm_append(const char *new, char **result);
 318
 319static void __init ordered_lsm_init(void)
 320{
 321        struct lsm_info **lsm;
 322
 323        ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
 324                                GFP_KERNEL);
 325
 326        if (chosen_lsm_order) {
 327                if (chosen_major_lsm) {
 328                        pr_info("security= is ignored because it is superseded by lsm=\n");
 329                        chosen_major_lsm = NULL;
 330                }
 331                ordered_lsm_parse(chosen_lsm_order, "cmdline");
 332        } else
 333                ordered_lsm_parse(builtin_lsm_order, "builtin");
 334
 335        for (lsm = ordered_lsms; *lsm; lsm++)
 336                prepare_lsm(*lsm);
 337
 338        init_debug("cred blob size       = %d\n", blob_sizes.lbs_cred);
 339        init_debug("file blob size       = %d\n", blob_sizes.lbs_file);
 340        init_debug("inode blob size      = %d\n", blob_sizes.lbs_inode);
 341        init_debug("ipc blob size        = %d\n", blob_sizes.lbs_ipc);
 342        init_debug("msg_msg blob size    = %d\n", blob_sizes.lbs_msg_msg);
 343        init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
 344        init_debug("task blob size       = %d\n", blob_sizes.lbs_task);
 345
 346        /*
 347         * Create any kmem_caches needed for blobs
 348         */
 349        if (blob_sizes.lbs_file)
 350                lsm_file_cache = kmem_cache_create("lsm_file_cache",
 351                                                   blob_sizes.lbs_file, 0,
 352                                                   SLAB_PANIC, NULL);
 353        if (blob_sizes.lbs_inode)
 354                lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
 355                                                    blob_sizes.lbs_inode, 0,
 356                                                    SLAB_PANIC, NULL);
 357
 358        lsm_early_cred((struct cred *) current->cred);
 359        lsm_early_task(current);
 360        for (lsm = ordered_lsms; *lsm; lsm++)
 361                initialize_lsm(*lsm);
 362
 363        kfree(ordered_lsms);
 364}
 365
 366int __init early_security_init(void)
 367{
 368        int i;
 369        struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
 370        struct lsm_info *lsm;
 371
 372        for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
 373             i++)
 374                INIT_HLIST_HEAD(&list[i]);
 375
 376        for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
 377                if (!lsm->enabled)
 378                        lsm->enabled = &lsm_enabled_true;
 379                prepare_lsm(lsm);
 380                initialize_lsm(lsm);
 381        }
 382
 383        return 0;
 384}
 385
 386/**
 387 * security_init - initializes the security framework
 388 *
 389 * This should be called early in the kernel initialization sequence.
 390 */
 391int __init security_init(void)
 392{
 393        struct lsm_info *lsm;
 394
 395        pr_info("Security Framework initializing\n");
 396
 397        /*
 398         * Append the names of the early LSM modules now that kmalloc() is
 399         * available
 400         */
 401        for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
 402                if (lsm->enabled)
 403                        lsm_append(lsm->name, &lsm_names);
 404        }
 405
 406        /* Load LSMs in specified order. */
 407        ordered_lsm_init();
 408
 409        return 0;
 410}
 411
 412/* Save user chosen LSM */
 413static int __init choose_major_lsm(char *str)
 414{
 415        chosen_major_lsm = str;
 416        return 1;
 417}
 418__setup("security=", choose_major_lsm);
 419
 420/* Explicitly choose LSM initialization order. */
 421static int __init choose_lsm_order(char *str)
 422{
 423        chosen_lsm_order = str;
 424        return 1;
 425}
 426__setup("lsm=", choose_lsm_order);
 427
 428/* Enable LSM order debugging. */
 429static int __init enable_debug(char *str)
 430{
 431        debug = true;
 432        return 1;
 433}
 434__setup("lsm.debug", enable_debug);
 435
 436static bool match_last_lsm(const char *list, const char *lsm)
 437{
 438        const char *last;
 439
 440        if (WARN_ON(!list || !lsm))
 441                return false;
 442        last = strrchr(list, ',');
 443        if (last)
 444                /* Pass the comma, strcmp() will check for '\0' */
 445                last++;
 446        else
 447                last = list;
 448        return !strcmp(last, lsm);
 449}
 450
 451static int lsm_append(const char *new, char **result)
 452{
 453        char *cp;
 454
 455        if (*result == NULL) {
 456                *result = kstrdup(new, GFP_KERNEL);
 457                if (*result == NULL)
 458                        return -ENOMEM;
 459        } else {
 460                /* Check if it is the last registered name */
 461                if (match_last_lsm(*result, new))
 462                        return 0;
 463                cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
 464                if (cp == NULL)
 465                        return -ENOMEM;
 466                kfree(*result);
 467                *result = cp;
 468        }
 469        return 0;
 470}
 471
 472/**
 473 * security_add_hooks - Add a modules hooks to the hook lists.
 474 * @hooks: the hooks to add
 475 * @count: the number of hooks to add
 476 * @lsm: the name of the security module
 477 *
 478 * Each LSM has to register its hooks with the infrastructure.
 479 */
 480void __init security_add_hooks(struct security_hook_list *hooks, int count,
 481                                char *lsm)
 482{
 483        int i;
 484
 485        for (i = 0; i < count; i++) {
 486                hooks[i].lsm = lsm;
 487                hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
 488        }
 489
 490        /*
 491         * Don't try to append during early_security_init(), we'll come back
 492         * and fix this up afterwards.
 493         */
 494        if (slab_is_available()) {
 495                if (lsm_append(lsm, &lsm_names) < 0)
 496                        panic("%s - Cannot get early memory.\n", __func__);
 497        }
 498}
 499
 500int call_blocking_lsm_notifier(enum lsm_event event, void *data)
 501{
 502        return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
 503                                            event, data);
 504}
 505EXPORT_SYMBOL(call_blocking_lsm_notifier);
 506
 507int register_blocking_lsm_notifier(struct notifier_block *nb)
 508{
 509        return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
 510                                                nb);
 511}
 512EXPORT_SYMBOL(register_blocking_lsm_notifier);
 513
 514int unregister_blocking_lsm_notifier(struct notifier_block *nb)
 515{
 516        return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
 517                                                  nb);
 518}
 519EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
 520
 521/**
 522 * lsm_cred_alloc - allocate a composite cred blob
 523 * @cred: the cred that needs a blob
 524 * @gfp: allocation type
 525 *
 526 * Allocate the cred blob for all the modules
 527 *
 528 * Returns 0, or -ENOMEM if memory can't be allocated.
 529 */
 530static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
 531{
 532        if (blob_sizes.lbs_cred == 0) {
 533                cred->security = NULL;
 534                return 0;
 535        }
 536
 537        cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
 538        if (cred->security == NULL)
 539                return -ENOMEM;
 540        return 0;
 541}
 542
 543/**
 544 * lsm_early_cred - during initialization allocate a composite cred blob
 545 * @cred: the cred that needs a blob
 546 *
 547 * Allocate the cred blob for all the modules
 548 */
 549static void __init lsm_early_cred(struct cred *cred)
 550{
 551        int rc = lsm_cred_alloc(cred, GFP_KERNEL);
 552
 553        if (rc)
 554                panic("%s: Early cred alloc failed.\n", __func__);
 555}
 556
 557/**
 558 * lsm_file_alloc - allocate a composite file blob
 559 * @file: the file that needs a blob
 560 *
 561 * Allocate the file blob for all the modules
 562 *
 563 * Returns 0, or -ENOMEM if memory can't be allocated.
 564 */
 565static int lsm_file_alloc(struct file *file)
 566{
 567        if (!lsm_file_cache) {
 568                file->f_security = NULL;
 569                return 0;
 570        }
 571
 572        file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
 573        if (file->f_security == NULL)
 574                return -ENOMEM;
 575        return 0;
 576}
 577
 578/**
 579 * lsm_inode_alloc - allocate a composite inode blob
 580 * @inode: the inode that needs a blob
 581 *
 582 * Allocate the inode blob for all the modules
 583 *
 584 * Returns 0, or -ENOMEM if memory can't be allocated.
 585 */
 586int lsm_inode_alloc(struct inode *inode)
 587{
 588        if (!lsm_inode_cache) {
 589                inode->i_security = NULL;
 590                return 0;
 591        }
 592
 593        inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
 594        if (inode->i_security == NULL)
 595                return -ENOMEM;
 596        return 0;
 597}
 598
 599/**
 600 * lsm_task_alloc - allocate a composite task blob
 601 * @task: the task that needs a blob
 602 *
 603 * Allocate the task blob for all the modules
 604 *
 605 * Returns 0, or -ENOMEM if memory can't be allocated.
 606 */
 607static int lsm_task_alloc(struct task_struct *task)
 608{
 609        if (blob_sizes.lbs_task == 0) {
 610                task->security = NULL;
 611                return 0;
 612        }
 613
 614        task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
 615        if (task->security == NULL)
 616                return -ENOMEM;
 617        return 0;
 618}
 619
 620/**
 621 * lsm_ipc_alloc - allocate a composite ipc blob
 622 * @kip: the ipc that needs a blob
 623 *
 624 * Allocate the ipc blob for all the modules
 625 *
 626 * Returns 0, or -ENOMEM if memory can't be allocated.
 627 */
 628static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
 629{
 630        if (blob_sizes.lbs_ipc == 0) {
 631                kip->security = NULL;
 632                return 0;
 633        }
 634
 635        kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
 636        if (kip->security == NULL)
 637                return -ENOMEM;
 638        return 0;
 639}
 640
 641/**
 642 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
 643 * @mp: the msg_msg that needs a blob
 644 *
 645 * Allocate the ipc blob for all the modules
 646 *
 647 * Returns 0, or -ENOMEM if memory can't be allocated.
 648 */
 649static int lsm_msg_msg_alloc(struct msg_msg *mp)
 650{
 651        if (blob_sizes.lbs_msg_msg == 0) {
 652                mp->security = NULL;
 653                return 0;
 654        }
 655
 656        mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
 657        if (mp->security == NULL)
 658                return -ENOMEM;
 659        return 0;
 660}
 661
 662/**
 663 * lsm_early_task - during initialization allocate a composite task blob
 664 * @task: the task that needs a blob
 665 *
 666 * Allocate the task blob for all the modules
 667 */
 668static void __init lsm_early_task(struct task_struct *task)
 669{
 670        int rc = lsm_task_alloc(task);
 671
 672        if (rc)
 673                panic("%s: Early task alloc failed.\n", __func__);
 674}
 675
 676/**
 677 * lsm_superblock_alloc - allocate a composite superblock blob
 678 * @sb: the superblock that needs a blob
 679 *
 680 * Allocate the superblock blob for all the modules
 681 *
 682 * Returns 0, or -ENOMEM if memory can't be allocated.
 683 */
 684static int lsm_superblock_alloc(struct super_block *sb)
 685{
 686        if (blob_sizes.lbs_superblock == 0) {
 687                sb->s_security = NULL;
 688                return 0;
 689        }
 690
 691        sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL);
 692        if (sb->s_security == NULL)
 693                return -ENOMEM;
 694        return 0;
 695}
 696
 697/*
 698 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
 699 * can be accessed with:
 700 *
 701 *      LSM_RET_DEFAULT(<hook_name>)
 702 *
 703 * The macros below define static constants for the default value of each
 704 * LSM hook.
 705 */
 706#define LSM_RET_DEFAULT(NAME) (NAME##_default)
 707#define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
 708#define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
 709        static const int LSM_RET_DEFAULT(NAME) = (DEFAULT);
 710#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
 711        DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
 712
 713#include <linux/lsm_hook_defs.h>
 714#undef LSM_HOOK
 715
 716/*
 717 * Hook list operation macros.
 718 *
 719 * call_void_hook:
 720 *      This is a hook that does not return a value.
 721 *
 722 * call_int_hook:
 723 *      This is a hook that returns a value.
 724 */
 725
 726#define call_void_hook(FUNC, ...)                               \
 727        do {                                                    \
 728                struct security_hook_list *P;                   \
 729                                                                \
 730                hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
 731                        P->hook.FUNC(__VA_ARGS__);              \
 732        } while (0)
 733
 734#define call_int_hook(FUNC, IRC, ...) ({                        \
 735        int RC = IRC;                                           \
 736        do {                                                    \
 737                struct security_hook_list *P;                   \
 738                                                                \
 739                hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
 740                        RC = P->hook.FUNC(__VA_ARGS__);         \
 741                        if (RC != 0)                            \
 742                                break;                          \
 743                }                                               \
 744        } while (0);                                            \
 745        RC;                                                     \
 746})
 747
 748/* Security operations */
 749
 750int security_binder_set_context_mgr(struct task_struct *mgr)
 751{
 752        return call_int_hook(binder_set_context_mgr, 0, mgr);
 753}
 754
 755int security_binder_transaction(struct task_struct *from,
 756                                struct task_struct *to)
 757{
 758        return call_int_hook(binder_transaction, 0, from, to);
 759}
 760
 761int security_binder_transfer_binder(struct task_struct *from,
 762                                    struct task_struct *to)
 763{
 764        return call_int_hook(binder_transfer_binder, 0, from, to);
 765}
 766
 767int security_binder_transfer_file(struct task_struct *from,
 768                                  struct task_struct *to, struct file *file)
 769{
 770        return call_int_hook(binder_transfer_file, 0, from, to, file);
 771}
 772
 773int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
 774{
 775        return call_int_hook(ptrace_access_check, 0, child, mode);
 776}
 777
 778int security_ptrace_traceme(struct task_struct *parent)
 779{
 780        return call_int_hook(ptrace_traceme, 0, parent);
 781}
 782
 783int security_capget(struct task_struct *target,
 784                     kernel_cap_t *effective,
 785                     kernel_cap_t *inheritable,
 786                     kernel_cap_t *permitted)
 787{
 788        return call_int_hook(capget, 0, target,
 789                                effective, inheritable, permitted);
 790}
 791
 792int security_capset(struct cred *new, const struct cred *old,
 793                    const kernel_cap_t *effective,
 794                    const kernel_cap_t *inheritable,
 795                    const kernel_cap_t *permitted)
 796{
 797        return call_int_hook(capset, 0, new, old,
 798                                effective, inheritable, permitted);
 799}
 800
 801int security_capable(const struct cred *cred,
 802                     struct user_namespace *ns,
 803                     int cap,
 804                     unsigned int opts)
 805{
 806        return call_int_hook(capable, 0, cred, ns, cap, opts);
 807}
 808
 809int security_quotactl(int cmds, int type, int id, struct super_block *sb)
 810{
 811        return call_int_hook(quotactl, 0, cmds, type, id, sb);
 812}
 813
 814int security_quota_on(struct dentry *dentry)
 815{
 816        return call_int_hook(quota_on, 0, dentry);
 817}
 818
 819int security_syslog(int type)
 820{
 821        return call_int_hook(syslog, 0, type);
 822}
 823
 824int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
 825{
 826        return call_int_hook(settime, 0, ts, tz);
 827}
 828
 829int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
 830{
 831        struct security_hook_list *hp;
 832        int cap_sys_admin = 1;
 833        int rc;
 834
 835        /*
 836         * The module will respond with a positive value if
 837         * it thinks the __vm_enough_memory() call should be
 838         * made with the cap_sys_admin set. If all of the modules
 839         * agree that it should be set it will. If any module
 840         * thinks it should not be set it won't.
 841         */
 842        hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
 843                rc = hp->hook.vm_enough_memory(mm, pages);
 844                if (rc <= 0) {
 845                        cap_sys_admin = 0;
 846                        break;
 847                }
 848        }
 849        return __vm_enough_memory(mm, pages, cap_sys_admin);
 850}
 851
 852int security_bprm_creds_for_exec(struct linux_binprm *bprm)
 853{
 854        return call_int_hook(bprm_creds_for_exec, 0, bprm);
 855}
 856
 857int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
 858{
 859        return call_int_hook(bprm_creds_from_file, 0, bprm, file);
 860}
 861
 862int security_bprm_check(struct linux_binprm *bprm)
 863{
 864        int ret;
 865
 866        ret = call_int_hook(bprm_check_security, 0, bprm);
 867        if (ret)
 868                return ret;
 869        return ima_bprm_check(bprm);
 870}
 871
 872void security_bprm_committing_creds(struct linux_binprm *bprm)
 873{
 874        call_void_hook(bprm_committing_creds, bprm);
 875}
 876
 877void security_bprm_committed_creds(struct linux_binprm *bprm)
 878{
 879        call_void_hook(bprm_committed_creds, bprm);
 880}
 881
 882int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
 883{
 884        return call_int_hook(fs_context_dup, 0, fc, src_fc);
 885}
 886
 887int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
 888{
 889        return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
 890}
 891
 892int security_sb_alloc(struct super_block *sb)
 893{
 894        int rc = lsm_superblock_alloc(sb);
 895
 896        if (unlikely(rc))
 897                return rc;
 898        rc = call_int_hook(sb_alloc_security, 0, sb);
 899        if (unlikely(rc))
 900                security_sb_free(sb);
 901        return rc;
 902}
 903
 904void security_sb_delete(struct super_block *sb)
 905{
 906        call_void_hook(sb_delete, sb);
 907}
 908
 909void security_sb_free(struct super_block *sb)
 910{
 911        call_void_hook(sb_free_security, sb);
 912        kfree(sb->s_security);
 913        sb->s_security = NULL;
 914}
 915
 916void security_free_mnt_opts(void **mnt_opts)
 917{
 918        if (!*mnt_opts)
 919                return;
 920        call_void_hook(sb_free_mnt_opts, *mnt_opts);
 921        *mnt_opts = NULL;
 922}
 923EXPORT_SYMBOL(security_free_mnt_opts);
 924
 925int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
 926{
 927        return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
 928}
 929EXPORT_SYMBOL(security_sb_eat_lsm_opts);
 930
 931int security_sb_mnt_opts_compat(struct super_block *sb,
 932                                void *mnt_opts)
 933{
 934        return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts);
 935}
 936EXPORT_SYMBOL(security_sb_mnt_opts_compat);
 937
 938int security_sb_remount(struct super_block *sb,
 939                        void *mnt_opts)
 940{
 941        return call_int_hook(sb_remount, 0, sb, mnt_opts);
 942}
 943EXPORT_SYMBOL(security_sb_remount);
 944
 945int security_sb_kern_mount(struct super_block *sb)
 946{
 947        return call_int_hook(sb_kern_mount, 0, sb);
 948}
 949
 950int security_sb_show_options(struct seq_file *m, struct super_block *sb)
 951{
 952        return call_int_hook(sb_show_options, 0, m, sb);
 953}
 954
 955int security_sb_statfs(struct dentry *dentry)
 956{
 957        return call_int_hook(sb_statfs, 0, dentry);
 958}
 959
 960int security_sb_mount(const char *dev_name, const struct path *path,
 961                       const char *type, unsigned long flags, void *data)
 962{
 963        return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
 964}
 965
 966int security_sb_umount(struct vfsmount *mnt, int flags)
 967{
 968        return call_int_hook(sb_umount, 0, mnt, flags);
 969}
 970
 971int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
 972{
 973        return call_int_hook(sb_pivotroot, 0, old_path, new_path);
 974}
 975
 976int security_sb_set_mnt_opts(struct super_block *sb,
 977                                void *mnt_opts,
 978                                unsigned long kern_flags,
 979                                unsigned long *set_kern_flags)
 980{
 981        return call_int_hook(sb_set_mnt_opts,
 982                                mnt_opts ? -EOPNOTSUPP : 0, sb,
 983                                mnt_opts, kern_flags, set_kern_flags);
 984}
 985EXPORT_SYMBOL(security_sb_set_mnt_opts);
 986
 987int security_sb_clone_mnt_opts(const struct super_block *oldsb,
 988                                struct super_block *newsb,
 989                                unsigned long kern_flags,
 990                                unsigned long *set_kern_flags)
 991{
 992        return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
 993                                kern_flags, set_kern_flags);
 994}
 995EXPORT_SYMBOL(security_sb_clone_mnt_opts);
 996
 997int security_add_mnt_opt(const char *option, const char *val, int len,
 998                         void **mnt_opts)
 999{
1000        return call_int_hook(sb_add_mnt_opt, -EINVAL,
1001                                        option, val, len, mnt_opts);
1002}
1003EXPORT_SYMBOL(security_add_mnt_opt);
1004
1005int security_move_mount(const struct path *from_path, const struct path *to_path)
1006{
1007        return call_int_hook(move_mount, 0, from_path, to_path);
1008}
1009
1010int security_path_notify(const struct path *path, u64 mask,
1011                                unsigned int obj_type)
1012{
1013        return call_int_hook(path_notify, 0, path, mask, obj_type);
1014}
1015
1016int security_inode_alloc(struct inode *inode)
1017{
1018        int rc = lsm_inode_alloc(inode);
1019
1020        if (unlikely(rc))
1021                return rc;
1022        rc = call_int_hook(inode_alloc_security, 0, inode);
1023        if (unlikely(rc))
1024                security_inode_free(inode);
1025        return rc;
1026}
1027
1028static void inode_free_by_rcu(struct rcu_head *head)
1029{
1030        /*
1031         * The rcu head is at the start of the inode blob
1032         */
1033        kmem_cache_free(lsm_inode_cache, head);
1034}
1035
1036void security_inode_free(struct inode *inode)
1037{
1038        integrity_inode_free(inode);
1039        call_void_hook(inode_free_security, inode);
1040        /*
1041         * The inode may still be referenced in a path walk and
1042         * a call to security_inode_permission() can be made
1043         * after inode_free_security() is called. Ideally, the VFS
1044         * wouldn't do this, but fixing that is a much harder
1045         * job. For now, simply free the i_security via RCU, and
1046         * leave the current inode->i_security pointer intact.
1047         * The inode will be freed after the RCU grace period too.
1048         */
1049        if (inode->i_security)
1050                call_rcu((struct rcu_head *)inode->i_security,
1051                                inode_free_by_rcu);
1052}
1053
1054int security_dentry_init_security(struct dentry *dentry, int mode,
1055                                        const struct qstr *name, void **ctx,
1056                                        u32 *ctxlen)
1057{
1058        return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
1059                                name, ctx, ctxlen);
1060}
1061EXPORT_SYMBOL(security_dentry_init_security);
1062
1063int security_dentry_create_files_as(struct dentry *dentry, int mode,
1064                                    struct qstr *name,
1065                                    const struct cred *old, struct cred *new)
1066{
1067        return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1068                                name, old, new);
1069}
1070EXPORT_SYMBOL(security_dentry_create_files_as);
1071
1072int security_inode_init_security(struct inode *inode, struct inode *dir,
1073                                 const struct qstr *qstr,
1074                                 const initxattrs initxattrs, void *fs_data)
1075{
1076        struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1077        struct xattr *lsm_xattr, *evm_xattr, *xattr;
1078        int ret;
1079
1080        if (unlikely(IS_PRIVATE(inode)))
1081                return 0;
1082
1083        if (!initxattrs)
1084                return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1085                                     dir, qstr, NULL, NULL, NULL);
1086        memset(new_xattrs, 0, sizeof(new_xattrs));
1087        lsm_xattr = new_xattrs;
1088        ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1089                                                &lsm_xattr->name,
1090                                                &lsm_xattr->value,
1091                                                &lsm_xattr->value_len);
1092        if (ret)
1093                goto out;
1094
1095        evm_xattr = lsm_xattr + 1;
1096        ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1097        if (ret)
1098                goto out;
1099        ret = initxattrs(inode, new_xattrs, fs_data);
1100out:
1101        for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1102                kfree(xattr->value);
1103        return (ret == -EOPNOTSUPP) ? 0 : ret;
1104}
1105EXPORT_SYMBOL(security_inode_init_security);
1106
1107int security_inode_init_security_anon(struct inode *inode,
1108                                      const struct qstr *name,
1109                                      const struct inode *context_inode)
1110{
1111        return call_int_hook(inode_init_security_anon, 0, inode, name,
1112                             context_inode);
1113}
1114
1115int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1116                                     const struct qstr *qstr, const char **name,
1117                                     void **value, size_t *len)
1118{
1119        if (unlikely(IS_PRIVATE(inode)))
1120                return -EOPNOTSUPP;
1121        return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1122                             qstr, name, value, len);
1123}
1124EXPORT_SYMBOL(security_old_inode_init_security);
1125
1126#ifdef CONFIG_SECURITY_PATH
1127int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1128                        unsigned int dev)
1129{
1130        if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1131                return 0;
1132        return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1133}
1134EXPORT_SYMBOL(security_path_mknod);
1135
1136int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1137{
1138        if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1139                return 0;
1140        return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1141}
1142EXPORT_SYMBOL(security_path_mkdir);
1143
1144int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1145{
1146        if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1147                return 0;
1148        return call_int_hook(path_rmdir, 0, dir, dentry);
1149}
1150
1151int security_path_unlink(const struct path *dir, struct dentry *dentry)
1152{
1153        if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1154                return 0;
1155        return call_int_hook(path_unlink, 0, dir, dentry);
1156}
1157EXPORT_SYMBOL(security_path_unlink);
1158
1159int security_path_symlink(const struct path *dir, struct dentry *dentry,
1160                          const char *old_name)
1161{
1162        if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1163                return 0;
1164        return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1165}
1166
1167int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1168                       struct dentry *new_dentry)
1169{
1170        if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1171                return 0;
1172        return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1173}
1174
1175int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1176                         const struct path *new_dir, struct dentry *new_dentry,
1177                         unsigned int flags)
1178{
1179        if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1180                     (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1181                return 0;
1182
1183        if (flags & RENAME_EXCHANGE) {
1184                int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1185                                        old_dir, old_dentry);
1186                if (err)
1187                        return err;
1188        }
1189
1190        return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1191                                new_dentry);
1192}
1193EXPORT_SYMBOL(security_path_rename);
1194
1195int security_path_truncate(const struct path *path)
1196{
1197        if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1198                return 0;
1199        return call_int_hook(path_truncate, 0, path);
1200}
1201
1202int security_path_chmod(const struct path *path, umode_t mode)
1203{
1204        if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1205                return 0;
1206        return call_int_hook(path_chmod, 0, path, mode);
1207}
1208
1209int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1210{
1211        if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1212                return 0;
1213        return call_int_hook(path_chown, 0, path, uid, gid);
1214}
1215
1216int security_path_chroot(const struct path *path)
1217{
1218        return call_int_hook(path_chroot, 0, path);
1219}
1220#endif
1221
1222int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1223{
1224        if (unlikely(IS_PRIVATE(dir)))
1225                return 0;
1226        return call_int_hook(inode_create, 0, dir, dentry, mode);
1227}
1228EXPORT_SYMBOL_GPL(security_inode_create);
1229
1230int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1231                         struct dentry *new_dentry)
1232{
1233        if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1234                return 0;
1235        return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1236}
1237
1238int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1239{
1240        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1241                return 0;
1242        return call_int_hook(inode_unlink, 0, dir, dentry);
1243}
1244
1245int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1246                            const char *old_name)
1247{
1248        if (unlikely(IS_PRIVATE(dir)))
1249                return 0;
1250        return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1251}
1252
1253int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1254{
1255        if (unlikely(IS_PRIVATE(dir)))
1256                return 0;
1257        return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1258}
1259EXPORT_SYMBOL_GPL(security_inode_mkdir);
1260
1261int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1262{
1263        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1264                return 0;
1265        return call_int_hook(inode_rmdir, 0, dir, dentry);
1266}
1267
1268int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1269{
1270        if (unlikely(IS_PRIVATE(dir)))
1271                return 0;
1272        return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1273}
1274
1275int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1276                           struct inode *new_dir, struct dentry *new_dentry,
1277                           unsigned int flags)
1278{
1279        if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1280            (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1281                return 0;
1282
1283        if (flags & RENAME_EXCHANGE) {
1284                int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1285                                                     old_dir, old_dentry);
1286                if (err)
1287                        return err;
1288        }
1289
1290        return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1291                                           new_dir, new_dentry);
1292}
1293
1294int security_inode_readlink(struct dentry *dentry)
1295{
1296        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1297                return 0;
1298        return call_int_hook(inode_readlink, 0, dentry);
1299}
1300
1301int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1302                               bool rcu)
1303{
1304        if (unlikely(IS_PRIVATE(inode)))
1305                return 0;
1306        return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1307}
1308
1309int security_inode_permission(struct inode *inode, int mask)
1310{
1311        if (unlikely(IS_PRIVATE(inode)))
1312                return 0;
1313        return call_int_hook(inode_permission, 0, inode, mask);
1314}
1315
1316int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1317{
1318        int ret;
1319
1320        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1321                return 0;
1322        ret = call_int_hook(inode_setattr, 0, dentry, attr);
1323        if (ret)
1324                return ret;
1325        return evm_inode_setattr(dentry, attr);
1326}
1327EXPORT_SYMBOL_GPL(security_inode_setattr);
1328
1329int security_inode_getattr(const struct path *path)
1330{
1331        if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1332                return 0;
1333        return call_int_hook(inode_getattr, 0, path);
1334}
1335
1336int security_inode_setxattr(struct user_namespace *mnt_userns,
1337                            struct dentry *dentry, const char *name,
1338                            const void *value, size_t size, int flags)
1339{
1340        int ret;
1341
1342        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1343                return 0;
1344        /*
1345         * SELinux and Smack integrate the cap call,
1346         * so assume that all LSMs supplying this call do so.
1347         */
1348        ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value,
1349                            size, flags);
1350
1351        if (ret == 1)
1352                ret = cap_inode_setxattr(dentry, name, value, size, flags);
1353        if (ret)
1354                return ret;
1355        ret = ima_inode_setxattr(dentry, name, value, size);
1356        if (ret)
1357                return ret;
1358        return evm_inode_setxattr(dentry, name, value, size);
1359}
1360
1361void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1362                                  const void *value, size_t size, int flags)
1363{
1364        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1365                return;
1366        call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1367        evm_inode_post_setxattr(dentry, name, value, size);
1368}
1369
1370int security_inode_getxattr(struct dentry *dentry, const char *name)
1371{
1372        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1373                return 0;
1374        return call_int_hook(inode_getxattr, 0, dentry, name);
1375}
1376
1377int security_inode_listxattr(struct dentry *dentry)
1378{
1379        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1380                return 0;
1381        return call_int_hook(inode_listxattr, 0, dentry);
1382}
1383
1384int security_inode_removexattr(struct user_namespace *mnt_userns,
1385                               struct dentry *dentry, const char *name)
1386{
1387        int ret;
1388
1389        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1390                return 0;
1391        /*
1392         * SELinux and Smack integrate the cap call,
1393         * so assume that all LSMs supplying this call do so.
1394         */
1395        ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name);
1396        if (ret == 1)
1397                ret = cap_inode_removexattr(mnt_userns, dentry, name);
1398        if (ret)
1399                return ret;
1400        ret = ima_inode_removexattr(dentry, name);
1401        if (ret)
1402                return ret;
1403        return evm_inode_removexattr(dentry, name);
1404}
1405
1406int security_inode_need_killpriv(struct dentry *dentry)
1407{
1408        return call_int_hook(inode_need_killpriv, 0, dentry);
1409}
1410
1411int security_inode_killpriv(struct user_namespace *mnt_userns,
1412                            struct dentry *dentry)
1413{
1414        return call_int_hook(inode_killpriv, 0, mnt_userns, dentry);
1415}
1416
1417int security_inode_getsecurity(struct user_namespace *mnt_userns,
1418                               struct inode *inode, const char *name,
1419                               void **buffer, bool alloc)
1420{
1421        struct security_hook_list *hp;
1422        int rc;
1423
1424        if (unlikely(IS_PRIVATE(inode)))
1425                return LSM_RET_DEFAULT(inode_getsecurity);
1426        /*
1427         * Only one module will provide an attribute with a given name.
1428         */
1429        hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1430                rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc);
1431                if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1432                        return rc;
1433        }
1434        return LSM_RET_DEFAULT(inode_getsecurity);
1435}
1436
1437int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1438{
1439        struct security_hook_list *hp;
1440        int rc;
1441
1442        if (unlikely(IS_PRIVATE(inode)))
1443                return LSM_RET_DEFAULT(inode_setsecurity);
1444        /*
1445         * Only one module will provide an attribute with a given name.
1446         */
1447        hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1448                rc = hp->hook.inode_setsecurity(inode, name, value, size,
1449                                                                flags);
1450                if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1451                        return rc;
1452        }
1453        return LSM_RET_DEFAULT(inode_setsecurity);
1454}
1455
1456int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1457{
1458        if (unlikely(IS_PRIVATE(inode)))
1459                return 0;
1460        return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1461}
1462EXPORT_SYMBOL(security_inode_listsecurity);
1463
1464void security_inode_getsecid(struct inode *inode, u32 *secid)
1465{
1466        call_void_hook(inode_getsecid, inode, secid);
1467}
1468
1469int security_inode_copy_up(struct dentry *src, struct cred **new)
1470{
1471        return call_int_hook(inode_copy_up, 0, src, new);
1472}
1473EXPORT_SYMBOL(security_inode_copy_up);
1474
1475int security_inode_copy_up_xattr(const char *name)
1476{
1477        struct security_hook_list *hp;
1478        int rc;
1479
1480        /*
1481         * The implementation can return 0 (accept the xattr), 1 (discard the
1482         * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
1483         * any other error code incase of an error.
1484         */
1485        hlist_for_each_entry(hp,
1486                &security_hook_heads.inode_copy_up_xattr, list) {
1487                rc = hp->hook.inode_copy_up_xattr(name);
1488                if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
1489                        return rc;
1490        }
1491
1492        return LSM_RET_DEFAULT(inode_copy_up_xattr);
1493}
1494EXPORT_SYMBOL(security_inode_copy_up_xattr);
1495
1496int security_kernfs_init_security(struct kernfs_node *kn_dir,
1497                                  struct kernfs_node *kn)
1498{
1499        return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1500}
1501
1502int security_file_permission(struct file *file, int mask)
1503{
1504        int ret;
1505
1506        ret = call_int_hook(file_permission, 0, file, mask);
1507        if (ret)
1508                return ret;
1509
1510        return fsnotify_perm(file, mask);
1511}
1512
1513int security_file_alloc(struct file *file)
1514{
1515        int rc = lsm_file_alloc(file);
1516
1517        if (rc)
1518                return rc;
1519        rc = call_int_hook(file_alloc_security, 0, file);
1520        if (unlikely(rc))
1521                security_file_free(file);
1522        return rc;
1523}
1524
1525void security_file_free(struct file *file)
1526{
1527        void *blob;
1528
1529        call_void_hook(file_free_security, file);
1530
1531        blob = file->f_security;
1532        if (blob) {
1533                file->f_security = NULL;
1534                kmem_cache_free(lsm_file_cache, blob);
1535        }
1536}
1537
1538int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1539{
1540        return call_int_hook(file_ioctl, 0, file, cmd, arg);
1541}
1542EXPORT_SYMBOL_GPL(security_file_ioctl);
1543
1544static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1545{
1546        /*
1547         * Does we have PROT_READ and does the application expect
1548         * it to imply PROT_EXEC?  If not, nothing to talk about...
1549         */
1550        if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1551                return prot;
1552        if (!(current->personality & READ_IMPLIES_EXEC))
1553                return prot;
1554        /*
1555         * if that's an anonymous mapping, let it.
1556         */
1557        if (!file)
1558                return prot | PROT_EXEC;
1559        /*
1560         * ditto if it's not on noexec mount, except that on !MMU we need
1561         * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1562         */
1563        if (!path_noexec(&file->f_path)) {
1564#ifndef CONFIG_MMU
1565                if (file->f_op->mmap_capabilities) {
1566                        unsigned caps = file->f_op->mmap_capabilities(file);
1567                        if (!(caps & NOMMU_MAP_EXEC))
1568                                return prot;
1569                }
1570#endif
1571                return prot | PROT_EXEC;
1572        }
1573        /* anything on noexec mount won't get PROT_EXEC */
1574        return prot;
1575}
1576
1577int security_mmap_file(struct file *file, unsigned long prot,
1578                        unsigned long flags)
1579{
1580        int ret;
1581        ret = call_int_hook(mmap_file, 0, file, prot,
1582                                        mmap_prot(file, prot), flags);
1583        if (ret)
1584                return ret;
1585        return ima_file_mmap(file, prot);
1586}
1587
1588int security_mmap_addr(unsigned long addr)
1589{
1590        return call_int_hook(mmap_addr, 0, addr);
1591}
1592
1593int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1594                            unsigned long prot)
1595{
1596        int ret;
1597
1598        ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1599        if (ret)
1600                return ret;
1601        return ima_file_mprotect(vma, prot);
1602}
1603
1604int security_file_lock(struct file *file, unsigned int cmd)
1605{
1606        return call_int_hook(file_lock, 0, file, cmd);
1607}
1608
1609int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1610{
1611        return call_int_hook(file_fcntl, 0, file, cmd, arg);
1612}
1613
1614void security_file_set_fowner(struct file *file)
1615{
1616        call_void_hook(file_set_fowner, file);
1617}
1618
1619int security_file_send_sigiotask(struct task_struct *tsk,
1620                                  struct fown_struct *fown, int sig)
1621{
1622        return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1623}
1624
1625int security_file_receive(struct file *file)
1626{
1627        return call_int_hook(file_receive, 0, file);
1628}
1629
1630int security_file_open(struct file *file)
1631{
1632        int ret;
1633
1634        ret = call_int_hook(file_open, 0, file);
1635        if (ret)
1636                return ret;
1637
1638        return fsnotify_perm(file, MAY_OPEN);
1639}
1640
1641int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1642{
1643        int rc = lsm_task_alloc(task);
1644
1645        if (rc)
1646                return rc;
1647        rc = call_int_hook(task_alloc, 0, task, clone_flags);
1648        if (unlikely(rc))
1649                security_task_free(task);
1650        return rc;
1651}
1652
1653void security_task_free(struct task_struct *task)
1654{
1655        call_void_hook(task_free, task);
1656
1657        kfree(task->security);
1658        task->security = NULL;
1659}
1660
1661int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1662{
1663        int rc = lsm_cred_alloc(cred, gfp);
1664
1665        if (rc)
1666                return rc;
1667
1668        rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1669        if (unlikely(rc))
1670                security_cred_free(cred);
1671        return rc;
1672}
1673
1674void security_cred_free(struct cred *cred)
1675{
1676        /*
1677         * There is a failure case in prepare_creds() that
1678         * may result in a call here with ->security being NULL.
1679         */
1680        if (unlikely(cred->security == NULL))
1681                return;
1682
1683        call_void_hook(cred_free, cred);
1684
1685        kfree(cred->security);
1686        cred->security = NULL;
1687}
1688
1689int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1690{
1691        int rc = lsm_cred_alloc(new, gfp);
1692
1693        if (rc)
1694                return rc;
1695
1696        rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1697        if (unlikely(rc))
1698                security_cred_free(new);
1699        return rc;
1700}
1701
1702void security_transfer_creds(struct cred *new, const struct cred *old)
1703{
1704        call_void_hook(cred_transfer, new, old);
1705}
1706
1707void security_cred_getsecid(const struct cred *c, u32 *secid)
1708{
1709        *secid = 0;
1710        call_void_hook(cred_getsecid, c, secid);
1711}
1712EXPORT_SYMBOL(security_cred_getsecid);
1713
1714int security_kernel_act_as(struct cred *new, u32 secid)
1715{
1716        return call_int_hook(kernel_act_as, 0, new, secid);
1717}
1718
1719int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1720{
1721        return call_int_hook(kernel_create_files_as, 0, new, inode);
1722}
1723
1724int security_kernel_module_request(char *kmod_name)
1725{
1726        int ret;
1727
1728        ret = call_int_hook(kernel_module_request, 0, kmod_name);
1729        if (ret)
1730                return ret;
1731        return integrity_kernel_module_request(kmod_name);
1732}
1733
1734int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
1735                              bool contents)
1736{
1737        int ret;
1738
1739        ret = call_int_hook(kernel_read_file, 0, file, id, contents);
1740        if (ret)
1741                return ret;
1742        return ima_read_file(file, id, contents);
1743}
1744EXPORT_SYMBOL_GPL(security_kernel_read_file);
1745
1746int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1747                                   enum kernel_read_file_id id)
1748{
1749        int ret;
1750
1751        ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1752        if (ret)
1753                return ret;
1754        return ima_post_read_file(file, buf, size, id);
1755}
1756EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1757
1758int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
1759{
1760        int ret;
1761
1762        ret = call_int_hook(kernel_load_data, 0, id, contents);
1763        if (ret)
1764                return ret;
1765        return ima_load_data(id, contents);
1766}
1767EXPORT_SYMBOL_GPL(security_kernel_load_data);
1768
1769int security_kernel_post_load_data(char *buf, loff_t size,
1770                                   enum kernel_load_data_id id,
1771                                   char *description)
1772{
1773        int ret;
1774
1775        ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
1776                            description);
1777        if (ret)
1778                return ret;
1779        return ima_post_load_data(buf, size, id, description);
1780}
1781EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
1782
1783int security_task_fix_setuid(struct cred *new, const struct cred *old,
1784                             int flags)
1785{
1786        return call_int_hook(task_fix_setuid, 0, new, old, flags);
1787}
1788
1789int security_task_fix_setgid(struct cred *new, const struct cred *old,
1790                                 int flags)
1791{
1792        return call_int_hook(task_fix_setgid, 0, new, old, flags);
1793}
1794
1795int security_task_setpgid(struct task_struct *p, pid_t pgid)
1796{
1797        return call_int_hook(task_setpgid, 0, p, pgid);
1798}
1799
1800int security_task_getpgid(struct task_struct *p)
1801{
1802        return call_int_hook(task_getpgid, 0, p);
1803}
1804
1805int security_task_getsid(struct task_struct *p)
1806{
1807        return call_int_hook(task_getsid, 0, p);
1808}
1809
1810void security_task_getsecid_subj(struct task_struct *p, u32 *secid)
1811{
1812        *secid = 0;
1813        call_void_hook(task_getsecid_subj, p, secid);
1814}
1815EXPORT_SYMBOL(security_task_getsecid_subj);
1816
1817void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
1818{
1819        *secid = 0;
1820        call_void_hook(task_getsecid_obj, p, secid);
1821}
1822EXPORT_SYMBOL(security_task_getsecid_obj);
1823
1824int security_task_setnice(struct task_struct *p, int nice)
1825{
1826        return call_int_hook(task_setnice, 0, p, nice);
1827}
1828
1829int security_task_setioprio(struct task_struct *p, int ioprio)
1830{
1831        return call_int_hook(task_setioprio, 0, p, ioprio);
1832}
1833
1834int security_task_getioprio(struct task_struct *p)
1835{
1836        return call_int_hook(task_getioprio, 0, p);
1837}
1838
1839int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1840                          unsigned int flags)
1841{
1842        return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1843}
1844
1845int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1846                struct rlimit *new_rlim)
1847{
1848        return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1849}
1850
1851int security_task_setscheduler(struct task_struct *p)
1852{
1853        return call_int_hook(task_setscheduler, 0, p);
1854}
1855
1856int security_task_getscheduler(struct task_struct *p)
1857{
1858        return call_int_hook(task_getscheduler, 0, p);
1859}
1860
1861int security_task_movememory(struct task_struct *p)
1862{
1863        return call_int_hook(task_movememory, 0, p);
1864}
1865
1866int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1867                        int sig, const struct cred *cred)
1868{
1869        return call_int_hook(task_kill, 0, p, info, sig, cred);
1870}
1871
1872int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1873                         unsigned long arg4, unsigned long arg5)
1874{
1875        int thisrc;
1876        int rc = LSM_RET_DEFAULT(task_prctl);
1877        struct security_hook_list *hp;
1878
1879        hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1880                thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1881                if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1882                        rc = thisrc;
1883                        if (thisrc != 0)
1884                                break;
1885                }
1886        }
1887        return rc;
1888}
1889
1890void security_task_to_inode(struct task_struct *p, struct inode *inode)
1891{
1892        call_void_hook(task_to_inode, p, inode);
1893}
1894
1895int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1896{
1897        return call_int_hook(ipc_permission, 0, ipcp, flag);
1898}
1899
1900void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1901{
1902        *secid = 0;
1903        call_void_hook(ipc_getsecid, ipcp, secid);
1904}
1905
1906int security_msg_msg_alloc(struct msg_msg *msg)
1907{
1908        int rc = lsm_msg_msg_alloc(msg);
1909
1910        if (unlikely(rc))
1911                return rc;
1912        rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1913        if (unlikely(rc))
1914                security_msg_msg_free(msg);
1915        return rc;
1916}
1917
1918void security_msg_msg_free(struct msg_msg *msg)
1919{
1920        call_void_hook(msg_msg_free_security, msg);
1921        kfree(msg->security);
1922        msg->security = NULL;
1923}
1924
1925int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1926{
1927        int rc = lsm_ipc_alloc(msq);
1928
1929        if (unlikely(rc))
1930                return rc;
1931        rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1932        if (unlikely(rc))
1933                security_msg_queue_free(msq);
1934        return rc;
1935}
1936
1937void security_msg_queue_free(struct kern_ipc_perm *msq)
1938{
1939        call_void_hook(msg_queue_free_security, msq);
1940        kfree(msq->security);
1941        msq->security = NULL;
1942}
1943
1944int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1945{
1946        return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1947}
1948
1949int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1950{
1951        return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1952}
1953
1954int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1955                               struct msg_msg *msg, int msqflg)
1956{
1957        return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1958}
1959
1960int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1961                               struct task_struct *target, long type, int mode)
1962{
1963        return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1964}
1965
1966int security_shm_alloc(struct kern_ipc_perm *shp)
1967{
1968        int rc = lsm_ipc_alloc(shp);
1969
1970        if (unlikely(rc))
1971                return rc;
1972        rc = call_int_hook(shm_alloc_security, 0, shp);
1973        if (unlikely(rc))
1974                security_shm_free(shp);
1975        return rc;
1976}
1977
1978void security_shm_free(struct kern_ipc_perm *shp)
1979{
1980        call_void_hook(shm_free_security, shp);
1981        kfree(shp->security);
1982        shp->security = NULL;
1983}
1984
1985int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1986{
1987        return call_int_hook(shm_associate, 0, shp, shmflg);
1988}
1989
1990int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1991{
1992        return call_int_hook(shm_shmctl, 0, shp, cmd);
1993}
1994
1995int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1996{
1997        return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1998}
1999
2000int security_sem_alloc(struct kern_ipc_perm *sma)
2001{
2002        int rc = lsm_ipc_alloc(sma);
2003
2004        if (unlikely(rc))
2005                return rc;
2006        rc = call_int_hook(sem_alloc_security, 0, sma);
2007        if (unlikely(rc))
2008                security_sem_free(sma);
2009        return rc;
2010}
2011
2012void security_sem_free(struct kern_ipc_perm *sma)
2013{
2014        call_void_hook(sem_free_security, sma);
2015        kfree(sma->security);
2016        sma->security = NULL;
2017}
2018
2019int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
2020{
2021        return call_int_hook(sem_associate, 0, sma, semflg);
2022}
2023
2024int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
2025{
2026        return call_int_hook(sem_semctl, 0, sma, cmd);
2027}
2028
2029int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
2030                        unsigned nsops, int alter)
2031{
2032        return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
2033}
2034
2035void security_d_instantiate(struct dentry *dentry, struct inode *inode)
2036{
2037        if (unlikely(inode && IS_PRIVATE(inode)))
2038                return;
2039        call_void_hook(d_instantiate, dentry, inode);
2040}
2041EXPORT_SYMBOL(security_d_instantiate);
2042
2043int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
2044                                char **value)
2045{
2046        struct security_hook_list *hp;
2047
2048        hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
2049                if (lsm != NULL && strcmp(lsm, hp->lsm))
2050                        continue;
2051                return hp->hook.getprocattr(p, name, value);
2052        }
2053        return LSM_RET_DEFAULT(getprocattr);
2054}
2055
2056int security_setprocattr(const char *lsm, const char *name, void *value,
2057                         size_t size)
2058{
2059        struct security_hook_list *hp;
2060
2061        hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
2062                if (lsm != NULL && strcmp(lsm, hp->lsm))
2063                        continue;
2064                return hp->hook.setprocattr(name, value, size);
2065        }
2066        return LSM_RET_DEFAULT(setprocattr);
2067}
2068
2069int security_netlink_send(struct sock *sk, struct sk_buff *skb)
2070{
2071        return call_int_hook(netlink_send, 0, sk, skb);
2072}
2073
2074int security_ismaclabel(const char *name)
2075{
2076        return call_int_hook(ismaclabel, 0, name);
2077}
2078EXPORT_SYMBOL(security_ismaclabel);
2079
2080int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2081{
2082        struct security_hook_list *hp;
2083        int rc;
2084
2085        /*
2086         * Currently, only one LSM can implement secid_to_secctx (i.e this
2087         * LSM hook is not "stackable").
2088         */
2089        hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
2090                rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
2091                if (rc != LSM_RET_DEFAULT(secid_to_secctx))
2092                        return rc;
2093        }
2094
2095        return LSM_RET_DEFAULT(secid_to_secctx);
2096}
2097EXPORT_SYMBOL(security_secid_to_secctx);
2098
2099int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2100{
2101        *secid = 0;
2102        return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2103}
2104EXPORT_SYMBOL(security_secctx_to_secid);
2105
2106void security_release_secctx(char *secdata, u32 seclen)
2107{
2108        call_void_hook(release_secctx, secdata, seclen);
2109}
2110EXPORT_SYMBOL(security_release_secctx);
2111
2112void security_inode_invalidate_secctx(struct inode *inode)
2113{
2114        call_void_hook(inode_invalidate_secctx, inode);
2115}
2116EXPORT_SYMBOL(security_inode_invalidate_secctx);
2117
2118int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2119{
2120        return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2121}
2122EXPORT_SYMBOL(security_inode_notifysecctx);
2123
2124int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2125{
2126        return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2127}
2128EXPORT_SYMBOL(security_inode_setsecctx);
2129
2130int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2131{
2132        return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
2133}
2134EXPORT_SYMBOL(security_inode_getsecctx);
2135
2136#ifdef CONFIG_WATCH_QUEUE
2137int security_post_notification(const struct cred *w_cred,
2138                               const struct cred *cred,
2139                               struct watch_notification *n)
2140{
2141        return call_int_hook(post_notification, 0, w_cred, cred, n);
2142}
2143#endif /* CONFIG_WATCH_QUEUE */
2144
2145#ifdef CONFIG_KEY_NOTIFICATIONS
2146int security_watch_key(struct key *key)
2147{
2148        return call_int_hook(watch_key, 0, key);
2149}
2150#endif
2151
2152#ifdef CONFIG_SECURITY_NETWORK
2153
2154int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2155{
2156        return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2157}
2158EXPORT_SYMBOL(security_unix_stream_connect);
2159
2160int security_unix_may_send(struct socket *sock,  struct socket *other)
2161{
2162        return call_int_hook(unix_may_send, 0, sock, other);
2163}
2164EXPORT_SYMBOL(security_unix_may_send);
2165
2166int security_socket_create(int family, int type, int protocol, int kern)
2167{
2168        return call_int_hook(socket_create, 0, family, type, protocol, kern);
2169}
2170
2171int security_socket_post_create(struct socket *sock, int family,
2172                                int type, int protocol, int kern)
2173{
2174        return call_int_hook(socket_post_create, 0, sock, family, type,
2175                                                protocol, kern);
2176}
2177
2178int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2179{
2180        return call_int_hook(socket_socketpair, 0, socka, sockb);
2181}
2182EXPORT_SYMBOL(security_socket_socketpair);
2183
2184int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2185{
2186        return call_int_hook(socket_bind, 0, sock, address, addrlen);
2187}
2188
2189int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2190{
2191        return call_int_hook(socket_connect, 0, sock, address, addrlen);
2192}
2193
2194int security_socket_listen(struct socket *sock, int backlog)
2195{
2196        return call_int_hook(socket_listen, 0, sock, backlog);
2197}
2198
2199int security_socket_accept(struct socket *sock, struct socket *newsock)
2200{
2201        return call_int_hook(socket_accept, 0, sock, newsock);
2202}
2203
2204int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2205{
2206        return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2207}
2208
2209int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2210                            int size, int flags)
2211{
2212        return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2213}
2214
2215int security_socket_getsockname(struct socket *sock)
2216{
2217        return call_int_hook(socket_getsockname, 0, sock);
2218}
2219
2220int security_socket_getpeername(struct socket *sock)
2221{
2222        return call_int_hook(socket_getpeername, 0, sock);
2223}
2224
2225int security_socket_getsockopt(struct socket *sock, int level, int optname)
2226{
2227        return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2228}
2229
2230int security_socket_setsockopt(struct socket *sock, int level, int optname)
2231{
2232        return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2233}
2234
2235int security_socket_shutdown(struct socket *sock, int how)
2236{
2237        return call_int_hook(socket_shutdown, 0, sock, how);
2238}
2239
2240int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2241{
2242        return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2243}
2244EXPORT_SYMBOL(security_sock_rcv_skb);
2245
2246int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2247                                      int __user *optlen, unsigned len)
2248{
2249        return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2250                                optval, optlen, len);
2251}
2252
2253int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2254{
2255        return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2256                             skb, secid);
2257}
2258EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2259
2260int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2261{
2262        return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2263}
2264
2265void security_sk_free(struct sock *sk)
2266{
2267        call_void_hook(sk_free_security, sk);
2268}
2269
2270void security_sk_clone(const struct sock *sk, struct sock *newsk)
2271{
2272        call_void_hook(sk_clone_security, sk, newsk);
2273}
2274EXPORT_SYMBOL(security_sk_clone);
2275
2276void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic)
2277{
2278        call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
2279}
2280EXPORT_SYMBOL(security_sk_classify_flow);
2281
2282void security_req_classify_flow(const struct request_sock *req,
2283                                struct flowi_common *flic)
2284{
2285        call_void_hook(req_classify_flow, req, flic);
2286}
2287EXPORT_SYMBOL(security_req_classify_flow);
2288
2289void security_sock_graft(struct sock *sk, struct socket *parent)
2290{
2291        call_void_hook(sock_graft, sk, parent);
2292}
2293EXPORT_SYMBOL(security_sock_graft);
2294
2295int security_inet_conn_request(const struct sock *sk,
2296                        struct sk_buff *skb, struct request_sock *req)
2297{
2298        return call_int_hook(inet_conn_request, 0, sk, skb, req);
2299}
2300EXPORT_SYMBOL(security_inet_conn_request);
2301
2302void security_inet_csk_clone(struct sock *newsk,
2303                        const struct request_sock *req)
2304{
2305        call_void_hook(inet_csk_clone, newsk, req);
2306}
2307
2308void security_inet_conn_established(struct sock *sk,
2309                        struct sk_buff *skb)
2310{
2311        call_void_hook(inet_conn_established, sk, skb);
2312}
2313EXPORT_SYMBOL(security_inet_conn_established);
2314
2315int security_secmark_relabel_packet(u32 secid)
2316{
2317        return call_int_hook(secmark_relabel_packet, 0, secid);
2318}
2319EXPORT_SYMBOL(security_secmark_relabel_packet);
2320
2321void security_secmark_refcount_inc(void)
2322{
2323        call_void_hook(secmark_refcount_inc);
2324}
2325EXPORT_SYMBOL(security_secmark_refcount_inc);
2326
2327void security_secmark_refcount_dec(void)
2328{
2329        call_void_hook(secmark_refcount_dec);
2330}
2331EXPORT_SYMBOL(security_secmark_refcount_dec);
2332
2333int security_tun_dev_alloc_security(void **security)
2334{
2335        return call_int_hook(tun_dev_alloc_security, 0, security);
2336}
2337EXPORT_SYMBOL(security_tun_dev_alloc_security);
2338
2339void security_tun_dev_free_security(void *security)
2340{
2341        call_void_hook(tun_dev_free_security, security);
2342}
2343EXPORT_SYMBOL(security_tun_dev_free_security);
2344
2345int security_tun_dev_create(void)
2346{
2347        return call_int_hook(tun_dev_create, 0);
2348}
2349EXPORT_SYMBOL(security_tun_dev_create);
2350
2351int security_tun_dev_attach_queue(void *security)
2352{
2353        return call_int_hook(tun_dev_attach_queue, 0, security);
2354}
2355EXPORT_SYMBOL(security_tun_dev_attach_queue);
2356
2357int security_tun_dev_attach(struct sock *sk, void *security)
2358{
2359        return call_int_hook(tun_dev_attach, 0, sk, security);
2360}
2361EXPORT_SYMBOL(security_tun_dev_attach);
2362
2363int security_tun_dev_open(void *security)
2364{
2365        return call_int_hook(tun_dev_open, 0, security);
2366}
2367EXPORT_SYMBOL(security_tun_dev_open);
2368
2369int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2370{
2371        return call_int_hook(sctp_assoc_request, 0, ep, skb);
2372}
2373EXPORT_SYMBOL(security_sctp_assoc_request);
2374
2375int security_sctp_bind_connect(struct sock *sk, int optname,
2376                               struct sockaddr *address, int addrlen)
2377{
2378        return call_int_hook(sctp_bind_connect, 0, sk, optname,
2379                             address, addrlen);
2380}
2381EXPORT_SYMBOL(security_sctp_bind_connect);
2382
2383void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2384                            struct sock *newsk)
2385{
2386        call_void_hook(sctp_sk_clone, ep, sk, newsk);
2387}
2388EXPORT_SYMBOL(security_sctp_sk_clone);
2389
2390#endif  /* CONFIG_SECURITY_NETWORK */
2391
2392#ifdef CONFIG_SECURITY_INFINIBAND
2393
2394int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2395{
2396        return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2397}
2398EXPORT_SYMBOL(security_ib_pkey_access);
2399
2400int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2401{
2402        return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2403}
2404EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2405
2406int security_ib_alloc_security(void **sec)
2407{
2408        return call_int_hook(ib_alloc_security, 0, sec);
2409}
2410EXPORT_SYMBOL(security_ib_alloc_security);
2411
2412void security_ib_free_security(void *sec)
2413{
2414        call_void_hook(ib_free_security, sec);
2415}
2416EXPORT_SYMBOL(security_ib_free_security);
2417#endif  /* CONFIG_SECURITY_INFINIBAND */
2418
2419#ifdef CONFIG_SECURITY_NETWORK_XFRM
2420
2421int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2422                               struct xfrm_user_sec_ctx *sec_ctx,
2423                               gfp_t gfp)
2424{
2425        return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2426}
2427EXPORT_SYMBOL(security_xfrm_policy_alloc);
2428
2429int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2430                              struct xfrm_sec_ctx **new_ctxp)
2431{
2432        return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2433}
2434
2435void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2436{
2437        call_void_hook(xfrm_policy_free_security, ctx);
2438}
2439EXPORT_SYMBOL(security_xfrm_policy_free);
2440
2441int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2442{
2443        return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2444}
2445
2446int security_xfrm_state_alloc(struct xfrm_state *x,
2447                              struct xfrm_user_sec_ctx *sec_ctx)
2448{
2449        return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2450}
2451EXPORT_SYMBOL(security_xfrm_state_alloc);
2452
2453int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2454                                      struct xfrm_sec_ctx *polsec, u32 secid)
2455{
2456        return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2457}
2458
2459int security_xfrm_state_delete(struct xfrm_state *x)
2460{
2461        return call_int_hook(xfrm_state_delete_security, 0, x);
2462}
2463EXPORT_SYMBOL(security_xfrm_state_delete);
2464
2465void security_xfrm_state_free(struct xfrm_state *x)
2466{
2467        call_void_hook(xfrm_state_free_security, x);
2468}
2469
2470int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2471{
2472        return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2473}
2474
2475int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2476                                       struct xfrm_policy *xp,
2477                                       const struct flowi_common *flic)
2478{
2479        struct security_hook_list *hp;
2480        int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2481
2482        /*
2483         * Since this function is expected to return 0 or 1, the judgment
2484         * becomes difficult if multiple LSMs supply this call. Fortunately,
2485         * we can use the first LSM's judgment because currently only SELinux
2486         * supplies this call.
2487         *
2488         * For speed optimization, we explicitly break the loop rather than
2489         * using the macro
2490         */
2491        hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2492                                list) {
2493                rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
2494                break;
2495        }
2496        return rc;
2497}
2498
2499int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2500{
2501        return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2502}
2503
2504void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
2505{
2506        int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid,
2507                                0);
2508
2509        BUG_ON(rc);
2510}
2511EXPORT_SYMBOL(security_skb_classify_flow);
2512
2513#endif  /* CONFIG_SECURITY_NETWORK_XFRM */
2514
2515#ifdef CONFIG_KEYS
2516
2517int security_key_alloc(struct key *key, const struct cred *cred,
2518                       unsigned long flags)
2519{
2520        return call_int_hook(key_alloc, 0, key, cred, flags);
2521}
2522
2523void security_key_free(struct key *key)
2524{
2525        call_void_hook(key_free, key);
2526}
2527
2528int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2529                            enum key_need_perm need_perm)
2530{
2531        return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2532}
2533
2534int security_key_getsecurity(struct key *key, char **_buffer)
2535{
2536        *_buffer = NULL;
2537        return call_int_hook(key_getsecurity, 0, key, _buffer);
2538}
2539
2540#endif  /* CONFIG_KEYS */
2541
2542#ifdef CONFIG_AUDIT
2543
2544int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2545{
2546        return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2547}
2548
2549int security_audit_rule_known(struct audit_krule *krule)
2550{
2551        return call_int_hook(audit_rule_known, 0, krule);
2552}
2553
2554void security_audit_rule_free(void *lsmrule)
2555{
2556        call_void_hook(audit_rule_free, lsmrule);
2557}
2558
2559int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2560{
2561        return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2562}
2563#endif /* CONFIG_AUDIT */
2564
2565#ifdef CONFIG_BPF_SYSCALL
2566int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2567{
2568        return call_int_hook(bpf, 0, cmd, attr, size);
2569}
2570int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2571{
2572        return call_int_hook(bpf_map, 0, map, fmode);
2573}
2574int security_bpf_prog(struct bpf_prog *prog)
2575{
2576        return call_int_hook(bpf_prog, 0, prog);
2577}
2578int security_bpf_map_alloc(struct bpf_map *map)
2579{
2580        return call_int_hook(bpf_map_alloc_security, 0, map);
2581}
2582int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2583{
2584        return call_int_hook(bpf_prog_alloc_security, 0, aux);
2585}
2586void security_bpf_map_free(struct bpf_map *map)
2587{
2588        call_void_hook(bpf_map_free_security, map);
2589}
2590void security_bpf_prog_free(struct bpf_prog_aux *aux)
2591{
2592        call_void_hook(bpf_prog_free_security, aux);
2593}
2594#endif /* CONFIG_BPF_SYSCALL */
2595
2596int security_locked_down(enum lockdown_reason what)
2597{
2598        return call_int_hook(locked_down, 0, what);
2599}
2600EXPORT_SYMBOL(security_locked_down);
2601
2602#ifdef CONFIG_PERF_EVENTS
2603int security_perf_event_open(struct perf_event_attr *attr, int type)
2604{
2605        return call_int_hook(perf_event_open, 0, attr, type);
2606}
2607
2608int security_perf_event_alloc(struct perf_event *event)
2609{
2610        return call_int_hook(perf_event_alloc, 0, event);
2611}
2612
2613void security_perf_event_free(struct perf_event *event)
2614{
2615        call_void_hook(perf_event_free, event);
2616}
2617
2618int security_perf_event_read(struct perf_event *event)
2619{
2620        return call_int_hook(perf_event_read, 0, event);
2621}
2622
2623int security_perf_event_write(struct perf_event *event)
2624{
2625        return call_int_hook(perf_event_write, 0, event);
2626}
2627#endif /* CONFIG_PERF_EVENTS */
2628