linux/mm/compaction.c
<<
>>
Prefs
   1/*
   2 * linux/mm/compaction.c
   3 *
   4 * Memory compaction for the reduction of external fragmentation. Note that
   5 * this heavily depends upon page migration to do all the real heavy
   6 * lifting
   7 *
   8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
   9 */
  10#include <linux/swap.h>
  11#include <linux/migrate.h>
  12#include <linux/compaction.h>
  13#include <linux/mm_inline.h>
  14#include <linux/backing-dev.h>
  15#include <linux/sysctl.h>
  16#include <linux/sysfs.h>
  17#include <linux/balloon_compaction.h>
  18#include "internal.h"
  19
  20#ifdef CONFIG_COMPACTION
  21static inline void count_compact_event(enum vm_event_item item)
  22{
  23        count_vm_event(item);
  24}
  25
  26static inline void count_compact_events(enum vm_event_item item, long delta)
  27{
  28        count_vm_events(item, delta);
  29}
  30#else
  31#define count_compact_event(item) do { } while (0)
  32#define count_compact_events(item, delta) do { } while (0)
  33#endif
  34
  35#if defined CONFIG_COMPACTION || defined CONFIG_CMA
  36
  37#define CREATE_TRACE_POINTS
  38#include <trace/events/compaction.h>
  39
  40static unsigned long release_freepages(struct list_head *freelist)
  41{
  42        struct page *page, *next;
  43        unsigned long count = 0;
  44
  45        list_for_each_entry_safe(page, next, freelist, lru) {
  46                list_del(&page->lru);
  47                __free_page(page);
  48                count++;
  49        }
  50
  51        return count;
  52}
  53
  54static void map_pages(struct list_head *list)
  55{
  56        struct page *page;
  57
  58        list_for_each_entry(page, list, lru) {
  59                arch_alloc_page(page, 0);
  60                kernel_map_pages(page, 1, 1);
  61        }
  62}
  63
  64static inline bool migrate_async_suitable(int migratetype)
  65{
  66        return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
  67}
  68
  69#ifdef CONFIG_COMPACTION
  70/* Returns true if the pageblock should be scanned for pages to isolate. */
  71static inline bool isolation_suitable(struct compact_control *cc,
  72                                        struct page *page)
  73{
  74        if (cc->ignore_skip_hint)
  75                return true;
  76
  77        return !get_pageblock_skip(page);
  78}
  79
  80/*
  81 * This function is called to clear all cached information on pageblocks that
  82 * should be skipped for page isolation when the migrate and free page scanner
  83 * meet.
  84 */
  85static void __reset_isolation_suitable(struct zone *zone)
  86{
  87        unsigned long start_pfn = zone->zone_start_pfn;
  88        unsigned long end_pfn = zone->zone_start_pfn + zone->spanned_pages;
  89        unsigned long pfn;
  90
  91        zone->compact_cached_migrate_pfn = start_pfn;
  92        zone->compact_cached_free_pfn = end_pfn;
  93        zone->compact_blockskip_flush = false;
  94
  95        /* Walk the zone and mark every pageblock as suitable for isolation */
  96        for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  97                struct page *page;
  98
  99                cond_resched();
 100
 101                if (!pfn_valid(pfn))
 102                        continue;
 103
 104                page = pfn_to_page(pfn);
 105                if (zone != page_zone(page))
 106                        continue;
 107
 108                clear_pageblock_skip(page);
 109        }
 110}
 111
 112void reset_isolation_suitable(pg_data_t *pgdat)
 113{
 114        int zoneid;
 115
 116        for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 117                struct zone *zone = &pgdat->node_zones[zoneid];
 118                if (!populated_zone(zone))
 119                        continue;
 120
 121                /* Only flush if a full compaction finished recently */
 122                if (zone->compact_blockskip_flush)
 123                        __reset_isolation_suitable(zone);
 124        }
 125}
 126
 127/*
 128 * If no pages were isolated then mark this pageblock to be skipped in the
 129 * future. The information is later cleared by __reset_isolation_suitable().
 130 */
 131static void update_pageblock_skip(struct compact_control *cc,
 132                        struct page *page, unsigned long nr_isolated,
 133                        bool migrate_scanner)
 134{
 135        struct zone *zone = cc->zone;
 136        if (!page)
 137                return;
 138
 139        if (!nr_isolated) {
 140                unsigned long pfn = page_to_pfn(page);
 141                set_pageblock_skip(page);
 142
 143                /* Update where compaction should restart */
 144                if (migrate_scanner) {
 145                        if (!cc->finished_update_migrate &&
 146                            pfn > zone->compact_cached_migrate_pfn)
 147                                zone->compact_cached_migrate_pfn = pfn;
 148                } else {
 149                        if (!cc->finished_update_free &&
 150                            pfn < zone->compact_cached_free_pfn)
 151                                zone->compact_cached_free_pfn = pfn;
 152                }
 153        }
 154}
 155#else
 156static inline bool isolation_suitable(struct compact_control *cc,
 157                                        struct page *page)
 158{
 159        return true;
 160}
 161
 162static void update_pageblock_skip(struct compact_control *cc,
 163                        struct page *page, unsigned long nr_isolated,
 164                        bool migrate_scanner)
 165{
 166}
 167#endif /* CONFIG_COMPACTION */
 168
 169static inline bool should_release_lock(spinlock_t *lock)
 170{
 171        return need_resched() || spin_is_contended(lock);
 172}
 173
 174/*
 175 * Compaction requires the taking of some coarse locks that are potentially
 176 * very heavily contended. Check if the process needs to be scheduled or
 177 * if the lock is contended. For async compaction, back out in the event
 178 * if contention is severe. For sync compaction, schedule.
 179 *
 180 * Returns true if the lock is held.
 181 * Returns false if the lock is released and compaction should abort
 182 */
 183static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
 184                                      bool locked, struct compact_control *cc)
 185{
 186        if (should_release_lock(lock)) {
 187                if (locked) {
 188                        spin_unlock_irqrestore(lock, *flags);
 189                        locked = false;
 190                }
 191
 192                /* async aborts if taking too long or contended */
 193                if (!cc->sync) {
 194                        cc->contended = true;
 195                        return false;
 196                }
 197
 198                cond_resched();
 199        }
 200
 201        if (!locked)
 202                spin_lock_irqsave(lock, *flags);
 203        return true;
 204}
 205
 206static inline bool compact_trylock_irqsave(spinlock_t *lock,
 207                        unsigned long *flags, struct compact_control *cc)
 208{
 209        return compact_checklock_irqsave(lock, flags, false, cc);
 210}
 211
 212/* Returns true if the page is within a block suitable for migration to */
 213static bool suitable_migration_target(struct page *page)
 214{
 215        int migratetype = get_pageblock_migratetype(page);
 216
 217        /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
 218        if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
 219                return false;
 220
 221        /* If the page is a large free page, then allow migration */
 222        if (PageBuddy(page) && page_order(page) >= pageblock_order)
 223                return true;
 224
 225        /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
 226        if (migrate_async_suitable(migratetype))
 227                return true;
 228
 229        /* Otherwise skip the block */
 230        return false;
 231}
 232
 233/*
 234 * Isolate free pages onto a private freelist. Caller must hold zone->lock.
 235 * If @strict is true, will abort returning 0 on any invalid PFNs or non-free
 236 * pages inside of the pageblock (even though it may still end up isolating
 237 * some pages).
 238 */
 239static unsigned long isolate_freepages_block(struct compact_control *cc,
 240                                unsigned long blockpfn,
 241                                unsigned long end_pfn,
 242                                struct list_head *freelist,
 243                                bool strict)
 244{
 245        int nr_scanned = 0, total_isolated = 0;
 246        struct page *cursor, *valid_page = NULL;
 247        unsigned long nr_strict_required = end_pfn - blockpfn;
 248        unsigned long flags;
 249        bool locked = false;
 250
 251        cursor = pfn_to_page(blockpfn);
 252
 253        /* Isolate free pages. */
 254        for (; blockpfn < end_pfn; blockpfn++, cursor++) {
 255                int isolated, i;
 256                struct page *page = cursor;
 257
 258                nr_scanned++;
 259                if (!pfn_valid_within(blockpfn))
 260                        continue;
 261                if (!valid_page)
 262                        valid_page = page;
 263                if (!PageBuddy(page))
 264                        continue;
 265
 266                /*
 267                 * The zone lock must be held to isolate freepages.
 268                 * Unfortunately this is a very coarse lock and can be
 269                 * heavily contended if there are parallel allocations
 270                 * or parallel compactions. For async compaction do not
 271                 * spin on the lock and we acquire the lock as late as
 272                 * possible.
 273                 */
 274                locked = compact_checklock_irqsave(&cc->zone->lock, &flags,
 275                                                                locked, cc);
 276                if (!locked)
 277                        break;
 278
 279                /* Recheck this is a suitable migration target under lock */
 280                if (!strict && !suitable_migration_target(page))
 281                        break;
 282
 283                /* Recheck this is a buddy page under lock */
 284                if (!PageBuddy(page))
 285                        continue;
 286
 287                /* Found a free page, break it into order-0 pages */
 288                isolated = split_free_page(page);
 289                if (!isolated && strict)
 290                        break;
 291                total_isolated += isolated;
 292                for (i = 0; i < isolated; i++) {
 293                        list_add(&page->lru, freelist);
 294                        page++;
 295                }
 296
 297                /* If a page was split, advance to the end of it */
 298                if (isolated) {
 299                        blockpfn += isolated - 1;
 300                        cursor += isolated - 1;
 301                }
 302        }
 303
 304        trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
 305
 306        /*
 307         * If strict isolation is requested by CMA then check that all the
 308         * pages requested were isolated. If there were any failures, 0 is
 309         * returned and CMA will fail.
 310         */
 311        if (strict && nr_strict_required > total_isolated)
 312                total_isolated = 0;
 313
 314        if (locked)
 315                spin_unlock_irqrestore(&cc->zone->lock, flags);
 316
 317        /* Update the pageblock-skip if the whole pageblock was scanned */
 318        if (blockpfn == end_pfn)
 319                update_pageblock_skip(cc, valid_page, total_isolated, false);
 320
 321        count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
 322        if (total_isolated)
 323                count_compact_events(COMPACTISOLATED, total_isolated);
 324        return total_isolated;
 325}
 326
 327/**
 328 * isolate_freepages_range() - isolate free pages.
 329 * @start_pfn: The first PFN to start isolating.
 330 * @end_pfn:   The one-past-last PFN.
 331 *
 332 * Non-free pages, invalid PFNs, or zone boundaries within the
 333 * [start_pfn, end_pfn) range are considered errors, cause function to
 334 * undo its actions and return zero.
 335 *
 336 * Otherwise, function returns one-past-the-last PFN of isolated page
 337 * (which may be greater then end_pfn if end fell in a middle of
 338 * a free page).
 339 */
 340unsigned long
 341isolate_freepages_range(struct compact_control *cc,
 342                        unsigned long start_pfn, unsigned long end_pfn)
 343{
 344        unsigned long isolated, pfn, block_end_pfn;
 345        LIST_HEAD(freelist);
 346
 347        for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
 348                if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn)))
 349                        break;
 350
 351                /*
 352                 * On subsequent iterations ALIGN() is actually not needed,
 353                 * but we keep it that we not to complicate the code.
 354                 */
 355                block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
 356                block_end_pfn = min(block_end_pfn, end_pfn);
 357
 358                isolated = isolate_freepages_block(cc, pfn, block_end_pfn,
 359                                                   &freelist, true);
 360
 361                /*
 362                 * In strict mode, isolate_freepages_block() returns 0 if
 363                 * there are any holes in the block (ie. invalid PFNs or
 364                 * non-free pages).
 365                 */
 366                if (!isolated)
 367                        break;
 368
 369                /*
 370                 * If we managed to isolate pages, it is always (1 << n) *
 371                 * pageblock_nr_pages for some non-negative n.  (Max order
 372                 * page may span two pageblocks).
 373                 */
 374        }
 375
 376        /* split_free_page does not map the pages */
 377        map_pages(&freelist);
 378
 379        if (pfn < end_pfn) {
 380                /* Loop terminated early, cleanup. */
 381                release_freepages(&freelist);
 382                return 0;
 383        }
 384
 385        /* We don't use freelists for anything. */
 386        return pfn;
 387}
 388
 389/* Update the number of anon and file isolated pages in the zone */
 390static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
 391{
 392        struct page *page;
 393        unsigned int count[2] = { 0, };
 394
 395        list_for_each_entry(page, &cc->migratepages, lru)
 396                count[!!page_is_file_cache(page)]++;
 397
 398        /* If locked we can use the interrupt unsafe versions */
 399        if (locked) {
 400                __mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
 401                __mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
 402        } else {
 403                mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
 404                mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
 405        }
 406}
 407
 408/* Similar to reclaim, but different enough that they don't share logic */
 409static bool too_many_isolated(struct zone *zone)
 410{
 411        unsigned long active, inactive, isolated;
 412
 413        inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
 414                                        zone_page_state(zone, NR_INACTIVE_ANON);
 415        active = zone_page_state(zone, NR_ACTIVE_FILE) +
 416                                        zone_page_state(zone, NR_ACTIVE_ANON);
 417        isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
 418                                        zone_page_state(zone, NR_ISOLATED_ANON);
 419
 420        return isolated > (inactive + active) / 2;
 421}
 422
 423/**
 424 * isolate_migratepages_range() - isolate all migrate-able pages in range.
 425 * @zone:       Zone pages are in.
 426 * @cc:         Compaction control structure.
 427 * @low_pfn:    The first PFN of the range.
 428 * @end_pfn:    The one-past-the-last PFN of the range.
 429 * @unevictable: true if it allows to isolate unevictable pages
 430 *
 431 * Isolate all pages that can be migrated from the range specified by
 432 * [low_pfn, end_pfn).  Returns zero if there is a fatal signal
 433 * pending), otherwise PFN of the first page that was not scanned
 434 * (which may be both less, equal to or more then end_pfn).
 435 *
 436 * Assumes that cc->migratepages is empty and cc->nr_migratepages is
 437 * zero.
 438 *
 439 * Apart from cc->migratepages and cc->nr_migratetypes this function
 440 * does not modify any cc's fields, in particular it does not modify
 441 * (or read for that matter) cc->migrate_pfn.
 442 */
 443unsigned long
 444isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
 445                unsigned long low_pfn, unsigned long end_pfn, bool unevictable)
 446{
 447        unsigned long last_pageblock_nr = 0, pageblock_nr;
 448        unsigned long nr_scanned = 0, nr_isolated = 0;
 449        struct list_head *migratelist = &cc->migratepages;
 450        isolate_mode_t mode = 0;
 451        struct lruvec *lruvec;
 452        unsigned long flags;
 453        bool locked = false;
 454        struct page *page = NULL, *valid_page = NULL;
 455
 456        /*
 457         * Ensure that there are not too many pages isolated from the LRU
 458         * list by either parallel reclaimers or compaction. If there are,
 459         * delay for some time until fewer pages are isolated
 460         */
 461        while (unlikely(too_many_isolated(zone))) {
 462                /* async migration should just abort */
 463                if (!cc->sync)
 464                        return 0;
 465
 466                congestion_wait(BLK_RW_ASYNC, HZ/10);
 467
 468                if (fatal_signal_pending(current))
 469                        return 0;
 470        }
 471
 472        /* Time to isolate some pages for migration */
 473        cond_resched();
 474        for (; low_pfn < end_pfn; low_pfn++) {
 475                /* give a chance to irqs before checking need_resched() */
 476                if (locked && !((low_pfn+1) % SWAP_CLUSTER_MAX)) {
 477                        if (should_release_lock(&zone->lru_lock)) {
 478                                spin_unlock_irqrestore(&zone->lru_lock, flags);
 479                                locked = false;
 480                        }
 481                }
 482
 483                /*
 484                 * migrate_pfn does not necessarily start aligned to a
 485                 * pageblock. Ensure that pfn_valid is called when moving
 486                 * into a new MAX_ORDER_NR_PAGES range in case of large
 487                 * memory holes within the zone
 488                 */
 489                if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
 490                        if (!pfn_valid(low_pfn)) {
 491                                low_pfn += MAX_ORDER_NR_PAGES - 1;
 492                                continue;
 493                        }
 494                }
 495
 496                if (!pfn_valid_within(low_pfn))
 497                        continue;
 498                nr_scanned++;
 499
 500                /*
 501                 * Get the page and ensure the page is within the same zone.
 502                 * See the comment in isolate_freepages about overlapping
 503                 * nodes. It is deliberate that the new zone lock is not taken
 504                 * as memory compaction should not move pages between nodes.
 505                 */
 506                page = pfn_to_page(low_pfn);
 507                if (page_zone(page) != zone)
 508                        continue;
 509
 510                if (!valid_page)
 511                        valid_page = page;
 512
 513                /* If isolation recently failed, do not retry */
 514                pageblock_nr = low_pfn >> pageblock_order;
 515                if (!isolation_suitable(cc, page))
 516                        goto next_pageblock;
 517
 518                /* Skip if free */
 519                if (PageBuddy(page))
 520                        continue;
 521
 522                /*
 523                 * For async migration, also only scan in MOVABLE blocks. Async
 524                 * migration is optimistic to see if the minimum amount of work
 525                 * satisfies the allocation
 526                 */
 527                if (!cc->sync && last_pageblock_nr != pageblock_nr &&
 528                    !migrate_async_suitable(get_pageblock_migratetype(page))) {
 529                        cc->finished_update_migrate = true;
 530                        goto next_pageblock;
 531                }
 532
 533                /*
 534                 * Check may be lockless but that's ok as we recheck later.
 535                 * It's possible to migrate LRU pages and balloon pages
 536                 * Skip any other type of page
 537                 */
 538                if (!PageLRU(page)) {
 539                        if (unlikely(balloon_page_movable(page))) {
 540                                if (locked && balloon_page_isolate(page)) {
 541                                        /* Successfully isolated */
 542                                        cc->finished_update_migrate = true;
 543                                        list_add(&page->lru, migratelist);
 544                                        cc->nr_migratepages++;
 545                                        nr_isolated++;
 546                                        goto check_compact_cluster;
 547                                }
 548                        }
 549                        continue;
 550                }
 551
 552                /*
 553                 * PageLRU is set. lru_lock normally excludes isolation
 554                 * splitting and collapsing (collapsing has already happened
 555                 * if PageLRU is set) but the lock is not necessarily taken
 556                 * here and it is wasteful to take it just to check transhuge.
 557                 * Check TransHuge without lock and skip the whole pageblock if
 558                 * it's either a transhuge or hugetlbfs page, as calling
 559                 * compound_order() without preventing THP from splitting the
 560                 * page underneath us may return surprising results.
 561                 */
 562                if (PageTransHuge(page)) {
 563                        if (!locked)
 564                                goto next_pageblock;
 565                        low_pfn += (1 << compound_order(page)) - 1;
 566                        continue;
 567                }
 568
 569                /* Check if it is ok to still hold the lock */
 570                locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
 571                                                                locked, cc);
 572                if (!locked || fatal_signal_pending(current))
 573                        break;
 574
 575                /* Recheck PageLRU and PageTransHuge under lock */
 576                if (!PageLRU(page))
 577                        continue;
 578                if (PageTransHuge(page)) {
 579                        low_pfn += (1 << compound_order(page)) - 1;
 580                        continue;
 581                }
 582
 583                if (!cc->sync)
 584                        mode |= ISOLATE_ASYNC_MIGRATE;
 585
 586                if (unevictable)
 587                        mode |= ISOLATE_UNEVICTABLE;
 588
 589                lruvec = mem_cgroup_page_lruvec(page, zone);
 590
 591                /* Try isolate the page */
 592                if (__isolate_lru_page(page, mode) != 0)
 593                        continue;
 594
 595                VM_BUG_ON(PageTransCompound(page));
 596
 597                /* Successfully isolated */
 598                cc->finished_update_migrate = true;
 599                del_page_from_lru_list(page, lruvec, page_lru(page));
 600                list_add(&page->lru, migratelist);
 601                cc->nr_migratepages++;
 602                nr_isolated++;
 603
 604check_compact_cluster:
 605                /* Avoid isolating too much */
 606                if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
 607                        ++low_pfn;
 608                        break;
 609                }
 610
 611                continue;
 612
 613next_pageblock:
 614                low_pfn += pageblock_nr_pages;
 615                low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
 616                last_pageblock_nr = pageblock_nr;
 617        }
 618
 619        acct_isolated(zone, locked, cc);
 620
 621        if (locked)
 622                spin_unlock_irqrestore(&zone->lru_lock, flags);
 623
 624        /* Update the pageblock-skip if the whole pageblock was scanned */
 625        if (low_pfn == end_pfn)
 626                update_pageblock_skip(cc, valid_page, nr_isolated, true);
 627
 628        trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
 629
 630        count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
 631        if (nr_isolated)
 632                count_compact_events(COMPACTISOLATED, nr_isolated);
 633
 634        return low_pfn;
 635}
 636
 637#endif /* CONFIG_COMPACTION || CONFIG_CMA */
 638#ifdef CONFIG_COMPACTION
 639/*
 640 * Based on information in the current compact_control, find blocks
 641 * suitable for isolating free pages from and then isolate them.
 642 */
 643static void isolate_freepages(struct zone *zone,
 644                                struct compact_control *cc)
 645{
 646        struct page *page;
 647        unsigned long high_pfn, low_pfn, pfn, zone_end_pfn, end_pfn;
 648        int nr_freepages = cc->nr_freepages;
 649        struct list_head *freelist = &cc->freepages;
 650
 651        /*
 652         * Initialise the free scanner. The starting point is where we last
 653         * scanned from (or the end of the zone if starting). The low point
 654         * is the end of the pageblock the migration scanner is using.
 655         */
 656        pfn = cc->free_pfn;
 657        low_pfn = cc->migrate_pfn + pageblock_nr_pages;
 658
 659        /*
 660         * Take care that if the migration scanner is at the end of the zone
 661         * that the free scanner does not accidentally move to the next zone
 662         * in the next isolation cycle.
 663         */
 664        high_pfn = min(low_pfn, pfn);
 665
 666        zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
 667
 668        /*
 669         * Isolate free pages until enough are available to migrate the
 670         * pages on cc->migratepages. We stop searching if the migrate
 671         * and free page scanners meet or enough free pages are isolated.
 672         */
 673        for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
 674                                        pfn -= pageblock_nr_pages) {
 675                unsigned long isolated;
 676
 677                if (!pfn_valid(pfn))
 678                        continue;
 679
 680                /*
 681                 * Check for overlapping nodes/zones. It's possible on some
 682                 * configurations to have a setup like
 683                 * node0 node1 node0
 684                 * i.e. it's possible that all pages within a zones range of
 685                 * pages do not belong to a single zone.
 686                 */
 687                page = pfn_to_page(pfn);
 688                if (page_zone(page) != zone)
 689                        continue;
 690
 691                /* Check the block is suitable for migration */
 692                if (!suitable_migration_target(page))
 693                        continue;
 694
 695                /* If isolation recently failed, do not retry */
 696                if (!isolation_suitable(cc, page))
 697                        continue;
 698
 699                /* Found a block suitable for isolating free pages from */
 700                isolated = 0;
 701
 702                /*
 703                 * As pfn may not start aligned, pfn+pageblock_nr_page
 704                 * may cross a MAX_ORDER_NR_PAGES boundary and miss
 705                 * a pfn_valid check. Ensure isolate_freepages_block()
 706                 * only scans within a pageblock
 707                 */
 708                end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
 709                end_pfn = min(end_pfn, zone_end_pfn);
 710                isolated = isolate_freepages_block(cc, pfn, end_pfn,
 711                                                   freelist, false);
 712                nr_freepages += isolated;
 713
 714                /*
 715                 * Record the highest PFN we isolated pages from. When next
 716                 * looking for free pages, the search will restart here as
 717                 * page migration may have returned some pages to the allocator
 718                 */
 719                if (isolated) {
 720                        cc->finished_update_free = true;
 721                        high_pfn = max(high_pfn, pfn);
 722                }
 723        }
 724
 725        /* split_free_page does not map the pages */
 726        map_pages(freelist);
 727
 728        cc->free_pfn = high_pfn;
 729        cc->nr_freepages = nr_freepages;
 730}
 731
 732/*
 733 * This is a migrate-callback that "allocates" freepages by taking pages
 734 * from the isolated freelists in the block we are migrating to.
 735 */
 736static struct page *compaction_alloc(struct page *migratepage,
 737                                        unsigned long data,
 738                                        int **result)
 739{
 740        struct compact_control *cc = (struct compact_control *)data;
 741        struct page *freepage;
 742
 743        /* Isolate free pages if necessary */
 744        if (list_empty(&cc->freepages)) {
 745                isolate_freepages(cc->zone, cc);
 746
 747                if (list_empty(&cc->freepages))
 748                        return NULL;
 749        }
 750
 751        freepage = list_entry(cc->freepages.next, struct page, lru);
 752        list_del(&freepage->lru);
 753        cc->nr_freepages--;
 754
 755        return freepage;
 756}
 757
 758/*
 759 * We cannot control nr_migratepages and nr_freepages fully when migration is
 760 * running as migrate_pages() has no knowledge of compact_control. When
 761 * migration is complete, we count the number of pages on the lists by hand.
 762 */
 763static void update_nr_listpages(struct compact_control *cc)
 764{
 765        int nr_migratepages = 0;
 766        int nr_freepages = 0;
 767        struct page *page;
 768
 769        list_for_each_entry(page, &cc->migratepages, lru)
 770                nr_migratepages++;
 771        list_for_each_entry(page, &cc->freepages, lru)
 772                nr_freepages++;
 773
 774        cc->nr_migratepages = nr_migratepages;
 775        cc->nr_freepages = nr_freepages;
 776}
 777
 778/* possible outcome of isolate_migratepages */
 779typedef enum {
 780        ISOLATE_ABORT,          /* Abort compaction now */
 781        ISOLATE_NONE,           /* No pages isolated, continue scanning */
 782        ISOLATE_SUCCESS,        /* Pages isolated, migrate */
 783} isolate_migrate_t;
 784
 785/*
 786 * Isolate all pages that can be migrated from the block pointed to by
 787 * the migrate scanner within compact_control.
 788 */
 789static isolate_migrate_t isolate_migratepages(struct zone *zone,
 790                                        struct compact_control *cc)
 791{
 792        unsigned long low_pfn, end_pfn;
 793
 794        /* Do not scan outside zone boundaries */
 795        low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
 796
 797        /* Only scan within a pageblock boundary */
 798        end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);
 799
 800        /* Do not cross the free scanner or scan within a memory hole */
 801        if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
 802                cc->migrate_pfn = end_pfn;
 803                return ISOLATE_NONE;
 804        }
 805
 806        /* Perform the isolation */
 807        low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false);
 808        if (!low_pfn || cc->contended)
 809                return ISOLATE_ABORT;
 810
 811        cc->migrate_pfn = low_pfn;
 812
 813        return ISOLATE_SUCCESS;
 814}
 815
 816static int compact_finished(struct zone *zone,
 817                            struct compact_control *cc)
 818{
 819        unsigned int order;
 820        unsigned long watermark;
 821
 822        if (fatal_signal_pending(current))
 823                return COMPACT_PARTIAL;
 824
 825        /* Compaction run completes if the migrate and free scanner meet */
 826        if (cc->free_pfn <= cc->migrate_pfn) {
 827                /*
 828                 * Mark that the PG_migrate_skip information should be cleared
 829                 * by kswapd when it goes to sleep. kswapd does not set the
 830                 * flag itself as the decision to be clear should be directly
 831                 * based on an allocation request.
 832                 */
 833                if (!current_is_kswapd())
 834                        zone->compact_blockskip_flush = true;
 835
 836                return COMPACT_COMPLETE;
 837        }
 838
 839        /*
 840         * order == -1 is expected when compacting via
 841         * /proc/sys/vm/compact_memory
 842         */
 843        if (cc->order == -1)
 844                return COMPACT_CONTINUE;
 845
 846        /* Compaction run is not finished if the watermark is not met */
 847        watermark = low_wmark_pages(zone);
 848        watermark += (1 << cc->order);
 849
 850        if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
 851                return COMPACT_CONTINUE;
 852
 853        /* Direct compactor: Is a suitable page free? */
 854        for (order = cc->order; order < MAX_ORDER; order++) {
 855                struct free_area *area = &zone->free_area[order];
 856
 857                /* Job done if page is free of the right migratetype */
 858                if (!list_empty(&area->free_list[cc->migratetype]))
 859                        return COMPACT_PARTIAL;
 860
 861                /* Job done if allocation would set block type */
 862                if (cc->order >= pageblock_order && area->nr_free)
 863                        return COMPACT_PARTIAL;
 864        }
 865
 866        return COMPACT_CONTINUE;
 867}
 868
 869/*
 870 * compaction_suitable: Is this suitable to run compaction on this zone now?
 871 * Returns
 872 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
 873 *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
 874 *   COMPACT_CONTINUE - If compaction should run now
 875 */
 876unsigned long compaction_suitable(struct zone *zone, int order)
 877{
 878        int fragindex;
 879        unsigned long watermark;
 880
 881        /*
 882         * order == -1 is expected when compacting via
 883         * /proc/sys/vm/compact_memory
 884         */
 885        if (order == -1)
 886                return COMPACT_CONTINUE;
 887
 888        /*
 889         * Watermarks for order-0 must be met for compaction. Note the 2UL.
 890         * This is because during migration, copies of pages need to be
 891         * allocated and for a short time, the footprint is higher
 892         */
 893        watermark = low_wmark_pages(zone) + (2UL << order);
 894        if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
 895                return COMPACT_SKIPPED;
 896
 897        /*
 898         * fragmentation index determines if allocation failures are due to
 899         * low memory or external fragmentation
 900         *
 901         * index of -1000 implies allocations might succeed depending on
 902         * watermarks
 903         * index towards 0 implies failure is due to lack of memory
 904         * index towards 1000 implies failure is due to fragmentation
 905         *
 906         * Only compact if a failure would be due to fragmentation.
 907         */
 908        fragindex = fragmentation_index(zone, order);
 909        if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
 910                return COMPACT_SKIPPED;
 911
 912        if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
 913            0, 0))
 914                return COMPACT_PARTIAL;
 915
 916        return COMPACT_CONTINUE;
 917}
 918
 919static int compact_zone(struct zone *zone, struct compact_control *cc)
 920{
 921        int ret;
 922        unsigned long start_pfn = zone->zone_start_pfn;
 923        unsigned long end_pfn = zone->zone_start_pfn + zone->spanned_pages;
 924
 925        ret = compaction_suitable(zone, cc->order);
 926        switch (ret) {
 927        case COMPACT_PARTIAL:
 928        case COMPACT_SKIPPED:
 929                /* Compaction is likely to fail */
 930                return ret;
 931        case COMPACT_CONTINUE:
 932                /* Fall through to compaction */
 933                ;
 934        }
 935
 936        /*
 937         * Setup to move all movable pages to the end of the zone. Used cached
 938         * information on where the scanners should start but check that it
 939         * is initialised by ensuring the values are within zone boundaries.
 940         */
 941        cc->migrate_pfn = zone->compact_cached_migrate_pfn;
 942        cc->free_pfn = zone->compact_cached_free_pfn;
 943        if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
 944                cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
 945                zone->compact_cached_free_pfn = cc->free_pfn;
 946        }
 947        if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
 948                cc->migrate_pfn = start_pfn;
 949                zone->compact_cached_migrate_pfn = cc->migrate_pfn;
 950        }
 951
 952        /*
 953         * Clear pageblock skip if there were failures recently and compaction
 954         * is about to be retried after being deferred. kswapd does not do
 955         * this reset as it'll reset the cached information when going to sleep.
 956         */
 957        if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
 958                __reset_isolation_suitable(zone);
 959
 960        migrate_prep_local();
 961
 962        while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
 963                unsigned long nr_migrate, nr_remaining;
 964                int err;
 965
 966                switch (isolate_migratepages(zone, cc)) {
 967                case ISOLATE_ABORT:
 968                        ret = COMPACT_PARTIAL;
 969                        putback_movable_pages(&cc->migratepages);
 970                        cc->nr_migratepages = 0;
 971                        goto out;
 972                case ISOLATE_NONE:
 973                        continue;
 974                case ISOLATE_SUCCESS:
 975                        ;
 976                }
 977
 978                nr_migrate = cc->nr_migratepages;
 979                err = migrate_pages(&cc->migratepages, compaction_alloc,
 980                                (unsigned long)cc, false,
 981                                cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC,
 982                                MR_COMPACTION);
 983                update_nr_listpages(cc);
 984                nr_remaining = cc->nr_migratepages;
 985
 986                trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
 987                                                nr_remaining);
 988
 989                /* Release isolated pages not migrated */
 990                if (err) {
 991                        putback_movable_pages(&cc->migratepages);
 992                        cc->nr_migratepages = 0;
 993                        if (err == -ENOMEM) {
 994                                ret = COMPACT_PARTIAL;
 995                                goto out;
 996                        }
 997                }
 998        }
 999
1000out:
1001        /* Release free pages and check accounting */
1002        cc->nr_freepages -= release_freepages(&cc->freepages);
1003        VM_BUG_ON(cc->nr_freepages != 0);
1004
1005        return ret;
1006}
1007
1008static unsigned long compact_zone_order(struct zone *zone,
1009                                 int order, gfp_t gfp_mask,
1010                                 bool sync, bool *contended)
1011{
1012        unsigned long ret;
1013        struct compact_control cc = {
1014                .nr_freepages = 0,
1015                .nr_migratepages = 0,
1016                .order = order,
1017                .migratetype = allocflags_to_migratetype(gfp_mask),
1018                .zone = zone,
1019                .sync = sync,
1020        };
1021        INIT_LIST_HEAD(&cc.freepages);
1022        INIT_LIST_HEAD(&cc.migratepages);
1023
1024        ret = compact_zone(zone, &cc);
1025
1026        VM_BUG_ON(!list_empty(&cc.freepages));
1027        VM_BUG_ON(!list_empty(&cc.migratepages));
1028
1029        *contended = cc.contended;
1030        return ret;
1031}
1032
1033int sysctl_extfrag_threshold = 500;
1034
1035/**
1036 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1037 * @zonelist: The zonelist used for the current allocation
1038 * @order: The order of the current allocation
1039 * @gfp_mask: The GFP mask of the current allocation
1040 * @nodemask: The allowed nodes to allocate from
1041 * @sync: Whether migration is synchronous or not
1042 * @contended: Return value that is true if compaction was aborted due to lock contention
1043 * @page: Optionally capture a free page of the requested order during compaction
1044 *
1045 * This is the main entry point for direct page compaction.
1046 */
1047unsigned long try_to_compact_pages(struct zonelist *zonelist,
1048                        int order, gfp_t gfp_mask, nodemask_t *nodemask,
1049                        bool sync, bool *contended)
1050{
1051        enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1052        int may_enter_fs = gfp_mask & __GFP_FS;
1053        int may_perform_io = gfp_mask & __GFP_IO;
1054        struct zoneref *z;
1055        struct zone *zone;
1056        int rc = COMPACT_SKIPPED;
1057        int alloc_flags = 0;
1058
1059        /* Check if the GFP flags allow compaction */
1060        if (!order || !may_enter_fs || !may_perform_io)
1061                return rc;
1062
1063        count_compact_event(COMPACTSTALL);
1064
1065#ifdef CONFIG_CMA
1066        if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
1067                alloc_flags |= ALLOC_CMA;
1068#endif
1069        /* Compact each zone in the list */
1070        for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1071                                                                nodemask) {
1072                int status;
1073
1074                status = compact_zone_order(zone, order, gfp_mask, sync,
1075                                                contended);
1076                rc = max(status, rc);
1077
1078                /* If a normal allocation would succeed, stop compacting */
1079                if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
1080                                      alloc_flags))
1081                        break;
1082        }
1083
1084        return rc;
1085}
1086
1087
1088/* Compact all zones within a node */
1089static int __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1090{
1091        int zoneid;
1092        struct zone *zone;
1093
1094        for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1095
1096                zone = &pgdat->node_zones[zoneid];
1097                if (!populated_zone(zone))
1098                        continue;
1099
1100                cc->nr_freepages = 0;
1101                cc->nr_migratepages = 0;
1102                cc->zone = zone;
1103                INIT_LIST_HEAD(&cc->freepages);
1104                INIT_LIST_HEAD(&cc->migratepages);
1105
1106                if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1107                        compact_zone(zone, cc);
1108
1109                if (cc->order > 0) {
1110                        int ok = zone_watermark_ok(zone, cc->order,
1111                                                low_wmark_pages(zone), 0, 0);
1112                        if (ok && cc->order >= zone->compact_order_failed)
1113                                zone->compact_order_failed = cc->order + 1;
1114                        /* Currently async compaction is never deferred. */
1115                        else if (!ok && cc->sync)
1116                                defer_compaction(zone, cc->order);
1117                }
1118
1119                VM_BUG_ON(!list_empty(&cc->freepages));
1120                VM_BUG_ON(!list_empty(&cc->migratepages));
1121        }
1122
1123        return 0;
1124}
1125
1126int compact_pgdat(pg_data_t *pgdat, int order)
1127{
1128        struct compact_control cc = {
1129                .order = order,
1130                .sync = false,
1131        };
1132
1133        return __compact_pgdat(pgdat, &cc);
1134}
1135
1136static int compact_node(int nid)
1137{
1138        struct compact_control cc = {
1139                .order = -1,
1140                .sync = true,
1141        };
1142
1143        return __compact_pgdat(NODE_DATA(nid), &cc);
1144}
1145
1146/* Compact all nodes in the system */
1147static void compact_nodes(void)
1148{
1149        int nid;
1150
1151        /* Flush pending updates to the LRU lists */
1152        lru_add_drain_all();
1153
1154        for_each_online_node(nid)
1155                compact_node(nid);
1156}
1157
1158/* The written value is actually unused, all memory is compacted */
1159int sysctl_compact_memory;
1160
1161/* This is the entry point for compacting all nodes via /proc/sys/vm */
1162int sysctl_compaction_handler(struct ctl_table *table, int write,
1163                        void __user *buffer, size_t *length, loff_t *ppos)
1164{
1165        if (write)
1166                compact_nodes();
1167
1168        return 0;
1169}
1170
1171int sysctl_extfrag_handler(struct ctl_table *table, int write,
1172                        void __user *buffer, size_t *length, loff_t *ppos)
1173{
1174        proc_dointvec_minmax(table, write, buffer, length, ppos);
1175
1176        return 0;
1177}
1178
1179#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1180ssize_t sysfs_compact_node(struct device *dev,
1181                        struct device_attribute *attr,
1182                        const char *buf, size_t count)
1183{
1184        int nid = dev->id;
1185
1186        if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1187                /* Flush pending updates to the LRU lists */
1188                lru_add_drain_all();
1189
1190                compact_node(nid);
1191        }
1192
1193        return count;
1194}
1195static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1196
1197int compaction_register_node(struct node *node)
1198{
1199        return device_create_file(&node->dev, &dev_attr_compact);
1200}
1201
1202void compaction_unregister_node(struct node *node)
1203{
1204        return device_remove_file(&node->dev, &dev_attr_compact);
1205}
1206#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1207
1208#endif /* CONFIG_COMPACTION */
1209