linux/security/security.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Security plug functions
   4 *
   5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
   6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
   7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
   8 * Copyright (C) 2016 Mellanox Technologies
   9 */
  10
  11#define pr_fmt(fmt) "LSM: " fmt
  12
  13#include <linux/bpf.h>
  14#include <linux/capability.h>
  15#include <linux/dcache.h>
  16#include <linux/export.h>
  17#include <linux/init.h>
  18#include <linux/kernel.h>
  19#include <linux/kernel_read_file.h>
  20#include <linux/lsm_hooks.h>
  21#include <linux/integrity.h>
  22#include <linux/ima.h>
  23#include <linux/evm.h>
  24#include <linux/fsnotify.h>
  25#include <linux/mman.h>
  26#include <linux/mount.h>
  27#include <linux/personality.h>
  28#include <linux/backing-dev.h>
  29#include <linux/string.h>
  30#include <linux/msg.h>
  31#include <net/flow.h>
  32
  33#define MAX_LSM_EVM_XATTR       2
  34
  35/* How many LSMs were built into the kernel? */
  36#define LSM_COUNT (__end_lsm_info - __start_lsm_info)
  37
  38/*
  39 * These are descriptions of the reasons that can be passed to the
  40 * security_locked_down() LSM hook. Placing this array here allows
  41 * all security modules to use the same descriptions for auditing
  42 * purposes.
  43 */
  44const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
  45        [LOCKDOWN_NONE] = "none",
  46        [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
  47        [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
  48        [LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
  49        [LOCKDOWN_KEXEC] = "kexec of unsigned images",
  50        [LOCKDOWN_HIBERNATION] = "hibernation",
  51        [LOCKDOWN_PCI_ACCESS] = "direct PCI access",
  52        [LOCKDOWN_IOPORT] = "raw io port access",
  53        [LOCKDOWN_MSR] = "raw MSR access",
  54        [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
  55        [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
  56        [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
  57        [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
  58        [LOCKDOWN_MMIOTRACE] = "unsafe mmio",
  59        [LOCKDOWN_DEBUGFS] = "debugfs access",
  60        [LOCKDOWN_XMON_WR] = "xmon write access",
  61        [LOCKDOWN_INTEGRITY_MAX] = "integrity",
  62        [LOCKDOWN_KCORE] = "/proc/kcore access",
  63        [LOCKDOWN_KPROBES] = "use of kprobes",
  64        [LOCKDOWN_BPF_READ] = "use of bpf to read kernel RAM",
  65        [LOCKDOWN_PERF] = "unsafe use of perf",
  66        [LOCKDOWN_TRACEFS] = "use of tracefs",
  67        [LOCKDOWN_XMON_RW] = "xmon read and write access",
  68        [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
  69        [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
  70};
  71
  72struct security_hook_heads security_hook_heads __lsm_ro_after_init;
  73static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
  74
  75static struct kmem_cache *lsm_file_cache;
  76static struct kmem_cache *lsm_inode_cache;
  77
  78char *lsm_names;
  79static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
  80
  81/* Boot-time LSM user choice */
  82static __initdata const char *chosen_lsm_order;
  83static __initdata const char *chosen_major_lsm;
  84
  85static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
  86
  87/* Ordered list of LSMs to initialize. */
  88static __initdata struct lsm_info **ordered_lsms;
  89static __initdata struct lsm_info *exclusive;
  90
  91static __initdata bool debug;
  92#define init_debug(...)                                         \
  93        do {                                                    \
  94                if (debug)                                      \
  95                        pr_info(__VA_ARGS__);                   \
  96        } while (0)
  97
  98static bool __init is_enabled(struct lsm_info *lsm)
  99{
 100        if (!lsm->enabled)
 101                return false;
 102
 103        return *lsm->enabled;
 104}
 105
 106/* Mark an LSM's enabled flag. */
 107static int lsm_enabled_true __initdata = 1;
 108static int lsm_enabled_false __initdata = 0;
 109static void __init set_enabled(struct lsm_info *lsm, bool enabled)
 110{
 111        /*
 112         * When an LSM hasn't configured an enable variable, we can use
 113         * a hard-coded location for storing the default enabled state.
 114         */
 115        if (!lsm->enabled) {
 116                if (enabled)
 117                        lsm->enabled = &lsm_enabled_true;
 118                else
 119                        lsm->enabled = &lsm_enabled_false;
 120        } else if (lsm->enabled == &lsm_enabled_true) {
 121                if (!enabled)
 122                        lsm->enabled = &lsm_enabled_false;
 123        } else if (lsm->enabled == &lsm_enabled_false) {
 124                if (enabled)
 125                        lsm->enabled = &lsm_enabled_true;
 126        } else {
 127                *lsm->enabled = enabled;
 128        }
 129}
 130
 131/* Is an LSM already listed in the ordered LSMs list? */
 132static bool __init exists_ordered_lsm(struct lsm_info *lsm)
 133{
 134        struct lsm_info **check;
 135
 136        for (check = ordered_lsms; *check; check++)
 137                if (*check == lsm)
 138                        return true;
 139
 140        return false;
 141}
 142
 143/* Append an LSM to the list of ordered LSMs to initialize. */
 144static int last_lsm __initdata;
 145static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
 146{
 147        /* Ignore duplicate selections. */
 148        if (exists_ordered_lsm(lsm))
 149                return;
 150
 151        if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
 152                return;
 153
 154        /* Enable this LSM, if it is not already set. */
 155        if (!lsm->enabled)
 156                lsm->enabled = &lsm_enabled_true;
 157        ordered_lsms[last_lsm++] = lsm;
 158
 159        init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
 160                   is_enabled(lsm) ? "en" : "dis");
 161}
 162
 163/* Is an LSM allowed to be initialized? */
 164static bool __init lsm_allowed(struct lsm_info *lsm)
 165{
 166        /* Skip if the LSM is disabled. */
 167        if (!is_enabled(lsm))
 168                return false;
 169
 170        /* Not allowed if another exclusive LSM already initialized. */
 171        if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
 172                init_debug("exclusive disabled: %s\n", lsm->name);
 173                return false;
 174        }
 175
 176        return true;
 177}
 178
 179static void __init lsm_set_blob_size(int *need, int *lbs)
 180{
 181        int offset;
 182
 183        if (*need > 0) {
 184                offset = *lbs;
 185                *lbs += *need;
 186                *need = offset;
 187        }
 188}
 189
 190static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
 191{
 192        if (!needed)
 193                return;
 194
 195        lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
 196        lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
 197        /*
 198         * The inode blob gets an rcu_head in addition to
 199         * what the modules might need.
 200         */
 201        if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
 202                blob_sizes.lbs_inode = sizeof(struct rcu_head);
 203        lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
 204        lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
 205        lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
 206        lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
 207        lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
 208}
 209
 210/* Prepare LSM for initialization. */
 211static void __init prepare_lsm(struct lsm_info *lsm)
 212{
 213        int enabled = lsm_allowed(lsm);
 214
 215        /* Record enablement (to handle any following exclusive LSMs). */
 216        set_enabled(lsm, enabled);
 217
 218        /* If enabled, do pre-initialization work. */
 219        if (enabled) {
 220                if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
 221                        exclusive = lsm;
 222                        init_debug("exclusive chosen: %s\n", lsm->name);
 223                }
 224
 225                lsm_set_blob_sizes(lsm->blobs);
 226        }
 227}
 228
 229/* Initialize a given LSM, if it is enabled. */
 230static void __init initialize_lsm(struct lsm_info *lsm)
 231{
 232        if (is_enabled(lsm)) {
 233                int ret;
 234
 235                init_debug("initializing %s\n", lsm->name);
 236                ret = lsm->init();
 237                WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
 238        }
 239}
 240
 241/* Populate ordered LSMs list from comma-separated LSM name list. */
 242static void __init ordered_lsm_parse(const char *order, const char *origin)
 243{
 244        struct lsm_info *lsm;
 245        char *sep, *name, *next;
 246
 247        /* LSM_ORDER_FIRST is always first. */
 248        for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 249                if (lsm->order == LSM_ORDER_FIRST)
 250                        append_ordered_lsm(lsm, "first");
 251        }
 252
 253        /* Process "security=", if given. */
 254        if (chosen_major_lsm) {
 255                struct lsm_info *major;
 256
 257                /*
 258                 * To match the original "security=" behavior, this
 259                 * explicitly does NOT fallback to another Legacy Major
 260                 * if the selected one was separately disabled: disable
 261                 * all non-matching Legacy Major LSMs.
 262                 */
 263                for (major = __start_lsm_info; major < __end_lsm_info;
 264                     major++) {
 265                        if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
 266                            strcmp(major->name, chosen_major_lsm) != 0) {
 267                                set_enabled(major, false);
 268                                init_debug("security=%s disabled: %s\n",
 269                                           chosen_major_lsm, major->name);
 270                        }
 271                }
 272        }
 273
 274        sep = kstrdup(order, GFP_KERNEL);
 275        next = sep;
 276        /* Walk the list, looking for matching LSMs. */
 277        while ((name = strsep(&next, ",")) != NULL) {
 278                bool found = false;
 279
 280                for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 281                        if (lsm->order == LSM_ORDER_MUTABLE &&
 282                            strcmp(lsm->name, name) == 0) {
 283                                append_ordered_lsm(lsm, origin);
 284                                found = true;
 285                        }
 286                }
 287
 288                if (!found)
 289                        init_debug("%s ignored: %s\n", origin, name);
 290        }
 291
 292        /* Process "security=", if given. */
 293        if (chosen_major_lsm) {
 294                for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 295                        if (exists_ordered_lsm(lsm))
 296                                continue;
 297                        if (strcmp(lsm->name, chosen_major_lsm) == 0)
 298                                append_ordered_lsm(lsm, "security=");
 299                }
 300        }
 301
 302        /* Disable all LSMs not in the ordered list. */
 303        for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 304                if (exists_ordered_lsm(lsm))
 305                        continue;
 306                set_enabled(lsm, false);
 307                init_debug("%s disabled: %s\n", origin, lsm->name);
 308        }
 309
 310        kfree(sep);
 311}
 312
 313static void __init lsm_early_cred(struct cred *cred);
 314static void __init lsm_early_task(struct task_struct *task);
 315
 316static int lsm_append(const char *new, char **result);
 317
 318static void __init ordered_lsm_init(void)
 319{
 320        struct lsm_info **lsm;
 321
 322        ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
 323                                GFP_KERNEL);
 324
 325        if (chosen_lsm_order) {
 326                if (chosen_major_lsm) {
 327                        pr_info("security= is ignored because it is superseded by lsm=\n");
 328                        chosen_major_lsm = NULL;
 329                }
 330                ordered_lsm_parse(chosen_lsm_order, "cmdline");
 331        } else
 332                ordered_lsm_parse(builtin_lsm_order, "builtin");
 333
 334        for (lsm = ordered_lsms; *lsm; lsm++)
 335                prepare_lsm(*lsm);
 336
 337        init_debug("cred blob size       = %d\n", blob_sizes.lbs_cred);
 338        init_debug("file blob size       = %d\n", blob_sizes.lbs_file);
 339        init_debug("inode blob size      = %d\n", blob_sizes.lbs_inode);
 340        init_debug("ipc blob size        = %d\n", blob_sizes.lbs_ipc);
 341        init_debug("msg_msg blob size    = %d\n", blob_sizes.lbs_msg_msg);
 342        init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
 343        init_debug("task blob size       = %d\n", blob_sizes.lbs_task);
 344
 345        /*
 346         * Create any kmem_caches needed for blobs
 347         */
 348        if (blob_sizes.lbs_file)
 349                lsm_file_cache = kmem_cache_create("lsm_file_cache",
 350                                                   blob_sizes.lbs_file, 0,
 351                                                   SLAB_PANIC, NULL);
 352        if (blob_sizes.lbs_inode)
 353                lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
 354                                                    blob_sizes.lbs_inode, 0,
 355                                                    SLAB_PANIC, NULL);
 356
 357        lsm_early_cred((struct cred *) current->cred);
 358        lsm_early_task(current);
 359        for (lsm = ordered_lsms; *lsm; lsm++)
 360                initialize_lsm(*lsm);
 361
 362        kfree(ordered_lsms);
 363}
 364
 365int __init early_security_init(void)
 366{
 367        int i;
 368        struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
 369        struct lsm_info *lsm;
 370
 371        for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
 372             i++)
 373                INIT_HLIST_HEAD(&list[i]);
 374
 375        for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
 376                if (!lsm->enabled)
 377                        lsm->enabled = &lsm_enabled_true;
 378                prepare_lsm(lsm);
 379                initialize_lsm(lsm);
 380        }
 381
 382        return 0;
 383}
 384
 385/**
 386 * security_init - initializes the security framework
 387 *
 388 * This should be called early in the kernel initialization sequence.
 389 */
 390int __init security_init(void)
 391{
 392        struct lsm_info *lsm;
 393
 394        pr_info("Security Framework initializing\n");
 395
 396        /*
 397         * Append the names of the early LSM modules now that kmalloc() is
 398         * available
 399         */
 400        for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
 401                if (lsm->enabled)
 402                        lsm_append(lsm->name, &lsm_names);
 403        }
 404
 405        /* Load LSMs in specified order. */
 406        ordered_lsm_init();
 407
 408        return 0;
 409}
 410
 411/* Save user chosen LSM */
 412static int __init choose_major_lsm(char *str)
 413{
 414        chosen_major_lsm = str;
 415        return 1;
 416}
 417__setup("security=", choose_major_lsm);
 418
 419/* Explicitly choose LSM initialization order. */
 420static int __init choose_lsm_order(char *str)
 421{
 422        chosen_lsm_order = str;
 423        return 1;
 424}
 425__setup("lsm=", choose_lsm_order);
 426
 427/* Enable LSM order debugging. */
 428static int __init enable_debug(char *str)
 429{
 430        debug = true;
 431        return 1;
 432}
 433__setup("lsm.debug", enable_debug);
 434
 435static bool match_last_lsm(const char *list, const char *lsm)
 436{
 437        const char *last;
 438
 439        if (WARN_ON(!list || !lsm))
 440                return false;
 441        last = strrchr(list, ',');
 442        if (last)
 443                /* Pass the comma, strcmp() will check for '\0' */
 444                last++;
 445        else
 446                last = list;
 447        return !strcmp(last, lsm);
 448}
 449
 450static int lsm_append(const char *new, char **result)
 451{
 452        char *cp;
 453
 454        if (*result == NULL) {
 455                *result = kstrdup(new, GFP_KERNEL);
 456                if (*result == NULL)
 457                        return -ENOMEM;
 458        } else {
 459                /* Check if it is the last registered name */
 460                if (match_last_lsm(*result, new))
 461                        return 0;
 462                cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
 463                if (cp == NULL)
 464                        return -ENOMEM;
 465                kfree(*result);
 466                *result = cp;
 467        }
 468        return 0;
 469}
 470
 471/**
 472 * security_add_hooks - Add a modules hooks to the hook lists.
 473 * @hooks: the hooks to add
 474 * @count: the number of hooks to add
 475 * @lsm: the name of the security module
 476 *
 477 * Each LSM has to register its hooks with the infrastructure.
 478 */
 479void __init security_add_hooks(struct security_hook_list *hooks, int count,
 480                                char *lsm)
 481{
 482        int i;
 483
 484        for (i = 0; i < count; i++) {
 485                hooks[i].lsm = lsm;
 486                hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
 487        }
 488
 489        /*
 490         * Don't try to append during early_security_init(), we'll come back
 491         * and fix this up afterwards.
 492         */
 493        if (slab_is_available()) {
 494                if (lsm_append(lsm, &lsm_names) < 0)
 495                        panic("%s - Cannot get early memory.\n", __func__);
 496        }
 497}
 498
 499int call_blocking_lsm_notifier(enum lsm_event event, void *data)
 500{
 501        return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
 502                                            event, data);
 503}
 504EXPORT_SYMBOL(call_blocking_lsm_notifier);
 505
 506int register_blocking_lsm_notifier(struct notifier_block *nb)
 507{
 508        return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
 509                                                nb);
 510}
 511EXPORT_SYMBOL(register_blocking_lsm_notifier);
 512
 513int unregister_blocking_lsm_notifier(struct notifier_block *nb)
 514{
 515        return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
 516                                                  nb);
 517}
 518EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
 519
 520/**
 521 * lsm_cred_alloc - allocate a composite cred blob
 522 * @cred: the cred that needs a blob
 523 * @gfp: allocation type
 524 *
 525 * Allocate the cred blob for all the modules
 526 *
 527 * Returns 0, or -ENOMEM if memory can't be allocated.
 528 */
 529static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
 530{
 531        if (blob_sizes.lbs_cred == 0) {
 532                cred->security = NULL;
 533                return 0;
 534        }
 535
 536        cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
 537        if (cred->security == NULL)
 538                return -ENOMEM;
 539        return 0;
 540}
 541
 542/**
 543 * lsm_early_cred - during initialization allocate a composite cred blob
 544 * @cred: the cred that needs a blob
 545 *
 546 * Allocate the cred blob for all the modules
 547 */
 548static void __init lsm_early_cred(struct cred *cred)
 549{
 550        int rc = lsm_cred_alloc(cred, GFP_KERNEL);
 551
 552        if (rc)
 553                panic("%s: Early cred alloc failed.\n", __func__);
 554}
 555
 556/**
 557 * lsm_file_alloc - allocate a composite file blob
 558 * @file: the file that needs a blob
 559 *
 560 * Allocate the file blob for all the modules
 561 *
 562 * Returns 0, or -ENOMEM if memory can't be allocated.
 563 */
 564static int lsm_file_alloc(struct file *file)
 565{
 566        if (!lsm_file_cache) {
 567                file->f_security = NULL;
 568                return 0;
 569        }
 570
 571        file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
 572        if (file->f_security == NULL)
 573                return -ENOMEM;
 574        return 0;
 575}
 576
 577/**
 578 * lsm_inode_alloc - allocate a composite inode blob
 579 * @inode: the inode that needs a blob
 580 *
 581 * Allocate the inode blob for all the modules
 582 *
 583 * Returns 0, or -ENOMEM if memory can't be allocated.
 584 */
 585int lsm_inode_alloc(struct inode *inode)
 586{
 587        if (!lsm_inode_cache) {
 588                inode->i_security = NULL;
 589                return 0;
 590        }
 591
 592        inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
 593        if (inode->i_security == NULL)
 594                return -ENOMEM;
 595        return 0;
 596}
 597
 598/**
 599 * lsm_task_alloc - allocate a composite task blob
 600 * @task: the task that needs a blob
 601 *
 602 * Allocate the task blob for all the modules
 603 *
 604 * Returns 0, or -ENOMEM if memory can't be allocated.
 605 */
 606static int lsm_task_alloc(struct task_struct *task)
 607{
 608        if (blob_sizes.lbs_task == 0) {
 609                task->security = NULL;
 610                return 0;
 611        }
 612
 613        task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
 614        if (task->security == NULL)
 615                return -ENOMEM;
 616        return 0;
 617}
 618
 619/**
 620 * lsm_ipc_alloc - allocate a composite ipc blob
 621 * @kip: the ipc that needs a blob
 622 *
 623 * Allocate the ipc blob for all the modules
 624 *
 625 * Returns 0, or -ENOMEM if memory can't be allocated.
 626 */
 627static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
 628{
 629        if (blob_sizes.lbs_ipc == 0) {
 630                kip->security = NULL;
 631                return 0;
 632        }
 633
 634        kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
 635        if (kip->security == NULL)
 636                return -ENOMEM;
 637        return 0;
 638}
 639
 640/**
 641 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
 642 * @mp: the msg_msg that needs a blob
 643 *
 644 * Allocate the ipc blob for all the modules
 645 *
 646 * Returns 0, or -ENOMEM if memory can't be allocated.
 647 */
 648static int lsm_msg_msg_alloc(struct msg_msg *mp)
 649{
 650        if (blob_sizes.lbs_msg_msg == 0) {
 651                mp->security = NULL;
 652                return 0;
 653        }
 654
 655        mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
 656        if (mp->security == NULL)
 657                return -ENOMEM;
 658        return 0;
 659}
 660
 661/**
 662 * lsm_early_task - during initialization allocate a composite task blob
 663 * @task: the task that needs a blob
 664 *
 665 * Allocate the task blob for all the modules
 666 */
 667static void __init lsm_early_task(struct task_struct *task)
 668{
 669        int rc = lsm_task_alloc(task);
 670
 671        if (rc)
 672                panic("%s: Early task alloc failed.\n", __func__);
 673}
 674
 675/**
 676 * lsm_superblock_alloc - allocate a composite superblock blob
 677 * @sb: the superblock that needs a blob
 678 *
 679 * Allocate the superblock blob for all the modules
 680 *
 681 * Returns 0, or -ENOMEM if memory can't be allocated.
 682 */
 683static int lsm_superblock_alloc(struct super_block *sb)
 684{
 685        if (blob_sizes.lbs_superblock == 0) {
 686                sb->s_security = NULL;
 687                return 0;
 688        }
 689
 690        sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL);
 691        if (sb->s_security == NULL)
 692                return -ENOMEM;
 693        return 0;
 694}
 695
 696/*
 697 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
 698 * can be accessed with:
 699 *
 700 *      LSM_RET_DEFAULT(<hook_name>)
 701 *
 702 * The macros below define static constants for the default value of each
 703 * LSM hook.
 704 */
 705#define LSM_RET_DEFAULT(NAME) (NAME##_default)
 706#define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
 707#define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
 708        static const int LSM_RET_DEFAULT(NAME) = (DEFAULT);
 709#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
 710        DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
 711
 712#include <linux/lsm_hook_defs.h>
 713#undef LSM_HOOK
 714
 715/*
 716 * Hook list operation macros.
 717 *
 718 * call_void_hook:
 719 *      This is a hook that does not return a value.
 720 *
 721 * call_int_hook:
 722 *      This is a hook that returns a value.
 723 */
 724
 725#define call_void_hook(FUNC, ...)                               \
 726        do {                                                    \
 727                struct security_hook_list *P;                   \
 728                                                                \
 729                hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
 730                        P->hook.FUNC(__VA_ARGS__);              \
 731        } while (0)
 732
 733#define call_int_hook(FUNC, IRC, ...) ({                        \
 734        int RC = IRC;                                           \
 735        do {                                                    \
 736                struct security_hook_list *P;                   \
 737                                                                \
 738                hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
 739                        RC = P->hook.FUNC(__VA_ARGS__);         \
 740                        if (RC != 0)                            \
 741                                break;                          \
 742                }                                               \
 743        } while (0);                                            \
 744        RC;                                                     \
 745})
 746
 747/* Security operations */
 748
 749int security_binder_set_context_mgr(struct task_struct *mgr)
 750{
 751        return call_int_hook(binder_set_context_mgr, 0, mgr);
 752}
 753
 754int security_binder_transaction(struct task_struct *from,
 755                                struct task_struct *to)
 756{
 757        return call_int_hook(binder_transaction, 0, from, to);
 758}
 759
 760int security_binder_transfer_binder(struct task_struct *from,
 761                                    struct task_struct *to)
 762{
 763        return call_int_hook(binder_transfer_binder, 0, from, to);
 764}
 765
 766int security_binder_transfer_file(struct task_struct *from,
 767                                  struct task_struct *to, struct file *file)
 768{
 769        return call_int_hook(binder_transfer_file, 0, from, to, file);
 770}
 771
 772int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
 773{
 774        return call_int_hook(ptrace_access_check, 0, child, mode);
 775}
 776
 777int security_ptrace_traceme(struct task_struct *parent)
 778{
 779        return call_int_hook(ptrace_traceme, 0, parent);
 780}
 781
 782int security_capget(struct task_struct *target,
 783                     kernel_cap_t *effective,
 784                     kernel_cap_t *inheritable,
 785                     kernel_cap_t *permitted)
 786{
 787        return call_int_hook(capget, 0, target,
 788                                effective, inheritable, permitted);
 789}
 790
 791int security_capset(struct cred *new, const struct cred *old,
 792                    const kernel_cap_t *effective,
 793                    const kernel_cap_t *inheritable,
 794                    const kernel_cap_t *permitted)
 795{
 796        return call_int_hook(capset, 0, new, old,
 797                                effective, inheritable, permitted);
 798}
 799
 800int security_capable(const struct cred *cred,
 801                     struct user_namespace *ns,
 802                     int cap,
 803                     unsigned int opts)
 804{
 805        return call_int_hook(capable, 0, cred, ns, cap, opts);
 806}
 807
 808int security_quotactl(int cmds, int type, int id, struct super_block *sb)
 809{
 810        return call_int_hook(quotactl, 0, cmds, type, id, sb);
 811}
 812
 813int security_quota_on(struct dentry *dentry)
 814{
 815        return call_int_hook(quota_on, 0, dentry);
 816}
 817
 818int security_syslog(int type)
 819{
 820        return call_int_hook(syslog, 0, type);
 821}
 822
 823int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
 824{
 825        return call_int_hook(settime, 0, ts, tz);
 826}
 827
 828int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
 829{
 830        struct security_hook_list *hp;
 831        int cap_sys_admin = 1;
 832        int rc;
 833
 834        /*
 835         * The module will respond with a positive value if
 836         * it thinks the __vm_enough_memory() call should be
 837         * made with the cap_sys_admin set. If all of the modules
 838         * agree that it should be set it will. If any module
 839         * thinks it should not be set it won't.
 840         */
 841        hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
 842                rc = hp->hook.vm_enough_memory(mm, pages);
 843                if (rc <= 0) {
 844                        cap_sys_admin = 0;
 845                        break;
 846                }
 847        }
 848        return __vm_enough_memory(mm, pages, cap_sys_admin);
 849}
 850
 851int security_bprm_creds_for_exec(struct linux_binprm *bprm)
 852{
 853        return call_int_hook(bprm_creds_for_exec, 0, bprm);
 854}
 855
 856int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
 857{
 858        return call_int_hook(bprm_creds_from_file, 0, bprm, file);
 859}
 860
 861int security_bprm_check(struct linux_binprm *bprm)
 862{
 863        int ret;
 864
 865        ret = call_int_hook(bprm_check_security, 0, bprm);
 866        if (ret)
 867                return ret;
 868        return ima_bprm_check(bprm);
 869}
 870
 871void security_bprm_committing_creds(struct linux_binprm *bprm)
 872{
 873        call_void_hook(bprm_committing_creds, bprm);
 874}
 875
 876void security_bprm_committed_creds(struct linux_binprm *bprm)
 877{
 878        call_void_hook(bprm_committed_creds, bprm);
 879}
 880
 881int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
 882{
 883        return call_int_hook(fs_context_dup, 0, fc, src_fc);
 884}
 885
 886int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
 887{
 888        return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
 889}
 890
 891int security_sb_alloc(struct super_block *sb)
 892{
 893        int rc = lsm_superblock_alloc(sb);
 894
 895        if (unlikely(rc))
 896                return rc;
 897        rc = call_int_hook(sb_alloc_security, 0, sb);
 898        if (unlikely(rc))
 899                security_sb_free(sb);
 900        return rc;
 901}
 902
 903void security_sb_delete(struct super_block *sb)
 904{
 905        call_void_hook(sb_delete, sb);
 906}
 907
 908void security_sb_free(struct super_block *sb)
 909{
 910        call_void_hook(sb_free_security, sb);
 911        kfree(sb->s_security);
 912        sb->s_security = NULL;
 913}
 914
 915void security_free_mnt_opts(void **mnt_opts)
 916{
 917        if (!*mnt_opts)
 918                return;
 919        call_void_hook(sb_free_mnt_opts, *mnt_opts);
 920        *mnt_opts = NULL;
 921}
 922EXPORT_SYMBOL(security_free_mnt_opts);
 923
 924int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
 925{
 926        return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
 927}
 928EXPORT_SYMBOL(security_sb_eat_lsm_opts);
 929
 930int security_sb_mnt_opts_compat(struct super_block *sb,
 931                                void *mnt_opts)
 932{
 933        return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts);
 934}
 935EXPORT_SYMBOL(security_sb_mnt_opts_compat);
 936
 937int security_sb_remount(struct super_block *sb,
 938                        void *mnt_opts)
 939{
 940        return call_int_hook(sb_remount, 0, sb, mnt_opts);
 941}
 942EXPORT_SYMBOL(security_sb_remount);
 943
 944int security_sb_kern_mount(struct super_block *sb)
 945{
 946        return call_int_hook(sb_kern_mount, 0, sb);
 947}
 948
 949int security_sb_show_options(struct seq_file *m, struct super_block *sb)
 950{
 951        return call_int_hook(sb_show_options, 0, m, sb);
 952}
 953
 954int security_sb_statfs(struct dentry *dentry)
 955{
 956        return call_int_hook(sb_statfs, 0, dentry);
 957}
 958
 959int security_sb_mount(const char *dev_name, const struct path *path,
 960                       const char *type, unsigned long flags, void *data)
 961{
 962        return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
 963}
 964
 965int security_sb_umount(struct vfsmount *mnt, int flags)
 966{
 967        return call_int_hook(sb_umount, 0, mnt, flags);
 968}
 969
 970int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
 971{
 972        return call_int_hook(sb_pivotroot, 0, old_path, new_path);
 973}
 974
 975int security_sb_set_mnt_opts(struct super_block *sb,
 976                                void *mnt_opts,
 977                                unsigned long kern_flags,
 978                                unsigned long *set_kern_flags)
 979{
 980        return call_int_hook(sb_set_mnt_opts,
 981                                mnt_opts ? -EOPNOTSUPP : 0, sb,
 982                                mnt_opts, kern_flags, set_kern_flags);
 983}
 984EXPORT_SYMBOL(security_sb_set_mnt_opts);
 985
 986int security_sb_clone_mnt_opts(const struct super_block *oldsb,
 987                                struct super_block *newsb,
 988                                unsigned long kern_flags,
 989                                unsigned long *set_kern_flags)
 990{
 991        return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
 992                                kern_flags, set_kern_flags);
 993}
 994EXPORT_SYMBOL(security_sb_clone_mnt_opts);
 995
 996int security_add_mnt_opt(const char *option, const char *val, int len,
 997                         void **mnt_opts)
 998{
 999        return call_int_hook(sb_add_mnt_opt, -EINVAL,
1000                                        option, val, len, mnt_opts);
1001}
1002EXPORT_SYMBOL(security_add_mnt_opt);
1003
1004int security_move_mount(const struct path *from_path, const struct path *to_path)
1005{
1006        return call_int_hook(move_mount, 0, from_path, to_path);
1007}
1008
1009int security_path_notify(const struct path *path, u64 mask,
1010                                unsigned int obj_type)
1011{
1012        return call_int_hook(path_notify, 0, path, mask, obj_type);
1013}
1014
1015int security_inode_alloc(struct inode *inode)
1016{
1017        int rc = lsm_inode_alloc(inode);
1018
1019        if (unlikely(rc))
1020                return rc;
1021        rc = call_int_hook(inode_alloc_security, 0, inode);
1022        if (unlikely(rc))
1023                security_inode_free(inode);
1024        return rc;
1025}
1026
1027static void inode_free_by_rcu(struct rcu_head *head)
1028{
1029        /*
1030         * The rcu head is at the start of the inode blob
1031         */
1032        kmem_cache_free(lsm_inode_cache, head);
1033}
1034
1035void security_inode_free(struct inode *inode)
1036{
1037        integrity_inode_free(inode);
1038        call_void_hook(inode_free_security, inode);
1039        /*
1040         * The inode may still be referenced in a path walk and
1041         * a call to security_inode_permission() can be made
1042         * after inode_free_security() is called. Ideally, the VFS
1043         * wouldn't do this, but fixing that is a much harder
1044         * job. For now, simply free the i_security via RCU, and
1045         * leave the current inode->i_security pointer intact.
1046         * The inode will be freed after the RCU grace period too.
1047         */
1048        if (inode->i_security)
1049                call_rcu((struct rcu_head *)inode->i_security,
1050                                inode_free_by_rcu);
1051}
1052
1053int security_dentry_init_security(struct dentry *dentry, int mode,
1054                                        const struct qstr *name, void **ctx,
1055                                        u32 *ctxlen)
1056{
1057        return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
1058                                name, ctx, ctxlen);
1059}
1060EXPORT_SYMBOL(security_dentry_init_security);
1061
1062int security_dentry_create_files_as(struct dentry *dentry, int mode,
1063                                    struct qstr *name,
1064                                    const struct cred *old, struct cred *new)
1065{
1066        return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1067                                name, old, new);
1068}
1069EXPORT_SYMBOL(security_dentry_create_files_as);
1070
1071int security_inode_init_security(struct inode *inode, struct inode *dir,
1072                                 const struct qstr *qstr,
1073                                 const initxattrs initxattrs, void *fs_data)
1074{
1075        struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1076        struct xattr *lsm_xattr, *evm_xattr, *xattr;
1077        int ret;
1078
1079        if (unlikely(IS_PRIVATE(inode)))
1080                return 0;
1081
1082        if (!initxattrs)
1083                return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1084                                     dir, qstr, NULL, NULL, NULL);
1085        memset(new_xattrs, 0, sizeof(new_xattrs));
1086        lsm_xattr = new_xattrs;
1087        ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1088                                                &lsm_xattr->name,
1089                                                &lsm_xattr->value,
1090                                                &lsm_xattr->value_len);
1091        if (ret)
1092                goto out;
1093
1094        evm_xattr = lsm_xattr + 1;
1095        ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1096        if (ret)
1097                goto out;
1098        ret = initxattrs(inode, new_xattrs, fs_data);
1099out:
1100        for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1101                kfree(xattr->value);
1102        return (ret == -EOPNOTSUPP) ? 0 : ret;
1103}
1104EXPORT_SYMBOL(security_inode_init_security);
1105
1106int security_inode_init_security_anon(struct inode *inode,
1107                                      const struct qstr *name,
1108                                      const struct inode *context_inode)
1109{
1110        return call_int_hook(inode_init_security_anon, 0, inode, name,
1111                             context_inode);
1112}
1113
1114int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1115                                     const struct qstr *qstr, const char **name,
1116                                     void **value, size_t *len)
1117{
1118        if (unlikely(IS_PRIVATE(inode)))
1119                return -EOPNOTSUPP;
1120        return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1121                             qstr, name, value, len);
1122}
1123EXPORT_SYMBOL(security_old_inode_init_security);
1124
1125#ifdef CONFIG_SECURITY_PATH
1126int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1127                        unsigned int dev)
1128{
1129        if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1130                return 0;
1131        return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1132}
1133EXPORT_SYMBOL(security_path_mknod);
1134
1135int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1136{
1137        if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1138                return 0;
1139        return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1140}
1141EXPORT_SYMBOL(security_path_mkdir);
1142
1143int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1144{
1145        if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1146                return 0;
1147        return call_int_hook(path_rmdir, 0, dir, dentry);
1148}
1149
1150int security_path_unlink(const struct path *dir, struct dentry *dentry)
1151{
1152        if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1153                return 0;
1154        return call_int_hook(path_unlink, 0, dir, dentry);
1155}
1156EXPORT_SYMBOL(security_path_unlink);
1157
1158int security_path_symlink(const struct path *dir, struct dentry *dentry,
1159                          const char *old_name)
1160{
1161        if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1162                return 0;
1163        return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1164}
1165
1166int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1167                       struct dentry *new_dentry)
1168{
1169        if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1170                return 0;
1171        return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1172}
1173
1174int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1175                         const struct path *new_dir, struct dentry *new_dentry,
1176                         unsigned int flags)
1177{
1178        if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1179                     (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1180                return 0;
1181
1182        if (flags & RENAME_EXCHANGE) {
1183                int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1184                                        old_dir, old_dentry);
1185                if (err)
1186                        return err;
1187        }
1188
1189        return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1190                                new_dentry);
1191}
1192EXPORT_SYMBOL(security_path_rename);
1193
1194int security_path_truncate(const struct path *path)
1195{
1196        if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1197                return 0;
1198        return call_int_hook(path_truncate, 0, path);
1199}
1200
1201int security_path_chmod(const struct path *path, umode_t mode)
1202{
1203        if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1204                return 0;
1205        return call_int_hook(path_chmod, 0, path, mode);
1206}
1207
1208int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1209{
1210        if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1211                return 0;
1212        return call_int_hook(path_chown, 0, path, uid, gid);
1213}
1214
1215int security_path_chroot(const struct path *path)
1216{
1217        return call_int_hook(path_chroot, 0, path);
1218}
1219#endif
1220
1221int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1222{
1223        if (unlikely(IS_PRIVATE(dir)))
1224                return 0;
1225        return call_int_hook(inode_create, 0, dir, dentry, mode);
1226}
1227EXPORT_SYMBOL_GPL(security_inode_create);
1228
1229int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1230                         struct dentry *new_dentry)
1231{
1232        if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1233                return 0;
1234        return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1235}
1236
1237int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1238{
1239        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1240                return 0;
1241        return call_int_hook(inode_unlink, 0, dir, dentry);
1242}
1243
1244int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1245                            const char *old_name)
1246{
1247        if (unlikely(IS_PRIVATE(dir)))
1248                return 0;
1249        return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1250}
1251
1252int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1253{
1254        if (unlikely(IS_PRIVATE(dir)))
1255                return 0;
1256        return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1257}
1258EXPORT_SYMBOL_GPL(security_inode_mkdir);
1259
1260int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1261{
1262        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1263                return 0;
1264        return call_int_hook(inode_rmdir, 0, dir, dentry);
1265}
1266
1267int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1268{
1269        if (unlikely(IS_PRIVATE(dir)))
1270                return 0;
1271        return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1272}
1273
1274int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1275                           struct inode *new_dir, struct dentry *new_dentry,
1276                           unsigned int flags)
1277{
1278        if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1279            (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1280                return 0;
1281
1282        if (flags & RENAME_EXCHANGE) {
1283                int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1284                                                     old_dir, old_dentry);
1285                if (err)
1286                        return err;
1287        }
1288
1289        return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1290                                           new_dir, new_dentry);
1291}
1292
1293int security_inode_readlink(struct dentry *dentry)
1294{
1295        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1296                return 0;
1297        return call_int_hook(inode_readlink, 0, dentry);
1298}
1299
1300int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1301                               bool rcu)
1302{
1303        if (unlikely(IS_PRIVATE(inode)))
1304                return 0;
1305        return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1306}
1307
1308int security_inode_permission(struct inode *inode, int mask)
1309{
1310        if (unlikely(IS_PRIVATE(inode)))
1311                return 0;
1312        return call_int_hook(inode_permission, 0, inode, mask);
1313}
1314
1315int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1316{
1317        int ret;
1318
1319        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1320                return 0;
1321        ret = call_int_hook(inode_setattr, 0, dentry, attr);
1322        if (ret)
1323                return ret;
1324        return evm_inode_setattr(dentry, attr);
1325}
1326EXPORT_SYMBOL_GPL(security_inode_setattr);
1327
1328int security_inode_getattr(const struct path *path)
1329{
1330        if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1331                return 0;
1332        return call_int_hook(inode_getattr, 0, path);
1333}
1334
1335int security_inode_setxattr(struct user_namespace *mnt_userns,
1336                            struct dentry *dentry, const char *name,
1337                            const void *value, size_t size, int flags)
1338{
1339        int ret;
1340
1341        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1342                return 0;
1343        /*
1344         * SELinux and Smack integrate the cap call,
1345         * so assume that all LSMs supplying this call do so.
1346         */
1347        ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value,
1348                            size, flags);
1349
1350        if (ret == 1)
1351                ret = cap_inode_setxattr(dentry, name, value, size, flags);
1352        if (ret)
1353                return ret;
1354        ret = ima_inode_setxattr(dentry, name, value, size);
1355        if (ret)
1356                return ret;
1357        return evm_inode_setxattr(dentry, name, value, size);
1358}
1359
1360void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1361                                  const void *value, size_t size, int flags)
1362{
1363        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1364                return;
1365        call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1366        evm_inode_post_setxattr(dentry, name, value, size);
1367}
1368
1369int security_inode_getxattr(struct dentry *dentry, const char *name)
1370{
1371        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1372                return 0;
1373        return call_int_hook(inode_getxattr, 0, dentry, name);
1374}
1375
1376int security_inode_listxattr(struct dentry *dentry)
1377{
1378        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1379                return 0;
1380        return call_int_hook(inode_listxattr, 0, dentry);
1381}
1382
1383int security_inode_removexattr(struct user_namespace *mnt_userns,
1384                               struct dentry *dentry, const char *name)
1385{
1386        int ret;
1387
1388        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1389                return 0;
1390        /*
1391         * SELinux and Smack integrate the cap call,
1392         * so assume that all LSMs supplying this call do so.
1393         */
1394        ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name);
1395        if (ret == 1)
1396                ret = cap_inode_removexattr(mnt_userns, dentry, name);
1397        if (ret)
1398                return ret;
1399        ret = ima_inode_removexattr(dentry, name);
1400        if (ret)
1401                return ret;
1402        return evm_inode_removexattr(dentry, name);
1403}
1404
1405int security_inode_need_killpriv(struct dentry *dentry)
1406{
1407        return call_int_hook(inode_need_killpriv, 0, dentry);
1408}
1409
1410int security_inode_killpriv(struct user_namespace *mnt_userns,
1411                            struct dentry *dentry)
1412{
1413        return call_int_hook(inode_killpriv, 0, mnt_userns, dentry);
1414}
1415
1416int security_inode_getsecurity(struct user_namespace *mnt_userns,
1417                               struct inode *inode, const char *name,
1418                               void **buffer, bool alloc)
1419{
1420        struct security_hook_list *hp;
1421        int rc;
1422
1423        if (unlikely(IS_PRIVATE(inode)))
1424                return LSM_RET_DEFAULT(inode_getsecurity);
1425        /*
1426         * Only one module will provide an attribute with a given name.
1427         */
1428        hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1429                rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc);
1430                if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1431                        return rc;
1432        }
1433        return LSM_RET_DEFAULT(inode_getsecurity);
1434}
1435
1436int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1437{
1438        struct security_hook_list *hp;
1439        int rc;
1440
1441        if (unlikely(IS_PRIVATE(inode)))
1442                return LSM_RET_DEFAULT(inode_setsecurity);
1443        /*
1444         * Only one module will provide an attribute with a given name.
1445         */
1446        hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1447                rc = hp->hook.inode_setsecurity(inode, name, value, size,
1448                                                                flags);
1449                if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1450                        return rc;
1451        }
1452        return LSM_RET_DEFAULT(inode_setsecurity);
1453}
1454
1455int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1456{
1457        if (unlikely(IS_PRIVATE(inode)))
1458                return 0;
1459        return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1460}
1461EXPORT_SYMBOL(security_inode_listsecurity);
1462
1463void security_inode_getsecid(struct inode *inode, u32 *secid)
1464{
1465        call_void_hook(inode_getsecid, inode, secid);
1466}
1467
1468int security_inode_copy_up(struct dentry *src, struct cred **new)
1469{
1470        return call_int_hook(inode_copy_up, 0, src, new);
1471}
1472EXPORT_SYMBOL(security_inode_copy_up);
1473
1474int security_inode_copy_up_xattr(const char *name)
1475{
1476        struct security_hook_list *hp;
1477        int rc;
1478
1479        /*
1480         * The implementation can return 0 (accept the xattr), 1 (discard the
1481         * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
1482         * any other error code incase of an error.
1483         */
1484        hlist_for_each_entry(hp,
1485                &security_hook_heads.inode_copy_up_xattr, list) {
1486                rc = hp->hook.inode_copy_up_xattr(name);
1487                if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
1488                        return rc;
1489        }
1490
1491        return LSM_RET_DEFAULT(inode_copy_up_xattr);
1492}
1493EXPORT_SYMBOL(security_inode_copy_up_xattr);
1494
1495int security_kernfs_init_security(struct kernfs_node *kn_dir,
1496                                  struct kernfs_node *kn)
1497{
1498        return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1499}
1500
1501int security_file_permission(struct file *file, int mask)
1502{
1503        int ret;
1504
1505        ret = call_int_hook(file_permission, 0, file, mask);
1506        if (ret)
1507                return ret;
1508
1509        return fsnotify_perm(file, mask);
1510}
1511
1512int security_file_alloc(struct file *file)
1513{
1514        int rc = lsm_file_alloc(file);
1515
1516        if (rc)
1517                return rc;
1518        rc = call_int_hook(file_alloc_security, 0, file);
1519        if (unlikely(rc))
1520                security_file_free(file);
1521        return rc;
1522}
1523
1524void security_file_free(struct file *file)
1525{
1526        void *blob;
1527
1528        call_void_hook(file_free_security, file);
1529
1530        blob = file->f_security;
1531        if (blob) {
1532                file->f_security = NULL;
1533                kmem_cache_free(lsm_file_cache, blob);
1534        }
1535}
1536
1537int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1538{
1539        return call_int_hook(file_ioctl, 0, file, cmd, arg);
1540}
1541EXPORT_SYMBOL_GPL(security_file_ioctl);
1542
1543static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1544{
1545        /*
1546         * Does we have PROT_READ and does the application expect
1547         * it to imply PROT_EXEC?  If not, nothing to talk about...
1548         */
1549        if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1550                return prot;
1551        if (!(current->personality & READ_IMPLIES_EXEC))
1552                return prot;
1553        /*
1554         * if that's an anonymous mapping, let it.
1555         */
1556        if (!file)
1557                return prot | PROT_EXEC;
1558        /*
1559         * ditto if it's not on noexec mount, except that on !MMU we need
1560         * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1561         */
1562        if (!path_noexec(&file->f_path)) {
1563#ifndef CONFIG_MMU
1564                if (file->f_op->mmap_capabilities) {
1565                        unsigned caps = file->f_op->mmap_capabilities(file);
1566                        if (!(caps & NOMMU_MAP_EXEC))
1567                                return prot;
1568                }
1569#endif
1570                return prot | PROT_EXEC;
1571        }
1572        /* anything on noexec mount won't get PROT_EXEC */
1573        return prot;
1574}
1575
1576int security_mmap_file(struct file *file, unsigned long prot,
1577                        unsigned long flags)
1578{
1579        int ret;
1580        ret = call_int_hook(mmap_file, 0, file, prot,
1581                                        mmap_prot(file, prot), flags);
1582        if (ret)
1583                return ret;
1584        return ima_file_mmap(file, prot);
1585}
1586
1587int security_mmap_addr(unsigned long addr)
1588{
1589        return call_int_hook(mmap_addr, 0, addr);
1590}
1591
1592int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1593                            unsigned long prot)
1594{
1595        int ret;
1596
1597        ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1598        if (ret)
1599                return ret;
1600        return ima_file_mprotect(vma, prot);
1601}
1602
1603int security_file_lock(struct file *file, unsigned int cmd)
1604{
1605        return call_int_hook(file_lock, 0, file, cmd);
1606}
1607
1608int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1609{
1610        return call_int_hook(file_fcntl, 0, file, cmd, arg);
1611}
1612
1613void security_file_set_fowner(struct file *file)
1614{
1615        call_void_hook(file_set_fowner, file);
1616}
1617
1618int security_file_send_sigiotask(struct task_struct *tsk,
1619                                  struct fown_struct *fown, int sig)
1620{
1621        return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1622}
1623
1624int security_file_receive(struct file *file)
1625{
1626        return call_int_hook(file_receive, 0, file);
1627}
1628
1629int security_file_open(struct file *file)
1630{
1631        int ret;
1632
1633        ret = call_int_hook(file_open, 0, file);
1634        if (ret)
1635                return ret;
1636
1637        return fsnotify_perm(file, MAY_OPEN);
1638}
1639
1640int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1641{
1642        int rc = lsm_task_alloc(task);
1643
1644        if (rc)
1645                return rc;
1646        rc = call_int_hook(task_alloc, 0, task, clone_flags);
1647        if (unlikely(rc))
1648                security_task_free(task);
1649        return rc;
1650}
1651
1652void security_task_free(struct task_struct *task)
1653{
1654        call_void_hook(task_free, task);
1655
1656        kfree(task->security);
1657        task->security = NULL;
1658}
1659
1660int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1661{
1662        int rc = lsm_cred_alloc(cred, gfp);
1663
1664        if (rc)
1665                return rc;
1666
1667        rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1668        if (unlikely(rc))
1669                security_cred_free(cred);
1670        return rc;
1671}
1672
1673void security_cred_free(struct cred *cred)
1674{
1675        /*
1676         * There is a failure case in prepare_creds() that
1677         * may result in a call here with ->security being NULL.
1678         */
1679        if (unlikely(cred->security == NULL))
1680                return;
1681
1682        call_void_hook(cred_free, cred);
1683
1684        kfree(cred->security);
1685        cred->security = NULL;
1686}
1687
1688int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1689{
1690        int rc = lsm_cred_alloc(new, gfp);
1691
1692        if (rc)
1693                return rc;
1694
1695        rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1696        if (unlikely(rc))
1697                security_cred_free(new);
1698        return rc;
1699}
1700
1701void security_transfer_creds(struct cred *new, const struct cred *old)
1702{
1703        call_void_hook(cred_transfer, new, old);
1704}
1705
1706void security_cred_getsecid(const struct cred *c, u32 *secid)
1707{
1708        *secid = 0;
1709        call_void_hook(cred_getsecid, c, secid);
1710}
1711EXPORT_SYMBOL(security_cred_getsecid);
1712
1713int security_kernel_act_as(struct cred *new, u32 secid)
1714{
1715        return call_int_hook(kernel_act_as, 0, new, secid);
1716}
1717
1718int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1719{
1720        return call_int_hook(kernel_create_files_as, 0, new, inode);
1721}
1722
1723int security_kernel_module_request(char *kmod_name)
1724{
1725        int ret;
1726
1727        ret = call_int_hook(kernel_module_request, 0, kmod_name);
1728        if (ret)
1729                return ret;
1730        return integrity_kernel_module_request(kmod_name);
1731}
1732
1733int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
1734                              bool contents)
1735{
1736        int ret;
1737
1738        ret = call_int_hook(kernel_read_file, 0, file, id, contents);
1739        if (ret)
1740                return ret;
1741        return ima_read_file(file, id, contents);
1742}
1743EXPORT_SYMBOL_GPL(security_kernel_read_file);
1744
1745int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1746                                   enum kernel_read_file_id id)
1747{
1748        int ret;
1749
1750        ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1751        if (ret)
1752                return ret;
1753        return ima_post_read_file(file, buf, size, id);
1754}
1755EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1756
1757int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
1758{
1759        int ret;
1760
1761        ret = call_int_hook(kernel_load_data, 0, id, contents);
1762        if (ret)
1763                return ret;
1764        return ima_load_data(id, contents);
1765}
1766EXPORT_SYMBOL_GPL(security_kernel_load_data);
1767
1768int security_kernel_post_load_data(char *buf, loff_t size,
1769                                   enum kernel_load_data_id id,
1770                                   char *description)
1771{
1772        int ret;
1773
1774        ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
1775                            description);
1776        if (ret)
1777                return ret;
1778        return ima_post_load_data(buf, size, id, description);
1779}
1780EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
1781
1782int security_task_fix_setuid(struct cred *new, const struct cred *old,
1783                             int flags)
1784{
1785        return call_int_hook(task_fix_setuid, 0, new, old, flags);
1786}
1787
1788int security_task_fix_setgid(struct cred *new, const struct cred *old,
1789                                 int flags)
1790{
1791        return call_int_hook(task_fix_setgid, 0, new, old, flags);
1792}
1793
1794int security_task_setpgid(struct task_struct *p, pid_t pgid)
1795{
1796        return call_int_hook(task_setpgid, 0, p, pgid);
1797}
1798
1799int security_task_getpgid(struct task_struct *p)
1800{
1801        return call_int_hook(task_getpgid, 0, p);
1802}
1803
1804int security_task_getsid(struct task_struct *p)
1805{
1806        return call_int_hook(task_getsid, 0, p);
1807}
1808
1809void security_task_getsecid_subj(struct task_struct *p, u32 *secid)
1810{
1811        *secid = 0;
1812        call_void_hook(task_getsecid_subj, p, secid);
1813}
1814EXPORT_SYMBOL(security_task_getsecid_subj);
1815
1816void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
1817{
1818        *secid = 0;
1819        call_void_hook(task_getsecid_obj, p, secid);
1820}
1821EXPORT_SYMBOL(security_task_getsecid_obj);
1822
1823int security_task_setnice(struct task_struct *p, int nice)
1824{
1825        return call_int_hook(task_setnice, 0, p, nice);
1826}
1827
1828int security_task_setioprio(struct task_struct *p, int ioprio)
1829{
1830        return call_int_hook(task_setioprio, 0, p, ioprio);
1831}
1832
1833int security_task_getioprio(struct task_struct *p)
1834{
1835        return call_int_hook(task_getioprio, 0, p);
1836}
1837
1838int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1839                          unsigned int flags)
1840{
1841        return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1842}
1843
1844int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1845                struct rlimit *new_rlim)
1846{
1847        return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1848}
1849
1850int security_task_setscheduler(struct task_struct *p)
1851{
1852        return call_int_hook(task_setscheduler, 0, p);
1853}
1854
1855int security_task_getscheduler(struct task_struct *p)
1856{
1857        return call_int_hook(task_getscheduler, 0, p);
1858}
1859
1860int security_task_movememory(struct task_struct *p)
1861{
1862        return call_int_hook(task_movememory, 0, p);
1863}
1864
1865int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1866                        int sig, const struct cred *cred)
1867{
1868        return call_int_hook(task_kill, 0, p, info, sig, cred);
1869}
1870
1871int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1872                         unsigned long arg4, unsigned long arg5)
1873{
1874        int thisrc;
1875        int rc = LSM_RET_DEFAULT(task_prctl);
1876        struct security_hook_list *hp;
1877
1878        hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1879                thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1880                if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1881                        rc = thisrc;
1882                        if (thisrc != 0)
1883                                break;
1884                }
1885        }
1886        return rc;
1887}
1888
1889void security_task_to_inode(struct task_struct *p, struct inode *inode)
1890{
1891        call_void_hook(task_to_inode, p, inode);
1892}
1893
1894int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1895{
1896        return call_int_hook(ipc_permission, 0, ipcp, flag);
1897}
1898
1899void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1900{
1901        *secid = 0;
1902        call_void_hook(ipc_getsecid, ipcp, secid);
1903}
1904
1905int security_msg_msg_alloc(struct msg_msg *msg)
1906{
1907        int rc = lsm_msg_msg_alloc(msg);
1908
1909        if (unlikely(rc))
1910                return rc;
1911        rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1912        if (unlikely(rc))
1913                security_msg_msg_free(msg);
1914        return rc;
1915}
1916
1917void security_msg_msg_free(struct msg_msg *msg)
1918{
1919        call_void_hook(msg_msg_free_security, msg);
1920        kfree(msg->security);
1921        msg->security = NULL;
1922}
1923
1924int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1925{
1926        int rc = lsm_ipc_alloc(msq);
1927
1928        if (unlikely(rc))
1929                return rc;
1930        rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1931        if (unlikely(rc))
1932                security_msg_queue_free(msq);
1933        return rc;
1934}
1935
1936void security_msg_queue_free(struct kern_ipc_perm *msq)
1937{
1938        call_void_hook(msg_queue_free_security, msq);
1939        kfree(msq->security);
1940        msq->security = NULL;
1941}
1942
1943int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1944{
1945        return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1946}
1947
1948int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1949{
1950        return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1951}
1952
1953int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1954                               struct msg_msg *msg, int msqflg)
1955{
1956        return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1957}
1958
1959int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1960                               struct task_struct *target, long type, int mode)
1961{
1962        return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1963}
1964
1965int security_shm_alloc(struct kern_ipc_perm *shp)
1966{
1967        int rc = lsm_ipc_alloc(shp);
1968
1969        if (unlikely(rc))
1970                return rc;
1971        rc = call_int_hook(shm_alloc_security, 0, shp);
1972        if (unlikely(rc))
1973                security_shm_free(shp);
1974        return rc;
1975}
1976
1977void security_shm_free(struct kern_ipc_perm *shp)
1978{
1979        call_void_hook(shm_free_security, shp);
1980        kfree(shp->security);
1981        shp->security = NULL;
1982}
1983
1984int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1985{
1986        return call_int_hook(shm_associate, 0, shp, shmflg);
1987}
1988
1989int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1990{
1991        return call_int_hook(shm_shmctl, 0, shp, cmd);
1992}
1993
1994int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1995{
1996        return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1997}
1998
1999int security_sem_alloc(struct kern_ipc_perm *sma)
2000{
2001        int rc = lsm_ipc_alloc(sma);
2002
2003        if (unlikely(rc))
2004                return rc;
2005        rc = call_int_hook(sem_alloc_security, 0, sma);
2006        if (unlikely(rc))
2007                security_sem_free(sma);
2008        return rc;
2009}
2010
2011void security_sem_free(struct kern_ipc_perm *sma)
2012{
2013        call_void_hook(sem_free_security, sma);
2014        kfree(sma->security);
2015        sma->security = NULL;
2016}
2017
2018int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
2019{
2020        return call_int_hook(sem_associate, 0, sma, semflg);
2021}
2022
2023int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
2024{
2025        return call_int_hook(sem_semctl, 0, sma, cmd);
2026}
2027
2028int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
2029                        unsigned nsops, int alter)
2030{
2031        return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
2032}
2033
2034void security_d_instantiate(struct dentry *dentry, struct inode *inode)
2035{
2036        if (unlikely(inode && IS_PRIVATE(inode)))
2037                return;
2038        call_void_hook(d_instantiate, dentry, inode);
2039}
2040EXPORT_SYMBOL(security_d_instantiate);
2041
2042int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
2043                                char **value)
2044{
2045        struct security_hook_list *hp;
2046
2047        hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
2048                if (lsm != NULL && strcmp(lsm, hp->lsm))
2049                        continue;
2050                return hp->hook.getprocattr(p, name, value);
2051        }
2052        return LSM_RET_DEFAULT(getprocattr);
2053}
2054
2055int security_setprocattr(const char *lsm, const char *name, void *value,
2056                         size_t size)
2057{
2058        struct security_hook_list *hp;
2059
2060        hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
2061                if (lsm != NULL && strcmp(lsm, hp->lsm))
2062                        continue;
2063                return hp->hook.setprocattr(name, value, size);
2064        }
2065        return LSM_RET_DEFAULT(setprocattr);
2066}
2067
2068int security_netlink_send(struct sock *sk, struct sk_buff *skb)
2069{
2070        return call_int_hook(netlink_send, 0, sk, skb);
2071}
2072
2073int security_ismaclabel(const char *name)
2074{
2075        return call_int_hook(ismaclabel, 0, name);
2076}
2077EXPORT_SYMBOL(security_ismaclabel);
2078
2079int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2080{
2081        struct security_hook_list *hp;
2082        int rc;
2083
2084        /*
2085         * Currently, only one LSM can implement secid_to_secctx (i.e this
2086         * LSM hook is not "stackable").
2087         */
2088        hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
2089                rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
2090                if (rc != LSM_RET_DEFAULT(secid_to_secctx))
2091                        return rc;
2092        }
2093
2094        return LSM_RET_DEFAULT(secid_to_secctx);
2095}
2096EXPORT_SYMBOL(security_secid_to_secctx);
2097
2098int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2099{
2100        *secid = 0;
2101        return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2102}
2103EXPORT_SYMBOL(security_secctx_to_secid);
2104
2105void security_release_secctx(char *secdata, u32 seclen)
2106{
2107        call_void_hook(release_secctx, secdata, seclen);
2108}
2109EXPORT_SYMBOL(security_release_secctx);
2110
2111void security_inode_invalidate_secctx(struct inode *inode)
2112{
2113        call_void_hook(inode_invalidate_secctx, inode);
2114}
2115EXPORT_SYMBOL(security_inode_invalidate_secctx);
2116
2117int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2118{
2119        return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2120}
2121EXPORT_SYMBOL(security_inode_notifysecctx);
2122
2123int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2124{
2125        return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2126}
2127EXPORT_SYMBOL(security_inode_setsecctx);
2128
2129int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2130{
2131        return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
2132}
2133EXPORT_SYMBOL(security_inode_getsecctx);
2134
2135#ifdef CONFIG_WATCH_QUEUE
2136int security_post_notification(const struct cred *w_cred,
2137                               const struct cred *cred,
2138                               struct watch_notification *n)
2139{
2140        return call_int_hook(post_notification, 0, w_cred, cred, n);
2141}
2142#endif /* CONFIG_WATCH_QUEUE */
2143
2144#ifdef CONFIG_KEY_NOTIFICATIONS
2145int security_watch_key(struct key *key)
2146{
2147        return call_int_hook(watch_key, 0, key);
2148}
2149#endif
2150
2151#ifdef CONFIG_SECURITY_NETWORK
2152
2153int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2154{
2155        return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2156}
2157EXPORT_SYMBOL(security_unix_stream_connect);
2158
2159int security_unix_may_send(struct socket *sock,  struct socket *other)
2160{
2161        return call_int_hook(unix_may_send, 0, sock, other);
2162}
2163EXPORT_SYMBOL(security_unix_may_send);
2164
2165int security_socket_create(int family, int type, int protocol, int kern)
2166{
2167        return call_int_hook(socket_create, 0, family, type, protocol, kern);
2168}
2169
2170int security_socket_post_create(struct socket *sock, int family,
2171                                int type, int protocol, int kern)
2172{
2173        return call_int_hook(socket_post_create, 0, sock, family, type,
2174                                                protocol, kern);
2175}
2176
2177int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2178{
2179        return call_int_hook(socket_socketpair, 0, socka, sockb);
2180}
2181EXPORT_SYMBOL(security_socket_socketpair);
2182
2183int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2184{
2185        return call_int_hook(socket_bind, 0, sock, address, addrlen);
2186}
2187
2188int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2189{
2190        return call_int_hook(socket_connect, 0, sock, address, addrlen);
2191}
2192
2193int security_socket_listen(struct socket *sock, int backlog)
2194{
2195        return call_int_hook(socket_listen, 0, sock, backlog);
2196}
2197
2198int security_socket_accept(struct socket *sock, struct socket *newsock)
2199{
2200        return call_int_hook(socket_accept, 0, sock, newsock);
2201}
2202
2203int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2204{
2205        return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2206}
2207
2208int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2209                            int size, int flags)
2210{
2211        return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2212}
2213
2214int security_socket_getsockname(struct socket *sock)
2215{
2216        return call_int_hook(socket_getsockname, 0, sock);
2217}
2218
2219int security_socket_getpeername(struct socket *sock)
2220{
2221        return call_int_hook(socket_getpeername, 0, sock);
2222}
2223
2224int security_socket_getsockopt(struct socket *sock, int level, int optname)
2225{
2226        return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2227}
2228
2229int security_socket_setsockopt(struct socket *sock, int level, int optname)
2230{
2231        return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2232}
2233
2234int security_socket_shutdown(struct socket *sock, int how)
2235{
2236        return call_int_hook(socket_shutdown, 0, sock, how);
2237}
2238
2239int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2240{
2241        return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2242}
2243EXPORT_SYMBOL(security_sock_rcv_skb);
2244
2245int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2246                                      int __user *optlen, unsigned len)
2247{
2248        return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2249                                optval, optlen, len);
2250}
2251
2252int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2253{
2254        return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2255                             skb, secid);
2256}
2257EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2258
2259int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2260{
2261        return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2262}
2263
2264void security_sk_free(struct sock *sk)
2265{
2266        call_void_hook(sk_free_security, sk);
2267}
2268
2269void security_sk_clone(const struct sock *sk, struct sock *newsk)
2270{
2271        call_void_hook(sk_clone_security, sk, newsk);
2272}
2273EXPORT_SYMBOL(security_sk_clone);
2274
2275void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic)
2276{
2277        call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
2278}
2279EXPORT_SYMBOL(security_sk_classify_flow);
2280
2281void security_req_classify_flow(const struct request_sock *req,
2282                                struct flowi_common *flic)
2283{
2284        call_void_hook(req_classify_flow, req, flic);
2285}
2286EXPORT_SYMBOL(security_req_classify_flow);
2287
2288void security_sock_graft(struct sock *sk, struct socket *parent)
2289{
2290        call_void_hook(sock_graft, sk, parent);
2291}
2292EXPORT_SYMBOL(security_sock_graft);
2293
2294int security_inet_conn_request(const struct sock *sk,
2295                        struct sk_buff *skb, struct request_sock *req)
2296{
2297        return call_int_hook(inet_conn_request, 0, sk, skb, req);
2298}
2299EXPORT_SYMBOL(security_inet_conn_request);
2300
2301void security_inet_csk_clone(struct sock *newsk,
2302                        const struct request_sock *req)
2303{
2304        call_void_hook(inet_csk_clone, newsk, req);
2305}
2306
2307void security_inet_conn_established(struct sock *sk,
2308                        struct sk_buff *skb)
2309{
2310        call_void_hook(inet_conn_established, sk, skb);
2311}
2312EXPORT_SYMBOL(security_inet_conn_established);
2313
2314int security_secmark_relabel_packet(u32 secid)
2315{
2316        return call_int_hook(secmark_relabel_packet, 0, secid);
2317}
2318EXPORT_SYMBOL(security_secmark_relabel_packet);
2319
2320void security_secmark_refcount_inc(void)
2321{
2322        call_void_hook(secmark_refcount_inc);
2323}
2324EXPORT_SYMBOL(security_secmark_refcount_inc);
2325
2326void security_secmark_refcount_dec(void)
2327{
2328        call_void_hook(secmark_refcount_dec);
2329}
2330EXPORT_SYMBOL(security_secmark_refcount_dec);
2331
2332int security_tun_dev_alloc_security(void **security)
2333{
2334        return call_int_hook(tun_dev_alloc_security, 0, security);
2335}
2336EXPORT_SYMBOL(security_tun_dev_alloc_security);
2337
2338void security_tun_dev_free_security(void *security)
2339{
2340        call_void_hook(tun_dev_free_security, security);
2341}
2342EXPORT_SYMBOL(security_tun_dev_free_security);
2343
2344int security_tun_dev_create(void)
2345{
2346        return call_int_hook(tun_dev_create, 0);
2347}
2348EXPORT_SYMBOL(security_tun_dev_create);
2349
2350int security_tun_dev_attach_queue(void *security)
2351{
2352        return call_int_hook(tun_dev_attach_queue, 0, security);
2353}
2354EXPORT_SYMBOL(security_tun_dev_attach_queue);
2355
2356int security_tun_dev_attach(struct sock *sk, void *security)
2357{
2358        return call_int_hook(tun_dev_attach, 0, sk, security);
2359}
2360EXPORT_SYMBOL(security_tun_dev_attach);
2361
2362int security_tun_dev_open(void *security)
2363{
2364        return call_int_hook(tun_dev_open, 0, security);
2365}
2366EXPORT_SYMBOL(security_tun_dev_open);
2367
2368int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2369{
2370        return call_int_hook(sctp_assoc_request, 0, ep, skb);
2371}
2372EXPORT_SYMBOL(security_sctp_assoc_request);
2373
2374int security_sctp_bind_connect(struct sock *sk, int optname,
2375                               struct sockaddr *address, int addrlen)
2376{
2377        return call_int_hook(sctp_bind_connect, 0, sk, optname,
2378                             address, addrlen);
2379}
2380EXPORT_SYMBOL(security_sctp_bind_connect);
2381
2382void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2383                            struct sock *newsk)
2384{
2385        call_void_hook(sctp_sk_clone, ep, sk, newsk);
2386}
2387EXPORT_SYMBOL(security_sctp_sk_clone);
2388
2389#endif  /* CONFIG_SECURITY_NETWORK */
2390
2391#ifdef CONFIG_SECURITY_INFINIBAND
2392
2393int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2394{
2395        return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2396}
2397EXPORT_SYMBOL(security_ib_pkey_access);
2398
2399int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2400{
2401        return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2402}
2403EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2404
2405int security_ib_alloc_security(void **sec)
2406{
2407        return call_int_hook(ib_alloc_security, 0, sec);
2408}
2409EXPORT_SYMBOL(security_ib_alloc_security);
2410
2411void security_ib_free_security(void *sec)
2412{
2413        call_void_hook(ib_free_security, sec);
2414}
2415EXPORT_SYMBOL(security_ib_free_security);
2416#endif  /* CONFIG_SECURITY_INFINIBAND */
2417
2418#ifdef CONFIG_SECURITY_NETWORK_XFRM
2419
2420int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2421                               struct xfrm_user_sec_ctx *sec_ctx,
2422                               gfp_t gfp)
2423{
2424        return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2425}
2426EXPORT_SYMBOL(security_xfrm_policy_alloc);
2427
2428int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2429                              struct xfrm_sec_ctx **new_ctxp)
2430{
2431        return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2432}
2433
2434void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2435{
2436        call_void_hook(xfrm_policy_free_security, ctx);
2437}
2438EXPORT_SYMBOL(security_xfrm_policy_free);
2439
2440int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2441{
2442        return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2443}
2444
2445int security_xfrm_state_alloc(struct xfrm_state *x,
2446                              struct xfrm_user_sec_ctx *sec_ctx)
2447{
2448        return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2449}
2450EXPORT_SYMBOL(security_xfrm_state_alloc);
2451
2452int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2453                                      struct xfrm_sec_ctx *polsec, u32 secid)
2454{
2455        return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2456}
2457
2458int security_xfrm_state_delete(struct xfrm_state *x)
2459{
2460        return call_int_hook(xfrm_state_delete_security, 0, x);
2461}
2462EXPORT_SYMBOL(security_xfrm_state_delete);
2463
2464void security_xfrm_state_free(struct xfrm_state *x)
2465{
2466        call_void_hook(xfrm_state_free_security, x);
2467}
2468
2469int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2470{
2471        return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2472}
2473
2474int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2475                                       struct xfrm_policy *xp,
2476                                       const struct flowi_common *flic)
2477{
2478        struct security_hook_list *hp;
2479        int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2480
2481        /*
2482         * Since this function is expected to return 0 or 1, the judgment
2483         * becomes difficult if multiple LSMs supply this call. Fortunately,
2484         * we can use the first LSM's judgment because currently only SELinux
2485         * supplies this call.
2486         *
2487         * For speed optimization, we explicitly break the loop rather than
2488         * using the macro
2489         */
2490        hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2491                                list) {
2492                rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
2493                break;
2494        }
2495        return rc;
2496}
2497
2498int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2499{
2500        return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2501}
2502
2503void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
2504{
2505        int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid,
2506                                0);
2507
2508        BUG_ON(rc);
2509}
2510EXPORT_SYMBOL(security_skb_classify_flow);
2511
2512#endif  /* CONFIG_SECURITY_NETWORK_XFRM */
2513
2514#ifdef CONFIG_KEYS
2515
2516int security_key_alloc(struct key *key, const struct cred *cred,
2517                       unsigned long flags)
2518{
2519        return call_int_hook(key_alloc, 0, key, cred, flags);
2520}
2521
2522void security_key_free(struct key *key)
2523{
2524        call_void_hook(key_free, key);
2525}
2526
2527int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2528                            enum key_need_perm need_perm)
2529{
2530        return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2531}
2532
2533int security_key_getsecurity(struct key *key, char **_buffer)
2534{
2535        *_buffer = NULL;
2536        return call_int_hook(key_getsecurity, 0, key, _buffer);
2537}
2538
2539#endif  /* CONFIG_KEYS */
2540
2541#ifdef CONFIG_AUDIT
2542
2543int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2544{
2545        return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2546}
2547
2548int security_audit_rule_known(struct audit_krule *krule)
2549{
2550        return call_int_hook(audit_rule_known, 0, krule);
2551}
2552
2553void security_audit_rule_free(void *lsmrule)
2554{
2555        call_void_hook(audit_rule_free, lsmrule);
2556}
2557
2558int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2559{
2560        return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2561}
2562#endif /* CONFIG_AUDIT */
2563
2564#ifdef CONFIG_BPF_SYSCALL
2565int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2566{
2567        return call_int_hook(bpf, 0, cmd, attr, size);
2568}
2569int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2570{
2571        return call_int_hook(bpf_map, 0, map, fmode);
2572}
2573int security_bpf_prog(struct bpf_prog *prog)
2574{
2575        return call_int_hook(bpf_prog, 0, prog);
2576}
2577int security_bpf_map_alloc(struct bpf_map *map)
2578{
2579        return call_int_hook(bpf_map_alloc_security, 0, map);
2580}
2581int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2582{
2583        return call_int_hook(bpf_prog_alloc_security, 0, aux);
2584}
2585void security_bpf_map_free(struct bpf_map *map)
2586{
2587        call_void_hook(bpf_map_free_security, map);
2588}
2589void security_bpf_prog_free(struct bpf_prog_aux *aux)
2590{
2591        call_void_hook(bpf_prog_free_security, aux);
2592}
2593#endif /* CONFIG_BPF_SYSCALL */
2594
2595int security_locked_down(enum lockdown_reason what)
2596{
2597        return call_int_hook(locked_down, 0, what);
2598}
2599EXPORT_SYMBOL(security_locked_down);
2600
2601#ifdef CONFIG_PERF_EVENTS
2602int security_perf_event_open(struct perf_event_attr *attr, int type)
2603{
2604        return call_int_hook(perf_event_open, 0, attr, type);
2605}
2606
2607int security_perf_event_alloc(struct perf_event *event)
2608{
2609        return call_int_hook(perf_event_alloc, 0, event);
2610}
2611
2612void security_perf_event_free(struct perf_event *event)
2613{
2614        call_void_hook(perf_event_free, event);
2615}
2616
2617int security_perf_event_read(struct perf_event *event)
2618{
2619        return call_int_hook(perf_event_read, 0, event);
2620}
2621
2622int security_perf_event_write(struct perf_event *event)
2623{
2624        return call_int_hook(perf_event_write, 0, event);
2625}
2626#endif /* CONFIG_PERF_EVENTS */
2627