linux/mm/vmscan.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/vmscan.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 *
   6 *  Swap reorganised 29.12.95, Stephen Tweedie.
   7 *  kswapd added: 7.1.96  sct
   8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
   9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  11 *  Multiqueue VM started 5.8.00, Rik van Riel.
  12 */
  13
  14#include <linux/mm.h>
  15#include <linux/module.h>
  16#include <linux/gfp.h>
  17#include <linux/kernel_stat.h>
  18#include <linux/swap.h>
  19#include <linux/pagemap.h>
  20#include <linux/init.h>
  21#include <linux/highmem.h>
  22#include <linux/vmstat.h>
  23#include <linux/file.h>
  24#include <linux/writeback.h>
  25#include <linux/blkdev.h>
  26#include <linux/buffer_head.h>  /* for try_to_release_page(),
  27                                        buffer_heads_over_limit */
  28#include <linux/mm_inline.h>
  29#include <linux/backing-dev.h>
  30#include <linux/rmap.h>
  31#include <linux/topology.h>
  32#include <linux/cpu.h>
  33#include <linux/cpuset.h>
  34#include <linux/compaction.h>
  35#include <linux/notifier.h>
  36#include <linux/rwsem.h>
  37#include <linux/delay.h>
  38#include <linux/kthread.h>
  39#include <linux/freezer.h>
  40#include <linux/memcontrol.h>
  41#include <linux/delayacct.h>
  42#include <linux/sysctl.h>
  43#include <linux/oom.h>
  44#include <linux/prefetch.h>
  45
  46#include <asm/tlbflush.h>
  47#include <asm/div64.h>
  48
  49#include <linux/swapops.h>
  50
  51#include "internal.h"
  52
  53#define CREATE_TRACE_POINTS
  54#include <trace/events/vmscan.h>
  55
  56/*
  57 * reclaim_mode determines how the inactive list is shrunk
  58 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
  59 * RECLAIM_MODE_ASYNC:  Do not block
  60 * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
  61 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
  62 *                      page from the LRU and reclaim all pages within a
  63 *                      naturally aligned range
  64 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
  65 *                      order-0 pages and then compact the zone
  66 */
  67typedef unsigned __bitwise__ reclaim_mode_t;
  68#define RECLAIM_MODE_SINGLE             ((__force reclaim_mode_t)0x01u)
  69#define RECLAIM_MODE_ASYNC              ((__force reclaim_mode_t)0x02u)
  70#define RECLAIM_MODE_SYNC               ((__force reclaim_mode_t)0x04u)
  71#define RECLAIM_MODE_LUMPYRECLAIM       ((__force reclaim_mode_t)0x08u)
  72#define RECLAIM_MODE_COMPACTION         ((__force reclaim_mode_t)0x10u)
  73
  74struct scan_control {
  75        /* Incremented by the number of inactive pages that were scanned */
  76        unsigned long nr_scanned;
  77
  78        /* Number of pages freed so far during a call to shrink_zones() */
  79        unsigned long nr_reclaimed;
  80
  81        /* How many pages shrink_list() should reclaim */
  82        unsigned long nr_to_reclaim;
  83
  84        unsigned long hibernation_mode;
  85
  86        /* This context's GFP mask */
  87        gfp_t gfp_mask;
  88
  89        int may_writepage;
  90
  91        /* Can mapped pages be reclaimed? */
  92        int may_unmap;
  93
  94        /* Can pages be swapped as part of reclaim? */
  95        int may_swap;
  96
  97        int order;
  98
  99        /*
 100         * Intend to reclaim enough continuous memory rather than reclaim
 101         * enough amount of memory. i.e, mode for high order allocation.
 102         */
 103        reclaim_mode_t reclaim_mode;
 104
 105        /*
 106         * The memory cgroup that hit its limit and as a result is the
 107         * primary target of this reclaim invocation.
 108         */
 109        struct mem_cgroup *target_mem_cgroup;
 110
 111        /*
 112         * Nodemask of nodes allowed by the caller. If NULL, all nodes
 113         * are scanned.
 114         */
 115        nodemask_t      *nodemask;
 116};
 117
 118struct mem_cgroup_zone {
 119        struct mem_cgroup *mem_cgroup;
 120        struct zone *zone;
 121};
 122
 123#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
 124
 125#ifdef ARCH_HAS_PREFETCH
 126#define prefetch_prev_lru_page(_page, _base, _field)                    \
 127        do {                                                            \
 128                if ((_page)->lru.prev != _base) {                       \
 129                        struct page *prev;                              \
 130                                                                        \
 131                        prev = lru_to_page(&(_page->lru));              \
 132                        prefetch(&prev->_field);                        \
 133                }                                                       \
 134        } while (0)
 135#else
 136#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
 137#endif
 138
 139#ifdef ARCH_HAS_PREFETCHW
 140#define prefetchw_prev_lru_page(_page, _base, _field)                   \
 141        do {                                                            \
 142                if ((_page)->lru.prev != _base) {                       \
 143                        struct page *prev;                              \
 144                                                                        \
 145                        prev = lru_to_page(&(_page->lru));              \
 146                        prefetchw(&prev->_field);                       \
 147                }                                                       \
 148        } while (0)
 149#else
 150#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
 151#endif
 152
 153/*
 154 * From 0 .. 100.  Higher means more swappy.
 155 */
 156int vm_swappiness = 60;
 157long vm_total_pages;    /* The total number of pages which the VM controls */
 158
 159static LIST_HEAD(shrinker_list);
 160static DECLARE_RWSEM(shrinker_rwsem);
 161
 162#ifdef CONFIG_CGROUP_MEM_RES_CTLR
 163static bool global_reclaim(struct scan_control *sc)
 164{
 165        return !sc->target_mem_cgroup;
 166}
 167
 168static bool scanning_global_lru(struct mem_cgroup_zone *mz)
 169{
 170        return !mz->mem_cgroup;
 171}
 172#else
 173static bool global_reclaim(struct scan_control *sc)
 174{
 175        return true;
 176}
 177
 178static bool scanning_global_lru(struct mem_cgroup_zone *mz)
 179{
 180        return true;
 181}
 182#endif
 183
 184static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
 185{
 186        if (!scanning_global_lru(mz))
 187                return mem_cgroup_get_reclaim_stat(mz->mem_cgroup, mz->zone);
 188
 189        return &mz->zone->reclaim_stat;
 190}
 191
 192static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
 193                                       enum lru_list lru)
 194{
 195        if (!scanning_global_lru(mz))
 196                return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
 197                                                    zone_to_nid(mz->zone),
 198                                                    zone_idx(mz->zone),
 199                                                    BIT(lru));
 200
 201        return zone_page_state(mz->zone, NR_LRU_BASE + lru);
 202}
 203
 204
 205/*
 206 * Add a shrinker callback to be called from the vm
 207 */
 208void register_shrinker(struct shrinker *shrinker)
 209{
 210        atomic_long_set(&shrinker->nr_in_batch, 0);
 211        down_write(&shrinker_rwsem);
 212        list_add_tail(&shrinker->list, &shrinker_list);
 213        up_write(&shrinker_rwsem);
 214}
 215EXPORT_SYMBOL(register_shrinker);
 216
 217/*
 218 * Remove one
 219 */
 220void unregister_shrinker(struct shrinker *shrinker)
 221{
 222        down_write(&shrinker_rwsem);
 223        list_del(&shrinker->list);
 224        up_write(&shrinker_rwsem);
 225}
 226EXPORT_SYMBOL(unregister_shrinker);
 227
 228static inline int do_shrinker_shrink(struct shrinker *shrinker,
 229                                     struct shrink_control *sc,
 230                                     unsigned long nr_to_scan)
 231{
 232        sc->nr_to_scan = nr_to_scan;
 233        return (*shrinker->shrink)(shrinker, sc);
 234}
 235
 236#define SHRINK_BATCH 128
 237/*
 238 * Call the shrink functions to age shrinkable caches
 239 *
 240 * Here we assume it costs one seek to replace a lru page and that it also
 241 * takes a seek to recreate a cache object.  With this in mind we age equal
 242 * percentages of the lru and ageable caches.  This should balance the seeks
 243 * generated by these structures.
 244 *
 245 * If the vm encountered mapped pages on the LRU it increase the pressure on
 246 * slab to avoid swapping.
 247 *
 248 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 249 *
 250 * `lru_pages' represents the number of on-LRU pages in all the zones which
 251 * are eligible for the caller's allocation attempt.  It is used for balancing
 252 * slab reclaim versus page reclaim.
 253 *
 254 * Returns the number of slab objects which we shrunk.
 255 */
 256unsigned long shrink_slab(struct shrink_control *shrink,
 257                          unsigned long nr_pages_scanned,
 258                          unsigned long lru_pages)
 259{
 260        struct shrinker *shrinker;
 261        unsigned long ret = 0;
 262
 263        if (nr_pages_scanned == 0)
 264                nr_pages_scanned = SWAP_CLUSTER_MAX;
 265
 266        if (!down_read_trylock(&shrinker_rwsem)) {
 267                /* Assume we'll be able to shrink next time */
 268                ret = 1;
 269                goto out;
 270        }
 271
 272        list_for_each_entry(shrinker, &shrinker_list, list) {
 273                unsigned long long delta;
 274                long total_scan;
 275                long max_pass;
 276                int shrink_ret = 0;
 277                long nr;
 278                long new_nr;
 279                long batch_size = shrinker->batch ? shrinker->batch
 280                                                  : SHRINK_BATCH;
 281
 282                max_pass = do_shrinker_shrink(shrinker, shrink, 0);
 283                if (max_pass <= 0)
 284                        continue;
 285
 286                /*
 287                 * copy the current shrinker scan count into a local variable
 288                 * and zero it so that other concurrent shrinker invocations
 289                 * don't also do this scanning work.
 290                 */
 291                nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
 292
 293                total_scan = nr;
 294                delta = (4 * nr_pages_scanned) / shrinker->seeks;
 295                delta *= max_pass;
 296                do_div(delta, lru_pages + 1);
 297                total_scan += delta;
 298                if (total_scan < 0) {
 299                        printk(KERN_ERR "shrink_slab: %pF negative objects to "
 300                               "delete nr=%ld\n",
 301                               shrinker->shrink, total_scan);
 302                        total_scan = max_pass;
 303                }
 304
 305                /*
 306                 * We need to avoid excessive windup on filesystem shrinkers
 307                 * due to large numbers of GFP_NOFS allocations causing the
 308                 * shrinkers to return -1 all the time. This results in a large
 309                 * nr being built up so when a shrink that can do some work
 310                 * comes along it empties the entire cache due to nr >>>
 311                 * max_pass.  This is bad for sustaining a working set in
 312                 * memory.
 313                 *
 314                 * Hence only allow the shrinker to scan the entire cache when
 315                 * a large delta change is calculated directly.
 316                 */
 317                if (delta < max_pass / 4)
 318                        total_scan = min(total_scan, max_pass / 2);
 319
 320                /*
 321                 * Avoid risking looping forever due to too large nr value:
 322                 * never try to free more than twice the estimate number of
 323                 * freeable entries.
 324                 */
 325                if (total_scan > max_pass * 2)
 326                        total_scan = max_pass * 2;
 327
 328                trace_mm_shrink_slab_start(shrinker, shrink, nr,
 329                                        nr_pages_scanned, lru_pages,
 330                                        max_pass, delta, total_scan);
 331
 332                while (total_scan >= batch_size) {
 333                        int nr_before;
 334
 335                        nr_before = do_shrinker_shrink(shrinker, shrink, 0);
 336                        shrink_ret = do_shrinker_shrink(shrinker, shrink,
 337                                                        batch_size);
 338                        if (shrink_ret == -1)
 339                                break;
 340                        if (shrink_ret < nr_before)
 341                                ret += nr_before - shrink_ret;
 342                        count_vm_events(SLABS_SCANNED, batch_size);
 343                        total_scan -= batch_size;
 344
 345                        cond_resched();
 346                }
 347
 348                /*
 349                 * move the unused scan count back into the shrinker in a
 350                 * manner that handles concurrent updates. If we exhausted the
 351                 * scan, there is no need to do an update.
 352                 */
 353                if (total_scan > 0)
 354                        new_nr = atomic_long_add_return(total_scan,
 355                                        &shrinker->nr_in_batch);
 356                else
 357                        new_nr = atomic_long_read(&shrinker->nr_in_batch);
 358
 359                trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
 360        }
 361        up_read(&shrinker_rwsem);
 362out:
 363        cond_resched();
 364        return ret;
 365}
 366
 367static void set_reclaim_mode(int priority, struct scan_control *sc,
 368                                   bool sync)
 369{
 370        reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
 371
 372        /*
 373         * Initially assume we are entering either lumpy reclaim or
 374         * reclaim/compaction.Depending on the order, we will either set the
 375         * sync mode or just reclaim order-0 pages later.
 376         */
 377        if (COMPACTION_BUILD)
 378                sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
 379        else
 380                sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
 381
 382        /*
 383         * Avoid using lumpy reclaim or reclaim/compaction if possible by
 384         * restricting when its set to either costly allocations or when
 385         * under memory pressure
 386         */
 387        if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
 388                sc->reclaim_mode |= syncmode;
 389        else if (sc->order && priority < DEF_PRIORITY - 2)
 390                sc->reclaim_mode |= syncmode;
 391        else
 392                sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
 393}
 394
 395static void reset_reclaim_mode(struct scan_control *sc)
 396{
 397        sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
 398}
 399
 400static inline int is_page_cache_freeable(struct page *page)
 401{
 402        /*
 403         * A freeable page cache page is referenced only by the caller
 404         * that isolated the page, the page cache radix tree and
 405         * optional buffer heads at page->private.
 406         */
 407        return page_count(page) - page_has_private(page) == 2;
 408}
 409
 410static int may_write_to_queue(struct backing_dev_info *bdi,
 411                              struct scan_control *sc)
 412{
 413        if (current->flags & PF_SWAPWRITE)
 414                return 1;
 415        if (!bdi_write_congested(bdi))
 416                return 1;
 417        if (bdi == current->backing_dev_info)
 418                return 1;
 419
 420        /* lumpy reclaim for hugepage often need a lot of write */
 421        if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
 422                return 1;
 423        return 0;
 424}
 425
 426/*
 427 * We detected a synchronous write error writing a page out.  Probably
 428 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 429 * fsync(), msync() or close().
 430 *
 431 * The tricky part is that after writepage we cannot touch the mapping: nothing
 432 * prevents it from being freed up.  But we have a ref on the page and once
 433 * that page is locked, the mapping is pinned.
 434 *
 435 * We're allowed to run sleeping lock_page() here because we know the caller has
 436 * __GFP_FS.
 437 */
 438static void handle_write_error(struct address_space *mapping,
 439                                struct page *page, int error)
 440{
 441        lock_page(page);
 442        if (page_mapping(page) == mapping)
 443                mapping_set_error(mapping, error);
 444        unlock_page(page);
 445}
 446
 447/* possible outcome of pageout() */
 448typedef enum {
 449        /* failed to write page out, page is locked */
 450        PAGE_KEEP,
 451        /* move page to the active list, page is locked */
 452        PAGE_ACTIVATE,
 453        /* page has been sent to the disk successfully, page is unlocked */
 454        PAGE_SUCCESS,
 455        /* page is clean and locked */
 456        PAGE_CLEAN,
 457} pageout_t;
 458
 459/*
 460 * pageout is called by shrink_page_list() for each dirty page.
 461 * Calls ->writepage().
 462 */
 463static pageout_t pageout(struct page *page, struct address_space *mapping,
 464                         struct scan_control *sc)
 465{
 466        /*
 467         * If the page is dirty, only perform writeback if that write
 468         * will be non-blocking.  To prevent this allocation from being
 469         * stalled by pagecache activity.  But note that there may be
 470         * stalls if we need to run get_block().  We could test
 471         * PagePrivate for that.
 472         *
 473         * If this process is currently in __generic_file_aio_write() against
 474         * this page's queue, we can perform writeback even if that
 475         * will block.
 476         *
 477         * If the page is swapcache, write it back even if that would
 478         * block, for some throttling. This happens by accident, because
 479         * swap_backing_dev_info is bust: it doesn't reflect the
 480         * congestion state of the swapdevs.  Easy to fix, if needed.
 481         */
 482        if (!is_page_cache_freeable(page))
 483                return PAGE_KEEP;
 484        if (!mapping) {
 485                /*
 486                 * Some data journaling orphaned pages can have
 487                 * page->mapping == NULL while being dirty with clean buffers.
 488                 */
 489                if (page_has_private(page)) {
 490                        if (try_to_free_buffers(page)) {
 491                                ClearPageDirty(page);
 492                                printk("%s: orphaned page\n", __func__);
 493                                return PAGE_CLEAN;
 494                        }
 495                }
 496                return PAGE_KEEP;
 497        }
 498        if (mapping->a_ops->writepage == NULL)
 499                return PAGE_ACTIVATE;
 500        if (!may_write_to_queue(mapping->backing_dev_info, sc))
 501                return PAGE_KEEP;
 502
 503        if (clear_page_dirty_for_io(page)) {
 504                int res;
 505                struct writeback_control wbc = {
 506                        .sync_mode = WB_SYNC_NONE,
 507                        .nr_to_write = SWAP_CLUSTER_MAX,
 508                        .range_start = 0,
 509                        .range_end = LLONG_MAX,
 510                        .for_reclaim = 1,
 511                };
 512
 513                SetPageReclaim(page);
 514                res = mapping->a_ops->writepage(page, &wbc);
 515                if (res < 0)
 516                        handle_write_error(mapping, page, res);
 517                if (res == AOP_WRITEPAGE_ACTIVATE) {
 518                        ClearPageReclaim(page);
 519                        return PAGE_ACTIVATE;
 520                }
 521
 522                if (!PageWriteback(page)) {
 523                        /* synchronous write or broken a_ops? */
 524                        ClearPageReclaim(page);
 525                }
 526                trace_mm_vmscan_writepage(page,
 527                        trace_reclaim_flags(page, sc->reclaim_mode));
 528                inc_zone_page_state(page, NR_VMSCAN_WRITE);
 529                return PAGE_SUCCESS;
 530        }
 531
 532        return PAGE_CLEAN;
 533}
 534
 535/*
 536 * Same as remove_mapping, but if the page is removed from the mapping, it
 537 * gets returned with a refcount of 0.
 538 */
 539static int __remove_mapping(struct address_space *mapping, struct page *page)
 540{
 541        BUG_ON(!PageLocked(page));
 542        BUG_ON(mapping != page_mapping(page));
 543
 544        spin_lock_irq(&mapping->tree_lock);
 545        /*
 546         * The non racy check for a busy page.
 547         *
 548         * Must be careful with the order of the tests. When someone has
 549         * a ref to the page, it may be possible that they dirty it then
 550         * drop the reference. So if PageDirty is tested before page_count
 551         * here, then the following race may occur:
 552         *
 553         * get_user_pages(&page);
 554         * [user mapping goes away]
 555         * write_to(page);
 556         *                              !PageDirty(page)    [good]
 557         * SetPageDirty(page);
 558         * put_page(page);
 559         *                              !page_count(page)   [good, discard it]
 560         *
 561         * [oops, our write_to data is lost]
 562         *
 563         * Reversing the order of the tests ensures such a situation cannot
 564         * escape unnoticed. The smp_rmb is needed to ensure the page->flags
 565         * load is not satisfied before that of page->_count.
 566         *
 567         * Note that if SetPageDirty is always performed via set_page_dirty,
 568         * and thus under tree_lock, then this ordering is not required.
 569         */
 570        if (!page_freeze_refs(page, 2))
 571                goto cannot_free;
 572        /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
 573        if (unlikely(PageDirty(page))) {
 574                page_unfreeze_refs(page, 2);
 575                goto cannot_free;
 576        }
 577
 578        if (PageSwapCache(page)) {
 579                swp_entry_t swap = { .val = page_private(page) };
 580                __delete_from_swap_cache(page);
 581                spin_unlock_irq(&mapping->tree_lock);
 582                swapcache_free(swap, page);
 583        } else {
 584                void (*freepage)(struct page *);
 585
 586                freepage = mapping->a_ops->freepage;
 587
 588                __delete_from_page_cache(page);
 589                spin_unlock_irq(&mapping->tree_lock);
 590                mem_cgroup_uncharge_cache_page(page);
 591
 592                if (freepage != NULL)
 593                        freepage(page);
 594        }
 595
 596        return 1;
 597
 598cannot_free:
 599        spin_unlock_irq(&mapping->tree_lock);
 600        return 0;
 601}
 602
 603/*
 604 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 605 * someone else has a ref on the page, abort and return 0.  If it was
 606 * successfully detached, return 1.  Assumes the caller has a single ref on
 607 * this page.
 608 */
 609int remove_mapping(struct address_space *mapping, struct page *page)
 610{
 611        if (__remove_mapping(mapping, page)) {
 612                /*
 613                 * Unfreezing the refcount with 1 rather than 2 effectively
 614                 * drops the pagecache ref for us without requiring another
 615                 * atomic operation.
 616                 */
 617                page_unfreeze_refs(page, 1);
 618                return 1;
 619        }
 620        return 0;
 621}
 622
 623/**
 624 * putback_lru_page - put previously isolated page onto appropriate LRU list
 625 * @page: page to be put back to appropriate lru list
 626 *
 627 * Add previously isolated @page to appropriate LRU list.
 628 * Page may still be unevictable for other reasons.
 629 *
 630 * lru_lock must not be held, interrupts must be enabled.
 631 */
 632void putback_lru_page(struct page *page)
 633{
 634        int lru;
 635        int active = !!TestClearPageActive(page);
 636        int was_unevictable = PageUnevictable(page);
 637
 638        VM_BUG_ON(PageLRU(page));
 639
 640redo:
 641        ClearPageUnevictable(page);
 642
 643        if (page_evictable(page, NULL)) {
 644                /*
 645                 * For evictable pages, we can use the cache.
 646                 * In event of a race, worst case is we end up with an
 647                 * unevictable page on [in]active list.
 648                 * We know how to handle that.
 649                 */
 650                lru = active + page_lru_base_type(page);
 651                lru_cache_add_lru(page, lru);
 652        } else {
 653                /*
 654                 * Put unevictable pages directly on zone's unevictable
 655                 * list.
 656                 */
 657                lru = LRU_UNEVICTABLE;
 658                add_page_to_unevictable_list(page);
 659                /*
 660                 * When racing with an mlock or AS_UNEVICTABLE clearing
 661                 * (page is unlocked) make sure that if the other thread
 662                 * does not observe our setting of PG_lru and fails
 663                 * isolation/check_move_unevictable_pages,
 664                 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
 665                 * the page back to the evictable list.
 666                 *
 667                 * The other side is TestClearPageMlocked() or shmem_lock().
 668                 */
 669                smp_mb();
 670        }
 671
 672        /*
 673         * page's status can change while we move it among lru. If an evictable
 674         * page is on unevictable list, it never be freed. To avoid that,
 675         * check after we added it to the list, again.
 676         */
 677        if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
 678                if (!isolate_lru_page(page)) {
 679                        put_page(page);
 680                        goto redo;
 681                }
 682                /* This means someone else dropped this page from LRU
 683                 * So, it will be freed or putback to LRU again. There is
 684                 * nothing to do here.
 685                 */
 686        }
 687
 688        if (was_unevictable && lru != LRU_UNEVICTABLE)
 689                count_vm_event(UNEVICTABLE_PGRESCUED);
 690        else if (!was_unevictable && lru == LRU_UNEVICTABLE)
 691                count_vm_event(UNEVICTABLE_PGCULLED);
 692
 693        put_page(page);         /* drop ref from isolate */
 694}
 695
 696enum page_references {
 697        PAGEREF_RECLAIM,
 698        PAGEREF_RECLAIM_CLEAN,
 699        PAGEREF_KEEP,
 700        PAGEREF_ACTIVATE,
 701};
 702
 703static enum page_references page_check_references(struct page *page,
 704                                                  struct mem_cgroup_zone *mz,
 705                                                  struct scan_control *sc)
 706{
 707        int referenced_ptes, referenced_page;
 708        unsigned long vm_flags;
 709
 710        referenced_ptes = page_referenced(page, 1, mz->mem_cgroup, &vm_flags);
 711        referenced_page = TestClearPageReferenced(page);
 712
 713        /* Lumpy reclaim - ignore references */
 714        if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
 715                return PAGEREF_RECLAIM;
 716
 717        /*
 718         * Mlock lost the isolation race with us.  Let try_to_unmap()
 719         * move the page to the unevictable list.
 720         */
 721        if (vm_flags & VM_LOCKED)
 722                return PAGEREF_RECLAIM;
 723
 724        if (referenced_ptes) {
 725                if (PageAnon(page))
 726                        return PAGEREF_ACTIVATE;
 727                /*
 728                 * All mapped pages start out with page table
 729                 * references from the instantiating fault, so we need
 730                 * to look twice if a mapped file page is used more
 731                 * than once.
 732                 *
 733                 * Mark it and spare it for another trip around the
 734                 * inactive list.  Another page table reference will
 735                 * lead to its activation.
 736                 *
 737                 * Note: the mark is set for activated pages as well
 738                 * so that recently deactivated but used pages are
 739                 * quickly recovered.
 740                 */
 741                SetPageReferenced(page);
 742
 743                if (referenced_page || referenced_ptes > 1)
 744                        return PAGEREF_ACTIVATE;
 745
 746                /*
 747                 * Activate file-backed executable pages after first usage.
 748                 */
 749                if (vm_flags & VM_EXEC)
 750                        return PAGEREF_ACTIVATE;
 751
 752                return PAGEREF_KEEP;
 753        }
 754
 755        /* Reclaim if clean, defer dirty pages to writeback */
 756        if (referenced_page && !PageSwapBacked(page))
 757                return PAGEREF_RECLAIM_CLEAN;
 758
 759        return PAGEREF_RECLAIM;
 760}
 761
 762/*
 763 * shrink_page_list() returns the number of reclaimed pages
 764 */
 765static unsigned long shrink_page_list(struct list_head *page_list,
 766                                      struct mem_cgroup_zone *mz,
 767                                      struct scan_control *sc,
 768                                      int priority,
 769                                      unsigned long *ret_nr_dirty,
 770                                      unsigned long *ret_nr_writeback)
 771{
 772        LIST_HEAD(ret_pages);
 773        LIST_HEAD(free_pages);
 774        int pgactivate = 0;
 775        unsigned long nr_dirty = 0;
 776        unsigned long nr_congested = 0;
 777        unsigned long nr_reclaimed = 0;
 778        unsigned long nr_writeback = 0;
 779
 780        cond_resched();
 781
 782        while (!list_empty(page_list)) {
 783                enum page_references references;
 784                struct address_space *mapping;
 785                struct page *page;
 786                int may_enter_fs;
 787
 788                cond_resched();
 789
 790                page = lru_to_page(page_list);
 791                list_del(&page->lru);
 792
 793                if (!trylock_page(page))
 794                        goto keep;
 795
 796                VM_BUG_ON(PageActive(page));
 797                VM_BUG_ON(page_zone(page) != mz->zone);
 798
 799                sc->nr_scanned++;
 800
 801                if (unlikely(!page_evictable(page, NULL)))
 802                        goto cull_mlocked;
 803
 804                if (!sc->may_unmap && page_mapped(page))
 805                        goto keep_locked;
 806
 807                /* Double the slab pressure for mapped and swapcache pages */
 808                if (page_mapped(page) || PageSwapCache(page))
 809                        sc->nr_scanned++;
 810
 811                may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
 812                        (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
 813
 814                if (PageWriteback(page)) {
 815                        nr_writeback++;
 816                        /*
 817                         * Synchronous reclaim cannot queue pages for
 818                         * writeback due to the possibility of stack overflow
 819                         * but if it encounters a page under writeback, wait
 820                         * for the IO to complete.
 821                         */
 822                        if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
 823                            may_enter_fs)
 824                                wait_on_page_writeback(page);
 825                        else {
 826                                unlock_page(page);
 827                                goto keep_lumpy;
 828                        }
 829                }
 830
 831                references = page_check_references(page, mz, sc);
 832                switch (references) {
 833                case PAGEREF_ACTIVATE:
 834                        goto activate_locked;
 835                case PAGEREF_KEEP:
 836                        goto keep_locked;
 837                case PAGEREF_RECLAIM:
 838                case PAGEREF_RECLAIM_CLEAN:
 839                        ; /* try to reclaim the page below */
 840                }
 841
 842                /*
 843                 * Anonymous process memory has backing store?
 844                 * Try to allocate it some swap space here.
 845                 */
 846                if (PageAnon(page) && !PageSwapCache(page)) {
 847                        if (!(sc->gfp_mask & __GFP_IO))
 848                                goto keep_locked;
 849                        if (!add_to_swap(page))
 850                                goto activate_locked;
 851                        may_enter_fs = 1;
 852                }
 853
 854                mapping = page_mapping(page);
 855
 856                /*
 857                 * The page is mapped into the page tables of one or more
 858                 * processes. Try to unmap it here.
 859                 */
 860                if (page_mapped(page) && mapping) {
 861                        switch (try_to_unmap(page, TTU_UNMAP)) {
 862                        case SWAP_FAIL:
 863                                goto activate_locked;
 864                        case SWAP_AGAIN:
 865                                goto keep_locked;
 866                        case SWAP_MLOCK:
 867                                goto cull_mlocked;
 868                        case SWAP_SUCCESS:
 869                                ; /* try to free the page below */
 870                        }
 871                }
 872
 873                if (PageDirty(page)) {
 874                        nr_dirty++;
 875
 876                        /*
 877                         * Only kswapd can writeback filesystem pages to
 878                         * avoid risk of stack overflow but do not writeback
 879                         * unless under significant pressure.
 880                         */
 881                        if (page_is_file_cache(page) &&
 882                                        (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
 883                                /*
 884                                 * Immediately reclaim when written back.
 885                                 * Similar in principal to deactivate_page()
 886                                 * except we already have the page isolated
 887                                 * and know it's dirty
 888                                 */
 889                                inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
 890                                SetPageReclaim(page);
 891
 892                                goto keep_locked;
 893                        }
 894
 895                        if (references == PAGEREF_RECLAIM_CLEAN)
 896                                goto keep_locked;
 897                        if (!may_enter_fs)
 898                                goto keep_locked;
 899                        if (!sc->may_writepage)
 900                                goto keep_locked;
 901
 902                        /* Page is dirty, try to write it out here */
 903                        switch (pageout(page, mapping, sc)) {
 904                        case PAGE_KEEP:
 905                                nr_congested++;
 906                                goto keep_locked;
 907                        case PAGE_ACTIVATE:
 908                                goto activate_locked;
 909                        case PAGE_SUCCESS:
 910                                if (PageWriteback(page))
 911                                        goto keep_lumpy;
 912                                if (PageDirty(page))
 913                                        goto keep;
 914
 915                                /*
 916                                 * A synchronous write - probably a ramdisk.  Go
 917                                 * ahead and try to reclaim the page.
 918                                 */
 919                                if (!trylock_page(page))
 920                                        goto keep;
 921                                if (PageDirty(page) || PageWriteback(page))
 922                                        goto keep_locked;
 923                                mapping = page_mapping(page);
 924                        case PAGE_CLEAN:
 925                                ; /* try to free the page below */
 926                        }
 927                }
 928
 929                /*
 930                 * If the page has buffers, try to free the buffer mappings
 931                 * associated with this page. If we succeed we try to free
 932                 * the page as well.
 933                 *
 934                 * We do this even if the page is PageDirty().
 935                 * try_to_release_page() does not perform I/O, but it is
 936                 * possible for a page to have PageDirty set, but it is actually
 937                 * clean (all its buffers are clean).  This happens if the
 938                 * buffers were written out directly, with submit_bh(). ext3
 939                 * will do this, as well as the blockdev mapping.
 940                 * try_to_release_page() will discover that cleanness and will
 941                 * drop the buffers and mark the page clean - it can be freed.
 942                 *
 943                 * Rarely, pages can have buffers and no ->mapping.  These are
 944                 * the pages which were not successfully invalidated in
 945                 * truncate_complete_page().  We try to drop those buffers here
 946                 * and if that worked, and the page is no longer mapped into
 947                 * process address space (page_count == 1) it can be freed.
 948                 * Otherwise, leave the page on the LRU so it is swappable.
 949                 */
 950                if (page_has_private(page)) {
 951                        if (!try_to_release_page(page, sc->gfp_mask))
 952                                goto activate_locked;
 953                        if (!mapping && page_count(page) == 1) {
 954                                unlock_page(page);
 955                                if (put_page_testzero(page))
 956                                        goto free_it;
 957                                else {
 958                                        /*
 959                                         * rare race with speculative reference.
 960                                         * the speculative reference will free
 961                                         * this page shortly, so we may
 962                                         * increment nr_reclaimed here (and
 963                                         * leave it off the LRU).
 964                                         */
 965                                        nr_reclaimed++;
 966                                        continue;
 967                                }
 968                        }
 969                }
 970
 971                if (!mapping || !__remove_mapping(mapping, page))
 972                        goto keep_locked;
 973
 974                /*
 975                 * At this point, we have no other references and there is
 976                 * no way to pick any more up (removed from LRU, removed
 977                 * from pagecache). Can use non-atomic bitops now (and
 978                 * we obviously don't have to worry about waking up a process
 979                 * waiting on the page lock, because there are no references.
 980                 */
 981                __clear_page_locked(page);
 982free_it:
 983                nr_reclaimed++;
 984
 985                /*
 986                 * Is there need to periodically free_page_list? It would
 987                 * appear not as the counts should be low
 988                 */
 989                list_add(&page->lru, &free_pages);
 990                continue;
 991
 992cull_mlocked:
 993                if (PageSwapCache(page))
 994                        try_to_free_swap(page);
 995                unlock_page(page);
 996                putback_lru_page(page);
 997                reset_reclaim_mode(sc);
 998                continue;
 999
1000activate_locked:
1001                /* Not a candidate for swapping, so reclaim swap space. */
1002                if (PageSwapCache(page) && vm_swap_full())
1003                        try_to_free_swap(page);
1004                VM_BUG_ON(PageActive(page));
1005                SetPageActive(page);
1006                pgactivate++;
1007keep_locked:
1008                unlock_page(page);
1009keep:
1010                reset_reclaim_mode(sc);
1011keep_lumpy:
1012                list_add(&page->lru, &ret_pages);
1013                VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1014        }
1015
1016        /*
1017         * Tag a zone as congested if all the dirty pages encountered were
1018         * backed by a congested BDI. In this case, reclaimers should just
1019         * back off and wait for congestion to clear because further reclaim
1020         * will encounter the same problem
1021         */
1022        if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
1023                zone_set_flag(mz->zone, ZONE_CONGESTED);
1024
1025        free_hot_cold_page_list(&free_pages, 1);
1026
1027        list_splice(&ret_pages, page_list);
1028        count_vm_events(PGACTIVATE, pgactivate);
1029        *ret_nr_dirty += nr_dirty;
1030        *ret_nr_writeback += nr_writeback;
1031        return nr_reclaimed;
1032}
1033
1034/*
1035 * Attempt to remove the specified page from its LRU.  Only take this page
1036 * if it is of the appropriate PageActive status.  Pages which are being
1037 * freed elsewhere are also ignored.
1038 *
1039 * page:        page to consider
1040 * mode:        one of the LRU isolation modes defined above
1041 *
1042 * returns 0 on success, -ve errno on failure.
1043 */
1044int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1045{
1046        bool all_lru_mode;
1047        int ret = -EINVAL;
1048
1049        /* Only take pages on the LRU. */
1050        if (!PageLRU(page))
1051                return ret;
1052
1053        all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1054                (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1055
1056        /*
1057         * When checking the active state, we need to be sure we are
1058         * dealing with comparible boolean values.  Take the logical not
1059         * of each.
1060         */
1061        if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1062                return ret;
1063
1064        if (!all_lru_mode && !!page_is_file_cache(page) != file)
1065                return ret;
1066
1067        /*
1068         * When this function is being called for lumpy reclaim, we
1069         * initially look into all LRU pages, active, inactive and
1070         * unevictable; only give shrink_page_list evictable pages.
1071         */
1072        if (PageUnevictable(page))
1073                return ret;
1074
1075        ret = -EBUSY;
1076
1077        /*
1078         * To minimise LRU disruption, the caller can indicate that it only
1079         * wants to isolate pages it will be able to operate on without
1080         * blocking - clean pages for the most part.
1081         *
1082         * ISOLATE_CLEAN means that only clean pages should be isolated. This
1083         * is used by reclaim when it is cannot write to backing storage
1084         *
1085         * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1086         * that it is possible to migrate without blocking
1087         */
1088        if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1089                /* All the caller can do on PageWriteback is block */
1090                if (PageWriteback(page))
1091                        return ret;
1092
1093                if (PageDirty(page)) {
1094                        struct address_space *mapping;
1095
1096                        /* ISOLATE_CLEAN means only clean pages */
1097                        if (mode & ISOLATE_CLEAN)
1098                                return ret;
1099
1100                        /*
1101                         * Only pages without mappings or that have a
1102                         * ->migratepage callback are possible to migrate
1103                         * without blocking
1104                         */
1105                        mapping = page_mapping(page);
1106                        if (mapping && !mapping->a_ops->migratepage)
1107                                return ret;
1108                }
1109        }
1110
1111        if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1112                return ret;
1113
1114        if (likely(get_page_unless_zero(page))) {
1115                /*
1116                 * Be careful not to clear PageLRU until after we're
1117                 * sure the page is not being freed elsewhere -- the
1118                 * page release code relies on it.
1119                 */
1120                ClearPageLRU(page);
1121                ret = 0;
1122        }
1123
1124        return ret;
1125}
1126
1127/*
1128 * zone->lru_lock is heavily contended.  Some of the functions that
1129 * shrink the lists perform better by taking out a batch of pages
1130 * and working on them outside the LRU lock.
1131 *
1132 * For pagecache intensive workloads, this function is the hottest
1133 * spot in the kernel (apart from copy_*_user functions).
1134 *
1135 * Appropriate locks must be held before calling this function.
1136 *
1137 * @nr_to_scan: The number of pages to look through on the list.
1138 * @mz:         The mem_cgroup_zone to pull pages from.
1139 * @dst:        The temp list to put pages on to.
1140 * @nr_scanned: The number of pages that were scanned.
1141 * @order:      The caller's attempted allocation order
1142 * @mode:       One of the LRU isolation modes
1143 * @active:     True [1] if isolating active pages
1144 * @file:       True [1] if isolating file [!anon] pages
1145 *
1146 * returns how many pages were moved onto *@dst.
1147 */
1148static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1149                struct mem_cgroup_zone *mz, struct list_head *dst,
1150                unsigned long *nr_scanned, int order, isolate_mode_t mode,
1151                int active, int file)
1152{
1153        struct lruvec *lruvec;
1154        struct list_head *src;
1155        unsigned long nr_taken = 0;
1156        unsigned long nr_lumpy_taken = 0;
1157        unsigned long nr_lumpy_dirty = 0;
1158        unsigned long nr_lumpy_failed = 0;
1159        unsigned long scan;
1160        int lru = LRU_BASE;
1161
1162        lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
1163        if (active)
1164                lru += LRU_ACTIVE;
1165        if (file)
1166                lru += LRU_FILE;
1167        src = &lruvec->lists[lru];
1168
1169        for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1170                struct page *page;
1171                unsigned long pfn;
1172                unsigned long end_pfn;
1173                unsigned long page_pfn;
1174                int zone_id;
1175
1176                page = lru_to_page(src);
1177                prefetchw_prev_lru_page(page, src, flags);
1178
1179                VM_BUG_ON(!PageLRU(page));
1180
1181                switch (__isolate_lru_page(page, mode, file)) {
1182                case 0:
1183                        mem_cgroup_lru_del(page);
1184                        list_move(&page->lru, dst);
1185                        nr_taken += hpage_nr_pages(page);
1186                        break;
1187
1188                case -EBUSY:
1189                        /* else it is being freed elsewhere */
1190                        list_move(&page->lru, src);
1191                        continue;
1192
1193                default:
1194                        BUG();
1195                }
1196
1197                if (!order)
1198                        continue;
1199
1200                /*
1201                 * Attempt to take all pages in the order aligned region
1202                 * surrounding the tag page.  Only take those pages of
1203                 * the same active state as that tag page.  We may safely
1204                 * round the target page pfn down to the requested order
1205                 * as the mem_map is guaranteed valid out to MAX_ORDER,
1206                 * where that page is in a different zone we will detect
1207                 * it from its zone id and abort this block scan.
1208                 */
1209                zone_id = page_zone_id(page);
1210                page_pfn = page_to_pfn(page);
1211                pfn = page_pfn & ~((1 << order) - 1);
1212                end_pfn = pfn + (1 << order);
1213                for (; pfn < end_pfn; pfn++) {
1214                        struct page *cursor_page;
1215
1216                        /* The target page is in the block, ignore it. */
1217                        if (unlikely(pfn == page_pfn))
1218                                continue;
1219
1220                        /* Avoid holes within the zone. */
1221                        if (unlikely(!pfn_valid_within(pfn)))
1222                                break;
1223
1224                        cursor_page = pfn_to_page(pfn);
1225
1226                        /* Check that we have not crossed a zone boundary. */
1227                        if (unlikely(page_zone_id(cursor_page) != zone_id))
1228                                break;
1229
1230                        /*
1231                         * If we don't have enough swap space, reclaiming of
1232                         * anon page which don't already have a swap slot is
1233                         * pointless.
1234                         */
1235                        if (nr_swap_pages <= 0 && PageSwapBacked(cursor_page) &&
1236                            !PageSwapCache(cursor_page))
1237                                break;
1238
1239                        if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1240                                unsigned int isolated_pages;
1241
1242                                mem_cgroup_lru_del(cursor_page);
1243                                list_move(&cursor_page->lru, dst);
1244                                isolated_pages = hpage_nr_pages(cursor_page);
1245                                nr_taken += isolated_pages;
1246                                nr_lumpy_taken += isolated_pages;
1247                                if (PageDirty(cursor_page))
1248                                        nr_lumpy_dirty += isolated_pages;
1249                                scan++;
1250                                pfn += isolated_pages - 1;
1251                        } else {
1252                                /*
1253                                 * Check if the page is freed already.
1254                                 *
1255                                 * We can't use page_count() as that
1256                                 * requires compound_head and we don't
1257                                 * have a pin on the page here. If a
1258                                 * page is tail, we may or may not
1259                                 * have isolated the head, so assume
1260                                 * it's not free, it'd be tricky to
1261                                 * track the head status without a
1262                                 * page pin.
1263                                 */
1264                                if (!PageTail(cursor_page) &&
1265                                    !atomic_read(&cursor_page->_count))
1266                                        continue;
1267                                break;
1268                        }
1269                }
1270
1271                /* If we break out of the loop above, lumpy reclaim failed */
1272                if (pfn < end_pfn)
1273                        nr_lumpy_failed++;
1274        }
1275
1276        *nr_scanned = scan;
1277
1278        trace_mm_vmscan_lru_isolate(order,
1279                        nr_to_scan, scan,
1280                        nr_taken,
1281                        nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1282                        mode, file);
1283        return nr_taken;
1284}
1285
1286/**
1287 * isolate_lru_page - tries to isolate a page from its LRU list
1288 * @page: page to isolate from its LRU list
1289 *
1290 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1291 * vmstat statistic corresponding to whatever LRU list the page was on.
1292 *
1293 * Returns 0 if the page was removed from an LRU list.
1294 * Returns -EBUSY if the page was not on an LRU list.
1295 *
1296 * The returned page will have PageLRU() cleared.  If it was found on
1297 * the active list, it will have PageActive set.  If it was found on
1298 * the unevictable list, it will have the PageUnevictable bit set. That flag
1299 * may need to be cleared by the caller before letting the page go.
1300 *
1301 * The vmstat statistic corresponding to the list on which the page was
1302 * found will be decremented.
1303 *
1304 * Restrictions:
1305 * (1) Must be called with an elevated refcount on the page. This is a
1306 *     fundamentnal difference from isolate_lru_pages (which is called
1307 *     without a stable reference).
1308 * (2) the lru_lock must not be held.
1309 * (3) interrupts must be enabled.
1310 */
1311int isolate_lru_page(struct page *page)
1312{
1313        int ret = -EBUSY;
1314
1315        VM_BUG_ON(!page_count(page));
1316
1317        if (PageLRU(page)) {
1318                struct zone *zone = page_zone(page);
1319
1320                spin_lock_irq(&zone->lru_lock);
1321                if (PageLRU(page)) {
1322                        int lru = page_lru(page);
1323                        ret = 0;
1324                        get_page(page);
1325                        ClearPageLRU(page);
1326
1327                        del_page_from_lru_list(zone, page, lru);
1328                }
1329                spin_unlock_irq(&zone->lru_lock);
1330        }
1331        return ret;
1332}
1333
1334/*
1335 * Are there way too many processes in the direct reclaim path already?
1336 */
1337static int too_many_isolated(struct zone *zone, int file,
1338                struct scan_control *sc)
1339{
1340        unsigned long inactive, isolated;
1341
1342        if (current_is_kswapd())
1343                return 0;
1344
1345        if (!global_reclaim(sc))
1346                return 0;
1347
1348        if (file) {
1349                inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1350                isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1351        } else {
1352                inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1353                isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1354        }
1355
1356        return isolated > inactive;
1357}
1358
1359static noinline_for_stack void
1360putback_inactive_pages(struct mem_cgroup_zone *mz,
1361                       struct list_head *page_list)
1362{
1363        struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1364        struct zone *zone = mz->zone;
1365        LIST_HEAD(pages_to_free);
1366
1367        /*
1368         * Put back any unfreeable pages.
1369         */
1370        while (!list_empty(page_list)) {
1371                struct page *page = lru_to_page(page_list);
1372                int lru;
1373
1374                VM_BUG_ON(PageLRU(page));
1375                list_del(&page->lru);
1376                if (unlikely(!page_evictable(page, NULL))) {
1377                        spin_unlock_irq(&zone->lru_lock);
1378                        putback_lru_page(page);
1379                        spin_lock_irq(&zone->lru_lock);
1380                        continue;
1381                }
1382                SetPageLRU(page);
1383                lru = page_lru(page);
1384                add_page_to_lru_list(zone, page, lru);
1385                if (is_active_lru(lru)) {
1386                        int file = is_file_lru(lru);
1387                        int numpages = hpage_nr_pages(page);
1388                        reclaim_stat->recent_rotated[file] += numpages;
1389                }
1390                if (put_page_testzero(page)) {
1391                        __ClearPageLRU(page);
1392                        __ClearPageActive(page);
1393                        del_page_from_lru_list(zone, page, lru);
1394
1395                        if (unlikely(PageCompound(page))) {
1396                                spin_unlock_irq(&zone->lru_lock);
1397                                (*get_compound_page_dtor(page))(page);
1398                                spin_lock_irq(&zone->lru_lock);
1399                        } else
1400                                list_add(&page->lru, &pages_to_free);
1401                }
1402        }
1403
1404        /*
1405         * To save our caller's stack, now use input list for pages to free.
1406         */
1407        list_splice(&pages_to_free, page_list);
1408}
1409
1410static noinline_for_stack void
1411update_isolated_counts(struct mem_cgroup_zone *mz,
1412                       struct list_head *page_list,
1413                       unsigned long *nr_anon,
1414                       unsigned long *nr_file)
1415{
1416        struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1417        struct zone *zone = mz->zone;
1418        unsigned int count[NR_LRU_LISTS] = { 0, };
1419        unsigned long nr_active = 0;
1420        struct page *page;
1421        int lru;
1422
1423        /*
1424         * Count pages and clear active flags
1425         */
1426        list_for_each_entry(page, page_list, lru) {
1427                int numpages = hpage_nr_pages(page);
1428                lru = page_lru_base_type(page);
1429                if (PageActive(page)) {
1430                        lru += LRU_ACTIVE;
1431                        ClearPageActive(page);
1432                        nr_active += numpages;
1433                }
1434                count[lru] += numpages;
1435        }
1436
1437        __count_vm_events(PGDEACTIVATE, nr_active);
1438
1439        __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1440                              -count[LRU_ACTIVE_FILE]);
1441        __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1442                              -count[LRU_INACTIVE_FILE]);
1443        __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1444                              -count[LRU_ACTIVE_ANON]);
1445        __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1446                              -count[LRU_INACTIVE_ANON]);
1447
1448        *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1449        *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1450
1451        reclaim_stat->recent_scanned[0] += *nr_anon;
1452        reclaim_stat->recent_scanned[1] += *nr_file;
1453}
1454
1455/*
1456 * Returns true if a direct reclaim should wait on pages under writeback.
1457 *
1458 * If we are direct reclaiming for contiguous pages and we do not reclaim
1459 * everything in the list, try again and wait for writeback IO to complete.
1460 * This will stall high-order allocations noticeably. Only do that when really
1461 * need to free the pages under high memory pressure.
1462 */
1463static inline bool should_reclaim_stall(unsigned long nr_taken,
1464                                        unsigned long nr_freed,
1465                                        int priority,
1466                                        struct scan_control *sc)
1467{
1468        int lumpy_stall_priority;
1469
1470        /* kswapd should not stall on sync IO */
1471        if (current_is_kswapd())
1472                return false;
1473
1474        /* Only stall on lumpy reclaim */
1475        if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1476                return false;
1477
1478        /* If we have reclaimed everything on the isolated list, no stall */
1479        if (nr_freed == nr_taken)
1480                return false;
1481
1482        /*
1483         * For high-order allocations, there are two stall thresholds.
1484         * High-cost allocations stall immediately where as lower
1485         * order allocations such as stacks require the scanning
1486         * priority to be much higher before stalling.
1487         */
1488        if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1489                lumpy_stall_priority = DEF_PRIORITY;
1490        else
1491                lumpy_stall_priority = DEF_PRIORITY / 3;
1492
1493        return priority <= lumpy_stall_priority;
1494}
1495
1496/*
1497 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1498 * of reclaimed pages
1499 */
1500static noinline_for_stack unsigned long
1501shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
1502                     struct scan_control *sc, int priority, int file)
1503{
1504        LIST_HEAD(page_list);
1505        unsigned long nr_scanned;
1506        unsigned long nr_reclaimed = 0;
1507        unsigned long nr_taken;
1508        unsigned long nr_anon;
1509        unsigned long nr_file;
1510        unsigned long nr_dirty = 0;
1511        unsigned long nr_writeback = 0;
1512        isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1513        struct zone *zone = mz->zone;
1514
1515        while (unlikely(too_many_isolated(zone, file, sc))) {
1516                congestion_wait(BLK_RW_ASYNC, HZ/10);
1517
1518                /* We are about to die and free our memory. Return now. */
1519                if (fatal_signal_pending(current))
1520                        return SWAP_CLUSTER_MAX;
1521        }
1522
1523        set_reclaim_mode(priority, sc, false);
1524        if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1525                reclaim_mode |= ISOLATE_ACTIVE;
1526
1527        lru_add_drain();
1528
1529        if (!sc->may_unmap)
1530                reclaim_mode |= ISOLATE_UNMAPPED;
1531        if (!sc->may_writepage)
1532                reclaim_mode |= ISOLATE_CLEAN;
1533
1534        spin_lock_irq(&zone->lru_lock);
1535
1536        nr_taken = isolate_lru_pages(nr_to_scan, mz, &page_list,
1537                                     &nr_scanned, sc->order,
1538                                     reclaim_mode, 0, file);
1539        if (global_reclaim(sc)) {
1540                zone->pages_scanned += nr_scanned;
1541                if (current_is_kswapd())
1542                        __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1543                                               nr_scanned);
1544                else
1545                        __count_zone_vm_events(PGSCAN_DIRECT, zone,
1546                                               nr_scanned);
1547        }
1548
1549        if (nr_taken == 0) {
1550                spin_unlock_irq(&zone->lru_lock);
1551                return 0;
1552        }
1553
1554        update_isolated_counts(mz, &page_list, &nr_anon, &nr_file);
1555
1556        __mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon);
1557        __mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file);
1558
1559        spin_unlock_irq(&zone->lru_lock);
1560
1561        nr_reclaimed = shrink_page_list(&page_list, mz, sc, priority,
1562                                                &nr_dirty, &nr_writeback);
1563
1564        /* Check if we should syncronously wait for writeback */
1565        if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1566                set_reclaim_mode(priority, sc, true);
1567                nr_reclaimed += shrink_page_list(&page_list, mz, sc,
1568                                        priority, &nr_dirty, &nr_writeback);
1569        }
1570
1571        spin_lock_irq(&zone->lru_lock);
1572
1573        if (current_is_kswapd())
1574                __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1575        __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1576
1577        putback_inactive_pages(mz, &page_list);
1578
1579        __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1580        __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1581
1582        spin_unlock_irq(&zone->lru_lock);
1583
1584        free_hot_cold_page_list(&page_list, 1);
1585
1586        /*
1587         * If reclaim is isolating dirty pages under writeback, it implies
1588         * that the long-lived page allocation rate is exceeding the page
1589         * laundering rate. Either the global limits are not being effective
1590         * at throttling processes due to the page distribution throughout
1591         * zones or there is heavy usage of a slow backing device. The
1592         * only option is to throttle from reclaim context which is not ideal
1593         * as there is no guarantee the dirtying process is throttled in the
1594         * same way balance_dirty_pages() manages.
1595         *
1596         * This scales the number of dirty pages that must be under writeback
1597         * before throttling depending on priority. It is a simple backoff
1598         * function that has the most effect in the range DEF_PRIORITY to
1599         * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1600         * in trouble and reclaim is considered to be in trouble.
1601         *
1602         * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1603         * DEF_PRIORITY-1  50% must be PageWriteback
1604         * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1605         * ...
1606         * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1607         *                     isolated page is PageWriteback
1608         */
1609        if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1610                wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1611
1612        trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1613                zone_idx(zone),
1614                nr_scanned, nr_reclaimed,
1615                priority,
1616                trace_shrink_flags(file, sc->reclaim_mode));
1617        return nr_reclaimed;
1618}
1619
1620/*
1621 * This moves pages from the active list to the inactive list.
1622 *
1623 * We move them the other way if the page is referenced by one or more
1624 * processes, from rmap.
1625 *
1626 * If the pages are mostly unmapped, the processing is fast and it is
1627 * appropriate to hold zone->lru_lock across the whole operation.  But if
1628 * the pages are mapped, the processing is slow (page_referenced()) so we
1629 * should drop zone->lru_lock around each page.  It's impossible to balance
1630 * this, so instead we remove the pages from the LRU while processing them.
1631 * It is safe to rely on PG_active against the non-LRU pages in here because
1632 * nobody will play with that bit on a non-LRU page.
1633 *
1634 * The downside is that we have to touch page->_count against each page.
1635 * But we had to alter page->flags anyway.
1636 */
1637
1638static void move_active_pages_to_lru(struct zone *zone,
1639                                     struct list_head *list,
1640                                     struct list_head *pages_to_free,
1641                                     enum lru_list lru)
1642{
1643        unsigned long pgmoved = 0;
1644        struct page *page;
1645
1646        if (buffer_heads_over_limit) {
1647                spin_unlock_irq(&zone->lru_lock);
1648                list_for_each_entry(page, list, lru) {
1649                        if (page_has_private(page) && trylock_page(page)) {
1650                                if (page_has_private(page))
1651                                        try_to_release_page(page, 0);
1652                                unlock_page(page);
1653                        }
1654                }
1655                spin_lock_irq(&zone->lru_lock);
1656        }
1657
1658        while (!list_empty(list)) {
1659                struct lruvec *lruvec;
1660
1661                page = lru_to_page(list);
1662
1663                VM_BUG_ON(PageLRU(page));
1664                SetPageLRU(page);
1665
1666                lruvec = mem_cgroup_lru_add_list(zone, page, lru);
1667                list_move(&page->lru, &lruvec->lists[lru]);
1668                pgmoved += hpage_nr_pages(page);
1669
1670                if (put_page_testzero(page)) {
1671                        __ClearPageLRU(page);
1672                        __ClearPageActive(page);
1673                        del_page_from_lru_list(zone, page, lru);
1674
1675                        if (unlikely(PageCompound(page))) {
1676                                spin_unlock_irq(&zone->lru_lock);
1677                                (*get_compound_page_dtor(page))(page);
1678                                spin_lock_irq(&zone->lru_lock);
1679                        } else
1680                                list_add(&page->lru, pages_to_free);
1681                }
1682        }
1683        __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1684        if (!is_active_lru(lru))
1685                __count_vm_events(PGDEACTIVATE, pgmoved);
1686}
1687
1688static void shrink_active_list(unsigned long nr_to_scan,
1689                               struct mem_cgroup_zone *mz,
1690                               struct scan_control *sc,
1691                               int priority, int file)
1692{
1693        unsigned long nr_taken;
1694        unsigned long nr_scanned;
1695        unsigned long vm_flags;
1696        LIST_HEAD(l_hold);      /* The pages which were snipped off */
1697        LIST_HEAD(l_active);
1698        LIST_HEAD(l_inactive);
1699        struct page *page;
1700        struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1701        unsigned long nr_rotated = 0;
1702        isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1703        struct zone *zone = mz->zone;
1704
1705        lru_add_drain();
1706
1707        if (!sc->may_unmap)
1708                reclaim_mode |= ISOLATE_UNMAPPED;
1709        if (!sc->may_writepage)
1710                reclaim_mode |= ISOLATE_CLEAN;
1711
1712        spin_lock_irq(&zone->lru_lock);
1713
1714        nr_taken = isolate_lru_pages(nr_to_scan, mz, &l_hold,
1715                                     &nr_scanned, sc->order,
1716                                     reclaim_mode, 1, file);
1717        if (global_reclaim(sc))
1718                zone->pages_scanned += nr_scanned;
1719
1720        reclaim_stat->recent_scanned[file] += nr_taken;
1721
1722        __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1723        if (file)
1724                __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1725        else
1726                __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1727        __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1728        spin_unlock_irq(&zone->lru_lock);
1729
1730        while (!list_empty(&l_hold)) {
1731                cond_resched();
1732                page = lru_to_page(&l_hold);
1733                list_del(&page->lru);
1734
1735                if (unlikely(!page_evictable(page, NULL))) {
1736                        putback_lru_page(page);
1737                        continue;
1738                }
1739
1740                if (page_referenced(page, 0, mz->mem_cgroup, &vm_flags)) {
1741                        nr_rotated += hpage_nr_pages(page);
1742                        /*
1743                         * Identify referenced, file-backed active pages and
1744                         * give them one more trip around the active list. So
1745                         * that executable code get better chances to stay in
1746                         * memory under moderate memory pressure.  Anon pages
1747                         * are not likely to be evicted by use-once streaming
1748                         * IO, plus JVM can create lots of anon VM_EXEC pages,
1749                         * so we ignore them here.
1750                         */
1751                        if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1752                                list_add(&page->lru, &l_active);
1753                                continue;
1754                        }
1755                }
1756
1757                ClearPageActive(page);  /* we are de-activating */
1758                list_add(&page->lru, &l_inactive);
1759        }
1760
1761        /*
1762         * Move pages back to the lru list.
1763         */
1764        spin_lock_irq(&zone->lru_lock);
1765        /*
1766         * Count referenced pages from currently used mappings as rotated,
1767         * even though only some of them are actually re-activated.  This
1768         * helps balance scan pressure between file and anonymous pages in
1769         * get_scan_ratio.
1770         */
1771        reclaim_stat->recent_rotated[file] += nr_rotated;
1772
1773        move_active_pages_to_lru(zone, &l_active, &l_hold,
1774                                                LRU_ACTIVE + file * LRU_FILE);
1775        move_active_pages_to_lru(zone, &l_inactive, &l_hold,
1776                                                LRU_BASE   + file * LRU_FILE);
1777        __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1778        spin_unlock_irq(&zone->lru_lock);
1779
1780        free_hot_cold_page_list(&l_hold, 1);
1781}
1782
1783#ifdef CONFIG_SWAP
1784static int inactive_anon_is_low_global(struct zone *zone)
1785{
1786        unsigned long active, inactive;
1787
1788        active = zone_page_state(zone, NR_ACTIVE_ANON);
1789        inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1790
1791        if (inactive * zone->inactive_ratio < active)
1792                return 1;
1793
1794        return 0;
1795}
1796
1797/**
1798 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1799 * @zone: zone to check
1800 * @sc:   scan control of this context
1801 *
1802 * Returns true if the zone does not have enough inactive anon pages,
1803 * meaning some active anon pages need to be deactivated.
1804 */
1805static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1806{
1807        /*
1808         * If we don't have swap space, anonymous page deactivation
1809         * is pointless.
1810         */
1811        if (!total_swap_pages)
1812                return 0;
1813
1814        if (!scanning_global_lru(mz))
1815                return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
1816                                                       mz->zone);
1817
1818        return inactive_anon_is_low_global(mz->zone);
1819}
1820#else
1821static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1822{
1823        return 0;
1824}
1825#endif
1826
1827static int inactive_file_is_low_global(struct zone *zone)
1828{
1829        unsigned long active, inactive;
1830
1831        active = zone_page_state(zone, NR_ACTIVE_FILE);
1832        inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1833
1834        return (active > inactive);
1835}
1836
1837/**
1838 * inactive_file_is_low - check if file pages need to be deactivated
1839 * @mz: memory cgroup and zone to check
1840 *
1841 * When the system is doing streaming IO, memory pressure here
1842 * ensures that active file pages get deactivated, until more
1843 * than half of the file pages are on the inactive list.
1844 *
1845 * Once we get to that situation, protect the system's working
1846 * set from being evicted by disabling active file page aging.
1847 *
1848 * This uses a different ratio than the anonymous pages, because
1849 * the page cache uses a use-once replacement algorithm.
1850 */
1851static int inactive_file_is_low(struct mem_cgroup_zone *mz)
1852{
1853        if (!scanning_global_lru(mz))
1854                return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
1855                                                       mz->zone);
1856
1857        return inactive_file_is_low_global(mz->zone);
1858}
1859
1860static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
1861{
1862        if (file)
1863                return inactive_file_is_low(mz);
1864        else
1865                return inactive_anon_is_low(mz);
1866}
1867
1868static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1869                                 struct mem_cgroup_zone *mz,
1870                                 struct scan_control *sc, int priority)
1871{
1872        int file = is_file_lru(lru);
1873
1874        if (is_active_lru(lru)) {
1875                if (inactive_list_is_low(mz, file))
1876                        shrink_active_list(nr_to_scan, mz, sc, priority, file);
1877                return 0;
1878        }
1879
1880        return shrink_inactive_list(nr_to_scan, mz, sc, priority, file);
1881}
1882
1883static int vmscan_swappiness(struct mem_cgroup_zone *mz,
1884                             struct scan_control *sc)
1885{
1886        if (global_reclaim(sc))
1887                return vm_swappiness;
1888        return mem_cgroup_swappiness(mz->mem_cgroup);
1889}
1890
1891/*
1892 * Determine how aggressively the anon and file LRU lists should be
1893 * scanned.  The relative value of each set of LRU lists is determined
1894 * by looking at the fraction of the pages scanned we did rotate back
1895 * onto the active list instead of evict.
1896 *
1897 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1898 */
1899static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
1900                           unsigned long *nr, int priority)
1901{
1902        unsigned long anon, file, free;
1903        unsigned long anon_prio, file_prio;
1904        unsigned long ap, fp;
1905        struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1906        u64 fraction[2], denominator;
1907        enum lru_list lru;
1908        int noswap = 0;
1909        bool force_scan = false;
1910
1911        /*
1912         * If the zone or memcg is small, nr[l] can be 0.  This
1913         * results in no scanning on this priority and a potential
1914         * priority drop.  Global direct reclaim can go to the next
1915         * zone and tends to have no problems. Global kswapd is for
1916         * zone balancing and it needs to scan a minimum amount. When
1917         * reclaiming for a memcg, a priority drop can cause high
1918         * latencies, so it's better to scan a minimum amount there as
1919         * well.
1920         */
1921        if (current_is_kswapd() && mz->zone->all_unreclaimable)
1922                force_scan = true;
1923        if (!global_reclaim(sc))
1924                force_scan = true;
1925
1926        /* If we have no swap space, do not bother scanning anon pages. */
1927        if (!sc->may_swap || (nr_swap_pages <= 0)) {
1928                noswap = 1;
1929                fraction[0] = 0;
1930                fraction[1] = 1;
1931                denominator = 1;
1932                goto out;
1933        }
1934
1935        anon  = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
1936                zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1937        file  = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
1938                zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1939
1940        if (global_reclaim(sc)) {
1941                free  = zone_page_state(mz->zone, NR_FREE_PAGES);
1942                /* If we have very few page cache pages,
1943                   force-scan anon pages. */
1944                if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
1945                        fraction[0] = 1;
1946                        fraction[1] = 0;
1947                        denominator = 1;
1948                        goto out;
1949                }
1950        }
1951
1952        /*
1953         * With swappiness at 100, anonymous and file have the same priority.
1954         * This scanning priority is essentially the inverse of IO cost.
1955         */
1956        anon_prio = vmscan_swappiness(mz, sc);
1957        file_prio = 200 - vmscan_swappiness(mz, sc);
1958
1959        /*
1960         * OK, so we have swap space and a fair amount of page cache
1961         * pages.  We use the recently rotated / recently scanned
1962         * ratios to determine how valuable each cache is.
1963         *
1964         * Because workloads change over time (and to avoid overflow)
1965         * we keep these statistics as a floating average, which ends
1966         * up weighing recent references more than old ones.
1967         *
1968         * anon in [0], file in [1]
1969         */
1970        spin_lock_irq(&mz->zone->lru_lock);
1971        if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1972                reclaim_stat->recent_scanned[0] /= 2;
1973                reclaim_stat->recent_rotated[0] /= 2;
1974        }
1975
1976        if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1977                reclaim_stat->recent_scanned[1] /= 2;
1978                reclaim_stat->recent_rotated[1] /= 2;
1979        }
1980
1981        /*
1982         * The amount of pressure on anon vs file pages is inversely
1983         * proportional to the fraction of recently scanned pages on
1984         * each list that were recently referenced and in active use.
1985         */
1986        ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1987        ap /= reclaim_stat->recent_rotated[0] + 1;
1988
1989        fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1990        fp /= reclaim_stat->recent_rotated[1] + 1;
1991        spin_unlock_irq(&mz->zone->lru_lock);
1992
1993        fraction[0] = ap;
1994        fraction[1] = fp;
1995        denominator = ap + fp + 1;
1996out:
1997        for_each_evictable_lru(lru) {
1998                int file = is_file_lru(lru);
1999                unsigned long scan;
2000
2001                scan = zone_nr_lru_pages(mz, lru);
2002                if (priority || noswap) {
2003                        scan >>= priority;
2004                        if (!scan && force_scan)
2005                                scan = SWAP_CLUSTER_MAX;
2006                        scan = div64_u64(scan * fraction[file], denominator);
2007                }
2008                nr[lru] = scan;
2009        }
2010}
2011
2012/*
2013 * Reclaim/compaction depends on a number of pages being freed. To avoid
2014 * disruption to the system, a small number of order-0 pages continue to be
2015 * rotated and reclaimed in the normal fashion. However, by the time we get
2016 * back to the allocator and call try_to_compact_zone(), we ensure that
2017 * there are enough free pages for it to be likely successful
2018 */
2019static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
2020                                        unsigned long nr_reclaimed,
2021                                        unsigned long nr_scanned,
2022                                        struct scan_control *sc)
2023{
2024        unsigned long pages_for_compaction;
2025        unsigned long inactive_lru_pages;
2026
2027        /* If not in reclaim/compaction mode, stop */
2028        if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
2029                return false;
2030
2031        /* Consider stopping depending on scan and reclaim activity */
2032        if (sc->gfp_mask & __GFP_REPEAT) {
2033                /*
2034                 * For __GFP_REPEAT allocations, stop reclaiming if the
2035                 * full LRU list has been scanned and we are still failing
2036                 * to reclaim pages. This full LRU scan is potentially
2037                 * expensive but a __GFP_REPEAT caller really wants to succeed
2038                 */
2039                if (!nr_reclaimed && !nr_scanned)
2040                        return false;
2041        } else {
2042                /*
2043                 * For non-__GFP_REPEAT allocations which can presumably
2044                 * fail without consequence, stop if we failed to reclaim
2045                 * any pages from the last SWAP_CLUSTER_MAX number of
2046                 * pages that were scanned. This will return to the
2047                 * caller faster at the risk reclaim/compaction and
2048                 * the resulting allocation attempt fails
2049                 */
2050                if (!nr_reclaimed)
2051                        return false;
2052        }
2053
2054        /*
2055         * If we have not reclaimed enough pages for compaction and the
2056         * inactive lists are large enough, continue reclaiming
2057         */
2058        pages_for_compaction = (2UL << sc->order);
2059        inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
2060        if (nr_swap_pages > 0)
2061                inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
2062        if (sc->nr_reclaimed < pages_for_compaction &&
2063                        inactive_lru_pages > pages_for_compaction)
2064                return true;
2065
2066        /* If compaction would go ahead or the allocation would succeed, stop */
2067        switch (compaction_suitable(mz->zone, sc->order)) {
2068        case COMPACT_PARTIAL:
2069        case COMPACT_CONTINUE:
2070                return false;
2071        default:
2072                return true;
2073        }
2074}
2075
2076/*
2077 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2078 */
2079static void shrink_mem_cgroup_zone(int priority, struct mem_cgroup_zone *mz,
2080                                   struct scan_control *sc)
2081{
2082        unsigned long nr[NR_LRU_LISTS];
2083        unsigned long nr_to_scan;
2084        enum lru_list lru;
2085        unsigned long nr_reclaimed, nr_scanned;
2086        unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2087        struct blk_plug plug;
2088
2089restart:
2090        nr_reclaimed = 0;
2091        nr_scanned = sc->nr_scanned;
2092        get_scan_count(mz, sc, nr, priority);
2093
2094        blk_start_plug(&plug);
2095        while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2096                                        nr[LRU_INACTIVE_FILE]) {
2097                for_each_evictable_lru(lru) {
2098                        if (nr[lru]) {
2099                                nr_to_scan = min_t(unsigned long,
2100                                                   nr[lru], SWAP_CLUSTER_MAX);
2101                                nr[lru] -= nr_to_scan;
2102
2103                                nr_reclaimed += shrink_list(lru, nr_to_scan,
2104                                                            mz, sc, priority);
2105                        }
2106                }
2107                /*
2108                 * On large memory systems, scan >> priority can become
2109                 * really large. This is fine for the starting priority;
2110                 * we want to put equal scanning pressure on each zone.
2111                 * However, if the VM has a harder time of freeing pages,
2112                 * with multiple processes reclaiming pages, the total
2113                 * freeing target can get unreasonably large.
2114                 */
2115                if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2116                        break;
2117        }
2118        blk_finish_plug(&plug);
2119        sc->nr_reclaimed += nr_reclaimed;
2120
2121        /*
2122         * Even if we did not try to evict anon pages at all, we want to
2123         * rebalance the anon lru active/inactive ratio.
2124         */
2125        if (inactive_anon_is_low(mz))
2126                shrink_active_list(SWAP_CLUSTER_MAX, mz, sc, priority, 0);
2127
2128        /* reclaim/compaction might need reclaim to continue */
2129        if (should_continue_reclaim(mz, nr_reclaimed,
2130                                        sc->nr_scanned - nr_scanned, sc))
2131                goto restart;
2132
2133        throttle_vm_writeout(sc->gfp_mask);
2134}
2135
2136static void shrink_zone(int priority, struct zone *zone,
2137                        struct scan_control *sc)
2138{
2139        struct mem_cgroup *root = sc->target_mem_cgroup;
2140        struct mem_cgroup_reclaim_cookie reclaim = {
2141                .zone = zone,
2142                .priority = priority,
2143        };
2144        struct mem_cgroup *memcg;
2145
2146        memcg = mem_cgroup_iter(root, NULL, &reclaim);
2147        do {
2148                struct mem_cgroup_zone mz = {
2149                        .mem_cgroup = memcg,
2150                        .zone = zone,
2151                };
2152
2153                shrink_mem_cgroup_zone(priority, &mz, sc);
2154                /*
2155                 * Limit reclaim has historically picked one memcg and
2156                 * scanned it with decreasing priority levels until
2157                 * nr_to_reclaim had been reclaimed.  This priority
2158                 * cycle is thus over after a single memcg.
2159                 *
2160                 * Direct reclaim and kswapd, on the other hand, have
2161                 * to scan all memory cgroups to fulfill the overall
2162                 * scan target for the zone.
2163                 */
2164                if (!global_reclaim(sc)) {
2165                        mem_cgroup_iter_break(root, memcg);
2166                        break;
2167                }
2168                memcg = mem_cgroup_iter(root, memcg, &reclaim);
2169        } while (memcg);
2170}
2171
2172/* Returns true if compaction should go ahead for a high-order request */
2173static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2174{
2175        unsigned long balance_gap, watermark;
2176        bool watermark_ok;
2177
2178        /* Do not consider compaction for orders reclaim is meant to satisfy */
2179        if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2180                return false;
2181
2182        /*
2183         * Compaction takes time to run and there are potentially other
2184         * callers using the pages just freed. Continue reclaiming until
2185         * there is a buffer of free pages available to give compaction
2186         * a reasonable chance of completing and allocating the page
2187         */
2188        balance_gap = min(low_wmark_pages(zone),
2189                (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2190                        KSWAPD_ZONE_BALANCE_GAP_RATIO);
2191        watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2192        watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2193
2194        /*
2195         * If compaction is deferred, reclaim up to a point where
2196         * compaction will have a chance of success when re-enabled
2197         */
2198        if (compaction_deferred(zone))
2199                return watermark_ok;
2200
2201        /* If compaction is not ready to start, keep reclaiming */
2202        if (!compaction_suitable(zone, sc->order))
2203                return false;
2204
2205        return watermark_ok;
2206}
2207
2208/*
2209 * This is the direct reclaim path, for page-allocating processes.  We only
2210 * try to reclaim pages from zones which will satisfy the caller's allocation
2211 * request.
2212 *
2213 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2214 * Because:
2215 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2216 *    allocation or
2217 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2218 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2219 *    zone defense algorithm.
2220 *
2221 * If a zone is deemed to be full of pinned pages then just give it a light
2222 * scan then give up on it.
2223 *
2224 * This function returns true if a zone is being reclaimed for a costly
2225 * high-order allocation and compaction is ready to begin. This indicates to
2226 * the caller that it should consider retrying the allocation instead of
2227 * further reclaim.
2228 */
2229static bool shrink_zones(int priority, struct zonelist *zonelist,
2230                                        struct scan_control *sc)
2231{
2232        struct zoneref *z;
2233        struct zone *zone;
2234        unsigned long nr_soft_reclaimed;
2235        unsigned long nr_soft_scanned;
2236        bool aborted_reclaim = false;
2237
2238        for_each_zone_zonelist_nodemask(zone, z, zonelist,
2239                                        gfp_zone(sc->gfp_mask), sc->nodemask) {
2240                if (!populated_zone(zone))
2241                        continue;
2242                /*
2243                 * Take care memory controller reclaiming has small influence
2244                 * to global LRU.
2245                 */
2246                if (global_reclaim(sc)) {
2247                        if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2248                                continue;
2249                        if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2250                                continue;       /* Let kswapd poll it */
2251                        if (COMPACTION_BUILD) {
2252                                /*
2253                                 * If we already have plenty of memory free for
2254                                 * compaction in this zone, don't free any more.
2255                                 * Even though compaction is invoked for any
2256                                 * non-zero order, only frequent costly order
2257                                 * reclamation is disruptive enough to become a
2258                                 * noticable problem, like transparent huge page
2259                                 * allocations.
2260                                 */
2261                                if (compaction_ready(zone, sc)) {
2262                                        aborted_reclaim = true;
2263                                        continue;
2264                                }
2265                        }
2266                        /*
2267                         * This steals pages from memory cgroups over softlimit
2268                         * and returns the number of reclaimed pages and
2269                         * scanned pages. This works for global memory pressure
2270                         * and balancing, not for a memcg's limit.
2271                         */
2272                        nr_soft_scanned = 0;
2273                        nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2274                                                sc->order, sc->gfp_mask,
2275                                                &nr_soft_scanned);
2276                        sc->nr_reclaimed += nr_soft_reclaimed;
2277                        sc->nr_scanned += nr_soft_scanned;
2278                        /* need some check for avoid more shrink_zone() */
2279                }
2280
2281                shrink_zone(priority, zone, sc);
2282        }
2283
2284        return aborted_reclaim;
2285}
2286
2287static bool zone_reclaimable(struct zone *zone)
2288{
2289        return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2290}
2291
2292/* All zones in zonelist are unreclaimable? */
2293static bool all_unreclaimable(struct zonelist *zonelist,
2294                struct scan_control *sc)
2295{
2296        struct zoneref *z;
2297        struct zone *zone;
2298
2299        for_each_zone_zonelist_nodemask(zone, z, zonelist,
2300                        gfp_zone(sc->gfp_mask), sc->nodemask) {
2301                if (!populated_zone(zone))
2302                        continue;
2303                if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2304                        continue;
2305                if (!zone->all_unreclaimable)
2306                        return false;
2307        }
2308
2309        return true;
2310}
2311
2312/*
2313 * This is the main entry point to direct page reclaim.
2314 *
2315 * If a full scan of the inactive list fails to free enough memory then we
2316 * are "out of memory" and something needs to be killed.
2317 *
2318 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2319 * high - the zone may be full of dirty or under-writeback pages, which this
2320 * caller can't do much about.  We kick the writeback threads and take explicit
2321 * naps in the hope that some of these pages can be written.  But if the
2322 * allocating task holds filesystem locks which prevent writeout this might not
2323 * work, and the allocation attempt will fail.
2324 *
2325 * returns:     0, if no pages reclaimed
2326 *              else, the number of pages reclaimed
2327 */
2328static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2329                                        struct scan_control *sc,
2330                                        struct shrink_control *shrink)
2331{
2332        int priority;
2333        unsigned long total_scanned = 0;
2334        struct reclaim_state *reclaim_state = current->reclaim_state;
2335        struct zoneref *z;
2336        struct zone *zone;
2337        unsigned long writeback_threshold;
2338        bool aborted_reclaim;
2339
2340        get_mems_allowed();
2341        delayacct_freepages_start();
2342
2343        if (global_reclaim(sc))
2344                count_vm_event(ALLOCSTALL);
2345
2346        for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2347                sc->nr_scanned = 0;
2348                if (!priority)
2349                        disable_swap_token(sc->target_mem_cgroup);
2350                aborted_reclaim = shrink_zones(priority, zonelist, sc);
2351
2352                /*
2353                 * Don't shrink slabs when reclaiming memory from
2354                 * over limit cgroups
2355                 */
2356                if (global_reclaim(sc)) {
2357                        unsigned long lru_pages = 0;
2358                        for_each_zone_zonelist(zone, z, zonelist,
2359                                        gfp_zone(sc->gfp_mask)) {
2360                                if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2361                                        continue;
2362
2363                                lru_pages += zone_reclaimable_pages(zone);
2364                        }
2365
2366                        shrink_slab(shrink, sc->nr_scanned, lru_pages);
2367                        if (reclaim_state) {
2368                                sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2369                                reclaim_state->reclaimed_slab = 0;
2370                        }
2371                }
2372                total_scanned += sc->nr_scanned;
2373                if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2374                        goto out;
2375
2376                /*
2377                 * Try to write back as many pages as we just scanned.  This
2378                 * tends to cause slow streaming writers to write data to the
2379                 * disk smoothly, at the dirtying rate, which is nice.   But
2380                 * that's undesirable in laptop mode, where we *want* lumpy
2381                 * writeout.  So in laptop mode, write out the whole world.
2382                 */
2383                writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2384                if (total_scanned > writeback_threshold) {
2385                        wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2386                                                WB_REASON_TRY_TO_FREE_PAGES);
2387                        sc->may_writepage = 1;
2388                }
2389
2390                /* Take a nap, wait for some writeback to complete */
2391                if (!sc->hibernation_mode && sc->nr_scanned &&
2392                    priority < DEF_PRIORITY - 2) {
2393                        struct zone *preferred_zone;
2394
2395                        first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2396                                                &cpuset_current_mems_allowed,
2397                                                &preferred_zone);
2398                        wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2399                }
2400        }
2401
2402out:
2403        delayacct_freepages_end();
2404        put_mems_allowed();
2405
2406        if (sc->nr_reclaimed)
2407                return sc->nr_reclaimed;
2408
2409        /*
2410         * As hibernation is going on, kswapd is freezed so that it can't mark
2411         * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2412         * check.
2413         */
2414        if (oom_killer_disabled)
2415                return 0;
2416
2417        /* Aborted reclaim to try compaction? don't OOM, then */
2418        if (aborted_reclaim)
2419                return 1;
2420
2421        /* top priority shrink_zones still had more to do? don't OOM, then */
2422        if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2423                return 1;
2424
2425        return 0;
2426}
2427
2428unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2429                                gfp_t gfp_mask, nodemask_t *nodemask)
2430{
2431        unsigned long nr_reclaimed;
2432        struct scan_control sc = {
2433                .gfp_mask = gfp_mask,
2434                .may_writepage = !laptop_mode,
2435                .nr_to_reclaim = SWAP_CLUSTER_MAX,
2436                .may_unmap = 1,
2437                .may_swap = 1,
2438                .order = order,
2439                .target_mem_cgroup = NULL,
2440                .nodemask = nodemask,
2441        };
2442        struct shrink_control shrink = {
2443                .gfp_mask = sc.gfp_mask,
2444        };
2445
2446        trace_mm_vmscan_direct_reclaim_begin(order,
2447                                sc.may_writepage,
2448                                gfp_mask);
2449
2450        nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2451
2452        trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2453
2454        return nr_reclaimed;
2455}
2456
2457#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2458
2459unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2460                                                gfp_t gfp_mask, bool noswap,
2461                                                struct zone *zone,
2462                                                unsigned long *nr_scanned)
2463{
2464        struct scan_control sc = {
2465                .nr_scanned = 0,
2466                .nr_to_reclaim = SWAP_CLUSTER_MAX,
2467                .may_writepage = !laptop_mode,
2468                .may_unmap = 1,
2469                .may_swap = !noswap,
2470                .order = 0,
2471                .target_mem_cgroup = memcg,
2472        };
2473        struct mem_cgroup_zone mz = {
2474                .mem_cgroup = memcg,
2475                .zone = zone,
2476        };
2477
2478        sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2479                        (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2480
2481        trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2482                                                      sc.may_writepage,
2483                                                      sc.gfp_mask);
2484
2485        /*
2486         * NOTE: Although we can get the priority field, using it
2487         * here is not a good idea, since it limits the pages we can scan.
2488         * if we don't reclaim here, the shrink_zone from balance_pgdat
2489         * will pick up pages from other mem cgroup's as well. We hack
2490         * the priority and make it zero.
2491         */
2492        shrink_mem_cgroup_zone(0, &mz, &sc);
2493
2494        trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2495
2496        *nr_scanned = sc.nr_scanned;
2497        return sc.nr_reclaimed;
2498}
2499
2500unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2501                                           gfp_t gfp_mask,
2502                                           bool noswap)
2503{
2504        struct zonelist *zonelist;
2505        unsigned long nr_reclaimed;
2506        int nid;
2507        struct scan_control sc = {
2508                .may_writepage = !laptop_mode,
2509                .may_unmap = 1,
2510                .may_swap = !noswap,
2511                .nr_to_reclaim = SWAP_CLUSTER_MAX,
2512                .order = 0,
2513                .target_mem_cgroup = memcg,
2514                .nodemask = NULL, /* we don't care the placement */
2515                .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2516                                (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2517        };
2518        struct shrink_control shrink = {
2519                .gfp_mask = sc.gfp_mask,
2520        };
2521
2522        /*
2523         * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2524         * take care of from where we get pages. So the node where we start the
2525         * scan does not need to be the current node.
2526         */
2527        nid = mem_cgroup_select_victim_node(memcg);
2528
2529        zonelist = NODE_DATA(nid)->node_zonelists;
2530
2531        trace_mm_vmscan_memcg_reclaim_begin(0,
2532                                            sc.may_writepage,
2533                                            sc.gfp_mask);
2534
2535        nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2536
2537        trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2538
2539        return nr_reclaimed;
2540}
2541#endif
2542
2543static void age_active_anon(struct zone *zone, struct scan_control *sc,
2544                            int priority)
2545{
2546        struct mem_cgroup *memcg;
2547
2548        if (!total_swap_pages)
2549                return;
2550
2551        memcg = mem_cgroup_iter(NULL, NULL, NULL);
2552        do {
2553                struct mem_cgroup_zone mz = {
2554                        .mem_cgroup = memcg,
2555                        .zone = zone,
2556                };
2557
2558                if (inactive_anon_is_low(&mz))
2559                        shrink_active_list(SWAP_CLUSTER_MAX, &mz,
2560                                           sc, priority, 0);
2561
2562                memcg = mem_cgroup_iter(NULL, memcg, NULL);
2563        } while (memcg);
2564}
2565
2566/*
2567 * pgdat_balanced is used when checking if a node is balanced for high-order
2568 * allocations. Only zones that meet watermarks and are in a zone allowed
2569 * by the callers classzone_idx are added to balanced_pages. The total of
2570 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2571 * for the node to be considered balanced. Forcing all zones to be balanced
2572 * for high orders can cause excessive reclaim when there are imbalanced zones.
2573 * The choice of 25% is due to
2574 *   o a 16M DMA zone that is balanced will not balance a zone on any
2575 *     reasonable sized machine
2576 *   o On all other machines, the top zone must be at least a reasonable
2577 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2578 *     would need to be at least 256M for it to be balance a whole node.
2579 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2580 *     to balance a node on its own. These seemed like reasonable ratios.
2581 */
2582static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2583                                                int classzone_idx)
2584{
2585        unsigned long present_pages = 0;
2586        int i;
2587
2588        for (i = 0; i <= classzone_idx; i++)
2589                present_pages += pgdat->node_zones[i].present_pages;
2590
2591        /* A special case here: if zone has no page, we think it's balanced */
2592        return balanced_pages >= (present_pages >> 2);
2593}
2594
2595/* is kswapd sleeping prematurely? */
2596static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2597                                        int classzone_idx)
2598{
2599        int i;
2600        unsigned long balanced = 0;
2601        bool all_zones_ok = true;
2602
2603        /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2604        if (remaining)
2605                return true;
2606
2607        /* Check the watermark levels */
2608        for (i = 0; i <= classzone_idx; i++) {
2609                struct zone *zone = pgdat->node_zones + i;
2610
2611                if (!populated_zone(zone))
2612                        continue;
2613
2614                /*
2615                 * balance_pgdat() skips over all_unreclaimable after
2616                 * DEF_PRIORITY. Effectively, it considers them balanced so
2617                 * they must be considered balanced here as well if kswapd
2618                 * is to sleep
2619                 */
2620                if (zone->all_unreclaimable) {
2621                        balanced += zone->present_pages;
2622                        continue;
2623                }
2624
2625                if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2626                                                        i, 0))
2627                        all_zones_ok = false;
2628                else
2629                        balanced += zone->present_pages;
2630        }
2631
2632        /*
2633         * For high-order requests, the balanced zones must contain at least
2634         * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2635         * must be balanced
2636         */
2637        if (order)
2638                return !pgdat_balanced(pgdat, balanced, classzone_idx);
2639        else
2640                return !all_zones_ok;
2641}
2642
2643/*
2644 * For kswapd, balance_pgdat() will work across all this node's zones until
2645 * they are all at high_wmark_pages(zone).
2646 *
2647 * Returns the final order kswapd was reclaiming at
2648 *
2649 * There is special handling here for zones which are full of pinned pages.
2650 * This can happen if the pages are all mlocked, or if they are all used by
2651 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2652 * What we do is to detect the case where all pages in the zone have been
2653 * scanned twice and there has been zero successful reclaim.  Mark the zone as
2654 * dead and from now on, only perform a short scan.  Basically we're polling
2655 * the zone for when the problem goes away.
2656 *
2657 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2658 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2659 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2660 * lower zones regardless of the number of free pages in the lower zones. This
2661 * interoperates with the page allocator fallback scheme to ensure that aging
2662 * of pages is balanced across the zones.
2663 */
2664static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2665                                                        int *classzone_idx)
2666{
2667        int all_zones_ok;
2668        unsigned long balanced;
2669        int priority;
2670        int i;
2671        int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2672        unsigned long total_scanned;
2673        struct reclaim_state *reclaim_state = current->reclaim_state;
2674        unsigned long nr_soft_reclaimed;
2675        unsigned long nr_soft_scanned;
2676        struct scan_control sc = {
2677                .gfp_mask = GFP_KERNEL,
2678                .may_unmap = 1,
2679                .may_swap = 1,
2680                /*
2681                 * kswapd doesn't want to be bailed out while reclaim. because
2682                 * we want to put equal scanning pressure on each zone.
2683                 */
2684                .nr_to_reclaim = ULONG_MAX,
2685                .order = order,
2686                .target_mem_cgroup = NULL,
2687        };
2688        struct shrink_control shrink = {
2689                .gfp_mask = sc.gfp_mask,
2690        };
2691loop_again:
2692        total_scanned = 0;
2693        sc.nr_reclaimed = 0;
2694        sc.may_writepage = !laptop_mode;
2695        count_vm_event(PAGEOUTRUN);
2696
2697        for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2698                unsigned long lru_pages = 0;
2699                int has_under_min_watermark_zone = 0;
2700
2701                /* The swap token gets in the way of swapout... */
2702                if (!priority)
2703                        disable_swap_token(NULL);
2704
2705                all_zones_ok = 1;
2706                balanced = 0;
2707
2708                /*
2709                 * Scan in the highmem->dma direction for the highest
2710                 * zone which needs scanning
2711                 */
2712                for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2713                        struct zone *zone = pgdat->node_zones + i;
2714
2715                        if (!populated_zone(zone))
2716                                continue;
2717
2718                        if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2719                                continue;
2720
2721                        /*
2722                         * Do some background aging of the anon list, to give
2723                         * pages a chance to be referenced before reclaiming.
2724                         */
2725                        age_active_anon(zone, &sc, priority);
2726
2727                        if (!zone_watermark_ok_safe(zone, order,
2728                                        high_wmark_pages(zone), 0, 0)) {
2729                                end_zone = i;
2730                                break;
2731                        } else {
2732                                /* If balanced, clear the congested flag */
2733                                zone_clear_flag(zone, ZONE_CONGESTED);
2734                        }
2735                }
2736                if (i < 0)
2737                        goto out;
2738
2739                for (i = 0; i <= end_zone; i++) {
2740                        struct zone *zone = pgdat->node_zones + i;
2741
2742                        lru_pages += zone_reclaimable_pages(zone);
2743                }
2744
2745                /*
2746                 * Now scan the zone in the dma->highmem direction, stopping
2747                 * at the last zone which needs scanning.
2748                 *
2749                 * We do this because the page allocator works in the opposite
2750                 * direction.  This prevents the page allocator from allocating
2751                 * pages behind kswapd's direction of progress, which would
2752                 * cause too much scanning of the lower zones.
2753                 */
2754                for (i = 0; i <= end_zone; i++) {
2755                        struct zone *zone = pgdat->node_zones + i;
2756                        int nr_slab;
2757                        unsigned long balance_gap;
2758
2759                        if (!populated_zone(zone))
2760                                continue;
2761
2762                        if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2763                                continue;
2764
2765                        sc.nr_scanned = 0;
2766
2767                        nr_soft_scanned = 0;
2768                        /*
2769                         * Call soft limit reclaim before calling shrink_zone.
2770                         */
2771                        nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2772                                                        order, sc.gfp_mask,
2773                                                        &nr_soft_scanned);
2774                        sc.nr_reclaimed += nr_soft_reclaimed;
2775                        total_scanned += nr_soft_scanned;
2776
2777                        /*
2778                         * We put equal pressure on every zone, unless
2779                         * one zone has way too many pages free
2780                         * already. The "too many pages" is defined
2781                         * as the high wmark plus a "gap" where the
2782                         * gap is either the low watermark or 1%
2783                         * of the zone, whichever is smaller.
2784                         */
2785                        balance_gap = min(low_wmark_pages(zone),
2786                                (zone->present_pages +
2787                                        KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2788                                KSWAPD_ZONE_BALANCE_GAP_RATIO);
2789                        if (!zone_watermark_ok_safe(zone, order,
2790                                        high_wmark_pages(zone) + balance_gap,
2791                                        end_zone, 0)) {
2792                                shrink_zone(priority, zone, &sc);
2793
2794                                reclaim_state->reclaimed_slab = 0;
2795                                nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2796                                sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2797                                total_scanned += sc.nr_scanned;
2798
2799                                if (nr_slab == 0 && !zone_reclaimable(zone))
2800                                        zone->all_unreclaimable = 1;
2801                        }
2802
2803                        /*
2804                         * If we've done a decent amount of scanning and
2805                         * the reclaim ratio is low, start doing writepage
2806                         * even in laptop mode
2807                         */
2808                        if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2809                            total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2810                                sc.may_writepage = 1;
2811
2812                        if (zone->all_unreclaimable) {
2813                                if (end_zone && end_zone == i)
2814                                        end_zone--;
2815                                continue;
2816                        }
2817
2818                        if (!zone_watermark_ok_safe(zone, order,
2819                                        high_wmark_pages(zone), end_zone, 0)) {
2820                                all_zones_ok = 0;
2821                                /*
2822                                 * We are still under min water mark.  This
2823                                 * means that we have a GFP_ATOMIC allocation
2824                                 * failure risk. Hurry up!
2825                                 */
2826                                if (!zone_watermark_ok_safe(zone, order,
2827                                            min_wmark_pages(zone), end_zone, 0))
2828                                        has_under_min_watermark_zone = 1;
2829                        } else {
2830                                /*
2831                                 * If a zone reaches its high watermark,
2832                                 * consider it to be no longer congested. It's
2833                                 * possible there are dirty pages backed by
2834                                 * congested BDIs but as pressure is relieved,
2835                                 * spectulatively avoid congestion waits
2836                                 */
2837                                zone_clear_flag(zone, ZONE_CONGESTED);
2838                                if (i <= *classzone_idx)
2839                                        balanced += zone->present_pages;
2840                        }
2841
2842                }
2843                if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2844                        break;          /* kswapd: all done */
2845                /*
2846                 * OK, kswapd is getting into trouble.  Take a nap, then take
2847                 * another pass across the zones.
2848                 */
2849                if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2850                        if (has_under_min_watermark_zone)
2851                                count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2852                        else
2853                                congestion_wait(BLK_RW_ASYNC, HZ/10);
2854                }
2855
2856                /*
2857                 * We do this so kswapd doesn't build up large priorities for
2858                 * example when it is freeing in parallel with allocators. It
2859                 * matches the direct reclaim path behaviour in terms of impact
2860                 * on zone->*_priority.
2861                 */
2862                if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2863                        break;
2864        }
2865out:
2866
2867        /*
2868         * order-0: All zones must meet high watermark for a balanced node
2869         * high-order: Balanced zones must make up at least 25% of the node
2870         *             for the node to be balanced
2871         */
2872        if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2873                cond_resched();
2874
2875                try_to_freeze();
2876
2877                /*
2878                 * Fragmentation may mean that the system cannot be
2879                 * rebalanced for high-order allocations in all zones.
2880                 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2881                 * it means the zones have been fully scanned and are still
2882                 * not balanced. For high-order allocations, there is
2883                 * little point trying all over again as kswapd may
2884                 * infinite loop.
2885                 *
2886                 * Instead, recheck all watermarks at order-0 as they
2887                 * are the most important. If watermarks are ok, kswapd will go
2888                 * back to sleep. High-order users can still perform direct
2889                 * reclaim if they wish.
2890                 */
2891                if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2892                        order = sc.order = 0;
2893
2894                goto loop_again;
2895        }
2896
2897        /*
2898         * If kswapd was reclaiming at a higher order, it has the option of
2899         * sleeping without all zones being balanced. Before it does, it must
2900         * ensure that the watermarks for order-0 on *all* zones are met and
2901         * that the congestion flags are cleared. The congestion flag must
2902         * be cleared as kswapd is the only mechanism that clears the flag
2903         * and it is potentially going to sleep here.
2904         */
2905        if (order) {
2906                for (i = 0; i <= end_zone; i++) {
2907                        struct zone *zone = pgdat->node_zones + i;
2908
2909                        if (!populated_zone(zone))
2910                                continue;
2911
2912                        if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2913                                continue;
2914
2915                        /* Confirm the zone is balanced for order-0 */
2916                        if (!zone_watermark_ok(zone, 0,
2917                                        high_wmark_pages(zone), 0, 0)) {
2918                                order = sc.order = 0;
2919                                goto loop_again;
2920                        }
2921
2922                        /* If balanced, clear the congested flag */
2923                        zone_clear_flag(zone, ZONE_CONGESTED);
2924                        if (i <= *classzone_idx)
2925                                balanced += zone->present_pages;
2926                }
2927        }
2928
2929        /*
2930         * Return the order we were reclaiming at so sleeping_prematurely()
2931         * makes a decision on the order we were last reclaiming at. However,
2932         * if another caller entered the allocator slow path while kswapd
2933         * was awake, order will remain at the higher level
2934         */
2935        *classzone_idx = end_zone;
2936        return order;
2937}
2938
2939static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2940{
2941        long remaining = 0;
2942        DEFINE_WAIT(wait);
2943
2944        if (freezing(current) || kthread_should_stop())
2945                return;
2946
2947        prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2948
2949        /* Try to sleep for a short interval */
2950        if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2951                remaining = schedule_timeout(HZ/10);
2952                finish_wait(&pgdat->kswapd_wait, &wait);
2953                prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2954        }
2955
2956        /*
2957         * After a short sleep, check if it was a premature sleep. If not, then
2958         * go fully to sleep until explicitly woken up.
2959         */
2960        if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2961                trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2962
2963                /*
2964                 * vmstat counters are not perfectly accurate and the estimated
2965                 * value for counters such as NR_FREE_PAGES can deviate from the
2966                 * true value by nr_online_cpus * threshold. To avoid the zone
2967                 * watermarks being breached while under pressure, we reduce the
2968                 * per-cpu vmstat threshold while kswapd is awake and restore
2969                 * them before going back to sleep.
2970                 */
2971                set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2972                schedule();
2973                set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2974        } else {
2975                if (remaining)
2976                        count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2977                else
2978                        count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2979        }
2980        finish_wait(&pgdat->kswapd_wait, &wait);
2981}
2982
2983/*
2984 * The background pageout daemon, started as a kernel thread
2985 * from the init process.
2986 *
2987 * This basically trickles out pages so that we have _some_
2988 * free memory available even if there is no other activity
2989 * that frees anything up. This is needed for things like routing
2990 * etc, where we otherwise might have all activity going on in
2991 * asynchronous contexts that cannot page things out.
2992 *
2993 * If there are applications that are active memory-allocators
2994 * (most normal use), this basically shouldn't matter.
2995 */
2996static int kswapd(void *p)
2997{
2998        unsigned long order, new_order;
2999        unsigned balanced_order;
3000        int classzone_idx, new_classzone_idx;
3001        int balanced_classzone_idx;
3002        pg_data_t *pgdat = (pg_data_t*)p;
3003        struct task_struct *tsk = current;
3004
3005        struct reclaim_state reclaim_state = {
3006                .reclaimed_slab = 0,
3007        };
3008        const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3009
3010        lockdep_set_current_reclaim_state(GFP_KERNEL);
3011
3012        if (!cpumask_empty(cpumask))
3013                set_cpus_allowed_ptr(tsk, cpumask);
3014        current->reclaim_state = &reclaim_state;
3015
3016        /*
3017         * Tell the memory management that we're a "memory allocator",
3018         * and that if we need more memory we should get access to it
3019         * regardless (see "__alloc_pages()"). "kswapd" should
3020         * never get caught in the normal page freeing logic.
3021         *
3022         * (Kswapd normally doesn't need memory anyway, but sometimes
3023         * you need a small amount of memory in order to be able to
3024         * page out something else, and this flag essentially protects
3025         * us from recursively trying to free more memory as we're
3026         * trying to free the first piece of memory in the first place).
3027         */
3028        tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3029        set_freezable();
3030
3031        order = new_order = 0;
3032        balanced_order = 0;
3033        classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3034        balanced_classzone_idx = classzone_idx;
3035        for ( ; ; ) {
3036                int ret;
3037
3038                /*
3039                 * If the last balance_pgdat was unsuccessful it's unlikely a
3040                 * new request of a similar or harder type will succeed soon
3041                 * so consider going to sleep on the basis we reclaimed at
3042                 */
3043                if (balanced_classzone_idx >= new_classzone_idx &&
3044                                        balanced_order == new_order) {
3045                        new_order = pgdat->kswapd_max_order;
3046                        new_classzone_idx = pgdat->classzone_idx;
3047                        pgdat->kswapd_max_order =  0;
3048                        pgdat->classzone_idx = pgdat->nr_zones - 1;
3049                }
3050
3051                if (order < new_order || classzone_idx > new_classzone_idx) {
3052                        /*
3053                         * Don't sleep if someone wants a larger 'order'
3054                         * allocation or has tigher zone constraints
3055                         */
3056                        order = new_order;
3057                        classzone_idx = new_classzone_idx;
3058                } else {
3059                        kswapd_try_to_sleep(pgdat, balanced_order,
3060                                                balanced_classzone_idx);
3061                        order = pgdat->kswapd_max_order;
3062                        classzone_idx = pgdat->classzone_idx;
3063                        new_order = order;
3064                        new_classzone_idx = classzone_idx;
3065                        pgdat->kswapd_max_order = 0;
3066                        pgdat->classzone_idx = pgdat->nr_zones - 1;
3067                }
3068
3069                ret = try_to_freeze();
3070                if (kthread_should_stop())
3071                        break;
3072
3073                /*
3074                 * We can speed up thawing tasks if we don't call balance_pgdat
3075                 * after returning from the refrigerator
3076                 */
3077                if (!ret) {
3078                        trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3079                        balanced_classzone_idx = classzone_idx;
3080                        balanced_order = balance_pgdat(pgdat, order,
3081                                                &balanced_classzone_idx);
3082                }
3083        }
3084        return 0;
3085}
3086
3087/*
3088 * A zone is low on free memory, so wake its kswapd task to service it.
3089 */
3090void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3091{
3092        pg_data_t *pgdat;
3093
3094        if (!populated_zone(zone))
3095                return;
3096
3097        if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3098                return;
3099        pgdat = zone->zone_pgdat;
3100        if (pgdat->kswapd_max_order < order) {
3101                pgdat->kswapd_max_order = order;
3102                pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3103        }
3104        if (!waitqueue_active(&pgdat->kswapd_wait))
3105                return;
3106        if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3107                return;
3108
3109        trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3110        wake_up_interruptible(&pgdat->kswapd_wait);
3111}
3112
3113/*
3114 * The reclaimable count would be mostly accurate.
3115 * The less reclaimable pages may be
3116 * - mlocked pages, which will be moved to unevictable list when encountered
3117 * - mapped pages, which may require several travels to be reclaimed
3118 * - dirty pages, which is not "instantly" reclaimable
3119 */
3120unsigned long global_reclaimable_pages(void)
3121{
3122        int nr;
3123
3124        nr = global_page_state(NR_ACTIVE_FILE) +
3125             global_page_state(NR_INACTIVE_FILE);
3126
3127        if (nr_swap_pages > 0)
3128                nr += global_page_state(NR_ACTIVE_ANON) +
3129                      global_page_state(NR_INACTIVE_ANON);
3130
3131        return nr;
3132}
3133
3134unsigned long zone_reclaimable_pages(struct zone *zone)
3135{
3136        int nr;
3137
3138        nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3139             zone_page_state(zone, NR_INACTIVE_FILE);
3140
3141        if (nr_swap_pages > 0)
3142                nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3143                      zone_page_state(zone, NR_INACTIVE_ANON);
3144
3145        return nr;
3146}
3147
3148#ifdef CONFIG_HIBERNATION
3149/*
3150 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3151 * freed pages.
3152 *
3153 * Rather than trying to age LRUs the aim is to preserve the overall
3154 * LRU order by reclaiming preferentially
3155 * inactive > active > active referenced > active mapped
3156 */
3157unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3158{
3159        struct reclaim_state reclaim_state;
3160        struct scan_control sc = {
3161                .gfp_mask = GFP_HIGHUSER_MOVABLE,
3162                .may_swap = 1,
3163                .may_unmap = 1,
3164                .may_writepage = 1,
3165                .nr_to_reclaim = nr_to_reclaim,
3166                .hibernation_mode = 1,
3167                .order = 0,
3168        };
3169        struct shrink_control shrink = {
3170                .gfp_mask = sc.gfp_mask,
3171        };
3172        struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3173        struct task_struct *p = current;
3174        unsigned long nr_reclaimed;
3175
3176        p->flags |= PF_MEMALLOC;
3177        lockdep_set_current_reclaim_state(sc.gfp_mask);
3178        reclaim_state.reclaimed_slab = 0;
3179        p->reclaim_state = &reclaim_state;
3180
3181        nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3182
3183        p->reclaim_state = NULL;
3184        lockdep_clear_current_reclaim_state();
3185        p->flags &= ~PF_MEMALLOC;
3186
3187        return nr_reclaimed;
3188}
3189#endif /* CONFIG_HIBERNATION */
3190
3191/* It's optimal to keep kswapds on the same CPUs as their memory, but
3192   not required for correctness.  So if the last cpu in a node goes
3193   away, we get changed to run anywhere: as the first one comes back,
3194   restore their cpu bindings. */
3195static int __devinit cpu_callback(struct notifier_block *nfb,
3196                                  unsigned long action, void *hcpu)
3197{
3198        int nid;
3199
3200        if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3201                for_each_node_state(nid, N_HIGH_MEMORY) {
3202                        pg_data_t *pgdat = NODE_DATA(nid);
3203                        const struct cpumask *mask;
3204
3205                        mask = cpumask_of_node(pgdat->node_id);
3206
3207                        if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3208                                /* One of our CPUs online: restore mask */
3209                                set_cpus_allowed_ptr(pgdat->kswapd, mask);
3210                }
3211        }
3212        return NOTIFY_OK;
3213}
3214
3215/*
3216 * This kswapd start function will be called by init and node-hot-add.
3217 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3218 */
3219int kswapd_run(int nid)
3220{
3221        pg_data_t *pgdat = NODE_DATA(nid);
3222        int ret = 0;
3223
3224        if (pgdat->kswapd)
3225                return 0;
3226
3227        pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3228        if (IS_ERR(pgdat->kswapd)) {
3229                /* failure at boot is fatal */
3230                BUG_ON(system_state == SYSTEM_BOOTING);
3231                printk("Failed to start kswapd on node %d\n",nid);
3232                ret = -1;
3233        }
3234        return ret;
3235}
3236
3237/*
3238 * Called by memory hotplug when all memory in a node is offlined.
3239 */
3240void kswapd_stop(int nid)
3241{
3242        struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3243
3244        if (kswapd)
3245                kthread_stop(kswapd);
3246}
3247
3248static int __init kswapd_init(void)
3249{
3250        int nid;
3251
3252        swap_setup();
3253        for_each_node_state(nid, N_HIGH_MEMORY)
3254                kswapd_run(nid);
3255        hotcpu_notifier(cpu_callback, 0);
3256        return 0;
3257}
3258
3259module_init(kswapd_init)
3260
3261#ifdef CONFIG_NUMA
3262/*
3263 * Zone reclaim mode
3264 *
3265 * If non-zero call zone_reclaim when the number of free pages falls below
3266 * the watermarks.
3267 */
3268int zone_reclaim_mode __read_mostly;
3269
3270#define RECLAIM_OFF 0
3271#define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3272#define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3273#define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3274
3275/*
3276 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3277 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3278 * a zone.
3279 */
3280#define ZONE_RECLAIM_PRIORITY 4
3281
3282/*
3283 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3284 * occur.
3285 */
3286int sysctl_min_unmapped_ratio = 1;
3287
3288/*
3289 * If the number of slab pages in a zone grows beyond this percentage then
3290 * slab reclaim needs to occur.
3291 */
3292int sysctl_min_slab_ratio = 5;
3293
3294static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3295{
3296        unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3297        unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3298                zone_page_state(zone, NR_ACTIVE_FILE);
3299
3300        /*
3301         * It's possible for there to be more file mapped pages than
3302         * accounted for by the pages on the file LRU lists because
3303         * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3304         */
3305        return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3306}
3307
3308/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3309static long zone_pagecache_reclaimable(struct zone *zone)
3310{
3311        long nr_pagecache_reclaimable;
3312        long delta = 0;
3313
3314        /*
3315         * If RECLAIM_SWAP is set, then all file pages are considered
3316         * potentially reclaimable. Otherwise, we have to worry about
3317         * pages like swapcache and zone_unmapped_file_pages() provides
3318         * a better estimate
3319         */
3320        if (zone_reclaim_mode & RECLAIM_SWAP)
3321                nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3322        else
3323                nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3324
3325        /* If we can't clean pages, remove dirty pages from consideration */
3326        if (!(zone_reclaim_mode & RECLAIM_WRITE))
3327                delta += zone_page_state(zone, NR_FILE_DIRTY);
3328
3329        /* Watch for any possible underflows due to delta */
3330        if (unlikely(delta > nr_pagecache_reclaimable))
3331                delta = nr_pagecache_reclaimable;
3332
3333        return nr_pagecache_reclaimable - delta;
3334}
3335
3336/*
3337 * Try to free up some pages from this zone through reclaim.
3338 */
3339static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3340{
3341        /* Minimum pages needed in order to stay on node */
3342        const unsigned long nr_pages = 1 << order;
3343        struct task_struct *p = current;
3344        struct reclaim_state reclaim_state;
3345        int priority;
3346        struct scan_control sc = {
3347                .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3348                .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3349                .may_swap = 1,
3350                .nr_to_reclaim = max_t(unsigned long, nr_pages,
3351                                       SWAP_CLUSTER_MAX),
3352                .gfp_mask = gfp_mask,
3353                .order = order,
3354        };
3355        struct shrink_control shrink = {
3356                .gfp_mask = sc.gfp_mask,
3357        };
3358        unsigned long nr_slab_pages0, nr_slab_pages1;
3359
3360        cond_resched();
3361        /*
3362         * We need to be able to allocate from the reserves for RECLAIM_SWAP
3363         * and we also need to be able to write out pages for RECLAIM_WRITE
3364         * and RECLAIM_SWAP.
3365         */
3366        p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3367        lockdep_set_current_reclaim_state(gfp_mask);
3368        reclaim_state.reclaimed_slab = 0;
3369        p->reclaim_state = &reclaim_state;
3370
3371        if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3372                /*
3373                 * Free memory by calling shrink zone with increasing
3374                 * priorities until we have enough memory freed.
3375                 */
3376                priority = ZONE_RECLAIM_PRIORITY;
3377                do {
3378                        shrink_zone(priority, zone, &sc);
3379                        priority--;
3380                } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3381        }
3382
3383        nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3384        if (nr_slab_pages0 > zone->min_slab_pages) {
3385                /*
3386                 * shrink_slab() does not currently allow us to determine how
3387                 * many pages were freed in this zone. So we take the current
3388                 * number of slab pages and shake the slab until it is reduced
3389                 * by the same nr_pages that we used for reclaiming unmapped
3390                 * pages.
3391                 *
3392                 * Note that shrink_slab will free memory on all zones and may
3393                 * take a long time.
3394                 */
3395                for (;;) {
3396                        unsigned long lru_pages = zone_reclaimable_pages(zone);
3397
3398                        /* No reclaimable slab or very low memory pressure */
3399                        if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3400                                break;
3401
3402                        /* Freed enough memory */
3403                        nr_slab_pages1 = zone_page_state(zone,
3404                                                        NR_SLAB_RECLAIMABLE);
3405                        if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3406                                break;
3407                }
3408
3409                /*
3410                 * Update nr_reclaimed by the number of slab pages we
3411                 * reclaimed from this zone.
3412                 */
3413                nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3414                if (nr_slab_pages1 < nr_slab_pages0)
3415                        sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3416        }
3417
3418        p->reclaim_state = NULL;
3419        current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3420        lockdep_clear_current_reclaim_state();
3421        return sc.nr_reclaimed >= nr_pages;
3422}
3423
3424int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3425{
3426        int node_id;
3427        int ret;
3428
3429        /*
3430         * Zone reclaim reclaims unmapped file backed pages and
3431         * slab pages if we are over the defined limits.
3432         *
3433         * A small portion of unmapped file backed pages is needed for
3434         * file I/O otherwise pages read by file I/O will be immediately
3435         * thrown out if the zone is overallocated. So we do not reclaim
3436         * if less than a specified percentage of the zone is used by
3437         * unmapped file backed pages.
3438         */
3439        if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3440            zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3441                return ZONE_RECLAIM_FULL;
3442
3443        if (zone->all_unreclaimable)
3444                return ZONE_RECLAIM_FULL;
3445
3446        /*
3447         * Do not scan if the allocation should not be delayed.
3448         */
3449        if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3450                return ZONE_RECLAIM_NOSCAN;
3451
3452        /*
3453         * Only run zone reclaim on the local zone or on zones that do not
3454         * have associated processors. This will favor the local processor
3455         * over remote processors and spread off node memory allocations
3456         * as wide as possible.
3457         */
3458        node_id = zone_to_nid(zone);
3459        if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3460                return ZONE_RECLAIM_NOSCAN;
3461
3462        if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3463                return ZONE_RECLAIM_NOSCAN;
3464
3465        ret = __zone_reclaim(zone, gfp_mask, order);
3466        zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3467
3468        if (!ret)
3469                count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3470
3471        return ret;
3472}
3473#endif
3474
3475/*
3476 * page_evictable - test whether a page is evictable
3477 * @page: the page to test
3478 * @vma: the VMA in which the page is or will be mapped, may be NULL
3479 *
3480 * Test whether page is evictable--i.e., should be placed on active/inactive
3481 * lists vs unevictable list.  The vma argument is !NULL when called from the
3482 * fault path to determine how to instantate a new page.
3483 *
3484 * Reasons page might not be evictable:
3485 * (1) page's mapping marked unevictable
3486 * (2) page is part of an mlocked VMA
3487 *
3488 */
3489int page_evictable(struct page *page, struct vm_area_struct *vma)
3490{
3491
3492        if (mapping_unevictable(page_mapping(page)))
3493                return 0;
3494
3495        if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3496                return 0;
3497
3498        return 1;
3499}
3500
3501#ifdef CONFIG_SHMEM
3502/**
3503 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3504 * @pages:      array of pages to check
3505 * @nr_pages:   number of pages to check
3506 *
3507 * Checks pages for evictability and moves them to the appropriate lru list.
3508 *
3509 * This function is only used for SysV IPC SHM_UNLOCK.
3510 */
3511void check_move_unevictable_pages(struct page **pages, int nr_pages)
3512{
3513        struct lruvec *lruvec;
3514        struct zone *zone = NULL;
3515        int pgscanned = 0;
3516        int pgrescued = 0;
3517        int i;
3518
3519        for (i = 0; i < nr_pages; i++) {
3520                struct page *page = pages[i];
3521                struct zone *pagezone;
3522
3523                pgscanned++;
3524                pagezone = page_zone(page);
3525                if (pagezone != zone) {
3526                        if (zone)
3527                                spin_unlock_irq(&zone->lru_lock);
3528                        zone = pagezone;
3529                        spin_lock_irq(&zone->lru_lock);
3530                }
3531
3532                if (!PageLRU(page) || !PageUnevictable(page))
3533                        continue;
3534
3535                if (page_evictable(page, NULL)) {
3536                        enum lru_list lru = page_lru_base_type(page);
3537
3538                        VM_BUG_ON(PageActive(page));
3539                        ClearPageUnevictable(page);
3540                        __dec_zone_state(zone, NR_UNEVICTABLE);
3541                        lruvec = mem_cgroup_lru_move_lists(zone, page,
3542                                                LRU_UNEVICTABLE, lru);
3543                        list_move(&page->lru, &lruvec->lists[lru]);
3544                        __inc_zone_state(zone, NR_INACTIVE_ANON + lru);
3545                        pgrescued++;
3546                }
3547        }
3548
3549        if (zone) {
3550                __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3551                __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3552                spin_unlock_irq(&zone->lru_lock);
3553        }
3554}
3555#endif /* CONFIG_SHMEM */
3556
3557static void warn_scan_unevictable_pages(void)
3558{
3559        printk_once(KERN_WARNING
3560                    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3561                    "disabled for lack of a legitimate use case.  If you have "
3562                    "one, please send an email to linux-mm@kvack.org.\n",
3563                    current->comm);
3564}
3565
3566/*
3567 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3568 * all nodes' unevictable lists for evictable pages
3569 */
3570unsigned long scan_unevictable_pages;
3571
3572int scan_unevictable_handler(struct ctl_table *table, int write,
3573                           void __user *buffer,
3574                           size_t *length, loff_t *ppos)
3575{
3576        warn_scan_unevictable_pages();
3577        proc_doulongvec_minmax(table, write, buffer, length, ppos);
3578        scan_unevictable_pages = 0;
3579        return 0;
3580}
3581
3582#ifdef CONFIG_NUMA
3583/*
3584 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3585 * a specified node's per zone unevictable lists for evictable pages.
3586 */
3587
3588static ssize_t read_scan_unevictable_node(struct device *dev,
3589                                          struct device_attribute *attr,
3590                                          char *buf)
3591{
3592        warn_scan_unevictable_pages();
3593        return sprintf(buf, "0\n");     /* always zero; should fit... */
3594}
3595
3596static ssize_t write_scan_unevictable_node(struct device *dev,
3597                                           struct device_attribute *attr,
3598                                        const char *buf, size_t count)
3599{
3600        warn_scan_unevictable_pages();
3601        return 1;
3602}
3603
3604
3605static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3606                        read_scan_unevictable_node,
3607                        write_scan_unevictable_node);
3608
3609int scan_unevictable_register_node(struct node *node)
3610{
3611        return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3612}
3613
3614void scan_unevictable_unregister_node(struct node *node)
3615{
3616        device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3617}
3618#endif
3619