linux/mm/mempolicy.c
<<
>>
Prefs
   1/*
   2 * Simple NUMA memory policy for the Linux kernel.
   3 *
   4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
   5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
   6 * Subject to the GNU Public License, version 2.
   7 *
   8 * NUMA policy allows the user to give hints in which node(s) memory should
   9 * be allocated.
  10 *
  11 * Support four policies per VMA and per process:
  12 *
  13 * The VMA policy has priority over the process policy for a page fault.
  14 *
  15 * interleave     Allocate memory interleaved over a set of nodes,
  16 *                with normal fallback if it fails.
  17 *                For VMA based allocations this interleaves based on the
  18 *                offset into the backing object or offset into the mapping
  19 *                for anonymous memory. For process policy an process counter
  20 *                is used.
  21 *
  22 * bind           Only allocate memory on a specific set of nodes,
  23 *                no fallback.
  24 *                FIXME: memory is allocated starting with the first node
  25 *                to the last. It would be better if bind would truly restrict
  26 *                the allocation to memory nodes instead
  27 *
  28 * preferred       Try a specific node first before normal fallback.
  29 *                As a special case node -1 here means do the allocation
  30 *                on the local CPU. This is normally identical to default,
  31 *                but useful to set in a VMA when you have a non default
  32 *                process policy.
  33 *
  34 * default        Allocate on the local node first, or when on a VMA
  35 *                use the process policy. This is what Linux always did
  36 *                in a NUMA aware kernel and still does by, ahem, default.
  37 *
  38 * The process policy is applied for most non interrupt memory allocations
  39 * in that process' context. Interrupts ignore the policies and always
  40 * try to allocate on the local CPU. The VMA policy is only applied for memory
  41 * allocations for a VMA in the VM.
  42 *
  43 * Currently there are a few corner cases in swapping where the policy
  44 * is not applied, but the majority should be handled. When process policy
  45 * is used it is not remembered over swap outs/swap ins.
  46 *
  47 * Only the highest zone in the zone hierarchy gets policied. Allocations
  48 * requesting a lower zone just use default policy. This implies that
  49 * on systems with highmem kernel lowmem allocation don't get policied.
  50 * Same with GFP_DMA allocations.
  51 *
  52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
  53 * all users and remembered even when nobody has memory mapped.
  54 */
  55
  56/* Notebook:
  57   fix mmap readahead to honour policy and enable policy for any page cache
  58   object
  59   statistics for bigpages
  60   global policy for page cache? currently it uses process policy. Requires
  61   first item above.
  62   handle mremap for shared memory (currently ignored for the policy)
  63   grows down?
  64   make bind policy root only? It can trigger oom much faster and the
  65   kernel is not always grateful with that.
  66*/
  67
  68#include <linux/mempolicy.h>
  69#include <linux/mm.h>
  70#include <linux/highmem.h>
  71#include <linux/hugetlb.h>
  72#include <linux/kernel.h>
  73#include <linux/sched.h>
  74#include <linux/nodemask.h>
  75#include <linux/cpuset.h>
  76#include <linux/slab.h>
  77#include <linux/string.h>
  78#include <linux/export.h>
  79#include <linux/nsproxy.h>
  80#include <linux/interrupt.h>
  81#include <linux/init.h>
  82#include <linux/compat.h>
  83#include <linux/swap.h>
  84#include <linux/seq_file.h>
  85#include <linux/proc_fs.h>
  86#include <linux/migrate.h>
  87#include <linux/ksm.h>
  88#include <linux/rmap.h>
  89#include <linux/security.h>
  90#include <linux/syscalls.h>
  91#include <linux/ctype.h>
  92#include <linux/mm_inline.h>
  93
  94#include <asm/tlbflush.h>
  95#include <asm/uaccess.h>
  96#include <linux/random.h>
  97
  98#include "internal.h"
  99
 100/* Internal flags */
 101#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)    /* Skip checks for continuous vmas */
 102#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)          /* Invert check for nodemask */
 103
 104static struct kmem_cache *policy_cache;
 105static struct kmem_cache *sn_cache;
 106
 107/* Highest zone. An specific allocation for a zone below that is not
 108   policied. */
 109enum zone_type policy_zone = 0;
 110
 111/*
 112 * run-time system-wide default policy => local allocation
 113 */
 114static struct mempolicy default_policy = {
 115        .refcnt = ATOMIC_INIT(1), /* never free it */
 116        .mode = MPOL_PREFERRED,
 117        .flags = MPOL_F_LOCAL,
 118};
 119
 120static const struct mempolicy_operations {
 121        int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
 122        /*
 123         * If read-side task has no lock to protect task->mempolicy, write-side
 124         * task will rebind the task->mempolicy by two step. The first step is
 125         * setting all the newly nodes, and the second step is cleaning all the
 126         * disallowed nodes. In this way, we can avoid finding no node to alloc
 127         * page.
 128         * If we have a lock to protect task->mempolicy in read-side, we do
 129         * rebind directly.
 130         *
 131         * step:
 132         *      MPOL_REBIND_ONCE - do rebind work at once
 133         *      MPOL_REBIND_STEP1 - set all the newly nodes
 134         *      MPOL_REBIND_STEP2 - clean all the disallowed nodes
 135         */
 136        void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
 137                        enum mpol_rebind_step step);
 138} mpol_ops[MPOL_MAX];
 139
 140/* Check that the nodemask contains at least one populated zone */
 141static int is_valid_nodemask(const nodemask_t *nodemask)
 142{
 143        int nd, k;
 144
 145        for_each_node_mask(nd, *nodemask) {
 146                struct zone *z;
 147
 148                for (k = 0; k <= policy_zone; k++) {
 149                        z = &NODE_DATA(nd)->node_zones[k];
 150                        if (z->present_pages > 0)
 151                                return 1;
 152                }
 153        }
 154
 155        return 0;
 156}
 157
 158static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
 159{
 160        return pol->flags & MPOL_MODE_FLAGS;
 161}
 162
 163static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
 164                                   const nodemask_t *rel)
 165{
 166        nodemask_t tmp;
 167        nodes_fold(tmp, *orig, nodes_weight(*rel));
 168        nodes_onto(*ret, tmp, *rel);
 169}
 170
 171static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
 172{
 173        if (nodes_empty(*nodes))
 174                return -EINVAL;
 175        pol->v.nodes = *nodes;
 176        return 0;
 177}
 178
 179static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
 180{
 181        if (!nodes)
 182                pol->flags |= MPOL_F_LOCAL;     /* local allocation */
 183        else if (nodes_empty(*nodes))
 184                return -EINVAL;                 /*  no allowed nodes */
 185        else
 186                pol->v.preferred_node = first_node(*nodes);
 187        return 0;
 188}
 189
 190static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
 191{
 192        if (!is_valid_nodemask(nodes))
 193                return -EINVAL;
 194        pol->v.nodes = *nodes;
 195        return 0;
 196}
 197
 198/*
 199 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
 200 * any, for the new policy.  mpol_new() has already validated the nodes
 201 * parameter with respect to the policy mode and flags.  But, we need to
 202 * handle an empty nodemask with MPOL_PREFERRED here.
 203 *
 204 * Must be called holding task's alloc_lock to protect task's mems_allowed
 205 * and mempolicy.  May also be called holding the mmap_semaphore for write.
 206 */
 207static int mpol_set_nodemask(struct mempolicy *pol,
 208                     const nodemask_t *nodes, struct nodemask_scratch *nsc)
 209{
 210        int ret;
 211
 212        /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
 213        if (pol == NULL)
 214                return 0;
 215        /* Check N_HIGH_MEMORY */
 216        nodes_and(nsc->mask1,
 217                  cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]);
 218
 219        VM_BUG_ON(!nodes);
 220        if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
 221                nodes = NULL;   /* explicit local allocation */
 222        else {
 223                if (pol->flags & MPOL_F_RELATIVE_NODES)
 224                        mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
 225                else
 226                        nodes_and(nsc->mask2, *nodes, nsc->mask1);
 227
 228                if (mpol_store_user_nodemask(pol))
 229                        pol->w.user_nodemask = *nodes;
 230                else
 231                        pol->w.cpuset_mems_allowed =
 232                                                cpuset_current_mems_allowed;
 233        }
 234
 235        if (nodes)
 236                ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
 237        else
 238                ret = mpol_ops[pol->mode].create(pol, NULL);
 239        return ret;
 240}
 241
 242/*
 243 * This function just creates a new policy, does some check and simple
 244 * initialization. You must invoke mpol_set_nodemask() to set nodes.
 245 */
 246static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
 247                                  nodemask_t *nodes)
 248{
 249        struct mempolicy *policy;
 250
 251        pr_debug("setting mode %d flags %d nodes[0] %lx\n",
 252                 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
 253
 254        if (mode == MPOL_DEFAULT) {
 255                if (nodes && !nodes_empty(*nodes))
 256                        return ERR_PTR(-EINVAL);
 257                return NULL;    /* simply delete any existing policy */
 258        }
 259        VM_BUG_ON(!nodes);
 260
 261        /*
 262         * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
 263         * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
 264         * All other modes require a valid pointer to a non-empty nodemask.
 265         */
 266        if (mode == MPOL_PREFERRED) {
 267                if (nodes_empty(*nodes)) {
 268                        if (((flags & MPOL_F_STATIC_NODES) ||
 269                             (flags & MPOL_F_RELATIVE_NODES)))
 270                                return ERR_PTR(-EINVAL);
 271                }
 272        } else if (nodes_empty(*nodes))
 273                return ERR_PTR(-EINVAL);
 274        policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 275        if (!policy)
 276                return ERR_PTR(-ENOMEM);
 277        atomic_set(&policy->refcnt, 1);
 278        policy->mode = mode;
 279        policy->flags = flags;
 280
 281        return policy;
 282}
 283
 284/* Slow path of a mpol destructor. */
 285void __mpol_put(struct mempolicy *p)
 286{
 287        if (!atomic_dec_and_test(&p->refcnt))
 288                return;
 289        kmem_cache_free(policy_cache, p);
 290}
 291
 292static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
 293                                enum mpol_rebind_step step)
 294{
 295}
 296
 297/*
 298 * step:
 299 *      MPOL_REBIND_ONCE  - do rebind work at once
 300 *      MPOL_REBIND_STEP1 - set all the newly nodes
 301 *      MPOL_REBIND_STEP2 - clean all the disallowed nodes
 302 */
 303static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
 304                                 enum mpol_rebind_step step)
 305{
 306        nodemask_t tmp;
 307
 308        if (pol->flags & MPOL_F_STATIC_NODES)
 309                nodes_and(tmp, pol->w.user_nodemask, *nodes);
 310        else if (pol->flags & MPOL_F_RELATIVE_NODES)
 311                mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 312        else {
 313                /*
 314                 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
 315                 * result
 316                 */
 317                if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
 318                        nodes_remap(tmp, pol->v.nodes,
 319                                        pol->w.cpuset_mems_allowed, *nodes);
 320                        pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
 321                } else if (step == MPOL_REBIND_STEP2) {
 322                        tmp = pol->w.cpuset_mems_allowed;
 323                        pol->w.cpuset_mems_allowed = *nodes;
 324                } else
 325                        BUG();
 326        }
 327
 328        if (nodes_empty(tmp))
 329                tmp = *nodes;
 330
 331        if (step == MPOL_REBIND_STEP1)
 332                nodes_or(pol->v.nodes, pol->v.nodes, tmp);
 333        else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
 334                pol->v.nodes = tmp;
 335        else
 336                BUG();
 337
 338        if (!node_isset(current->il_next, tmp)) {
 339                current->il_next = next_node(current->il_next, tmp);
 340                if (current->il_next >= MAX_NUMNODES)
 341                        current->il_next = first_node(tmp);
 342                if (current->il_next >= MAX_NUMNODES)
 343                        current->il_next = numa_node_id();
 344        }
 345}
 346
 347static void mpol_rebind_preferred(struct mempolicy *pol,
 348                                  const nodemask_t *nodes,
 349                                  enum mpol_rebind_step step)
 350{
 351        nodemask_t tmp;
 352
 353        if (pol->flags & MPOL_F_STATIC_NODES) {
 354                int node = first_node(pol->w.user_nodemask);
 355
 356                if (node_isset(node, *nodes)) {
 357                        pol->v.preferred_node = node;
 358                        pol->flags &= ~MPOL_F_LOCAL;
 359                } else
 360                        pol->flags |= MPOL_F_LOCAL;
 361        } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
 362                mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 363                pol->v.preferred_node = first_node(tmp);
 364        } else if (!(pol->flags & MPOL_F_LOCAL)) {
 365                pol->v.preferred_node = node_remap(pol->v.preferred_node,
 366                                                   pol->w.cpuset_mems_allowed,
 367                                                   *nodes);
 368                pol->w.cpuset_mems_allowed = *nodes;
 369        }
 370}
 371
 372/*
 373 * mpol_rebind_policy - Migrate a policy to a different set of nodes
 374 *
 375 * If read-side task has no lock to protect task->mempolicy, write-side
 376 * task will rebind the task->mempolicy by two step. The first step is
 377 * setting all the newly nodes, and the second step is cleaning all the
 378 * disallowed nodes. In this way, we can avoid finding no node to alloc
 379 * page.
 380 * If we have a lock to protect task->mempolicy in read-side, we do
 381 * rebind directly.
 382 *
 383 * step:
 384 *      MPOL_REBIND_ONCE  - do rebind work at once
 385 *      MPOL_REBIND_STEP1 - set all the newly nodes
 386 *      MPOL_REBIND_STEP2 - clean all the disallowed nodes
 387 */
 388static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
 389                                enum mpol_rebind_step step)
 390{
 391        if (!pol)
 392                return;
 393        if (!mpol_store_user_nodemask(pol) && step == 0 &&
 394            nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
 395                return;
 396
 397        if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
 398                return;
 399
 400        if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
 401                BUG();
 402
 403        if (step == MPOL_REBIND_STEP1)
 404                pol->flags |= MPOL_F_REBINDING;
 405        else if (step == MPOL_REBIND_STEP2)
 406                pol->flags &= ~MPOL_F_REBINDING;
 407        else if (step >= MPOL_REBIND_NSTEP)
 408                BUG();
 409
 410        mpol_ops[pol->mode].rebind(pol, newmask, step);
 411}
 412
 413/*
 414 * Wrapper for mpol_rebind_policy() that just requires task
 415 * pointer, and updates task mempolicy.
 416 *
 417 * Called with task's alloc_lock held.
 418 */
 419
 420void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
 421                        enum mpol_rebind_step step)
 422{
 423        mpol_rebind_policy(tsk->mempolicy, new, step);
 424}
 425
 426/*
 427 * Rebind each vma in mm to new nodemask.
 428 *
 429 * Call holding a reference to mm.  Takes mm->mmap_sem during call.
 430 */
 431
 432void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
 433{
 434        struct vm_area_struct *vma;
 435
 436        down_write(&mm->mmap_sem);
 437        for (vma = mm->mmap; vma; vma = vma->vm_next)
 438                mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
 439        up_write(&mm->mmap_sem);
 440}
 441
 442static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
 443        [MPOL_DEFAULT] = {
 444                .rebind = mpol_rebind_default,
 445        },
 446        [MPOL_INTERLEAVE] = {
 447                .create = mpol_new_interleave,
 448                .rebind = mpol_rebind_nodemask,
 449        },
 450        [MPOL_PREFERRED] = {
 451                .create = mpol_new_preferred,
 452                .rebind = mpol_rebind_preferred,
 453        },
 454        [MPOL_BIND] = {
 455                .create = mpol_new_bind,
 456                .rebind = mpol_rebind_nodemask,
 457        },
 458};
 459
 460static void migrate_page_add(struct page *page, struct list_head *pagelist,
 461                                unsigned long flags);
 462
 463/* Scan through pages checking if pages follow certain conditions. */
 464static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
 465                unsigned long addr, unsigned long end,
 466                const nodemask_t *nodes, unsigned long flags,
 467                void *private)
 468{
 469        pte_t *orig_pte;
 470        pte_t *pte;
 471        spinlock_t *ptl;
 472
 473        orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 474        do {
 475                struct page *page;
 476                int nid;
 477
 478                if (!pte_present(*pte))
 479                        continue;
 480                page = vm_normal_page(vma, addr, *pte);
 481                if (!page)
 482                        continue;
 483                /*
 484                 * vm_normal_page() filters out zero pages, but there might
 485                 * still be PageReserved pages to skip, perhaps in a VDSO.
 486                 * And we cannot move PageKsm pages sensibly or safely yet.
 487                 */
 488                if (PageReserved(page) || PageKsm(page))
 489                        continue;
 490                nid = page_to_nid(page);
 491                if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
 492                        continue;
 493
 494                if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
 495                        migrate_page_add(page, private, flags);
 496                else
 497                        break;
 498        } while (pte++, addr += PAGE_SIZE, addr != end);
 499        pte_unmap_unlock(orig_pte, ptl);
 500        return addr != end;
 501}
 502
 503static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
 504                unsigned long addr, unsigned long end,
 505                const nodemask_t *nodes, unsigned long flags,
 506                void *private)
 507{
 508        pmd_t *pmd;
 509        unsigned long next;
 510
 511        pmd = pmd_offset(pud, addr);
 512        do {
 513                next = pmd_addr_end(addr, end);
 514                split_huge_page_pmd(vma->vm_mm, pmd);
 515                if (pmd_none_or_clear_bad(pmd))
 516                        continue;
 517                if (check_pte_range(vma, pmd, addr, next, nodes,
 518                                    flags, private))
 519                        return -EIO;
 520        } while (pmd++, addr = next, addr != end);
 521        return 0;
 522}
 523
 524static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
 525                unsigned long addr, unsigned long end,
 526                const nodemask_t *nodes, unsigned long flags,
 527                void *private)
 528{
 529        pud_t *pud;
 530        unsigned long next;
 531
 532        pud = pud_offset(pgd, addr);
 533        do {
 534                next = pud_addr_end(addr, end);
 535                if (pud_none_or_clear_bad(pud))
 536                        continue;
 537                if (check_pmd_range(vma, pud, addr, next, nodes,
 538                                    flags, private))
 539                        return -EIO;
 540        } while (pud++, addr = next, addr != end);
 541        return 0;
 542}
 543
 544static inline int check_pgd_range(struct vm_area_struct *vma,
 545                unsigned long addr, unsigned long end,
 546                const nodemask_t *nodes, unsigned long flags,
 547                void *private)
 548{
 549        pgd_t *pgd;
 550        unsigned long next;
 551
 552        pgd = pgd_offset(vma->vm_mm, addr);
 553        do {
 554                next = pgd_addr_end(addr, end);
 555                if (pgd_none_or_clear_bad(pgd))
 556                        continue;
 557                if (check_pud_range(vma, pgd, addr, next, nodes,
 558                                    flags, private))
 559                        return -EIO;
 560        } while (pgd++, addr = next, addr != end);
 561        return 0;
 562}
 563
 564/*
 565 * Check if all pages in a range are on a set of nodes.
 566 * If pagelist != NULL then isolate pages from the LRU and
 567 * put them on the pagelist.
 568 */
 569static struct vm_area_struct *
 570check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
 571                const nodemask_t *nodes, unsigned long flags, void *private)
 572{
 573        int err;
 574        struct vm_area_struct *first, *vma, *prev;
 575
 576
 577        first = find_vma(mm, start);
 578        if (!first)
 579                return ERR_PTR(-EFAULT);
 580        prev = NULL;
 581        for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
 582                if (!(flags & MPOL_MF_DISCONTIG_OK)) {
 583                        if (!vma->vm_next && vma->vm_end < end)
 584                                return ERR_PTR(-EFAULT);
 585                        if (prev && prev->vm_end < vma->vm_start)
 586                                return ERR_PTR(-EFAULT);
 587                }
 588                if (!is_vm_hugetlb_page(vma) &&
 589                    ((flags & MPOL_MF_STRICT) ||
 590                     ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
 591                                vma_migratable(vma)))) {
 592                        unsigned long endvma = vma->vm_end;
 593
 594                        if (endvma > end)
 595                                endvma = end;
 596                        if (vma->vm_start > start)
 597                                start = vma->vm_start;
 598                        err = check_pgd_range(vma, start, endvma, nodes,
 599                                                flags, private);
 600                        if (err) {
 601                                first = ERR_PTR(err);
 602                                break;
 603                        }
 604                }
 605                prev = vma;
 606        }
 607        return first;
 608}
 609
 610/* Apply policy to a single VMA */
 611static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
 612{
 613        int err = 0;
 614        struct mempolicy *old = vma->vm_policy;
 615
 616        pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
 617                 vma->vm_start, vma->vm_end, vma->vm_pgoff,
 618                 vma->vm_ops, vma->vm_file,
 619                 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
 620
 621        if (vma->vm_ops && vma->vm_ops->set_policy)
 622                err = vma->vm_ops->set_policy(vma, new);
 623        if (!err) {
 624                mpol_get(new);
 625                vma->vm_policy = new;
 626                mpol_put(old);
 627        }
 628        return err;
 629}
 630
 631/* Step 2: apply policy to a range and do splits. */
 632static int mbind_range(struct mm_struct *mm, unsigned long start,
 633                       unsigned long end, struct mempolicy *new_pol)
 634{
 635        struct vm_area_struct *next;
 636        struct vm_area_struct *prev;
 637        struct vm_area_struct *vma;
 638        int err = 0;
 639        pgoff_t pgoff;
 640        unsigned long vmstart;
 641        unsigned long vmend;
 642
 643        vma = find_vma(mm, start);
 644        if (!vma || vma->vm_start > start)
 645                return -EFAULT;
 646
 647        prev = vma->vm_prev;
 648        if (start > vma->vm_start)
 649                prev = vma;
 650
 651        for (; vma && vma->vm_start < end; prev = vma, vma = next) {
 652                next = vma->vm_next;
 653                vmstart = max(start, vma->vm_start);
 654                vmend   = min(end, vma->vm_end);
 655
 656                if (mpol_equal(vma_policy(vma), new_pol))
 657                        continue;
 658
 659                pgoff = vma->vm_pgoff +
 660                        ((vmstart - vma->vm_start) >> PAGE_SHIFT);
 661                prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
 662                                  vma->anon_vma, vma->vm_file, pgoff,
 663                                  new_pol);
 664                if (prev) {
 665                        vma = prev;
 666                        next = vma->vm_next;
 667                        continue;
 668                }
 669                if (vma->vm_start != vmstart) {
 670                        err = split_vma(vma->vm_mm, vma, vmstart, 1);
 671                        if (err)
 672                                goto out;
 673                }
 674                if (vma->vm_end != vmend) {
 675                        err = split_vma(vma->vm_mm, vma, vmend, 0);
 676                        if (err)
 677                                goto out;
 678                }
 679                err = policy_vma(vma, new_pol);
 680                if (err)
 681                        goto out;
 682        }
 683
 684 out:
 685        return err;
 686}
 687
 688/*
 689 * Update task->flags PF_MEMPOLICY bit: set iff non-default
 690 * mempolicy.  Allows more rapid checking of this (combined perhaps
 691 * with other PF_* flag bits) on memory allocation hot code paths.
 692 *
 693 * If called from outside this file, the task 'p' should -only- be
 694 * a newly forked child not yet visible on the task list, because
 695 * manipulating the task flags of a visible task is not safe.
 696 *
 697 * The above limitation is why this routine has the funny name
 698 * mpol_fix_fork_child_flag().
 699 *
 700 * It is also safe to call this with a task pointer of current,
 701 * which the static wrapper mpol_set_task_struct_flag() does,
 702 * for use within this file.
 703 */
 704
 705void mpol_fix_fork_child_flag(struct task_struct *p)
 706{
 707        if (p->mempolicy)
 708                p->flags |= PF_MEMPOLICY;
 709        else
 710                p->flags &= ~PF_MEMPOLICY;
 711}
 712
 713static void mpol_set_task_struct_flag(void)
 714{
 715        mpol_fix_fork_child_flag(current);
 716}
 717
 718/* Set the process memory policy */
 719static long do_set_mempolicy(unsigned short mode, unsigned short flags,
 720                             nodemask_t *nodes)
 721{
 722        struct mempolicy *new, *old;
 723        struct mm_struct *mm = current->mm;
 724        NODEMASK_SCRATCH(scratch);
 725        int ret;
 726
 727        if (!scratch)
 728                return -ENOMEM;
 729
 730        new = mpol_new(mode, flags, nodes);
 731        if (IS_ERR(new)) {
 732                ret = PTR_ERR(new);
 733                goto out;
 734        }
 735        /*
 736         * prevent changing our mempolicy while show_numa_maps()
 737         * is using it.
 738         * Note:  do_set_mempolicy() can be called at init time
 739         * with no 'mm'.
 740         */
 741        if (mm)
 742                down_write(&mm->mmap_sem);
 743        task_lock(current);
 744        ret = mpol_set_nodemask(new, nodes, scratch);
 745        if (ret) {
 746                task_unlock(current);
 747                if (mm)
 748                        up_write(&mm->mmap_sem);
 749                mpol_put(new);
 750                goto out;
 751        }
 752        old = current->mempolicy;
 753        current->mempolicy = new;
 754        mpol_set_task_struct_flag();
 755        if (new && new->mode == MPOL_INTERLEAVE &&
 756            nodes_weight(new->v.nodes))
 757                current->il_next = first_node(new->v.nodes);
 758        task_unlock(current);
 759        if (mm)
 760                up_write(&mm->mmap_sem);
 761
 762        mpol_put(old);
 763        ret = 0;
 764out:
 765        NODEMASK_SCRATCH_FREE(scratch);
 766        return ret;
 767}
 768
 769/*
 770 * Return nodemask for policy for get_mempolicy() query
 771 *
 772 * Called with task's alloc_lock held
 773 */
 774static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
 775{
 776        nodes_clear(*nodes);
 777        if (p == &default_policy)
 778                return;
 779
 780        switch (p->mode) {
 781        case MPOL_BIND:
 782                /* Fall through */
 783        case MPOL_INTERLEAVE:
 784                *nodes = p->v.nodes;
 785                break;
 786        case MPOL_PREFERRED:
 787                if (!(p->flags & MPOL_F_LOCAL))
 788                        node_set(p->v.preferred_node, *nodes);
 789                /* else return empty node mask for local allocation */
 790                break;
 791        default:
 792                BUG();
 793        }
 794}
 795
 796static int lookup_node(struct mm_struct *mm, unsigned long addr)
 797{
 798        struct page *p;
 799        int err;
 800
 801        err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
 802        if (err >= 0) {
 803                err = page_to_nid(p);
 804                put_page(p);
 805        }
 806        return err;
 807}
 808
 809/* Retrieve NUMA policy */
 810static long do_get_mempolicy(int *policy, nodemask_t *nmask,
 811                             unsigned long addr, unsigned long flags)
 812{
 813        int err;
 814        struct mm_struct *mm = current->mm;
 815        struct vm_area_struct *vma = NULL;
 816        struct mempolicy *pol = current->mempolicy;
 817
 818        if (flags &
 819                ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
 820                return -EINVAL;
 821
 822        if (flags & MPOL_F_MEMS_ALLOWED) {
 823                if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
 824                        return -EINVAL;
 825                *policy = 0;    /* just so it's initialized */
 826                task_lock(current);
 827                *nmask  = cpuset_current_mems_allowed;
 828                task_unlock(current);
 829                return 0;
 830        }
 831
 832        if (flags & MPOL_F_ADDR) {
 833                /*
 834                 * Do NOT fall back to task policy if the
 835                 * vma/shared policy at addr is NULL.  We
 836                 * want to return MPOL_DEFAULT in this case.
 837                 */
 838                down_read(&mm->mmap_sem);
 839                vma = find_vma_intersection(mm, addr, addr+1);
 840                if (!vma) {
 841                        up_read(&mm->mmap_sem);
 842                        return -EFAULT;
 843                }
 844                if (vma->vm_ops && vma->vm_ops->get_policy)
 845                        pol = vma->vm_ops->get_policy(vma, addr);
 846                else
 847                        pol = vma->vm_policy;
 848        } else if (addr)
 849                return -EINVAL;
 850
 851        if (!pol)
 852                pol = &default_policy;  /* indicates default behavior */
 853
 854        if (flags & MPOL_F_NODE) {
 855                if (flags & MPOL_F_ADDR) {
 856                        err = lookup_node(mm, addr);
 857                        if (err < 0)
 858                                goto out;
 859                        *policy = err;
 860                } else if (pol == current->mempolicy &&
 861                                pol->mode == MPOL_INTERLEAVE) {
 862                        *policy = current->il_next;
 863                } else {
 864                        err = -EINVAL;
 865                        goto out;
 866                }
 867        } else {
 868                *policy = pol == &default_policy ? MPOL_DEFAULT :
 869                                                pol->mode;
 870                /*
 871                 * Internal mempolicy flags must be masked off before exposing
 872                 * the policy to userspace.
 873                 */
 874                *policy |= (pol->flags & MPOL_MODE_FLAGS);
 875        }
 876
 877        if (vma) {
 878                up_read(&current->mm->mmap_sem);
 879                vma = NULL;
 880        }
 881
 882        err = 0;
 883        if (nmask) {
 884                if (mpol_store_user_nodemask(pol)) {
 885                        *nmask = pol->w.user_nodemask;
 886                } else {
 887                        task_lock(current);
 888                        get_policy_nodemask(pol, nmask);
 889                        task_unlock(current);
 890                }
 891        }
 892
 893 out:
 894        mpol_cond_put(pol);
 895        if (vma)
 896                up_read(&current->mm->mmap_sem);
 897        return err;
 898}
 899
 900#ifdef CONFIG_MIGRATION
 901/*
 902 * page migration
 903 */
 904static void migrate_page_add(struct page *page, struct list_head *pagelist,
 905                                unsigned long flags)
 906{
 907        /*
 908         * Avoid migrating a page that is shared with others.
 909         */
 910        if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
 911                if (!isolate_lru_page(page)) {
 912                        list_add_tail(&page->lru, pagelist);
 913                        inc_zone_page_state(page, NR_ISOLATED_ANON +
 914                                            page_is_file_cache(page));
 915                }
 916        }
 917}
 918
 919static struct page *new_node_page(struct page *page, unsigned long node, int **x)
 920{
 921        return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
 922}
 923
 924/*
 925 * Migrate pages from one node to a target node.
 926 * Returns error or the number of pages not migrated.
 927 */
 928static int migrate_to_node(struct mm_struct *mm, int source, int dest,
 929                           int flags)
 930{
 931        nodemask_t nmask;
 932        LIST_HEAD(pagelist);
 933        int err = 0;
 934        struct vm_area_struct *vma;
 935
 936        nodes_clear(nmask);
 937        node_set(source, nmask);
 938
 939        vma = check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
 940                        flags | MPOL_MF_DISCONTIG_OK, &pagelist);
 941        if (IS_ERR(vma))
 942                return PTR_ERR(vma);
 943
 944        if (!list_empty(&pagelist)) {
 945                err = migrate_pages(&pagelist, new_node_page, dest,
 946                                                        false, MIGRATE_SYNC);
 947                if (err)
 948                        putback_lru_pages(&pagelist);
 949        }
 950
 951        return err;
 952}
 953
 954/*
 955 * Move pages between the two nodesets so as to preserve the physical
 956 * layout as much as possible.
 957 *
 958 * Returns the number of page that could not be moved.
 959 */
 960int do_migrate_pages(struct mm_struct *mm,
 961        const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
 962{
 963        int busy = 0;
 964        int err;
 965        nodemask_t tmp;
 966
 967        err = migrate_prep();
 968        if (err)
 969                return err;
 970
 971        down_read(&mm->mmap_sem);
 972
 973        err = migrate_vmas(mm, from_nodes, to_nodes, flags);
 974        if (err)
 975                goto out;
 976
 977        /*
 978         * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
 979         * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
 980         * bit in 'tmp', and return that <source, dest> pair for migration.
 981         * The pair of nodemasks 'to' and 'from' define the map.
 982         *
 983         * If no pair of bits is found that way, fallback to picking some
 984         * pair of 'source' and 'dest' bits that are not the same.  If the
 985         * 'source' and 'dest' bits are the same, this represents a node
 986         * that will be migrating to itself, so no pages need move.
 987         *
 988         * If no bits are left in 'tmp', or if all remaining bits left
 989         * in 'tmp' correspond to the same bit in 'to', return false
 990         * (nothing left to migrate).
 991         *
 992         * This lets us pick a pair of nodes to migrate between, such that
 993         * if possible the dest node is not already occupied by some other
 994         * source node, minimizing the risk of overloading the memory on a
 995         * node that would happen if we migrated incoming memory to a node
 996         * before migrating outgoing memory source that same node.
 997         *
 998         * A single scan of tmp is sufficient.  As we go, we remember the
 999         * most recent <s, d> pair that moved (s != d).  If we find a pair
1000         * that not only moved, but what's better, moved to an empty slot
1001         * (d is not set in tmp), then we break out then, with that pair.
1002         * Otherwise when we finish scanning from_tmp, we at least have the
1003         * most recent <s, d> pair that moved.  If we get all the way through
1004         * the scan of tmp without finding any node that moved, much less
1005         * moved to an empty node, then there is nothing left worth migrating.
1006         */
1007
1008        tmp = *from_nodes;
1009        while (!nodes_empty(tmp)) {
1010                int s,d;
1011                int source = -1;
1012                int dest = 0;
1013
1014                for_each_node_mask(s, tmp) {
1015                        d = node_remap(s, *from_nodes, *to_nodes);
1016                        if (s == d)
1017                                continue;
1018
1019                        source = s;     /* Node moved. Memorize */
1020                        dest = d;
1021
1022                        /* dest not in remaining from nodes? */
1023                        if (!node_isset(dest, tmp))
1024                                break;
1025                }
1026                if (source == -1)
1027                        break;
1028
1029                node_clear(source, tmp);
1030                err = migrate_to_node(mm, source, dest, flags);
1031                if (err > 0)
1032                        busy += err;
1033                if (err < 0)
1034                        break;
1035        }
1036out:
1037        up_read(&mm->mmap_sem);
1038        if (err < 0)
1039                return err;
1040        return busy;
1041
1042}
1043
1044/*
1045 * Allocate a new page for page migration based on vma policy.
1046 * Start assuming that page is mapped by vma pointed to by @private.
1047 * Search forward from there, if not.  N.B., this assumes that the
1048 * list of pages handed to migrate_pages()--which is how we get here--
1049 * is in virtual address order.
1050 */
1051static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1052{
1053        struct vm_area_struct *vma = (struct vm_area_struct *)private;
1054        unsigned long uninitialized_var(address);
1055
1056        while (vma) {
1057                address = page_address_in_vma(page, vma);
1058                if (address != -EFAULT)
1059                        break;
1060                vma = vma->vm_next;
1061        }
1062
1063        /*
1064         * if !vma, alloc_page_vma() will use task or system default policy
1065         */
1066        return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1067}
1068#else
1069
1070static void migrate_page_add(struct page *page, struct list_head *pagelist,
1071                                unsigned long flags)
1072{
1073}
1074
1075int do_migrate_pages(struct mm_struct *mm,
1076        const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
1077{
1078        return -ENOSYS;
1079}
1080
1081static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1082{
1083        return NULL;
1084}
1085#endif
1086
1087static long do_mbind(unsigned long start, unsigned long len,
1088                     unsigned short mode, unsigned short mode_flags,
1089                     nodemask_t *nmask, unsigned long flags)
1090{
1091        struct vm_area_struct *vma;
1092        struct mm_struct *mm = current->mm;
1093        struct mempolicy *new;
1094        unsigned long end;
1095        int err;
1096        LIST_HEAD(pagelist);
1097
1098        if (flags & ~(unsigned long)(MPOL_MF_STRICT |
1099                                     MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1100                return -EINVAL;
1101        if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1102                return -EPERM;
1103
1104        if (start & ~PAGE_MASK)
1105                return -EINVAL;
1106
1107        if (mode == MPOL_DEFAULT)
1108                flags &= ~MPOL_MF_STRICT;
1109
1110        len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1111        end = start + len;
1112
1113        if (end < start)
1114                return -EINVAL;
1115        if (end == start)
1116                return 0;
1117
1118        new = mpol_new(mode, mode_flags, nmask);
1119        if (IS_ERR(new))
1120                return PTR_ERR(new);
1121
1122        /*
1123         * If we are using the default policy then operation
1124         * on discontinuous address spaces is okay after all
1125         */
1126        if (!new)
1127                flags |= MPOL_MF_DISCONTIG_OK;
1128
1129        pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1130                 start, start + len, mode, mode_flags,
1131                 nmask ? nodes_addr(*nmask)[0] : -1);
1132
1133        if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1134
1135                err = migrate_prep();
1136                if (err)
1137                        goto mpol_out;
1138        }
1139        {
1140                NODEMASK_SCRATCH(scratch);
1141                if (scratch) {
1142                        down_write(&mm->mmap_sem);
1143                        task_lock(current);
1144                        err = mpol_set_nodemask(new, nmask, scratch);
1145                        task_unlock(current);
1146                        if (err)
1147                                up_write(&mm->mmap_sem);
1148                } else
1149                        err = -ENOMEM;
1150                NODEMASK_SCRATCH_FREE(scratch);
1151        }
1152        if (err)
1153                goto mpol_out;
1154
1155        vma = check_range(mm, start, end, nmask,
1156                          flags | MPOL_MF_INVERT, &pagelist);
1157
1158        err = PTR_ERR(vma);
1159        if (!IS_ERR(vma)) {
1160                int nr_failed = 0;
1161
1162                err = mbind_range(mm, start, end, new);
1163
1164                if (!list_empty(&pagelist)) {
1165                        nr_failed = migrate_pages(&pagelist, new_vma_page,
1166                                                (unsigned long)vma,
1167                                                false, true);
1168                        if (nr_failed)
1169                                putback_lru_pages(&pagelist);
1170                }
1171
1172                if (!err && nr_failed && (flags & MPOL_MF_STRICT))
1173                        err = -EIO;
1174        } else
1175                putback_lru_pages(&pagelist);
1176
1177        up_write(&mm->mmap_sem);
1178 mpol_out:
1179        mpol_put(new);
1180        return err;
1181}
1182
1183/*
1184 * User space interface with variable sized bitmaps for nodelists.
1185 */
1186
1187/* Copy a node mask from user space. */
1188static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1189                     unsigned long maxnode)
1190{
1191        unsigned long k;
1192        unsigned long nlongs;
1193        unsigned long endmask;
1194
1195        --maxnode;
1196        nodes_clear(*nodes);
1197        if (maxnode == 0 || !nmask)
1198                return 0;
1199        if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1200                return -EINVAL;
1201
1202        nlongs = BITS_TO_LONGS(maxnode);
1203        if ((maxnode % BITS_PER_LONG) == 0)
1204                endmask = ~0UL;
1205        else
1206                endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1207
1208        /* When the user specified more nodes than supported just check
1209           if the non supported part is all zero. */
1210        if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1211                if (nlongs > PAGE_SIZE/sizeof(long))
1212                        return -EINVAL;
1213                for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1214                        unsigned long t;
1215                        if (get_user(t, nmask + k))
1216                                return -EFAULT;
1217                        if (k == nlongs - 1) {
1218                                if (t & endmask)
1219                                        return -EINVAL;
1220                        } else if (t)
1221                                return -EINVAL;
1222                }
1223                nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1224                endmask = ~0UL;
1225        }
1226
1227        if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1228                return -EFAULT;
1229        nodes_addr(*nodes)[nlongs-1] &= endmask;
1230        return 0;
1231}
1232
1233/* Copy a kernel node mask to user space */
1234static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1235                              nodemask_t *nodes)
1236{
1237        unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1238        const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1239
1240        if (copy > nbytes) {
1241                if (copy > PAGE_SIZE)
1242                        return -EINVAL;
1243                if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1244                        return -EFAULT;
1245                copy = nbytes;
1246        }
1247        return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1248}
1249
1250SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1251                unsigned long, mode, unsigned long __user *, nmask,
1252                unsigned long, maxnode, unsigned, flags)
1253{
1254        nodemask_t nodes;
1255        int err;
1256        unsigned short mode_flags;
1257
1258        mode_flags = mode & MPOL_MODE_FLAGS;
1259        mode &= ~MPOL_MODE_FLAGS;
1260        if (mode >= MPOL_MAX)
1261                return -EINVAL;
1262        if ((mode_flags & MPOL_F_STATIC_NODES) &&
1263            (mode_flags & MPOL_F_RELATIVE_NODES))
1264                return -EINVAL;
1265        err = get_nodes(&nodes, nmask, maxnode);
1266        if (err)
1267                return err;
1268        return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1269}
1270
1271/* Set the process memory policy */
1272SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1273                unsigned long, maxnode)
1274{
1275        int err;
1276        nodemask_t nodes;
1277        unsigned short flags;
1278
1279        flags = mode & MPOL_MODE_FLAGS;
1280        mode &= ~MPOL_MODE_FLAGS;
1281        if ((unsigned int)mode >= MPOL_MAX)
1282                return -EINVAL;
1283        if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1284                return -EINVAL;
1285        err = get_nodes(&nodes, nmask, maxnode);
1286        if (err)
1287                return err;
1288        return do_set_mempolicy(mode, flags, &nodes);
1289}
1290
1291SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1292                const unsigned long __user *, old_nodes,
1293                const unsigned long __user *, new_nodes)
1294{
1295        const struct cred *cred = current_cred(), *tcred;
1296        struct mm_struct *mm = NULL;
1297        struct task_struct *task;
1298        nodemask_t task_nodes;
1299        int err;
1300        nodemask_t *old;
1301        nodemask_t *new;
1302        NODEMASK_SCRATCH(scratch);
1303
1304        if (!scratch)
1305                return -ENOMEM;
1306
1307        old = &scratch->mask1;
1308        new = &scratch->mask2;
1309
1310        err = get_nodes(old, old_nodes, maxnode);
1311        if (err)
1312                goto out;
1313
1314        err = get_nodes(new, new_nodes, maxnode);
1315        if (err)
1316                goto out;
1317
1318        /* Find the mm_struct */
1319        rcu_read_lock();
1320        task = pid ? find_task_by_vpid(pid) : current;
1321        if (!task) {
1322                rcu_read_unlock();
1323                err = -ESRCH;
1324                goto out;
1325        }
1326        mm = get_task_mm(task);
1327        rcu_read_unlock();
1328
1329        err = -EINVAL;
1330        if (!mm)
1331                goto out;
1332
1333        /*
1334         * Check if this process has the right to modify the specified
1335         * process. The right exists if the process has administrative
1336         * capabilities, superuser privileges or the same
1337         * userid as the target process.
1338         */
1339        rcu_read_lock();
1340        tcred = __task_cred(task);
1341        if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1342            cred->uid  != tcred->suid && cred->uid  != tcred->uid &&
1343            !capable(CAP_SYS_NICE)) {
1344                rcu_read_unlock();
1345                err = -EPERM;
1346                goto out;
1347        }
1348        rcu_read_unlock();
1349
1350        task_nodes = cpuset_mems_allowed(task);
1351        /* Is the user allowed to access the target nodes? */
1352        if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1353                err = -EPERM;
1354                goto out;
1355        }
1356
1357        if (!nodes_subset(*new, node_states[N_HIGH_MEMORY])) {
1358                err = -EINVAL;
1359                goto out;
1360        }
1361
1362        err = security_task_movememory(task);
1363        if (err)
1364                goto out;
1365
1366        err = do_migrate_pages(mm, old, new,
1367                capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1368out:
1369        if (mm)
1370                mmput(mm);
1371        NODEMASK_SCRATCH_FREE(scratch);
1372
1373        return err;
1374}
1375
1376
1377/* Retrieve NUMA policy */
1378SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1379                unsigned long __user *, nmask, unsigned long, maxnode,
1380                unsigned long, addr, unsigned long, flags)
1381{
1382        int err;
1383        int uninitialized_var(pval);
1384        nodemask_t nodes;
1385
1386        if (nmask != NULL && maxnode < MAX_NUMNODES)
1387                return -EINVAL;
1388
1389        err = do_get_mempolicy(&pval, &nodes, addr, flags);
1390
1391        if (err)
1392                return err;
1393
1394        if (policy && put_user(pval, policy))
1395                return -EFAULT;
1396
1397        if (nmask)
1398                err = copy_nodes_to_user(nmask, maxnode, &nodes);
1399
1400        return err;
1401}
1402
1403#ifdef CONFIG_COMPAT
1404
1405asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1406                                     compat_ulong_t __user *nmask,
1407                                     compat_ulong_t maxnode,
1408                                     compat_ulong_t addr, compat_ulong_t flags)
1409{
1410        long err;
1411        unsigned long __user *nm = NULL;
1412        unsigned long nr_bits, alloc_size;
1413        DECLARE_BITMAP(bm, MAX_NUMNODES);
1414
1415        nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1416        alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1417
1418        if (nmask)
1419                nm = compat_alloc_user_space(alloc_size);
1420
1421        err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1422
1423        if (!err && nmask) {
1424                unsigned long copy_size;
1425                copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1426                err = copy_from_user(bm, nm, copy_size);
1427                /* ensure entire bitmap is zeroed */
1428                err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1429                err |= compat_put_bitmap(nmask, bm, nr_bits);
1430        }
1431
1432        return err;
1433}
1434
1435asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1436                                     compat_ulong_t maxnode)
1437{
1438        long err = 0;
1439        unsigned long __user *nm = NULL;
1440        unsigned long nr_bits, alloc_size;
1441        DECLARE_BITMAP(bm, MAX_NUMNODES);
1442
1443        nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1444        alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1445
1446        if (nmask) {
1447                err = compat_get_bitmap(bm, nmask, nr_bits);
1448                nm = compat_alloc_user_space(alloc_size);
1449                err |= copy_to_user(nm, bm, alloc_size);
1450        }
1451
1452        if (err)
1453                return -EFAULT;
1454
1455        return sys_set_mempolicy(mode, nm, nr_bits+1);
1456}
1457
1458asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1459                             compat_ulong_t mode, compat_ulong_t __user *nmask,
1460                             compat_ulong_t maxnode, compat_ulong_t flags)
1461{
1462        long err = 0;
1463        unsigned long __user *nm = NULL;
1464        unsigned long nr_bits, alloc_size;
1465        nodemask_t bm;
1466
1467        nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1468        alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1469
1470        if (nmask) {
1471                err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1472                nm = compat_alloc_user_space(alloc_size);
1473                err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1474        }
1475
1476        if (err)
1477                return -EFAULT;
1478
1479        return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1480}
1481
1482#endif
1483
1484/*
1485 * get_vma_policy(@task, @vma, @addr)
1486 * @task - task for fallback if vma policy == default
1487 * @vma   - virtual memory area whose policy is sought
1488 * @addr  - address in @vma for shared policy lookup
1489 *
1490 * Returns effective policy for a VMA at specified address.
1491 * Falls back to @task or system default policy, as necessary.
1492 * Current or other task's task mempolicy and non-shared vma policies
1493 * are protected by the task's mmap_sem, which must be held for read by
1494 * the caller.
1495 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1496 * count--added by the get_policy() vm_op, as appropriate--to protect against
1497 * freeing by another task.  It is the caller's responsibility to free the
1498 * extra reference for shared policies.
1499 */
1500struct mempolicy *get_vma_policy(struct task_struct *task,
1501                struct vm_area_struct *vma, unsigned long addr)
1502{
1503        struct mempolicy *pol = task->mempolicy;
1504
1505        if (vma) {
1506                if (vma->vm_ops && vma->vm_ops->get_policy) {
1507                        struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1508                                                                        addr);
1509                        if (vpol)
1510                                pol = vpol;
1511                } else if (vma->vm_policy)
1512                        pol = vma->vm_policy;
1513        }
1514        if (!pol)
1515                pol = &default_policy;
1516        return pol;
1517}
1518
1519/*
1520 * Return a nodemask representing a mempolicy for filtering nodes for
1521 * page allocation
1522 */
1523static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1524{
1525        /* Lower zones don't get a nodemask applied for MPOL_BIND */
1526        if (unlikely(policy->mode == MPOL_BIND) &&
1527                        gfp_zone(gfp) >= policy_zone &&
1528                        cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1529                return &policy->v.nodes;
1530
1531        return NULL;
1532}
1533
1534/* Return a zonelist indicated by gfp for node representing a mempolicy */
1535static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1536        int nd)
1537{
1538        switch (policy->mode) {
1539        case MPOL_PREFERRED:
1540                if (!(policy->flags & MPOL_F_LOCAL))
1541                        nd = policy->v.preferred_node;
1542                break;
1543        case MPOL_BIND:
1544                /*
1545                 * Normally, MPOL_BIND allocations are node-local within the
1546                 * allowed nodemask.  However, if __GFP_THISNODE is set and the
1547                 * current node isn't part of the mask, we use the zonelist for
1548                 * the first node in the mask instead.
1549                 */
1550                if (unlikely(gfp & __GFP_THISNODE) &&
1551                                unlikely(!node_isset(nd, policy->v.nodes)))
1552                        nd = first_node(policy->v.nodes);
1553                break;
1554        default:
1555                BUG();
1556        }
1557        return node_zonelist(nd, gfp);
1558}
1559
1560/* Do dynamic interleaving for a process */
1561static unsigned interleave_nodes(struct mempolicy *policy)
1562{
1563        unsigned nid, next;
1564        struct task_struct *me = current;
1565
1566        nid = me->il_next;
1567        next = next_node(nid, policy->v.nodes);
1568        if (next >= MAX_NUMNODES)
1569                next = first_node(policy->v.nodes);
1570        if (next < MAX_NUMNODES)
1571                me->il_next = next;
1572        return nid;
1573}
1574
1575/*
1576 * Depending on the memory policy provide a node from which to allocate the
1577 * next slab entry.
1578 * @policy must be protected by freeing by the caller.  If @policy is
1579 * the current task's mempolicy, this protection is implicit, as only the
1580 * task can change it's policy.  The system default policy requires no
1581 * such protection.
1582 */
1583unsigned slab_node(struct mempolicy *policy)
1584{
1585        if (!policy || policy->flags & MPOL_F_LOCAL)
1586                return numa_node_id();
1587
1588        switch (policy->mode) {
1589        case MPOL_PREFERRED:
1590                /*
1591                 * handled MPOL_F_LOCAL above
1592                 */
1593                return policy->v.preferred_node;
1594
1595        case MPOL_INTERLEAVE:
1596                return interleave_nodes(policy);
1597
1598        case MPOL_BIND: {
1599                /*
1600                 * Follow bind policy behavior and start allocation at the
1601                 * first node.
1602                 */
1603                struct zonelist *zonelist;
1604                struct zone *zone;
1605                enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1606                zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1607                (void)first_zones_zonelist(zonelist, highest_zoneidx,
1608                                                        &policy->v.nodes,
1609                                                        &zone);
1610                return zone ? zone->node : numa_node_id();
1611        }
1612
1613        default:
1614                BUG();
1615        }
1616}
1617
1618/* Do static interleaving for a VMA with known offset. */
1619static unsigned offset_il_node(struct mempolicy *pol,
1620                struct vm_area_struct *vma, unsigned long off)
1621{
1622        unsigned nnodes = nodes_weight(pol->v.nodes);
1623        unsigned target;
1624        int c;
1625        int nid = -1;
1626
1627        if (!nnodes)
1628                return numa_node_id();
1629        target = (unsigned int)off % nnodes;
1630        c = 0;
1631        do {
1632                nid = next_node(nid, pol->v.nodes);
1633                c++;
1634        } while (c <= target);
1635        return nid;
1636}
1637
1638/* Determine a node number for interleave */
1639static inline unsigned interleave_nid(struct mempolicy *pol,
1640                 struct vm_area_struct *vma, unsigned long addr, int shift)
1641{
1642        if (vma) {
1643                unsigned long off;
1644
1645                /*
1646                 * for small pages, there is no difference between
1647                 * shift and PAGE_SHIFT, so the bit-shift is safe.
1648                 * for huge pages, since vm_pgoff is in units of small
1649                 * pages, we need to shift off the always 0 bits to get
1650                 * a useful offset.
1651                 */
1652                BUG_ON(shift < PAGE_SHIFT);
1653                off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1654                off += (addr - vma->vm_start) >> shift;
1655                return offset_il_node(pol, vma, off);
1656        } else
1657                return interleave_nodes(pol);
1658}
1659
1660/*
1661 * Return the bit number of a random bit set in the nodemask.
1662 * (returns -1 if nodemask is empty)
1663 */
1664int node_random(const nodemask_t *maskp)
1665{
1666        int w, bit = -1;
1667
1668        w = nodes_weight(*maskp);
1669        if (w)
1670                bit = bitmap_ord_to_pos(maskp->bits,
1671                        get_random_int() % w, MAX_NUMNODES);
1672        return bit;
1673}
1674
1675#ifdef CONFIG_HUGETLBFS
1676/*
1677 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1678 * @vma = virtual memory area whose policy is sought
1679 * @addr = address in @vma for shared policy lookup and interleave policy
1680 * @gfp_flags = for requested zone
1681 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1682 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1683 *
1684 * Returns a zonelist suitable for a huge page allocation and a pointer
1685 * to the struct mempolicy for conditional unref after allocation.
1686 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1687 * @nodemask for filtering the zonelist.
1688 *
1689 * Must be protected by get_mems_allowed()
1690 */
1691struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1692                                gfp_t gfp_flags, struct mempolicy **mpol,
1693                                nodemask_t **nodemask)
1694{
1695        struct zonelist *zl;
1696
1697        *mpol = get_vma_policy(current, vma, addr);
1698        *nodemask = NULL;       /* assume !MPOL_BIND */
1699
1700        if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1701                zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1702                                huge_page_shift(hstate_vma(vma))), gfp_flags);
1703        } else {
1704                zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1705                if ((*mpol)->mode == MPOL_BIND)
1706                        *nodemask = &(*mpol)->v.nodes;
1707        }
1708        return zl;
1709}
1710
1711/*
1712 * init_nodemask_of_mempolicy
1713 *
1714 * If the current task's mempolicy is "default" [NULL], return 'false'
1715 * to indicate default policy.  Otherwise, extract the policy nodemask
1716 * for 'bind' or 'interleave' policy into the argument nodemask, or
1717 * initialize the argument nodemask to contain the single node for
1718 * 'preferred' or 'local' policy and return 'true' to indicate presence
1719 * of non-default mempolicy.
1720 *
1721 * We don't bother with reference counting the mempolicy [mpol_get/put]
1722 * because the current task is examining it's own mempolicy and a task's
1723 * mempolicy is only ever changed by the task itself.
1724 *
1725 * N.B., it is the caller's responsibility to free a returned nodemask.
1726 */
1727bool init_nodemask_of_mempolicy(nodemask_t *mask)
1728{
1729        struct mempolicy *mempolicy;
1730        int nid;
1731
1732        if (!(mask && current->mempolicy))
1733                return false;
1734
1735        task_lock(current);
1736        mempolicy = current->mempolicy;
1737        switch (mempolicy->mode) {
1738        case MPOL_PREFERRED:
1739                if (mempolicy->flags & MPOL_F_LOCAL)
1740                        nid = numa_node_id();
1741                else
1742                        nid = mempolicy->v.preferred_node;
1743                init_nodemask_of_node(mask, nid);
1744                break;
1745
1746        case MPOL_BIND:
1747                /* Fall through */
1748        case MPOL_INTERLEAVE:
1749                *mask =  mempolicy->v.nodes;
1750                break;
1751
1752        default:
1753                BUG();
1754        }
1755        task_unlock(current);
1756
1757        return true;
1758}
1759#endif
1760
1761/*
1762 * mempolicy_nodemask_intersects
1763 *
1764 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1765 * policy.  Otherwise, check for intersection between mask and the policy
1766 * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1767 * policy, always return true since it may allocate elsewhere on fallback.
1768 *
1769 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1770 */
1771bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1772                                        const nodemask_t *mask)
1773{
1774        struct mempolicy *mempolicy;
1775        bool ret = true;
1776
1777        if (!mask)
1778                return ret;
1779        task_lock(tsk);
1780        mempolicy = tsk->mempolicy;
1781        if (!mempolicy)
1782                goto out;
1783
1784        switch (mempolicy->mode) {
1785        case MPOL_PREFERRED:
1786                /*
1787                 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1788                 * allocate from, they may fallback to other nodes when oom.
1789                 * Thus, it's possible for tsk to have allocated memory from
1790                 * nodes in mask.
1791                 */
1792                break;
1793        case MPOL_BIND:
1794        case MPOL_INTERLEAVE:
1795                ret = nodes_intersects(mempolicy->v.nodes, *mask);
1796                break;
1797        default:
1798                BUG();
1799        }
1800out:
1801        task_unlock(tsk);
1802        return ret;
1803}
1804
1805/* Allocate a page in interleaved policy.
1806   Own path because it needs to do special accounting. */
1807static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1808                                        unsigned nid)
1809{
1810        struct zonelist *zl;
1811        struct page *page;
1812
1813        zl = node_zonelist(nid, gfp);
1814        page = __alloc_pages(gfp, order, zl);
1815        if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1816                inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1817        return page;
1818}
1819
1820/**
1821 *      alloc_pages_vma - Allocate a page for a VMA.
1822 *
1823 *      @gfp:
1824 *      %GFP_USER    user allocation.
1825 *      %GFP_KERNEL  kernel allocations,
1826 *      %GFP_HIGHMEM highmem/user allocations,
1827 *      %GFP_FS      allocation should not call back into a file system.
1828 *      %GFP_ATOMIC  don't sleep.
1829 *
1830 *      @order:Order of the GFP allocation.
1831 *      @vma:  Pointer to VMA or NULL if not available.
1832 *      @addr: Virtual Address of the allocation. Must be inside the VMA.
1833 *
1834 *      This function allocates a page from the kernel page pool and applies
1835 *      a NUMA policy associated with the VMA or the current process.
1836 *      When VMA is not NULL caller must hold down_read on the mmap_sem of the
1837 *      mm_struct of the VMA to prevent it from going away. Should be used for
1838 *      all allocations for pages that will be mapped into
1839 *      user space. Returns NULL when no page can be allocated.
1840 *
1841 *      Should be called with the mm_sem of the vma hold.
1842 */
1843struct page *
1844alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1845                unsigned long addr, int node)
1846{
1847        struct mempolicy *pol = get_vma_policy(current, vma, addr);
1848        struct zonelist *zl;
1849        struct page *page;
1850
1851        get_mems_allowed();
1852        if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1853                unsigned nid;
1854
1855                nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1856                mpol_cond_put(pol);
1857                page = alloc_page_interleave(gfp, order, nid);
1858                put_mems_allowed();
1859                return page;
1860        }
1861        zl = policy_zonelist(gfp, pol, node);
1862        if (unlikely(mpol_needs_cond_ref(pol))) {
1863                /*
1864                 * slow path: ref counted shared policy
1865                 */
1866                struct page *page =  __alloc_pages_nodemask(gfp, order,
1867                                                zl, policy_nodemask(gfp, pol));
1868                __mpol_put(pol);
1869                put_mems_allowed();
1870                return page;
1871        }
1872        /*
1873         * fast path:  default or task policy
1874         */
1875        page = __alloc_pages_nodemask(gfp, order, zl,
1876                                      policy_nodemask(gfp, pol));
1877        put_mems_allowed();
1878        return page;
1879}
1880
1881/**
1882 *      alloc_pages_current - Allocate pages.
1883 *
1884 *      @gfp:
1885 *              %GFP_USER   user allocation,
1886 *              %GFP_KERNEL kernel allocation,
1887 *              %GFP_HIGHMEM highmem allocation,
1888 *              %GFP_FS     don't call back into a file system.
1889 *              %GFP_ATOMIC don't sleep.
1890 *      @order: Power of two of allocation size in pages. 0 is a single page.
1891 *
1892 *      Allocate a page from the kernel page pool.  When not in
1893 *      interrupt context and apply the current process NUMA policy.
1894 *      Returns NULL when no page can be allocated.
1895 *
1896 *      Don't call cpuset_update_task_memory_state() unless
1897 *      1) it's ok to take cpuset_sem (can WAIT), and
1898 *      2) allocating for current task (not interrupt).
1899 */
1900struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1901{
1902        struct mempolicy *pol = current->mempolicy;
1903        struct page *page;
1904
1905        if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1906                pol = &default_policy;
1907
1908        get_mems_allowed();
1909        /*
1910         * No reference counting needed for current->mempolicy
1911         * nor system default_policy
1912         */
1913        if (pol->mode == MPOL_INTERLEAVE)
1914                page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
1915        else
1916                page = __alloc_pages_nodemask(gfp, order,
1917                                policy_zonelist(gfp, pol, numa_node_id()),
1918                                policy_nodemask(gfp, pol));
1919        put_mems_allowed();
1920        return page;
1921}
1922EXPORT_SYMBOL(alloc_pages_current);
1923
1924/*
1925 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1926 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1927 * with the mems_allowed returned by cpuset_mems_allowed().  This
1928 * keeps mempolicies cpuset relative after its cpuset moves.  See
1929 * further kernel/cpuset.c update_nodemask().
1930 *
1931 * current's mempolicy may be rebinded by the other task(the task that changes
1932 * cpuset's mems), so we needn't do rebind work for current task.
1933 */
1934
1935/* Slow path of a mempolicy duplicate */
1936struct mempolicy *__mpol_dup(struct mempolicy *old)
1937{
1938        struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1939
1940        if (!new)
1941                return ERR_PTR(-ENOMEM);
1942
1943        /* task's mempolicy is protected by alloc_lock */
1944        if (old == current->mempolicy) {
1945                task_lock(current);
1946                *new = *old;
1947                task_unlock(current);
1948        } else
1949                *new = *old;
1950
1951        rcu_read_lock();
1952        if (current_cpuset_is_being_rebound()) {
1953                nodemask_t mems = cpuset_mems_allowed(current);
1954                if (new->flags & MPOL_F_REBINDING)
1955                        mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
1956                else
1957                        mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
1958        }
1959        rcu_read_unlock();
1960        atomic_set(&new->refcnt, 1);
1961        return new;
1962}
1963
1964/*
1965 * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
1966 * eliminate the * MPOL_F_* flags that require conditional ref and
1967 * [NOTE!!!] drop the extra ref.  Not safe to reference *frompol directly
1968 * after return.  Use the returned value.
1969 *
1970 * Allows use of a mempolicy for, e.g., multiple allocations with a single
1971 * policy lookup, even if the policy needs/has extra ref on lookup.
1972 * shmem_readahead needs this.
1973 */
1974struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
1975                                                struct mempolicy *frompol)
1976{
1977        if (!mpol_needs_cond_ref(frompol))
1978                return frompol;
1979
1980        *tompol = *frompol;
1981        tompol->flags &= ~MPOL_F_SHARED;        /* copy doesn't need unref */
1982        __mpol_put(frompol);
1983        return tompol;
1984}
1985
1986/* Slow path of a mempolicy comparison */
1987bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1988{
1989        if (!a || !b)
1990                return false;
1991        if (a->mode != b->mode)
1992                return false;
1993        if (a->flags != b->flags)
1994                return false;
1995        if (mpol_store_user_nodemask(a))
1996                if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
1997                        return false;
1998
1999        switch (a->mode) {
2000        case MPOL_BIND:
2001                /* Fall through */
2002        case MPOL_INTERLEAVE:
2003                return !!nodes_equal(a->v.nodes, b->v.nodes);
2004        case MPOL_PREFERRED:
2005                return a->v.preferred_node == b->v.preferred_node;
2006        default:
2007                BUG();
2008                return false;
2009        }
2010}
2011
2012/*
2013 * Shared memory backing store policy support.
2014 *
2015 * Remember policies even when nobody has shared memory mapped.
2016 * The policies are kept in Red-Black tree linked from the inode.
2017 * They are protected by the sp->lock spinlock, which should be held
2018 * for any accesses to the tree.
2019 */
2020
2021/* lookup first element intersecting start-end */
2022/* Caller holds sp->lock */
2023static struct sp_node *
2024sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2025{
2026        struct rb_node *n = sp->root.rb_node;
2027
2028        while (n) {
2029                struct sp_node *p = rb_entry(n, struct sp_node, nd);
2030
2031                if (start >= p->end)
2032                        n = n->rb_right;
2033                else if (end <= p->start)
2034                        n = n->rb_left;
2035                else
2036                        break;
2037        }
2038        if (!n)
2039                return NULL;
2040        for (;;) {
2041                struct sp_node *w = NULL;
2042                struct rb_node *prev = rb_prev(n);
2043                if (!prev)
2044                        break;
2045                w = rb_entry(prev, struct sp_node, nd);
2046                if (w->end <= start)
2047                        break;
2048                n = prev;
2049        }
2050        return rb_entry(n, struct sp_node, nd);
2051}
2052
2053/* Insert a new shared policy into the list. */
2054/* Caller holds sp->lock */
2055static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2056{
2057        struct rb_node **p = &sp->root.rb_node;
2058        struct rb_node *parent = NULL;
2059        struct sp_node *nd;
2060
2061        while (*p) {
2062                parent = *p;
2063                nd = rb_entry(parent, struct sp_node, nd);
2064                if (new->start < nd->start)
2065                        p = &(*p)->rb_left;
2066                else if (new->end > nd->end)
2067                        p = &(*p)->rb_right;
2068                else
2069                        BUG();
2070        }
2071        rb_link_node(&new->nd, parent, p);
2072        rb_insert_color(&new->nd, &sp->root);
2073        pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2074                 new->policy ? new->policy->mode : 0);
2075}
2076
2077/* Find shared policy intersecting idx */
2078struct mempolicy *
2079mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2080{
2081        struct mempolicy *pol = NULL;
2082        struct sp_node *sn;
2083
2084        if (!sp->root.rb_node)
2085                return NULL;
2086        spin_lock(&sp->lock);
2087        sn = sp_lookup(sp, idx, idx+1);
2088        if (sn) {
2089                mpol_get(sn->policy);
2090                pol = sn->policy;
2091        }
2092        spin_unlock(&sp->lock);
2093        return pol;
2094}
2095
2096static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2097{
2098        pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2099        rb_erase(&n->nd, &sp->root);
2100        mpol_put(n->policy);
2101        kmem_cache_free(sn_cache, n);
2102}
2103
2104static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2105                                struct mempolicy *pol)
2106{
2107        struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2108
2109        if (!n)
2110                return NULL;
2111        n->start = start;
2112        n->end = end;
2113        mpol_get(pol);
2114        pol->flags |= MPOL_F_SHARED;    /* for unref */
2115        n->policy = pol;
2116        return n;
2117}
2118
2119/* Replace a policy range. */
2120static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2121                                 unsigned long end, struct sp_node *new)
2122{
2123        struct sp_node *n, *new2 = NULL;
2124
2125restart:
2126        spin_lock(&sp->lock);
2127        n = sp_lookup(sp, start, end);
2128        /* Take care of old policies in the same range. */
2129        while (n && n->start < end) {
2130                struct rb_node *next = rb_next(&n->nd);
2131                if (n->start >= start) {
2132                        if (n->end <= end)
2133                                sp_delete(sp, n);
2134                        else
2135                                n->start = end;
2136                } else {
2137                        /* Old policy spanning whole new range. */
2138                        if (n->end > end) {
2139                                if (!new2) {
2140                                        spin_unlock(&sp->lock);
2141                                        new2 = sp_alloc(end, n->end, n->policy);
2142                                        if (!new2)
2143                                                return -ENOMEM;
2144                                        goto restart;
2145                                }
2146                                n->end = start;
2147                                sp_insert(sp, new2);
2148                                new2 = NULL;
2149                                break;
2150                        } else
2151                                n->end = start;
2152                }
2153                if (!next)
2154                        break;
2155                n = rb_entry(next, struct sp_node, nd);
2156        }
2157        if (new)
2158                sp_insert(sp, new);
2159        spin_unlock(&sp->lock);
2160        if (new2) {
2161                mpol_put(new2->policy);
2162                kmem_cache_free(sn_cache, new2);
2163        }
2164        return 0;
2165}
2166
2167/**
2168 * mpol_shared_policy_init - initialize shared policy for inode
2169 * @sp: pointer to inode shared policy
2170 * @mpol:  struct mempolicy to install
2171 *
2172 * Install non-NULL @mpol in inode's shared policy rb-tree.
2173 * On entry, the current task has a reference on a non-NULL @mpol.
2174 * This must be released on exit.
2175 * This is called at get_inode() calls and we can use GFP_KERNEL.
2176 */
2177void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2178{
2179        int ret;
2180
2181        sp->root = RB_ROOT;             /* empty tree == default mempolicy */
2182        spin_lock_init(&sp->lock);
2183
2184        if (mpol) {
2185                struct vm_area_struct pvma;
2186                struct mempolicy *new;
2187                NODEMASK_SCRATCH(scratch);
2188
2189                if (!scratch)
2190                        goto put_mpol;
2191                /* contextualize the tmpfs mount point mempolicy */
2192                new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2193                if (IS_ERR(new))
2194                        goto free_scratch; /* no valid nodemask intersection */
2195
2196                task_lock(current);
2197                ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2198                task_unlock(current);
2199                if (ret)
2200                        goto put_new;
2201
2202                /* Create pseudo-vma that contains just the policy */
2203                memset(&pvma, 0, sizeof(struct vm_area_struct));
2204                pvma.vm_end = TASK_SIZE;        /* policy covers entire file */
2205                mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2206
2207put_new:
2208                mpol_put(new);                  /* drop initial ref */
2209free_scratch:
2210                NODEMASK_SCRATCH_FREE(scratch);
2211put_mpol:
2212                mpol_put(mpol); /* drop our incoming ref on sb mpol */
2213        }
2214}
2215
2216int mpol_set_shared_policy(struct shared_policy *info,
2217                        struct vm_area_struct *vma, struct mempolicy *npol)
2218{
2219        int err;
2220        struct sp_node *new = NULL;
2221        unsigned long sz = vma_pages(vma);
2222
2223        pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2224                 vma->vm_pgoff,
2225                 sz, npol ? npol->mode : -1,
2226                 npol ? npol->flags : -1,
2227                 npol ? nodes_addr(npol->v.nodes)[0] : -1);
2228
2229        if (npol) {
2230                new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2231                if (!new)
2232                        return -ENOMEM;
2233        }
2234        err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2235        if (err && new)
2236                kmem_cache_free(sn_cache, new);
2237        return err;
2238}
2239
2240/* Free a backing policy store on inode delete. */
2241void mpol_free_shared_policy(struct shared_policy *p)
2242{
2243        struct sp_node *n;
2244        struct rb_node *next;
2245
2246        if (!p->root.rb_node)
2247                return;
2248        spin_lock(&p->lock);
2249        next = rb_first(&p->root);
2250        while (next) {
2251                n = rb_entry(next, struct sp_node, nd);
2252                next = rb_next(&n->nd);
2253                rb_erase(&n->nd, &p->root);
2254                mpol_put(n->policy);
2255                kmem_cache_free(sn_cache, n);
2256        }
2257        spin_unlock(&p->lock);
2258}
2259
2260/* assumes fs == KERNEL_DS */
2261void __init numa_policy_init(void)
2262{
2263        nodemask_t interleave_nodes;
2264        unsigned long largest = 0;
2265        int nid, prefer = 0;
2266
2267        policy_cache = kmem_cache_create("numa_policy",
2268                                         sizeof(struct mempolicy),
2269                                         0, SLAB_PANIC, NULL);
2270
2271        sn_cache = kmem_cache_create("shared_policy_node",
2272                                     sizeof(struct sp_node),
2273                                     0, SLAB_PANIC, NULL);
2274
2275        /*
2276         * Set interleaving policy for system init. Interleaving is only
2277         * enabled across suitably sized nodes (default is >= 16MB), or
2278         * fall back to the largest node if they're all smaller.
2279         */
2280        nodes_clear(interleave_nodes);
2281        for_each_node_state(nid, N_HIGH_MEMORY) {
2282                unsigned long total_pages = node_present_pages(nid);
2283
2284                /* Preserve the largest node */
2285                if (largest < total_pages) {
2286                        largest = total_pages;
2287                        prefer = nid;
2288                }
2289
2290                /* Interleave this node? */
2291                if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2292                        node_set(nid, interleave_nodes);
2293        }
2294
2295        /* All too small, use the largest */
2296        if (unlikely(nodes_empty(interleave_nodes)))
2297                node_set(prefer, interleave_nodes);
2298
2299        if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2300                printk("numa_policy_init: interleaving failed\n");
2301}
2302
2303/* Reset policy of current process to default */
2304void numa_default_policy(void)
2305{
2306        do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2307}
2308
2309/*
2310 * Parse and format mempolicy from/to strings
2311 */
2312
2313/*
2314 * "local" is pseudo-policy:  MPOL_PREFERRED with MPOL_F_LOCAL flag
2315 * Used only for mpol_parse_str() and mpol_to_str()
2316 */
2317#define MPOL_LOCAL MPOL_MAX
2318static const char * const policy_modes[] =
2319{
2320        [MPOL_DEFAULT]    = "default",
2321        [MPOL_PREFERRED]  = "prefer",
2322        [MPOL_BIND]       = "bind",
2323        [MPOL_INTERLEAVE] = "interleave",
2324        [MPOL_LOCAL]      = "local"
2325};
2326
2327
2328#ifdef CONFIG_TMPFS
2329/**
2330 * mpol_parse_str - parse string to mempolicy
2331 * @str:  string containing mempolicy to parse
2332 * @mpol:  pointer to struct mempolicy pointer, returned on success.
2333 * @no_context:  flag whether to "contextualize" the mempolicy
2334 *
2335 * Format of input:
2336 *      <mode>[=<flags>][:<nodelist>]
2337 *
2338 * if @no_context is true, save the input nodemask in w.user_nodemask in
2339 * the returned mempolicy.  This will be used to "clone" the mempolicy in
2340 * a specific context [cpuset] at a later time.  Used to parse tmpfs mpol
2341 * mount option.  Note that if 'static' or 'relative' mode flags were
2342 * specified, the input nodemask will already have been saved.  Saving
2343 * it again is redundant, but safe.
2344 *
2345 * On success, returns 0, else 1
2346 */
2347int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2348{
2349        struct mempolicy *new = NULL;
2350        unsigned short mode;
2351        unsigned short uninitialized_var(mode_flags);
2352        nodemask_t nodes;
2353        char *nodelist = strchr(str, ':');
2354        char *flags = strchr(str, '=');
2355        int err = 1;
2356
2357        if (nodelist) {
2358                /* NUL-terminate mode or flags string */
2359                *nodelist++ = '\0';
2360                if (nodelist_parse(nodelist, nodes))
2361                        goto out;
2362                if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2363                        goto out;
2364        } else
2365                nodes_clear(nodes);
2366
2367        if (flags)
2368                *flags++ = '\0';        /* terminate mode string */
2369
2370        for (mode = 0; mode <= MPOL_LOCAL; mode++) {
2371                if (!strcmp(str, policy_modes[mode])) {
2372                        break;
2373                }
2374        }
2375        if (mode > MPOL_LOCAL)
2376                goto out;
2377
2378        switch (mode) {
2379        case MPOL_PREFERRED:
2380                /*
2381                 * Insist on a nodelist of one node only
2382                 */
2383                if (nodelist) {
2384                        char *rest = nodelist;
2385                        while (isdigit(*rest))
2386                                rest++;
2387                        if (*rest)
2388                                goto out;
2389                }
2390                break;
2391        case MPOL_INTERLEAVE:
2392                /*
2393                 * Default to online nodes with memory if no nodelist
2394                 */
2395                if (!nodelist)
2396                        nodes = node_states[N_HIGH_MEMORY];
2397                break;
2398        case MPOL_LOCAL:
2399                /*
2400                 * Don't allow a nodelist;  mpol_new() checks flags
2401                 */
2402                if (nodelist)
2403                        goto out;
2404                mode = MPOL_PREFERRED;
2405                break;
2406        case MPOL_DEFAULT:
2407                /*
2408                 * Insist on a empty nodelist
2409                 */
2410                if (!nodelist)
2411                        err = 0;
2412                goto out;
2413        case MPOL_BIND:
2414                /*
2415                 * Insist on a nodelist
2416                 */
2417                if (!nodelist)
2418                        goto out;
2419        }
2420
2421        mode_flags = 0;
2422        if (flags) {
2423                /*
2424                 * Currently, we only support two mutually exclusive
2425                 * mode flags.
2426                 */
2427                if (!strcmp(flags, "static"))
2428                        mode_flags |= MPOL_F_STATIC_NODES;
2429                else if (!strcmp(flags, "relative"))
2430                        mode_flags |= MPOL_F_RELATIVE_NODES;
2431                else
2432                        goto out;
2433        }
2434
2435        new = mpol_new(mode, mode_flags, &nodes);
2436        if (IS_ERR(new))
2437                goto out;
2438
2439        if (no_context) {
2440                /* save for contextualization */
2441                new->w.user_nodemask = nodes;
2442        } else {
2443                int ret;
2444                NODEMASK_SCRATCH(scratch);
2445                if (scratch) {
2446                        task_lock(current);
2447                        ret = mpol_set_nodemask(new, &nodes, scratch);
2448                        task_unlock(current);
2449                } else
2450                        ret = -ENOMEM;
2451                NODEMASK_SCRATCH_FREE(scratch);
2452                if (ret) {
2453                        mpol_put(new);
2454                        goto out;
2455                }
2456        }
2457        err = 0;
2458
2459out:
2460        /* Restore string for error message */
2461        if (nodelist)
2462                *--nodelist = ':';
2463        if (flags)
2464                *--flags = '=';
2465        if (!err)
2466                *mpol = new;
2467        return err;
2468}
2469#endif /* CONFIG_TMPFS */
2470
2471/**
2472 * mpol_to_str - format a mempolicy structure for printing
2473 * @buffer:  to contain formatted mempolicy string
2474 * @maxlen:  length of @buffer
2475 * @pol:  pointer to mempolicy to be formatted
2476 * @no_context:  "context free" mempolicy - use nodemask in w.user_nodemask
2477 *
2478 * Convert a mempolicy into a string.
2479 * Returns the number of characters in buffer (if positive)
2480 * or an error (negative)
2481 */
2482int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2483{
2484        char *p = buffer;
2485        int l;
2486        nodemask_t nodes;
2487        unsigned short mode;
2488        unsigned short flags = pol ? pol->flags : 0;
2489
2490        /*
2491         * Sanity check:  room for longest mode, flag and some nodes
2492         */
2493        VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2494
2495        if (!pol || pol == &default_policy)
2496                mode = MPOL_DEFAULT;
2497        else
2498                mode = pol->mode;
2499
2500        switch (mode) {
2501        case MPOL_DEFAULT:
2502                nodes_clear(nodes);
2503                break;
2504
2505        case MPOL_PREFERRED:
2506                nodes_clear(nodes);
2507                if (flags & MPOL_F_LOCAL)
2508                        mode = MPOL_LOCAL;      /* pseudo-policy */
2509                else
2510                        node_set(pol->v.preferred_node, nodes);
2511                break;
2512
2513        case MPOL_BIND:
2514                /* Fall through */
2515        case MPOL_INTERLEAVE:
2516                if (no_context)
2517                        nodes = pol->w.user_nodemask;
2518                else
2519                        nodes = pol->v.nodes;
2520                break;
2521
2522        default:
2523                BUG();
2524        }
2525
2526        l = strlen(policy_modes[mode]);
2527        if (buffer + maxlen < p + l + 1)
2528                return -ENOSPC;
2529
2530        strcpy(p, policy_modes[mode]);
2531        p += l;
2532
2533        if (flags & MPOL_MODE_FLAGS) {
2534                if (buffer + maxlen < p + 2)
2535                        return -ENOSPC;
2536                *p++ = '=';
2537
2538                /*
2539                 * Currently, the only defined flags are mutually exclusive
2540                 */
2541                if (flags & MPOL_F_STATIC_NODES)
2542                        p += snprintf(p, buffer + maxlen - p, "static");
2543                else if (flags & MPOL_F_RELATIVE_NODES)
2544                        p += snprintf(p, buffer + maxlen - p, "relative");
2545        }
2546
2547        if (!nodes_empty(nodes)) {
2548                if (buffer + maxlen < p + 2)
2549                        return -ENOSPC;
2550                *p++ = ':';
2551                p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2552        }
2553        return p - buffer;
2554}
2555