linux/arch/unicore32/mm/init.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/unicore32/mm/init.c
   3 *
   4 *  Copyright (C) 2010 GUAN Xue-tao
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10#include <linux/kernel.h>
  11#include <linux/errno.h>
  12#include <linux/swap.h>
  13#include <linux/init.h>
  14#include <linux/bootmem.h>
  15#include <linux/mman.h>
  16#include <linux/nodemask.h>
  17#include <linux/initrd.h>
  18#include <linux/highmem.h>
  19#include <linux/gfp.h>
  20#include <linux/memblock.h>
  21#include <linux/sort.h>
  22#include <linux/dma-mapping.h>
  23#include <linux/export.h>
  24
  25#include <asm/sections.h>
  26#include <asm/setup.h>
  27#include <asm/sizes.h>
  28#include <asm/tlb.h>
  29#include <asm/memblock.h>
  30#include <mach/map.h>
  31
  32#include "mm.h"
  33
  34static unsigned long phys_initrd_start __initdata = 0x01000000;
  35static unsigned long phys_initrd_size __initdata = SZ_8M;
  36
  37static int __init early_initrd(char *p)
  38{
  39        unsigned long start, size;
  40        char *endp;
  41
  42        start = memparse(p, &endp);
  43        if (*endp == ',') {
  44                size = memparse(endp + 1, NULL);
  45
  46                phys_initrd_start = start;
  47                phys_initrd_size = size;
  48        }
  49        return 0;
  50}
  51early_param("initrd", early_initrd);
  52
  53/*
  54 * This keeps memory configuration data used by a couple memory
  55 * initialization functions, as well as show_mem() for the skipping
  56 * of holes in the memory map.  It is populated by uc32_add_memory().
  57 */
  58struct meminfo meminfo;
  59
  60void show_mem(unsigned int filter)
  61{
  62        int free = 0, total = 0, reserved = 0;
  63        int shared = 0, cached = 0, slab = 0, i;
  64        struct meminfo *mi = &meminfo;
  65
  66        printk(KERN_DEFAULT "Mem-info:\n");
  67        show_free_areas(filter);
  68
  69        for_each_bank(i, mi) {
  70                struct membank *bank = &mi->bank[i];
  71                unsigned int pfn1, pfn2;
  72                struct page *page, *end;
  73
  74                pfn1 = bank_pfn_start(bank);
  75                pfn2 = bank_pfn_end(bank);
  76
  77                page = pfn_to_page(pfn1);
  78                end  = pfn_to_page(pfn2 - 1) + 1;
  79
  80                do {
  81                        total++;
  82                        if (PageReserved(page))
  83                                reserved++;
  84                        else if (PageSwapCache(page))
  85                                cached++;
  86                        else if (PageSlab(page))
  87                                slab++;
  88                        else if (!page_count(page))
  89                                free++;
  90                        else
  91                                shared += page_count(page) - 1;
  92                        page++;
  93                } while (page < end);
  94        }
  95
  96        printk(KERN_DEFAULT "%d pages of RAM\n", total);
  97        printk(KERN_DEFAULT "%d free pages\n", free);
  98        printk(KERN_DEFAULT "%d reserved pages\n", reserved);
  99        printk(KERN_DEFAULT "%d slab pages\n", slab);
 100        printk(KERN_DEFAULT "%d pages shared\n", shared);
 101        printk(KERN_DEFAULT "%d pages swap cached\n", cached);
 102}
 103
 104static void __init find_limits(unsigned long *min, unsigned long *max_low,
 105        unsigned long *max_high)
 106{
 107        struct meminfo *mi = &meminfo;
 108        int i;
 109
 110        *min = -1UL;
 111        *max_low = *max_high = 0;
 112
 113        for_each_bank(i, mi) {
 114                struct membank *bank = &mi->bank[i];
 115                unsigned long start, end;
 116
 117                start = bank_pfn_start(bank);
 118                end = bank_pfn_end(bank);
 119
 120                if (*min > start)
 121                        *min = start;
 122                if (*max_high < end)
 123                        *max_high = end;
 124                if (bank->highmem)
 125                        continue;
 126                if (*max_low < end)
 127                        *max_low = end;
 128        }
 129}
 130
 131static void __init uc32_bootmem_init(unsigned long start_pfn,
 132        unsigned long end_pfn)
 133{
 134        struct memblock_region *reg;
 135        unsigned int boot_pages;
 136        phys_addr_t bitmap;
 137        pg_data_t *pgdat;
 138
 139        /*
 140         * Allocate the bootmem bitmap page.  This must be in a region
 141         * of memory which has already been mapped.
 142         */
 143        boot_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
 144        bitmap = memblock_alloc_base(boot_pages << PAGE_SHIFT, L1_CACHE_BYTES,
 145                                __pfn_to_phys(end_pfn));
 146
 147        /*
 148         * Initialise the bootmem allocator, handing the
 149         * memory banks over to bootmem.
 150         */
 151        node_set_online(0);
 152        pgdat = NODE_DATA(0);
 153        init_bootmem_node(pgdat, __phys_to_pfn(bitmap), start_pfn, end_pfn);
 154
 155        /* Free the lowmem regions from memblock into bootmem. */
 156        for_each_memblock(memory, reg) {
 157                unsigned long start = memblock_region_memory_base_pfn(reg);
 158                unsigned long end = memblock_region_memory_end_pfn(reg);
 159
 160                if (end >= end_pfn)
 161                        end = end_pfn;
 162                if (start >= end)
 163                        break;
 164
 165                free_bootmem(__pfn_to_phys(start), (end - start) << PAGE_SHIFT);
 166        }
 167
 168        /* Reserve the lowmem memblock reserved regions in bootmem. */
 169        for_each_memblock(reserved, reg) {
 170                unsigned long start = memblock_region_reserved_base_pfn(reg);
 171                unsigned long end = memblock_region_reserved_end_pfn(reg);
 172
 173                if (end >= end_pfn)
 174                        end = end_pfn;
 175                if (start >= end)
 176                        break;
 177
 178                reserve_bootmem(__pfn_to_phys(start),
 179                        (end - start) << PAGE_SHIFT, BOOTMEM_DEFAULT);
 180        }
 181}
 182
 183static void __init uc32_bootmem_free(unsigned long min, unsigned long max_low,
 184        unsigned long max_high)
 185{
 186        unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
 187        struct memblock_region *reg;
 188
 189        /*
 190         * initialise the zones.
 191         */
 192        memset(zone_size, 0, sizeof(zone_size));
 193
 194        /*
 195         * The memory size has already been determined.  If we need
 196         * to do anything fancy with the allocation of this memory
 197         * to the zones, now is the time to do it.
 198         */
 199        zone_size[0] = max_low - min;
 200
 201        /*
 202         * Calculate the size of the holes.
 203         *  holes = node_size - sum(bank_sizes)
 204         */
 205        memcpy(zhole_size, zone_size, sizeof(zhole_size));
 206        for_each_memblock(memory, reg) {
 207                unsigned long start = memblock_region_memory_base_pfn(reg);
 208                unsigned long end = memblock_region_memory_end_pfn(reg);
 209
 210                if (start < max_low) {
 211                        unsigned long low_end = min(end, max_low);
 212                        zhole_size[0] -= low_end - start;
 213                }
 214        }
 215
 216        /*
 217         * Adjust the sizes according to any special requirements for
 218         * this machine type.
 219         */
 220        arch_adjust_zones(zone_size, zhole_size);
 221
 222        free_area_init_node(0, zone_size, min, zhole_size);
 223}
 224
 225int pfn_valid(unsigned long pfn)
 226{
 227        return memblock_is_memory(pfn << PAGE_SHIFT);
 228}
 229EXPORT_SYMBOL(pfn_valid);
 230
 231static void uc32_memory_present(void)
 232{
 233}
 234
 235static int __init meminfo_cmp(const void *_a, const void *_b)
 236{
 237        const struct membank *a = _a, *b = _b;
 238        long cmp = bank_pfn_start(a) - bank_pfn_start(b);
 239        return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
 240}
 241
 242void __init uc32_memblock_init(struct meminfo *mi)
 243{
 244        int i;
 245
 246        sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]),
 247                meminfo_cmp, NULL);
 248
 249        for (i = 0; i < mi->nr_banks; i++)
 250                memblock_add(mi->bank[i].start, mi->bank[i].size);
 251
 252        /* Register the kernel text, kernel data and initrd with memblock. */
 253        memblock_reserve(__pa(_text), _end - _text);
 254
 255#ifdef CONFIG_BLK_DEV_INITRD
 256        if (phys_initrd_size) {
 257                memblock_reserve(phys_initrd_start, phys_initrd_size);
 258
 259                /* Now convert initrd to virtual addresses */
 260                initrd_start = __phys_to_virt(phys_initrd_start);
 261                initrd_end = initrd_start + phys_initrd_size;
 262        }
 263#endif
 264
 265        uc32_mm_memblock_reserve();
 266
 267        memblock_allow_resize();
 268        memblock_dump_all();
 269}
 270
 271void __init bootmem_init(void)
 272{
 273        unsigned long min, max_low, max_high;
 274
 275        max_low = max_high = 0;
 276
 277        find_limits(&min, &max_low, &max_high);
 278
 279        uc32_bootmem_init(min, max_low);
 280
 281#ifdef CONFIG_SWIOTLB
 282        swiotlb_init(1);
 283#endif
 284        /*
 285         * Sparsemem tries to allocate bootmem in memory_present(),
 286         * so must be done after the fixed reservations
 287         */
 288        uc32_memory_present();
 289
 290        /*
 291         * sparse_init() needs the bootmem allocator up and running.
 292         */
 293        sparse_init();
 294
 295        /*
 296         * Now free the memory - free_area_init_node needs
 297         * the sparse mem_map arrays initialized by sparse_init()
 298         * for memmap_init_zone(), otherwise all PFNs are invalid.
 299         */
 300        uc32_bootmem_free(min, max_low, max_high);
 301
 302        high_memory = __va((max_low << PAGE_SHIFT) - 1) + 1;
 303
 304        /*
 305         * This doesn't seem to be used by the Linux memory manager any
 306         * more, but is used by ll_rw_block.  If we can get rid of it, we
 307         * also get rid of some of the stuff above as well.
 308         *
 309         * Note: max_low_pfn and max_pfn reflect the number of _pages_ in
 310         * the system, not the maximum PFN.
 311         */
 312        max_low_pfn = max_low - PHYS_PFN_OFFSET;
 313        max_pfn = max_high - PHYS_PFN_OFFSET;
 314}
 315
 316static inline int free_area(unsigned long pfn, unsigned long end, char *s)
 317{
 318        unsigned int pages = 0, size = (end - pfn) << (PAGE_SHIFT - 10);
 319
 320        for (; pfn < end; pfn++) {
 321                struct page *page = pfn_to_page(pfn);
 322                ClearPageReserved(page);
 323                init_page_count(page);
 324                __free_page(page);
 325                pages++;
 326        }
 327
 328        if (size && s)
 329                printk(KERN_INFO "Freeing %s memory: %dK\n", s, size);
 330
 331        return pages;
 332}
 333
 334static inline void
 335free_memmap(unsigned long start_pfn, unsigned long end_pfn)
 336{
 337        struct page *start_pg, *end_pg;
 338        unsigned long pg, pgend;
 339
 340        /*
 341         * Convert start_pfn/end_pfn to a struct page pointer.
 342         */
 343        start_pg = pfn_to_page(start_pfn - 1) + 1;
 344        end_pg = pfn_to_page(end_pfn);
 345
 346        /*
 347         * Convert to physical addresses, and
 348         * round start upwards and end downwards.
 349         */
 350        pg = PAGE_ALIGN(__pa(start_pg));
 351        pgend = __pa(end_pg) & PAGE_MASK;
 352
 353        /*
 354         * If there are free pages between these,
 355         * free the section of the memmap array.
 356         */
 357        if (pg < pgend)
 358                free_bootmem(pg, pgend - pg);
 359}
 360
 361/*
 362 * The mem_map array can get very big.  Free the unused area of the memory map.
 363 */
 364static void __init free_unused_memmap(struct meminfo *mi)
 365{
 366        unsigned long bank_start, prev_bank_end = 0;
 367        unsigned int i;
 368
 369        /*
 370         * This relies on each bank being in address order.
 371         * The banks are sorted previously in bootmem_init().
 372         */
 373        for_each_bank(i, mi) {
 374                struct membank *bank = &mi->bank[i];
 375
 376                bank_start = bank_pfn_start(bank);
 377
 378                /*
 379                 * If we had a previous bank, and there is a space
 380                 * between the current bank and the previous, free it.
 381                 */
 382                if (prev_bank_end && prev_bank_end < bank_start)
 383                        free_memmap(prev_bank_end, bank_start);
 384
 385                /*
 386                 * Align up here since the VM subsystem insists that the
 387                 * memmap entries are valid from the bank end aligned to
 388                 * MAX_ORDER_NR_PAGES.
 389                 */
 390                prev_bank_end = ALIGN(bank_pfn_end(bank), MAX_ORDER_NR_PAGES);
 391        }
 392}
 393
 394/*
 395 * mem_init() marks the free areas in the mem_map and tells us how much
 396 * memory is free.  This is done after various parts of the system have
 397 * claimed their memory after the kernel image.
 398 */
 399void __init mem_init(void)
 400{
 401        unsigned long reserved_pages, free_pages;
 402        struct memblock_region *reg;
 403        int i;
 404
 405        max_mapnr   = pfn_to_page(max_pfn + PHYS_PFN_OFFSET) - mem_map;
 406
 407        /* this will put all unused low memory onto the freelists */
 408        free_unused_memmap(&meminfo);
 409
 410        totalram_pages += free_all_bootmem();
 411
 412        reserved_pages = free_pages = 0;
 413
 414        for_each_bank(i, &meminfo) {
 415                struct membank *bank = &meminfo.bank[i];
 416                unsigned int pfn1, pfn2;
 417                struct page *page, *end;
 418
 419                pfn1 = bank_pfn_start(bank);
 420                pfn2 = bank_pfn_end(bank);
 421
 422                page = pfn_to_page(pfn1);
 423                end  = pfn_to_page(pfn2 - 1) + 1;
 424
 425                do {
 426                        if (PageReserved(page))
 427                                reserved_pages++;
 428                        else if (!page_count(page))
 429                                free_pages++;
 430                        page++;
 431                } while (page < end);
 432        }
 433
 434        /*
 435         * Since our memory may not be contiguous, calculate the
 436         * real number of pages we have in this system
 437         */
 438        printk(KERN_INFO "Memory:");
 439        num_physpages = 0;
 440        for_each_memblock(memory, reg) {
 441                unsigned long pages = memblock_region_memory_end_pfn(reg) -
 442                        memblock_region_memory_base_pfn(reg);
 443                num_physpages += pages;
 444                printk(" %ldMB", pages >> (20 - PAGE_SHIFT));
 445        }
 446        printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT));
 447
 448        printk(KERN_NOTICE "Memory: %luk/%luk available, %luk reserved, %luK highmem\n",
 449                nr_free_pages() << (PAGE_SHIFT-10),
 450                free_pages << (PAGE_SHIFT-10),
 451                reserved_pages << (PAGE_SHIFT-10),
 452                totalhigh_pages << (PAGE_SHIFT-10));
 453
 454        printk(KERN_NOTICE "Virtual kernel memory layout:\n"
 455                "    vector  : 0x%08lx - 0x%08lx   (%4ld kB)\n"
 456                "    vmalloc : 0x%08lx - 0x%08lx   (%4ld MB)\n"
 457                "    lowmem  : 0x%08lx - 0x%08lx   (%4ld MB)\n"
 458                "    modules : 0x%08lx - 0x%08lx   (%4ld MB)\n"
 459                "      .init : 0x%p" " - 0x%p" "   (%4d kB)\n"
 460                "      .text : 0x%p" " - 0x%p" "   (%4d kB)\n"
 461                "      .data : 0x%p" " - 0x%p" "   (%4d kB)\n",
 462
 463                VECTORS_BASE, VECTORS_BASE + PAGE_SIZE,
 464                DIV_ROUND_UP(PAGE_SIZE, SZ_1K),
 465                VMALLOC_START, VMALLOC_END,
 466                DIV_ROUND_UP((VMALLOC_END - VMALLOC_START), SZ_1M),
 467                PAGE_OFFSET, (unsigned long)high_memory,
 468                DIV_ROUND_UP(((unsigned long)high_memory - PAGE_OFFSET), SZ_1M),
 469                MODULES_VADDR, MODULES_END,
 470                DIV_ROUND_UP((MODULES_END - MODULES_VADDR), SZ_1M),
 471
 472                __init_begin, __init_end,
 473                DIV_ROUND_UP((__init_end - __init_begin), SZ_1K),
 474                _stext, _etext,
 475                DIV_ROUND_UP((_etext - _stext), SZ_1K),
 476                _sdata, _edata,
 477                DIV_ROUND_UP((_edata - _sdata), SZ_1K));
 478
 479        BUILD_BUG_ON(TASK_SIZE                          > MODULES_VADDR);
 480        BUG_ON(TASK_SIZE                                > MODULES_VADDR);
 481
 482        if (PAGE_SIZE >= 16384 && num_physpages <= 128) {
 483                /*
 484                 * On a machine this small we won't get
 485                 * anywhere without overcommit, so turn
 486                 * it on by default.
 487                 */
 488                sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
 489        }
 490}
 491
 492void free_initmem(void)
 493{
 494        totalram_pages += free_area(__phys_to_pfn(__pa(__init_begin)),
 495                                    __phys_to_pfn(__pa(__init_end)),
 496                                    "init");
 497}
 498
 499#ifdef CONFIG_BLK_DEV_INITRD
 500
 501static int keep_initrd;
 502
 503void free_initrd_mem(unsigned long start, unsigned long end)
 504{
 505        if (!keep_initrd)
 506                totalram_pages += free_area(__phys_to_pfn(__pa(start)),
 507                                            __phys_to_pfn(__pa(end)),
 508                                            "initrd");
 509}
 510
 511static int __init keepinitrd_setup(char *__unused)
 512{
 513        keep_initrd = 1;
 514        return 1;
 515}
 516
 517__setup("keepinitrd", keepinitrd_setup);
 518#endif
 519