linux/security/security.c
<<
>>
Prefs
   1/*
   2 * Security plug functions
   3 *
   4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
   5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
   6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
   7 *
   8 *      This program is free software; you can redistribute it and/or modify
   9 *      it under the terms of the GNU General Public License as published by
  10 *      the Free Software Foundation; either version 2 of the License, or
  11 *      (at your option) any later version.
  12 */
  13
  14#include <linux/capability.h>
  15#include <linux/module.h>
  16#include <linux/init.h>
  17#include <linux/kernel.h>
  18#include <linux/security.h>
  19#include <linux/integrity.h>
  20#include <linux/ima.h>
  21#include <linux/evm.h>
  22#include <linux/fsnotify.h>
  23#include <linux/mman.h>
  24#include <linux/mount.h>
  25#include <linux/personality.h>
  26#include <linux/backing-dev.h>
  27#include <net/flow.h>
  28
  29#define MAX_LSM_EVM_XATTR       2
  30
  31/* Boot-time LSM user choice */
  32static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
  33        CONFIG_DEFAULT_SECURITY;
  34
  35static struct security_operations *security_ops;
  36static struct security_operations default_security_ops = {
  37        .name   = "default",
  38};
  39
  40static inline int __init verify(struct security_operations *ops)
  41{
  42        /* verify the security_operations structure exists */
  43        if (!ops)
  44                return -EINVAL;
  45        security_fixup_ops(ops);
  46        return 0;
  47}
  48
  49static void __init do_security_initcalls(void)
  50{
  51        initcall_t *call;
  52        call = __security_initcall_start;
  53        while (call < __security_initcall_end) {
  54                (*call) ();
  55                call++;
  56        }
  57}
  58
  59/**
  60 * security_init - initializes the security framework
  61 *
  62 * This should be called early in the kernel initialization sequence.
  63 */
  64int __init security_init(void)
  65{
  66        printk(KERN_INFO "Security Framework initialized\n");
  67
  68        security_fixup_ops(&default_security_ops);
  69        security_ops = &default_security_ops;
  70        do_security_initcalls();
  71
  72        return 0;
  73}
  74
  75void reset_security_ops(void)
  76{
  77        security_ops = &default_security_ops;
  78}
  79
  80/* Save user chosen LSM */
  81static int __init choose_lsm(char *str)
  82{
  83        strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
  84        return 1;
  85}
  86__setup("security=", choose_lsm);
  87
  88/**
  89 * security_module_enable - Load given security module on boot ?
  90 * @ops: a pointer to the struct security_operations that is to be checked.
  91 *
  92 * Each LSM must pass this method before registering its own operations
  93 * to avoid security registration races. This method may also be used
  94 * to check if your LSM is currently loaded during kernel initialization.
  95 *
  96 * Return true if:
  97 *      -The passed LSM is the one chosen by user at boot time,
  98 *      -or the passed LSM is configured as the default and the user did not
  99 *       choose an alternate LSM at boot time.
 100 * Otherwise, return false.
 101 */
 102int __init security_module_enable(struct security_operations *ops)
 103{
 104        return !strcmp(ops->name, chosen_lsm);
 105}
 106
 107/**
 108 * register_security - registers a security framework with the kernel
 109 * @ops: a pointer to the struct security_options that is to be registered
 110 *
 111 * This function allows a security module to register itself with the
 112 * kernel security subsystem.  Some rudimentary checking is done on the @ops
 113 * value passed to this function. You'll need to check first if your LSM
 114 * is allowed to register its @ops by calling security_module_enable(@ops).
 115 *
 116 * If there is already a security module registered with the kernel,
 117 * an error will be returned.  Otherwise %0 is returned on success.
 118 */
 119int __init register_security(struct security_operations *ops)
 120{
 121        if (verify(ops)) {
 122                printk(KERN_DEBUG "%s could not verify "
 123                       "security_operations structure.\n", __func__);
 124                return -EINVAL;
 125        }
 126
 127        if (security_ops != &default_security_ops)
 128                return -EAGAIN;
 129
 130        security_ops = ops;
 131
 132        return 0;
 133}
 134
 135/* Security operations */
 136
 137int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
 138{
 139#ifdef CONFIG_SECURITY_YAMA_STACKED
 140        int rc;
 141        rc = yama_ptrace_access_check(child, mode);
 142        if (rc)
 143                return rc;
 144#endif
 145        return security_ops->ptrace_access_check(child, mode);
 146}
 147
 148int security_ptrace_traceme(struct task_struct *parent)
 149{
 150#ifdef CONFIG_SECURITY_YAMA_STACKED
 151        int rc;
 152        rc = yama_ptrace_traceme(parent);
 153        if (rc)
 154                return rc;
 155#endif
 156        return security_ops->ptrace_traceme(parent);
 157}
 158
 159int security_capget(struct task_struct *target,
 160                     kernel_cap_t *effective,
 161                     kernel_cap_t *inheritable,
 162                     kernel_cap_t *permitted)
 163{
 164        return security_ops->capget(target, effective, inheritable, permitted);
 165}
 166
 167int security_capset(struct cred *new, const struct cred *old,
 168                    const kernel_cap_t *effective,
 169                    const kernel_cap_t *inheritable,
 170                    const kernel_cap_t *permitted)
 171{
 172        return security_ops->capset(new, old,
 173                                    effective, inheritable, permitted);
 174}
 175
 176int security_capable(const struct cred *cred, struct user_namespace *ns,
 177                     int cap)
 178{
 179        return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
 180}
 181
 182int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
 183                             int cap)
 184{
 185        return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
 186}
 187
 188int security_quotactl(int cmds, int type, int id, struct super_block *sb)
 189{
 190        return security_ops->quotactl(cmds, type, id, sb);
 191}
 192
 193int security_quota_on(struct dentry *dentry)
 194{
 195        return security_ops->quota_on(dentry);
 196}
 197
 198int security_syslog(int type)
 199{
 200        return security_ops->syslog(type);
 201}
 202
 203int security_settime(const struct timespec *ts, const struct timezone *tz)
 204{
 205        return security_ops->settime(ts, tz);
 206}
 207
 208int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
 209{
 210        return security_ops->vm_enough_memory(mm, pages);
 211}
 212
 213int security_bprm_set_creds(struct linux_binprm *bprm)
 214{
 215        return security_ops->bprm_set_creds(bprm);
 216}
 217
 218int security_bprm_check(struct linux_binprm *bprm)
 219{
 220        int ret;
 221
 222        ret = security_ops->bprm_check_security(bprm);
 223        if (ret)
 224                return ret;
 225        return ima_bprm_check(bprm);
 226}
 227
 228void security_bprm_committing_creds(struct linux_binprm *bprm)
 229{
 230        security_ops->bprm_committing_creds(bprm);
 231}
 232
 233void security_bprm_committed_creds(struct linux_binprm *bprm)
 234{
 235        security_ops->bprm_committed_creds(bprm);
 236}
 237
 238int security_bprm_secureexec(struct linux_binprm *bprm)
 239{
 240        return security_ops->bprm_secureexec(bprm);
 241}
 242
 243int security_sb_alloc(struct super_block *sb)
 244{
 245        return security_ops->sb_alloc_security(sb);
 246}
 247
 248void security_sb_free(struct super_block *sb)
 249{
 250        security_ops->sb_free_security(sb);
 251}
 252
 253int security_sb_copy_data(char *orig, char *copy)
 254{
 255        return security_ops->sb_copy_data(orig, copy);
 256}
 257EXPORT_SYMBOL(security_sb_copy_data);
 258
 259int security_sb_remount(struct super_block *sb, void *data)
 260{
 261        return security_ops->sb_remount(sb, data);
 262}
 263
 264int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
 265{
 266        return security_ops->sb_kern_mount(sb, flags, data);
 267}
 268
 269int security_sb_show_options(struct seq_file *m, struct super_block *sb)
 270{
 271        return security_ops->sb_show_options(m, sb);
 272}
 273
 274int security_sb_statfs(struct dentry *dentry)
 275{
 276        return security_ops->sb_statfs(dentry);
 277}
 278
 279int security_sb_mount(const char *dev_name, struct path *path,
 280                       const char *type, unsigned long flags, void *data)
 281{
 282        return security_ops->sb_mount(dev_name, path, type, flags, data);
 283}
 284
 285int security_sb_umount(struct vfsmount *mnt, int flags)
 286{
 287        return security_ops->sb_umount(mnt, flags);
 288}
 289
 290int security_sb_pivotroot(struct path *old_path, struct path *new_path)
 291{
 292        return security_ops->sb_pivotroot(old_path, new_path);
 293}
 294
 295int security_sb_set_mnt_opts(struct super_block *sb,
 296                                struct security_mnt_opts *opts)
 297{
 298        return security_ops->sb_set_mnt_opts(sb, opts);
 299}
 300EXPORT_SYMBOL(security_sb_set_mnt_opts);
 301
 302void security_sb_clone_mnt_opts(const struct super_block *oldsb,
 303                                struct super_block *newsb)
 304{
 305        security_ops->sb_clone_mnt_opts(oldsb, newsb);
 306}
 307EXPORT_SYMBOL(security_sb_clone_mnt_opts);
 308
 309int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
 310{
 311        return security_ops->sb_parse_opts_str(options, opts);
 312}
 313EXPORT_SYMBOL(security_sb_parse_opts_str);
 314
 315int security_inode_alloc(struct inode *inode)
 316{
 317        inode->i_security = NULL;
 318        return security_ops->inode_alloc_security(inode);
 319}
 320
 321void security_inode_free(struct inode *inode)
 322{
 323        integrity_inode_free(inode);
 324        security_ops->inode_free_security(inode);
 325}
 326
 327int security_inode_init_security(struct inode *inode, struct inode *dir,
 328                                 const struct qstr *qstr,
 329                                 const initxattrs initxattrs, void *fs_data)
 330{
 331        struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
 332        struct xattr *lsm_xattr, *evm_xattr, *xattr;
 333        int ret;
 334
 335        if (unlikely(IS_PRIVATE(inode)))
 336                return 0;
 337
 338        memset(new_xattrs, 0, sizeof new_xattrs);
 339        if (!initxattrs)
 340                return security_ops->inode_init_security(inode, dir, qstr,
 341                                                         NULL, NULL, NULL);
 342        lsm_xattr = new_xattrs;
 343        ret = security_ops->inode_init_security(inode, dir, qstr,
 344                                                &lsm_xattr->name,
 345                                                &lsm_xattr->value,
 346                                                &lsm_xattr->value_len);
 347        if (ret)
 348                goto out;
 349
 350        evm_xattr = lsm_xattr + 1;
 351        ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
 352        if (ret)
 353                goto out;
 354        ret = initxattrs(inode, new_xattrs, fs_data);
 355out:
 356        for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
 357                kfree(xattr->name);
 358                kfree(xattr->value);
 359        }
 360        return (ret == -EOPNOTSUPP) ? 0 : ret;
 361}
 362EXPORT_SYMBOL(security_inode_init_security);
 363
 364int security_old_inode_init_security(struct inode *inode, struct inode *dir,
 365                                     const struct qstr *qstr, char **name,
 366                                     void **value, size_t *len)
 367{
 368        if (unlikely(IS_PRIVATE(inode)))
 369                return -EOPNOTSUPP;
 370        return security_ops->inode_init_security(inode, dir, qstr, name, value,
 371                                                 len);
 372}
 373EXPORT_SYMBOL(security_old_inode_init_security);
 374
 375#ifdef CONFIG_SECURITY_PATH
 376int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
 377                        unsigned int dev)
 378{
 379        if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 380                return 0;
 381        return security_ops->path_mknod(dir, dentry, mode, dev);
 382}
 383EXPORT_SYMBOL(security_path_mknod);
 384
 385int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
 386{
 387        if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 388                return 0;
 389        return security_ops->path_mkdir(dir, dentry, mode);
 390}
 391EXPORT_SYMBOL(security_path_mkdir);
 392
 393int security_path_rmdir(struct path *dir, struct dentry *dentry)
 394{
 395        if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 396                return 0;
 397        return security_ops->path_rmdir(dir, dentry);
 398}
 399
 400int security_path_unlink(struct path *dir, struct dentry *dentry)
 401{
 402        if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 403                return 0;
 404        return security_ops->path_unlink(dir, dentry);
 405}
 406EXPORT_SYMBOL(security_path_unlink);
 407
 408int security_path_symlink(struct path *dir, struct dentry *dentry,
 409                          const char *old_name)
 410{
 411        if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 412                return 0;
 413        return security_ops->path_symlink(dir, dentry, old_name);
 414}
 415
 416int security_path_link(struct dentry *old_dentry, struct path *new_dir,
 417                       struct dentry *new_dentry)
 418{
 419        if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
 420                return 0;
 421        return security_ops->path_link(old_dentry, new_dir, new_dentry);
 422}
 423
 424int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
 425                         struct path *new_dir, struct dentry *new_dentry)
 426{
 427        if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
 428                     (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
 429                return 0;
 430        return security_ops->path_rename(old_dir, old_dentry, new_dir,
 431                                         new_dentry);
 432}
 433EXPORT_SYMBOL(security_path_rename);
 434
 435int security_path_truncate(struct path *path)
 436{
 437        if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
 438                return 0;
 439        return security_ops->path_truncate(path);
 440}
 441
 442int security_path_chmod(struct path *path, umode_t mode)
 443{
 444        if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
 445                return 0;
 446        return security_ops->path_chmod(path, mode);
 447}
 448
 449int security_path_chown(struct path *path, kuid_t uid, kgid_t gid)
 450{
 451        if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
 452                return 0;
 453        return security_ops->path_chown(path, uid, gid);
 454}
 455
 456int security_path_chroot(struct path *path)
 457{
 458        return security_ops->path_chroot(path);
 459}
 460#endif
 461
 462int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
 463{
 464        if (unlikely(IS_PRIVATE(dir)))
 465                return 0;
 466        return security_ops->inode_create(dir, dentry, mode);
 467}
 468EXPORT_SYMBOL_GPL(security_inode_create);
 469
 470int security_inode_link(struct dentry *old_dentry, struct inode *dir,
 471                         struct dentry *new_dentry)
 472{
 473        if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
 474                return 0;
 475        return security_ops->inode_link(old_dentry, dir, new_dentry);
 476}
 477
 478int security_inode_unlink(struct inode *dir, struct dentry *dentry)
 479{
 480        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 481                return 0;
 482        return security_ops->inode_unlink(dir, dentry);
 483}
 484
 485int security_inode_symlink(struct inode *dir, struct dentry *dentry,
 486                            const char *old_name)
 487{
 488        if (unlikely(IS_PRIVATE(dir)))
 489                return 0;
 490        return security_ops->inode_symlink(dir, dentry, old_name);
 491}
 492
 493int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
 494{
 495        if (unlikely(IS_PRIVATE(dir)))
 496                return 0;
 497        return security_ops->inode_mkdir(dir, dentry, mode);
 498}
 499EXPORT_SYMBOL_GPL(security_inode_mkdir);
 500
 501int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
 502{
 503        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 504                return 0;
 505        return security_ops->inode_rmdir(dir, dentry);
 506}
 507
 508int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
 509{
 510        if (unlikely(IS_PRIVATE(dir)))
 511                return 0;
 512        return security_ops->inode_mknod(dir, dentry, mode, dev);
 513}
 514
 515int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
 516                           struct inode *new_dir, struct dentry *new_dentry)
 517{
 518        if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
 519            (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
 520                return 0;
 521        return security_ops->inode_rename(old_dir, old_dentry,
 522                                           new_dir, new_dentry);
 523}
 524
 525int security_inode_readlink(struct dentry *dentry)
 526{
 527        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 528                return 0;
 529        return security_ops->inode_readlink(dentry);
 530}
 531
 532int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
 533{
 534        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 535                return 0;
 536        return security_ops->inode_follow_link(dentry, nd);
 537}
 538
 539int security_inode_permission(struct inode *inode, int mask)
 540{
 541        if (unlikely(IS_PRIVATE(inode)))
 542                return 0;
 543        return security_ops->inode_permission(inode, mask);
 544}
 545
 546int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
 547{
 548        int ret;
 549
 550        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 551                return 0;
 552        ret = security_ops->inode_setattr(dentry, attr);
 553        if (ret)
 554                return ret;
 555        return evm_inode_setattr(dentry, attr);
 556}
 557EXPORT_SYMBOL_GPL(security_inode_setattr);
 558
 559int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
 560{
 561        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 562                return 0;
 563        return security_ops->inode_getattr(mnt, dentry);
 564}
 565
 566int security_inode_setxattr(struct dentry *dentry, const char *name,
 567                            const void *value, size_t size, int flags)
 568{
 569        int ret;
 570
 571        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 572                return 0;
 573        ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
 574        if (ret)
 575                return ret;
 576        ret = ima_inode_setxattr(dentry, name, value, size);
 577        if (ret)
 578                return ret;
 579        return evm_inode_setxattr(dentry, name, value, size);
 580}
 581
 582void security_inode_post_setxattr(struct dentry *dentry, const char *name,
 583                                  const void *value, size_t size, int flags)
 584{
 585        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 586                return;
 587        security_ops->inode_post_setxattr(dentry, name, value, size, flags);
 588        evm_inode_post_setxattr(dentry, name, value, size);
 589}
 590
 591int security_inode_getxattr(struct dentry *dentry, const char *name)
 592{
 593        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 594                return 0;
 595        return security_ops->inode_getxattr(dentry, name);
 596}
 597
 598int security_inode_listxattr(struct dentry *dentry)
 599{
 600        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 601                return 0;
 602        return security_ops->inode_listxattr(dentry);
 603}
 604
 605int security_inode_removexattr(struct dentry *dentry, const char *name)
 606{
 607        int ret;
 608
 609        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 610                return 0;
 611        ret = security_ops->inode_removexattr(dentry, name);
 612        if (ret)
 613                return ret;
 614        ret = ima_inode_removexattr(dentry, name);
 615        if (ret)
 616                return ret;
 617        return evm_inode_removexattr(dentry, name);
 618}
 619
 620int security_inode_need_killpriv(struct dentry *dentry)
 621{
 622        return security_ops->inode_need_killpriv(dentry);
 623}
 624
 625int security_inode_killpriv(struct dentry *dentry)
 626{
 627        return security_ops->inode_killpriv(dentry);
 628}
 629
 630int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
 631{
 632        if (unlikely(IS_PRIVATE(inode)))
 633                return -EOPNOTSUPP;
 634        return security_ops->inode_getsecurity(inode, name, buffer, alloc);
 635}
 636
 637int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
 638{
 639        if (unlikely(IS_PRIVATE(inode)))
 640                return -EOPNOTSUPP;
 641        return security_ops->inode_setsecurity(inode, name, value, size, flags);
 642}
 643
 644int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
 645{
 646        if (unlikely(IS_PRIVATE(inode)))
 647                return 0;
 648        return security_ops->inode_listsecurity(inode, buffer, buffer_size);
 649}
 650
 651void security_inode_getsecid(const struct inode *inode, u32 *secid)
 652{
 653        security_ops->inode_getsecid(inode, secid);
 654}
 655
 656int security_file_permission(struct file *file, int mask)
 657{
 658        int ret;
 659
 660        ret = security_ops->file_permission(file, mask);
 661        if (ret)
 662                return ret;
 663
 664        return fsnotify_perm(file, mask);
 665}
 666
 667int security_file_alloc(struct file *file)
 668{
 669        return security_ops->file_alloc_security(file);
 670}
 671
 672void security_file_free(struct file *file)
 673{
 674        security_ops->file_free_security(file);
 675}
 676
 677int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 678{
 679        return security_ops->file_ioctl(file, cmd, arg);
 680}
 681
 682static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
 683{
 684        /*
 685         * Does we have PROT_READ and does the application expect
 686         * it to imply PROT_EXEC?  If not, nothing to talk about...
 687         */
 688        if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
 689                return prot;
 690        if (!(current->personality & READ_IMPLIES_EXEC))
 691                return prot;
 692        /*
 693         * if that's an anonymous mapping, let it.
 694         */
 695        if (!file)
 696                return prot | PROT_EXEC;
 697        /*
 698         * ditto if it's not on noexec mount, except that on !MMU we need
 699         * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case
 700         */
 701        if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
 702#ifndef CONFIG_MMU
 703                unsigned long caps = 0;
 704                struct address_space *mapping = file->f_mapping;
 705                if (mapping && mapping->backing_dev_info)
 706                        caps = mapping->backing_dev_info->capabilities;
 707                if (!(caps & BDI_CAP_EXEC_MAP))
 708                        return prot;
 709#endif
 710                return prot | PROT_EXEC;
 711        }
 712        /* anything on noexec mount won't get PROT_EXEC */
 713        return prot;
 714}
 715
 716int security_mmap_file(struct file *file, unsigned long prot,
 717                        unsigned long flags)
 718{
 719        int ret;
 720        ret = security_ops->mmap_file(file, prot,
 721                                        mmap_prot(file, prot), flags);
 722        if (ret)
 723                return ret;
 724        return ima_file_mmap(file, prot);
 725}
 726
 727int security_mmap_addr(unsigned long addr)
 728{
 729        return security_ops->mmap_addr(addr);
 730}
 731
 732int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
 733                            unsigned long prot)
 734{
 735        return security_ops->file_mprotect(vma, reqprot, prot);
 736}
 737
 738int security_file_lock(struct file *file, unsigned int cmd)
 739{
 740        return security_ops->file_lock(file, cmd);
 741}
 742
 743int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
 744{
 745        return security_ops->file_fcntl(file, cmd, arg);
 746}
 747
 748int security_file_set_fowner(struct file *file)
 749{
 750        return security_ops->file_set_fowner(file);
 751}
 752
 753int security_file_send_sigiotask(struct task_struct *tsk,
 754                                  struct fown_struct *fown, int sig)
 755{
 756        return security_ops->file_send_sigiotask(tsk, fown, sig);
 757}
 758
 759int security_file_receive(struct file *file)
 760{
 761        return security_ops->file_receive(file);
 762}
 763
 764int security_file_open(struct file *file, const struct cred *cred)
 765{
 766        int ret;
 767
 768        ret = security_ops->file_open(file, cred);
 769        if (ret)
 770                return ret;
 771
 772        return fsnotify_perm(file, MAY_OPEN);
 773}
 774
 775int security_task_create(unsigned long clone_flags)
 776{
 777        return security_ops->task_create(clone_flags);
 778}
 779
 780void security_task_free(struct task_struct *task)
 781{
 782#ifdef CONFIG_SECURITY_YAMA_STACKED
 783        yama_task_free(task);
 784#endif
 785        security_ops->task_free(task);
 786}
 787
 788int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
 789{
 790        return security_ops->cred_alloc_blank(cred, gfp);
 791}
 792
 793void security_cred_free(struct cred *cred)
 794{
 795        security_ops->cred_free(cred);
 796}
 797
 798int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
 799{
 800        return security_ops->cred_prepare(new, old, gfp);
 801}
 802
 803void security_transfer_creds(struct cred *new, const struct cred *old)
 804{
 805        security_ops->cred_transfer(new, old);
 806}
 807
 808int security_kernel_act_as(struct cred *new, u32 secid)
 809{
 810        return security_ops->kernel_act_as(new, secid);
 811}
 812
 813int security_kernel_create_files_as(struct cred *new, struct inode *inode)
 814{
 815        return security_ops->kernel_create_files_as(new, inode);
 816}
 817
 818int security_kernel_module_request(char *kmod_name)
 819{
 820        return security_ops->kernel_module_request(kmod_name);
 821}
 822
 823int security_kernel_module_from_file(struct file *file)
 824{
 825        int ret;
 826
 827        ret = security_ops->kernel_module_from_file(file);
 828        if (ret)
 829                return ret;
 830        return ima_module_check(file);
 831}
 832
 833int security_task_fix_setuid(struct cred *new, const struct cred *old,
 834                             int flags)
 835{
 836        return security_ops->task_fix_setuid(new, old, flags);
 837}
 838
 839int security_task_setpgid(struct task_struct *p, pid_t pgid)
 840{
 841        return security_ops->task_setpgid(p, pgid);
 842}
 843
 844int security_task_getpgid(struct task_struct *p)
 845{
 846        return security_ops->task_getpgid(p);
 847}
 848
 849int security_task_getsid(struct task_struct *p)
 850{
 851        return security_ops->task_getsid(p);
 852}
 853
 854void security_task_getsecid(struct task_struct *p, u32 *secid)
 855{
 856        security_ops->task_getsecid(p, secid);
 857}
 858EXPORT_SYMBOL(security_task_getsecid);
 859
 860int security_task_setnice(struct task_struct *p, int nice)
 861{
 862        return security_ops->task_setnice(p, nice);
 863}
 864
 865int security_task_setioprio(struct task_struct *p, int ioprio)
 866{
 867        return security_ops->task_setioprio(p, ioprio);
 868}
 869
 870int security_task_getioprio(struct task_struct *p)
 871{
 872        return security_ops->task_getioprio(p);
 873}
 874
 875int security_task_setrlimit(struct task_struct *p, unsigned int resource,
 876                struct rlimit *new_rlim)
 877{
 878        return security_ops->task_setrlimit(p, resource, new_rlim);
 879}
 880
 881int security_task_setscheduler(struct task_struct *p)
 882{
 883        return security_ops->task_setscheduler(p);
 884}
 885
 886int security_task_getscheduler(struct task_struct *p)
 887{
 888        return security_ops->task_getscheduler(p);
 889}
 890
 891int security_task_movememory(struct task_struct *p)
 892{
 893        return security_ops->task_movememory(p);
 894}
 895
 896int security_task_kill(struct task_struct *p, struct siginfo *info,
 897                        int sig, u32 secid)
 898{
 899        return security_ops->task_kill(p, info, sig, secid);
 900}
 901
 902int security_task_wait(struct task_struct *p)
 903{
 904        return security_ops->task_wait(p);
 905}
 906
 907int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
 908                         unsigned long arg4, unsigned long arg5)
 909{
 910#ifdef CONFIG_SECURITY_YAMA_STACKED
 911        int rc;
 912        rc = yama_task_prctl(option, arg2, arg3, arg4, arg5);
 913        if (rc != -ENOSYS)
 914                return rc;
 915#endif
 916        return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
 917}
 918
 919void security_task_to_inode(struct task_struct *p, struct inode *inode)
 920{
 921        security_ops->task_to_inode(p, inode);
 922}
 923
 924int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
 925{
 926        return security_ops->ipc_permission(ipcp, flag);
 927}
 928
 929void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
 930{
 931        security_ops->ipc_getsecid(ipcp, secid);
 932}
 933
 934int security_msg_msg_alloc(struct msg_msg *msg)
 935{
 936        return security_ops->msg_msg_alloc_security(msg);
 937}
 938
 939void security_msg_msg_free(struct msg_msg *msg)
 940{
 941        security_ops->msg_msg_free_security(msg);
 942}
 943
 944int security_msg_queue_alloc(struct msg_queue *msq)
 945{
 946        return security_ops->msg_queue_alloc_security(msq);
 947}
 948
 949void security_msg_queue_free(struct msg_queue *msq)
 950{
 951        security_ops->msg_queue_free_security(msq);
 952}
 953
 954int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
 955{
 956        return security_ops->msg_queue_associate(msq, msqflg);
 957}
 958
 959int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
 960{
 961        return security_ops->msg_queue_msgctl(msq, cmd);
 962}
 963
 964int security_msg_queue_msgsnd(struct msg_queue *msq,
 965                               struct msg_msg *msg, int msqflg)
 966{
 967        return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
 968}
 969
 970int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
 971                               struct task_struct *target, long type, int mode)
 972{
 973        return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
 974}
 975
 976int security_shm_alloc(struct shmid_kernel *shp)
 977{
 978        return security_ops->shm_alloc_security(shp);
 979}
 980
 981void security_shm_free(struct shmid_kernel *shp)
 982{
 983        security_ops->shm_free_security(shp);
 984}
 985
 986int security_shm_associate(struct shmid_kernel *shp, int shmflg)
 987{
 988        return security_ops->shm_associate(shp, shmflg);
 989}
 990
 991int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
 992{
 993        return security_ops->shm_shmctl(shp, cmd);
 994}
 995
 996int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
 997{
 998        return security_ops->shm_shmat(shp, shmaddr, shmflg);
 999}
1000
1001int security_sem_alloc(struct sem_array *sma)
1002{
1003        return security_ops->sem_alloc_security(sma);
1004}
1005
1006void security_sem_free(struct sem_array *sma)
1007{
1008        security_ops->sem_free_security(sma);
1009}
1010
1011int security_sem_associate(struct sem_array *sma, int semflg)
1012{
1013        return security_ops->sem_associate(sma, semflg);
1014}
1015
1016int security_sem_semctl(struct sem_array *sma, int cmd)
1017{
1018        return security_ops->sem_semctl(sma, cmd);
1019}
1020
1021int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
1022                        unsigned nsops, int alter)
1023{
1024        return security_ops->sem_semop(sma, sops, nsops, alter);
1025}
1026
1027void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1028{
1029        if (unlikely(inode && IS_PRIVATE(inode)))
1030                return;
1031        security_ops->d_instantiate(dentry, inode);
1032}
1033EXPORT_SYMBOL(security_d_instantiate);
1034
1035int security_getprocattr(struct task_struct *p, char *name, char **value)
1036{
1037        return security_ops->getprocattr(p, name, value);
1038}
1039
1040int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
1041{
1042        return security_ops->setprocattr(p, name, value, size);
1043}
1044
1045int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1046{
1047        return security_ops->netlink_send(sk, skb);
1048}
1049
1050int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1051{
1052        return security_ops->secid_to_secctx(secid, secdata, seclen);
1053}
1054EXPORT_SYMBOL(security_secid_to_secctx);
1055
1056int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1057{
1058        return security_ops->secctx_to_secid(secdata, seclen, secid);
1059}
1060EXPORT_SYMBOL(security_secctx_to_secid);
1061
1062void security_release_secctx(char *secdata, u32 seclen)
1063{
1064        security_ops->release_secctx(secdata, seclen);
1065}
1066EXPORT_SYMBOL(security_release_secctx);
1067
1068int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1069{
1070        return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1071}
1072EXPORT_SYMBOL(security_inode_notifysecctx);
1073
1074int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1075{
1076        return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1077}
1078EXPORT_SYMBOL(security_inode_setsecctx);
1079
1080int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1081{
1082        return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1083}
1084EXPORT_SYMBOL(security_inode_getsecctx);
1085
1086#ifdef CONFIG_SECURITY_NETWORK
1087
1088int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1089{
1090        return security_ops->unix_stream_connect(sock, other, newsk);
1091}
1092EXPORT_SYMBOL(security_unix_stream_connect);
1093
1094int security_unix_may_send(struct socket *sock,  struct socket *other)
1095{
1096        return security_ops->unix_may_send(sock, other);
1097}
1098EXPORT_SYMBOL(security_unix_may_send);
1099
1100int security_socket_create(int family, int type, int protocol, int kern)
1101{
1102        return security_ops->socket_create(family, type, protocol, kern);
1103}
1104
1105int security_socket_post_create(struct socket *sock, int family,
1106                                int type, int protocol, int kern)
1107{
1108        return security_ops->socket_post_create(sock, family, type,
1109                                                protocol, kern);
1110}
1111
1112int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1113{
1114        return security_ops->socket_bind(sock, address, addrlen);
1115}
1116
1117int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1118{
1119        return security_ops->socket_connect(sock, address, addrlen);
1120}
1121
1122int security_socket_listen(struct socket *sock, int backlog)
1123{
1124        return security_ops->socket_listen(sock, backlog);
1125}
1126
1127int security_socket_accept(struct socket *sock, struct socket *newsock)
1128{
1129        return security_ops->socket_accept(sock, newsock);
1130}
1131
1132int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1133{
1134        return security_ops->socket_sendmsg(sock, msg, size);
1135}
1136
1137int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1138                            int size, int flags)
1139{
1140        return security_ops->socket_recvmsg(sock, msg, size, flags);
1141}
1142
1143int security_socket_getsockname(struct socket *sock)
1144{
1145        return security_ops->socket_getsockname(sock);
1146}
1147
1148int security_socket_getpeername(struct socket *sock)
1149{
1150        return security_ops->socket_getpeername(sock);
1151}
1152
1153int security_socket_getsockopt(struct socket *sock, int level, int optname)
1154{
1155        return security_ops->socket_getsockopt(sock, level, optname);
1156}
1157
1158int security_socket_setsockopt(struct socket *sock, int level, int optname)
1159{
1160        return security_ops->socket_setsockopt(sock, level, optname);
1161}
1162
1163int security_socket_shutdown(struct socket *sock, int how)
1164{
1165        return security_ops->socket_shutdown(sock, how);
1166}
1167
1168int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1169{
1170        return security_ops->socket_sock_rcv_skb(sk, skb);
1171}
1172EXPORT_SYMBOL(security_sock_rcv_skb);
1173
1174int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1175                                      int __user *optlen, unsigned len)
1176{
1177        return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1178}
1179
1180int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1181{
1182        return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1183}
1184EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1185
1186int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1187{
1188        return security_ops->sk_alloc_security(sk, family, priority);
1189}
1190
1191void security_sk_free(struct sock *sk)
1192{
1193        security_ops->sk_free_security(sk);
1194}
1195
1196void security_sk_clone(const struct sock *sk, struct sock *newsk)
1197{
1198        security_ops->sk_clone_security(sk, newsk);
1199}
1200EXPORT_SYMBOL(security_sk_clone);
1201
1202void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1203{
1204        security_ops->sk_getsecid(sk, &fl->flowi_secid);
1205}
1206EXPORT_SYMBOL(security_sk_classify_flow);
1207
1208void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1209{
1210        security_ops->req_classify_flow(req, fl);
1211}
1212EXPORT_SYMBOL(security_req_classify_flow);
1213
1214void security_sock_graft(struct sock *sk, struct socket *parent)
1215{
1216        security_ops->sock_graft(sk, parent);
1217}
1218EXPORT_SYMBOL(security_sock_graft);
1219
1220int security_inet_conn_request(struct sock *sk,
1221                        struct sk_buff *skb, struct request_sock *req)
1222{
1223        return security_ops->inet_conn_request(sk, skb, req);
1224}
1225EXPORT_SYMBOL(security_inet_conn_request);
1226
1227void security_inet_csk_clone(struct sock *newsk,
1228                        const struct request_sock *req)
1229{
1230        security_ops->inet_csk_clone(newsk, req);
1231}
1232
1233void security_inet_conn_established(struct sock *sk,
1234                        struct sk_buff *skb)
1235{
1236        security_ops->inet_conn_established(sk, skb);
1237}
1238
1239int security_secmark_relabel_packet(u32 secid)
1240{
1241        return security_ops->secmark_relabel_packet(secid);
1242}
1243EXPORT_SYMBOL(security_secmark_relabel_packet);
1244
1245void security_secmark_refcount_inc(void)
1246{
1247        security_ops->secmark_refcount_inc();
1248}
1249EXPORT_SYMBOL(security_secmark_refcount_inc);
1250
1251void security_secmark_refcount_dec(void)
1252{
1253        security_ops->secmark_refcount_dec();
1254}
1255EXPORT_SYMBOL(security_secmark_refcount_dec);
1256
1257int security_tun_dev_alloc_security(void **security)
1258{
1259        return security_ops->tun_dev_alloc_security(security);
1260}
1261EXPORT_SYMBOL(security_tun_dev_alloc_security);
1262
1263void security_tun_dev_free_security(void *security)
1264{
1265        security_ops->tun_dev_free_security(security);
1266}
1267EXPORT_SYMBOL(security_tun_dev_free_security);
1268
1269int security_tun_dev_create(void)
1270{
1271        return security_ops->tun_dev_create();
1272}
1273EXPORT_SYMBOL(security_tun_dev_create);
1274
1275int security_tun_dev_attach_queue(void *security)
1276{
1277        return security_ops->tun_dev_attach_queue(security);
1278}
1279EXPORT_SYMBOL(security_tun_dev_attach_queue);
1280
1281int security_tun_dev_attach(struct sock *sk, void *security)
1282{
1283        return security_ops->tun_dev_attach(sk, security);
1284}
1285EXPORT_SYMBOL(security_tun_dev_attach);
1286
1287int security_tun_dev_open(void *security)
1288{
1289        return security_ops->tun_dev_open(security);
1290}
1291EXPORT_SYMBOL(security_tun_dev_open);
1292
1293#endif  /* CONFIG_SECURITY_NETWORK */
1294
1295#ifdef CONFIG_SECURITY_NETWORK_XFRM
1296
1297int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1298{
1299        return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1300}
1301EXPORT_SYMBOL(security_xfrm_policy_alloc);
1302
1303int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1304                              struct xfrm_sec_ctx **new_ctxp)
1305{
1306        return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1307}
1308
1309void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1310{
1311        security_ops->xfrm_policy_free_security(ctx);
1312}
1313EXPORT_SYMBOL(security_xfrm_policy_free);
1314
1315int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1316{
1317        return security_ops->xfrm_policy_delete_security(ctx);
1318}
1319
1320int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1321{
1322        return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1323}
1324EXPORT_SYMBOL(security_xfrm_state_alloc);
1325
1326int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1327                                      struct xfrm_sec_ctx *polsec, u32 secid)
1328{
1329        if (!polsec)
1330                return 0;
1331        /*
1332         * We want the context to be taken from secid which is usually
1333         * from the sock.
1334         */
1335        return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1336}
1337
1338int security_xfrm_state_delete(struct xfrm_state *x)
1339{
1340        return security_ops->xfrm_state_delete_security(x);
1341}
1342EXPORT_SYMBOL(security_xfrm_state_delete);
1343
1344void security_xfrm_state_free(struct xfrm_state *x)
1345{
1346        security_ops->xfrm_state_free_security(x);
1347}
1348
1349int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1350{
1351        return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1352}
1353
1354int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1355                                       struct xfrm_policy *xp,
1356                                       const struct flowi *fl)
1357{
1358        return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1359}
1360
1361int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1362{
1363        return security_ops->xfrm_decode_session(skb, secid, 1);
1364}
1365
1366void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1367{
1368        int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1369
1370        BUG_ON(rc);
1371}
1372EXPORT_SYMBOL(security_skb_classify_flow);
1373
1374#endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1375
1376#ifdef CONFIG_KEYS
1377
1378int security_key_alloc(struct key *key, const struct cred *cred,
1379                       unsigned long flags)
1380{
1381        return security_ops->key_alloc(key, cred, flags);
1382}
1383
1384void security_key_free(struct key *key)
1385{
1386        security_ops->key_free(key);
1387}
1388
1389int security_key_permission(key_ref_t key_ref,
1390                            const struct cred *cred, key_perm_t perm)
1391{
1392        return security_ops->key_permission(key_ref, cred, perm);
1393}
1394
1395int security_key_getsecurity(struct key *key, char **_buffer)
1396{
1397        return security_ops->key_getsecurity(key, _buffer);
1398}
1399
1400#endif  /* CONFIG_KEYS */
1401
1402#ifdef CONFIG_AUDIT
1403
1404int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1405{
1406        return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1407}
1408
1409int security_audit_rule_known(struct audit_krule *krule)
1410{
1411        return security_ops->audit_rule_known(krule);
1412}
1413
1414void security_audit_rule_free(void *lsmrule)
1415{
1416        security_ops->audit_rule_free(lsmrule);
1417}
1418
1419int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1420                              struct audit_context *actx)
1421{
1422        return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1423}
1424
1425#endif /* CONFIG_AUDIT */
1426