linux/arch/powerpc/mm/slice.c
<<
>>
Prefs
   1/*
   2 * address space "slices" (meta-segments) support
   3 *
   4 * Copyright (C) 2007 Benjamin Herrenschmidt, IBM Corporation.
   5 *
   6 * Based on hugetlb implementation
   7 *
   8 * Copyright (C) 2003 David Gibson, IBM Corporation.
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License as published by
  12 * the Free Software Foundation; either version 2 of the License, or
  13 * (at your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18 * GNU General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software
  22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  23 */
  24
  25#undef DEBUG
  26
  27#include <linux/kernel.h>
  28#include <linux/mm.h>
  29#include <linux/pagemap.h>
  30#include <linux/err.h>
  31#include <linux/spinlock.h>
  32#include <linux/export.h>
  33#include <asm/mman.h>
  34#include <asm/mmu.h>
  35#include <asm/spu.h>
  36
  37/* some sanity checks */
  38#if (PGTABLE_RANGE >> 43) > SLICE_MASK_SIZE
  39#error PGTABLE_RANGE exceeds slice_mask high_slices size
  40#endif
  41
  42static DEFINE_SPINLOCK(slice_convert_lock);
  43
  44
  45#ifdef DEBUG
  46int _slice_debug = 1;
  47
  48static void slice_print_mask(const char *label, struct slice_mask mask)
  49{
  50        char    *p, buf[16 + 3 + 64 + 1];
  51        int     i;
  52
  53        if (!_slice_debug)
  54                return;
  55        p = buf;
  56        for (i = 0; i < SLICE_NUM_LOW; i++)
  57                *(p++) = (mask.low_slices & (1 << i)) ? '1' : '0';
  58        *(p++) = ' ';
  59        *(p++) = '-';
  60        *(p++) = ' ';
  61        for (i = 0; i < SLICE_NUM_HIGH; i++)
  62                *(p++) = (mask.high_slices & (1ul << i)) ? '1' : '0';
  63        *(p++) = 0;
  64
  65        printk(KERN_DEBUG "%s:%s\n", label, buf);
  66}
  67
  68#define slice_dbg(fmt...) do { if (_slice_debug) pr_debug(fmt); } while(0)
  69
  70#else
  71
  72static void slice_print_mask(const char *label, struct slice_mask mask) {}
  73#define slice_dbg(fmt...)
  74
  75#endif
  76
  77static struct slice_mask slice_range_to_mask(unsigned long start,
  78                                             unsigned long len)
  79{
  80        unsigned long end = start + len - 1;
  81        struct slice_mask ret = { 0, 0 };
  82
  83        if (start < SLICE_LOW_TOP) {
  84                unsigned long mend = min(end, SLICE_LOW_TOP);
  85                unsigned long mstart = min(start, SLICE_LOW_TOP);
  86
  87                ret.low_slices = (1u << (GET_LOW_SLICE_INDEX(mend) + 1))
  88                        - (1u << GET_LOW_SLICE_INDEX(mstart));
  89        }
  90
  91        if ((start + len) > SLICE_LOW_TOP)
  92                ret.high_slices = (1ul << (GET_HIGH_SLICE_INDEX(end) + 1))
  93                        - (1ul << GET_HIGH_SLICE_INDEX(start));
  94
  95        return ret;
  96}
  97
  98static int slice_area_is_free(struct mm_struct *mm, unsigned long addr,
  99                              unsigned long len)
 100{
 101        struct vm_area_struct *vma;
 102
 103        if ((mm->task_size - len) < addr)
 104                return 0;
 105        vma = find_vma(mm, addr);
 106        return (!vma || (addr + len) <= vma->vm_start);
 107}
 108
 109static int slice_low_has_vma(struct mm_struct *mm, unsigned long slice)
 110{
 111        return !slice_area_is_free(mm, slice << SLICE_LOW_SHIFT,
 112                                   1ul << SLICE_LOW_SHIFT);
 113}
 114
 115static int slice_high_has_vma(struct mm_struct *mm, unsigned long slice)
 116{
 117        unsigned long start = slice << SLICE_HIGH_SHIFT;
 118        unsigned long end = start + (1ul << SLICE_HIGH_SHIFT);
 119
 120        /* Hack, so that each addresses is controlled by exactly one
 121         * of the high or low area bitmaps, the first high area starts
 122         * at 4GB, not 0 */
 123        if (start == 0)
 124                start = SLICE_LOW_TOP;
 125
 126        return !slice_area_is_free(mm, start, end - start);
 127}
 128
 129static struct slice_mask slice_mask_for_free(struct mm_struct *mm)
 130{
 131        struct slice_mask ret = { 0, 0 };
 132        unsigned long i;
 133
 134        for (i = 0; i < SLICE_NUM_LOW; i++)
 135                if (!slice_low_has_vma(mm, i))
 136                        ret.low_slices |= 1u << i;
 137
 138        if (mm->task_size <= SLICE_LOW_TOP)
 139                return ret;
 140
 141        for (i = 0; i < SLICE_NUM_HIGH; i++)
 142                if (!slice_high_has_vma(mm, i))
 143                        ret.high_slices |= 1ul << i;
 144
 145        return ret;
 146}
 147
 148static struct slice_mask slice_mask_for_size(struct mm_struct *mm, int psize)
 149{
 150        unsigned char *hpsizes;
 151        int index, mask_index;
 152        struct slice_mask ret = { 0, 0 };
 153        unsigned long i;
 154        u64 lpsizes;
 155
 156        lpsizes = mm->context.low_slices_psize;
 157        for (i = 0; i < SLICE_NUM_LOW; i++)
 158                if (((lpsizes >> (i * 4)) & 0xf) == psize)
 159                        ret.low_slices |= 1u << i;
 160
 161        hpsizes = mm->context.high_slices_psize;
 162        for (i = 0; i < SLICE_NUM_HIGH; i++) {
 163                mask_index = i & 0x1;
 164                index = i >> 1;
 165                if (((hpsizes[index] >> (mask_index * 4)) & 0xf) == psize)
 166                        ret.high_slices |= 1ul << i;
 167        }
 168
 169        return ret;
 170}
 171
 172static int slice_check_fit(struct slice_mask mask, struct slice_mask available)
 173{
 174        return (mask.low_slices & available.low_slices) == mask.low_slices &&
 175                (mask.high_slices & available.high_slices) == mask.high_slices;
 176}
 177
 178static void slice_flush_segments(void *parm)
 179{
 180        struct mm_struct *mm = parm;
 181        unsigned long flags;
 182
 183        if (mm != current->active_mm)
 184                return;
 185
 186        /* update the paca copy of the context struct */
 187        get_paca()->context = current->active_mm->context;
 188
 189        local_irq_save(flags);
 190        slb_flush_and_rebolt();
 191        local_irq_restore(flags);
 192}
 193
 194static void slice_convert(struct mm_struct *mm, struct slice_mask mask, int psize)
 195{
 196        int index, mask_index;
 197        /* Write the new slice psize bits */
 198        unsigned char *hpsizes;
 199        u64 lpsizes;
 200        unsigned long i, flags;
 201
 202        slice_dbg("slice_convert(mm=%p, psize=%d)\n", mm, psize);
 203        slice_print_mask(" mask", mask);
 204
 205        /* We need to use a spinlock here to protect against
 206         * concurrent 64k -> 4k demotion ...
 207         */
 208        spin_lock_irqsave(&slice_convert_lock, flags);
 209
 210        lpsizes = mm->context.low_slices_psize;
 211        for (i = 0; i < SLICE_NUM_LOW; i++)
 212                if (mask.low_slices & (1u << i))
 213                        lpsizes = (lpsizes & ~(0xful << (i * 4))) |
 214                                (((unsigned long)psize) << (i * 4));
 215
 216        /* Assign the value back */
 217        mm->context.low_slices_psize = lpsizes;
 218
 219        hpsizes = mm->context.high_slices_psize;
 220        for (i = 0; i < SLICE_NUM_HIGH; i++) {
 221                mask_index = i & 0x1;
 222                index = i >> 1;
 223                if (mask.high_slices & (1ul << i))
 224                        hpsizes[index] = (hpsizes[index] &
 225                                          ~(0xf << (mask_index * 4))) |
 226                                (((unsigned long)psize) << (mask_index * 4));
 227        }
 228
 229        slice_dbg(" lsps=%lx, hsps=%lx\n",
 230                  mm->context.low_slices_psize,
 231                  mm->context.high_slices_psize);
 232
 233        spin_unlock_irqrestore(&slice_convert_lock, flags);
 234
 235#ifdef CONFIG_SPU_BASE
 236        spu_flush_all_slbs(mm);
 237#endif
 238}
 239
 240static unsigned long slice_find_area_bottomup(struct mm_struct *mm,
 241                                              unsigned long len,
 242                                              struct slice_mask available,
 243                                              int psize, int use_cache)
 244{
 245        struct vm_area_struct *vma;
 246        unsigned long start_addr, addr;
 247        struct slice_mask mask;
 248        int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
 249
 250        if (use_cache) {
 251                if (len <= mm->cached_hole_size) {
 252                        start_addr = addr = TASK_UNMAPPED_BASE;
 253                        mm->cached_hole_size = 0;
 254                } else
 255                        start_addr = addr = mm->free_area_cache;
 256        } else
 257                start_addr = addr = TASK_UNMAPPED_BASE;
 258
 259full_search:
 260        for (;;) {
 261                addr = _ALIGN_UP(addr, 1ul << pshift);
 262                if ((TASK_SIZE - len) < addr)
 263                        break;
 264                vma = find_vma(mm, addr);
 265                BUG_ON(vma && (addr >= vma->vm_end));
 266
 267                mask = slice_range_to_mask(addr, len);
 268                if (!slice_check_fit(mask, available)) {
 269                        if (addr < SLICE_LOW_TOP)
 270                                addr = _ALIGN_UP(addr + 1,  1ul << SLICE_LOW_SHIFT);
 271                        else
 272                                addr = _ALIGN_UP(addr + 1,  1ul << SLICE_HIGH_SHIFT);
 273                        continue;
 274                }
 275                if (!vma || addr + len <= vma->vm_start) {
 276                        /*
 277                         * Remember the place where we stopped the search:
 278                         */
 279                        if (use_cache)
 280                                mm->free_area_cache = addr + len;
 281                        return addr;
 282                }
 283                if (use_cache && (addr + mm->cached_hole_size) < vma->vm_start)
 284                        mm->cached_hole_size = vma->vm_start - addr;
 285                addr = vma->vm_end;
 286        }
 287
 288        /* Make sure we didn't miss any holes */
 289        if (use_cache && start_addr != TASK_UNMAPPED_BASE) {
 290                start_addr = addr = TASK_UNMAPPED_BASE;
 291                mm->cached_hole_size = 0;
 292                goto full_search;
 293        }
 294        return -ENOMEM;
 295}
 296
 297static unsigned long slice_find_area_topdown(struct mm_struct *mm,
 298                                             unsigned long len,
 299                                             struct slice_mask available,
 300                                             int psize, int use_cache)
 301{
 302        struct vm_area_struct *vma;
 303        unsigned long addr;
 304        struct slice_mask mask;
 305        int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
 306
 307        /* check if free_area_cache is useful for us */
 308        if (use_cache) {
 309                if (len <= mm->cached_hole_size) {
 310                        mm->cached_hole_size = 0;
 311                        mm->free_area_cache = mm->mmap_base;
 312                }
 313
 314                /* either no address requested or can't fit in requested
 315                 * address hole
 316                 */
 317                addr = mm->free_area_cache;
 318
 319                /* make sure it can fit in the remaining address space */
 320                if (addr > len) {
 321                        addr = _ALIGN_DOWN(addr - len, 1ul << pshift);
 322                        mask = slice_range_to_mask(addr, len);
 323                        if (slice_check_fit(mask, available) &&
 324                            slice_area_is_free(mm, addr, len))
 325                                        /* remember the address as a hint for
 326                                         * next time
 327                                         */
 328                                        return (mm->free_area_cache = addr);
 329                }
 330        }
 331
 332        addr = mm->mmap_base;
 333        while (addr > len) {
 334                /* Go down by chunk size */
 335                addr = _ALIGN_DOWN(addr - len, 1ul << pshift);
 336
 337                /* Check for hit with different page size */
 338                mask = slice_range_to_mask(addr, len);
 339                if (!slice_check_fit(mask, available)) {
 340                        if (addr < SLICE_LOW_TOP)
 341                                addr = _ALIGN_DOWN(addr, 1ul << SLICE_LOW_SHIFT);
 342                        else if (addr < (1ul << SLICE_HIGH_SHIFT))
 343                                addr = SLICE_LOW_TOP;
 344                        else
 345                                addr = _ALIGN_DOWN(addr, 1ul << SLICE_HIGH_SHIFT);
 346                        continue;
 347                }
 348
 349                /*
 350                 * Lookup failure means no vma is above this address,
 351                 * else if new region fits below vma->vm_start,
 352                 * return with success:
 353                 */
 354                vma = find_vma(mm, addr);
 355                if (!vma || (addr + len) <= vma->vm_start) {
 356                        /* remember the address as a hint for next time */
 357                        if (use_cache)
 358                                mm->free_area_cache = addr;
 359                        return addr;
 360                }
 361
 362                /* remember the largest hole we saw so far */
 363                if (use_cache && (addr + mm->cached_hole_size) < vma->vm_start)
 364                        mm->cached_hole_size = vma->vm_start - addr;
 365
 366                /* try just below the current vma->vm_start */
 367                addr = vma->vm_start;
 368        }
 369
 370        /*
 371         * A failed mmap() very likely causes application failure,
 372         * so fall back to the bottom-up function here. This scenario
 373         * can happen with large stack limits and large mmap()
 374         * allocations.
 375         */
 376        addr = slice_find_area_bottomup(mm, len, available, psize, 0);
 377
 378        /*
 379         * Restore the topdown base:
 380         */
 381        if (use_cache) {
 382                mm->free_area_cache = mm->mmap_base;
 383                mm->cached_hole_size = ~0UL;
 384        }
 385
 386        return addr;
 387}
 388
 389
 390static unsigned long slice_find_area(struct mm_struct *mm, unsigned long len,
 391                                     struct slice_mask mask, int psize,
 392                                     int topdown, int use_cache)
 393{
 394        if (topdown)
 395                return slice_find_area_topdown(mm, len, mask, psize, use_cache);
 396        else
 397                return slice_find_area_bottomup(mm, len, mask, psize, use_cache);
 398}
 399
 400#define or_mask(dst, src)       do {                    \
 401        (dst).low_slices |= (src).low_slices;           \
 402        (dst).high_slices |= (src).high_slices;         \
 403} while (0)
 404
 405#define andnot_mask(dst, src)   do {                    \
 406        (dst).low_slices &= ~(src).low_slices;          \
 407        (dst).high_slices &= ~(src).high_slices;        \
 408} while (0)
 409
 410#ifdef CONFIG_PPC_64K_PAGES
 411#define MMU_PAGE_BASE   MMU_PAGE_64K
 412#else
 413#define MMU_PAGE_BASE   MMU_PAGE_4K
 414#endif
 415
 416unsigned long slice_get_unmapped_area(unsigned long addr, unsigned long len,
 417                                      unsigned long flags, unsigned int psize,
 418                                      int topdown, int use_cache)
 419{
 420        struct slice_mask mask = {0, 0};
 421        struct slice_mask good_mask;
 422        struct slice_mask potential_mask = {0,0} /* silence stupid warning */;
 423        struct slice_mask compat_mask = {0, 0};
 424        int fixed = (flags & MAP_FIXED);
 425        int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
 426        struct mm_struct *mm = current->mm;
 427        unsigned long newaddr;
 428
 429        /* Sanity checks */
 430        BUG_ON(mm->task_size == 0);
 431
 432        slice_dbg("slice_get_unmapped_area(mm=%p, psize=%d...\n", mm, psize);
 433        slice_dbg(" addr=%lx, len=%lx, flags=%lx, topdown=%d, use_cache=%d\n",
 434                  addr, len, flags, topdown, use_cache);
 435
 436        if (len > mm->task_size)
 437                return -ENOMEM;
 438        if (len & ((1ul << pshift) - 1))
 439                return -EINVAL;
 440        if (fixed && (addr & ((1ul << pshift) - 1)))
 441                return -EINVAL;
 442        if (fixed && addr > (mm->task_size - len))
 443                return -EINVAL;
 444
 445        /* If hint, make sure it matches our alignment restrictions */
 446        if (!fixed && addr) {
 447                addr = _ALIGN_UP(addr, 1ul << pshift);
 448                slice_dbg(" aligned addr=%lx\n", addr);
 449                /* Ignore hint if it's too large or overlaps a VMA */
 450                if (addr > mm->task_size - len ||
 451                    !slice_area_is_free(mm, addr, len))
 452                        addr = 0;
 453        }
 454
 455        /* First make up a "good" mask of slices that have the right size
 456         * already
 457         */
 458        good_mask = slice_mask_for_size(mm, psize);
 459        slice_print_mask(" good_mask", good_mask);
 460
 461        /*
 462         * Here "good" means slices that are already the right page size,
 463         * "compat" means slices that have a compatible page size (i.e.
 464         * 4k in a 64k pagesize kernel), and "free" means slices without
 465         * any VMAs.
 466         *
 467         * If MAP_FIXED:
 468         *      check if fits in good | compat => OK
 469         *      check if fits in good | compat | free => convert free
 470         *      else bad
 471         * If have hint:
 472         *      check if hint fits in good => OK
 473         *      check if hint fits in good | free => convert free
 474         * Otherwise:
 475         *      search in good, found => OK
 476         *      search in good | free, found => convert free
 477         *      search in good | compat | free, found => convert free.
 478         */
 479
 480#ifdef CONFIG_PPC_64K_PAGES
 481        /* If we support combo pages, we can allow 64k pages in 4k slices */
 482        if (psize == MMU_PAGE_64K) {
 483                compat_mask = slice_mask_for_size(mm, MMU_PAGE_4K);
 484                if (fixed)
 485                        or_mask(good_mask, compat_mask);
 486        }
 487#endif
 488
 489        /* First check hint if it's valid or if we have MAP_FIXED */
 490        if (addr != 0 || fixed) {
 491                /* Build a mask for the requested range */
 492                mask = slice_range_to_mask(addr, len);
 493                slice_print_mask(" mask", mask);
 494
 495                /* Check if we fit in the good mask. If we do, we just return,
 496                 * nothing else to do
 497                 */
 498                if (slice_check_fit(mask, good_mask)) {
 499                        slice_dbg(" fits good !\n");
 500                        return addr;
 501                }
 502        } else {
 503                /* Now let's see if we can find something in the existing
 504                 * slices for that size
 505                 */
 506                newaddr = slice_find_area(mm, len, good_mask, psize, topdown,
 507                                          use_cache);
 508                if (newaddr != -ENOMEM) {
 509                        /* Found within the good mask, we don't have to setup,
 510                         * we thus return directly
 511                         */
 512                        slice_dbg(" found area at 0x%lx\n", newaddr);
 513                        return newaddr;
 514                }
 515        }
 516
 517        /* We don't fit in the good mask, check what other slices are
 518         * empty and thus can be converted
 519         */
 520        potential_mask = slice_mask_for_free(mm);
 521        or_mask(potential_mask, good_mask);
 522        slice_print_mask(" potential", potential_mask);
 523
 524        if ((addr != 0 || fixed) && slice_check_fit(mask, potential_mask)) {
 525                slice_dbg(" fits potential !\n");
 526                goto convert;
 527        }
 528
 529        /* If we have MAP_FIXED and failed the above steps, then error out */
 530        if (fixed)
 531                return -EBUSY;
 532
 533        slice_dbg(" search...\n");
 534
 535        /* If we had a hint that didn't work out, see if we can fit
 536         * anywhere in the good area.
 537         */
 538        if (addr) {
 539                addr = slice_find_area(mm, len, good_mask, psize, topdown,
 540                                       use_cache);
 541                if (addr != -ENOMEM) {
 542                        slice_dbg(" found area at 0x%lx\n", addr);
 543                        return addr;
 544                }
 545        }
 546
 547        /* Now let's see if we can find something in the existing slices
 548         * for that size plus free slices
 549         */
 550        addr = slice_find_area(mm, len, potential_mask, psize, topdown,
 551                               use_cache);
 552
 553#ifdef CONFIG_PPC_64K_PAGES
 554        if (addr == -ENOMEM && psize == MMU_PAGE_64K) {
 555                /* retry the search with 4k-page slices included */
 556                or_mask(potential_mask, compat_mask);
 557                addr = slice_find_area(mm, len, potential_mask, psize,
 558                                       topdown, use_cache);
 559        }
 560#endif
 561
 562        if (addr == -ENOMEM)
 563                return -ENOMEM;
 564
 565        mask = slice_range_to_mask(addr, len);
 566        slice_dbg(" found potential area at 0x%lx\n", addr);
 567        slice_print_mask(" mask", mask);
 568
 569 convert:
 570        andnot_mask(mask, good_mask);
 571        andnot_mask(mask, compat_mask);
 572        if (mask.low_slices || mask.high_slices) {
 573                slice_convert(mm, mask, psize);
 574                if (psize > MMU_PAGE_BASE)
 575                        on_each_cpu(slice_flush_segments, mm, 1);
 576        }
 577        return addr;
 578
 579}
 580EXPORT_SYMBOL_GPL(slice_get_unmapped_area);
 581
 582unsigned long arch_get_unmapped_area(struct file *filp,
 583                                     unsigned long addr,
 584                                     unsigned long len,
 585                                     unsigned long pgoff,
 586                                     unsigned long flags)
 587{
 588        return slice_get_unmapped_area(addr, len, flags,
 589                                       current->mm->context.user_psize,
 590                                       0, 1);
 591}
 592
 593unsigned long arch_get_unmapped_area_topdown(struct file *filp,
 594                                             const unsigned long addr0,
 595                                             const unsigned long len,
 596                                             const unsigned long pgoff,
 597                                             const unsigned long flags)
 598{
 599        return slice_get_unmapped_area(addr0, len, flags,
 600                                       current->mm->context.user_psize,
 601                                       1, 1);
 602}
 603
 604unsigned int get_slice_psize(struct mm_struct *mm, unsigned long addr)
 605{
 606        unsigned char *hpsizes;
 607        int index, mask_index;
 608
 609        if (addr < SLICE_LOW_TOP) {
 610                u64 lpsizes;
 611                lpsizes = mm->context.low_slices_psize;
 612                index = GET_LOW_SLICE_INDEX(addr);
 613                return (lpsizes >> (index * 4)) & 0xf;
 614        }
 615        hpsizes = mm->context.high_slices_psize;
 616        index = GET_HIGH_SLICE_INDEX(addr);
 617        mask_index = index & 0x1;
 618        return (hpsizes[index >> 1] >> (mask_index * 4)) & 0xf;
 619}
 620EXPORT_SYMBOL_GPL(get_slice_psize);
 621
 622/*
 623 * This is called by hash_page when it needs to do a lazy conversion of
 624 * an address space from real 64K pages to combo 4K pages (typically
 625 * when hitting a non cacheable mapping on a processor or hypervisor
 626 * that won't allow them for 64K pages).
 627 *
 628 * This is also called in init_new_context() to change back the user
 629 * psize from whatever the parent context had it set to
 630 * N.B. This may be called before mm->context.id has been set.
 631 *
 632 * This function will only change the content of the {low,high)_slice_psize
 633 * masks, it will not flush SLBs as this shall be handled lazily by the
 634 * caller.
 635 */
 636void slice_set_user_psize(struct mm_struct *mm, unsigned int psize)
 637{
 638        int index, mask_index;
 639        unsigned char *hpsizes;
 640        unsigned long flags, lpsizes;
 641        unsigned int old_psize;
 642        int i;
 643
 644        slice_dbg("slice_set_user_psize(mm=%p, psize=%d)\n", mm, psize);
 645
 646        spin_lock_irqsave(&slice_convert_lock, flags);
 647
 648        old_psize = mm->context.user_psize;
 649        slice_dbg(" old_psize=%d\n", old_psize);
 650        if (old_psize == psize)
 651                goto bail;
 652
 653        mm->context.user_psize = psize;
 654        wmb();
 655
 656        lpsizes = mm->context.low_slices_psize;
 657        for (i = 0; i < SLICE_NUM_LOW; i++)
 658                if (((lpsizes >> (i * 4)) & 0xf) == old_psize)
 659                        lpsizes = (lpsizes & ~(0xful << (i * 4))) |
 660                                (((unsigned long)psize) << (i * 4));
 661        /* Assign the value back */
 662        mm->context.low_slices_psize = lpsizes;
 663
 664        hpsizes = mm->context.high_slices_psize;
 665        for (i = 0; i < SLICE_NUM_HIGH; i++) {
 666                mask_index = i & 0x1;
 667                index = i >> 1;
 668                if (((hpsizes[index] >> (mask_index * 4)) & 0xf) == old_psize)
 669                        hpsizes[index] = (hpsizes[index] &
 670                                          ~(0xf << (mask_index * 4))) |
 671                                (((unsigned long)psize) << (mask_index * 4));
 672        }
 673
 674
 675
 676
 677        slice_dbg(" lsps=%lx, hsps=%lx\n",
 678                  mm->context.low_slices_psize,
 679                  mm->context.high_slices_psize);
 680
 681 bail:
 682        spin_unlock_irqrestore(&slice_convert_lock, flags);
 683}
 684
 685void slice_set_psize(struct mm_struct *mm, unsigned long address,
 686                     unsigned int psize)
 687{
 688        unsigned char *hpsizes;
 689        unsigned long i, flags;
 690        u64 *lpsizes;
 691
 692        spin_lock_irqsave(&slice_convert_lock, flags);
 693        if (address < SLICE_LOW_TOP) {
 694                i = GET_LOW_SLICE_INDEX(address);
 695                lpsizes = &mm->context.low_slices_psize;
 696                *lpsizes = (*lpsizes & ~(0xful << (i * 4))) |
 697                        ((unsigned long) psize << (i * 4));
 698        } else {
 699                int index, mask_index;
 700                i = GET_HIGH_SLICE_INDEX(address);
 701                hpsizes = mm->context.high_slices_psize;
 702                mask_index = i & 0x1;
 703                index = i >> 1;
 704                hpsizes[index] = (hpsizes[index] &
 705                                  ~(0xf << (mask_index * 4))) |
 706                        (((unsigned long)psize) << (mask_index * 4));
 707        }
 708
 709        spin_unlock_irqrestore(&slice_convert_lock, flags);
 710
 711#ifdef CONFIG_SPU_BASE
 712        spu_flush_all_slbs(mm);
 713#endif
 714}
 715
 716void slice_set_range_psize(struct mm_struct *mm, unsigned long start,
 717                           unsigned long len, unsigned int psize)
 718{
 719        struct slice_mask mask = slice_range_to_mask(start, len);
 720
 721        slice_convert(mm, mask, psize);
 722}
 723
 724/*
 725 * is_hugepage_only_range() is used by generic code to verify wether
 726 * a normal mmap mapping (non hugetlbfs) is valid on a given area.
 727 *
 728 * until the generic code provides a more generic hook and/or starts
 729 * calling arch get_unmapped_area for MAP_FIXED (which our implementation
 730 * here knows how to deal with), we hijack it to keep standard mappings
 731 * away from us.
 732 *
 733 * because of that generic code limitation, MAP_FIXED mapping cannot
 734 * "convert" back a slice with no VMAs to the standard page size, only
 735 * get_unmapped_area() can. It would be possible to fix it here but I
 736 * prefer working on fixing the generic code instead.
 737 *
 738 * WARNING: This will not work if hugetlbfs isn't enabled since the
 739 * generic code will redefine that function as 0 in that. This is ok
 740 * for now as we only use slices with hugetlbfs enabled. This should
 741 * be fixed as the generic code gets fixed.
 742 */
 743int is_hugepage_only_range(struct mm_struct *mm, unsigned long addr,
 744                           unsigned long len)
 745{
 746        struct slice_mask mask, available;
 747        unsigned int psize = mm->context.user_psize;
 748
 749        mask = slice_range_to_mask(addr, len);
 750        available = slice_mask_for_size(mm, psize);
 751#ifdef CONFIG_PPC_64K_PAGES
 752        /* We need to account for 4k slices too */
 753        if (psize == MMU_PAGE_64K) {
 754                struct slice_mask compat_mask;
 755                compat_mask = slice_mask_for_size(mm, MMU_PAGE_4K);
 756                or_mask(available, compat_mask);
 757        }
 758#endif
 759
 760#if 0 /* too verbose */
 761        slice_dbg("is_hugepage_only_range(mm=%p, addr=%lx, len=%lx)\n",
 762                 mm, addr, len);
 763        slice_print_mask(" mask", mask);
 764        slice_print_mask(" available", available);
 765#endif
 766        return !slice_check_fit(mask, available);
 767}
 768
 769