linux/mm/memcontrol.c
<<
>>
Prefs
   1/* memcontrol.c - Memory Controller
   2 *
   3 * Copyright IBM Corporation, 2007
   4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
   5 *
   6 * Copyright 2007 OpenVZ SWsoft Inc
   7 * Author: Pavel Emelianov <xemul@openvz.org>
   8 *
   9 * Memory thresholds
  10 * Copyright (C) 2009 Nokia Corporation
  11 * Author: Kirill A. Shutemov
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License as published by
  15 * the Free Software Foundation; either version 2 of the License, or
  16 * (at your option) any later version.
  17 *
  18 * This program is distributed in the hope that it will be useful,
  19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  21 * GNU General Public License for more details.
  22 */
  23
  24#include <linux/res_counter.h>
  25#include <linux/memcontrol.h>
  26#include <linux/cgroup.h>
  27#include <linux/mm.h>
  28#include <linux/hugetlb.h>
  29#include <linux/pagemap.h>
  30#include <linux/smp.h>
  31#include <linux/page-flags.h>
  32#include <linux/backing-dev.h>
  33#include <linux/bit_spinlock.h>
  34#include <linux/rcupdate.h>
  35#include <linux/limits.h>
  36#include <linux/export.h>
  37#include <linux/mutex.h>
  38#include <linux/rbtree.h>
  39#include <linux/slab.h>
  40#include <linux/swap.h>
  41#include <linux/swapops.h>
  42#include <linux/spinlock.h>
  43#include <linux/eventfd.h>
  44#include <linux/sort.h>
  45#include <linux/fs.h>
  46#include <linux/seq_file.h>
  47#include <linux/vmalloc.h>
  48#include <linux/mm_inline.h>
  49#include <linux/page_cgroup.h>
  50#include <linux/cpu.h>
  51#include <linux/oom.h>
  52#include "internal.h"
  53#include <net/sock.h>
  54#include <net/tcp_memcontrol.h>
  55
  56#include <asm/uaccess.h>
  57
  58#include <trace/events/vmscan.h>
  59
  60struct cgroup_subsys mem_cgroup_subsys __read_mostly;
  61#define MEM_CGROUP_RECLAIM_RETRIES      5
  62struct mem_cgroup *root_mem_cgroup __read_mostly;
  63
  64#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
  65/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
  66int do_swap_account __read_mostly;
  67
  68/* for remember boot option*/
  69#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
  70static int really_do_swap_account __initdata = 1;
  71#else
  72static int really_do_swap_account __initdata = 0;
  73#endif
  74
  75#else
  76#define do_swap_account         (0)
  77#endif
  78
  79
  80/*
  81 * Statistics for memory cgroup.
  82 */
  83enum mem_cgroup_stat_index {
  84        /*
  85         * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
  86         */
  87        MEM_CGROUP_STAT_CACHE,     /* # of pages charged as cache */
  88        MEM_CGROUP_STAT_RSS,       /* # of pages charged as anon rss */
  89        MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
  90        MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
  91        MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
  92        MEM_CGROUP_ON_MOVE,     /* someone is moving account between groups */
  93        MEM_CGROUP_STAT_NSTATS,
  94};
  95
  96enum mem_cgroup_events_index {
  97        MEM_CGROUP_EVENTS_PGPGIN,       /* # of pages paged in */
  98        MEM_CGROUP_EVENTS_PGPGOUT,      /* # of pages paged out */
  99        MEM_CGROUP_EVENTS_COUNT,        /* # of pages paged in/out */
 100        MEM_CGROUP_EVENTS_PGFAULT,      /* # of page-faults */
 101        MEM_CGROUP_EVENTS_PGMAJFAULT,   /* # of major page-faults */
 102        MEM_CGROUP_EVENTS_NSTATS,
 103};
 104/*
 105 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 106 * it will be incremated by the number of pages. This counter is used for
 107 * for trigger some periodic events. This is straightforward and better
 108 * than using jiffies etc. to handle periodic memcg event.
 109 */
 110enum mem_cgroup_events_target {
 111        MEM_CGROUP_TARGET_THRESH,
 112        MEM_CGROUP_TARGET_SOFTLIMIT,
 113        MEM_CGROUP_TARGET_NUMAINFO,
 114        MEM_CGROUP_NTARGETS,
 115};
 116#define THRESHOLDS_EVENTS_TARGET (128)
 117#define SOFTLIMIT_EVENTS_TARGET (1024)
 118#define NUMAINFO_EVENTS_TARGET  (1024)
 119
 120struct mem_cgroup_stat_cpu {
 121        long count[MEM_CGROUP_STAT_NSTATS];
 122        unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
 123        unsigned long targets[MEM_CGROUP_NTARGETS];
 124};
 125
 126struct mem_cgroup_reclaim_iter {
 127        /* css_id of the last scanned hierarchy member */
 128        int position;
 129        /* scan generation, increased every round-trip */
 130        unsigned int generation;
 131};
 132
 133/*
 134 * per-zone information in memory controller.
 135 */
 136struct mem_cgroup_per_zone {
 137        struct lruvec           lruvec;
 138        unsigned long           count[NR_LRU_LISTS];
 139
 140        struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
 141
 142        struct zone_reclaim_stat reclaim_stat;
 143        struct rb_node          tree_node;      /* RB tree node */
 144        unsigned long long      usage_in_excess;/* Set to the value by which */
 145                                                /* the soft limit is exceeded*/
 146        bool                    on_tree;
 147        struct mem_cgroup       *mem;           /* Back pointer, we cannot */
 148                                                /* use container_of        */
 149};
 150/* Macro for accessing counter */
 151#define MEM_CGROUP_ZSTAT(mz, idx)       ((mz)->count[(idx)])
 152
 153struct mem_cgroup_per_node {
 154        struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
 155};
 156
 157struct mem_cgroup_lru_info {
 158        struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
 159};
 160
 161/*
 162 * Cgroups above their limits are maintained in a RB-Tree, independent of
 163 * their hierarchy representation
 164 */
 165
 166struct mem_cgroup_tree_per_zone {
 167        struct rb_root rb_root;
 168        spinlock_t lock;
 169};
 170
 171struct mem_cgroup_tree_per_node {
 172        struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
 173};
 174
 175struct mem_cgroup_tree {
 176        struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
 177};
 178
 179static struct mem_cgroup_tree soft_limit_tree __read_mostly;
 180
 181struct mem_cgroup_threshold {
 182        struct eventfd_ctx *eventfd;
 183        u64 threshold;
 184};
 185
 186/* For threshold */
 187struct mem_cgroup_threshold_ary {
 188        /* An array index points to threshold just below usage. */
 189        int current_threshold;
 190        /* Size of entries[] */
 191        unsigned int size;
 192        /* Array of thresholds */
 193        struct mem_cgroup_threshold entries[0];
 194};
 195
 196struct mem_cgroup_thresholds {
 197        /* Primary thresholds array */
 198        struct mem_cgroup_threshold_ary *primary;
 199        /*
 200         * Spare threshold array.
 201         * This is needed to make mem_cgroup_unregister_event() "never fail".
 202         * It must be able to store at least primary->size - 1 entries.
 203         */
 204        struct mem_cgroup_threshold_ary *spare;
 205};
 206
 207/* for OOM */
 208struct mem_cgroup_eventfd_list {
 209        struct list_head list;
 210        struct eventfd_ctx *eventfd;
 211};
 212
 213static void mem_cgroup_threshold(struct mem_cgroup *memcg);
 214static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
 215
 216/*
 217 * The memory controller data structure. The memory controller controls both
 218 * page cache and RSS per cgroup. We would eventually like to provide
 219 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 220 * to help the administrator determine what knobs to tune.
 221 *
 222 * TODO: Add a water mark for the memory controller. Reclaim will begin when
 223 * we hit the water mark. May be even add a low water mark, such that
 224 * no reclaim occurs from a cgroup at it's low water mark, this is
 225 * a feature that will be implemented much later in the future.
 226 */
 227struct mem_cgroup {
 228        struct cgroup_subsys_state css;
 229        /*
 230         * the counter to account for memory usage
 231         */
 232        struct res_counter res;
 233
 234        union {
 235                /*
 236                 * the counter to account for mem+swap usage.
 237                 */
 238                struct res_counter memsw;
 239
 240                /*
 241                 * rcu_freeing is used only when freeing struct mem_cgroup,
 242                 * so put it into a union to avoid wasting more memory.
 243                 * It must be disjoint from the css field.  It could be
 244                 * in a union with the res field, but res plays a much
 245                 * larger part in mem_cgroup life than memsw, and might
 246                 * be of interest, even at time of free, when debugging.
 247                 * So share rcu_head with the less interesting memsw.
 248                 */
 249                struct rcu_head rcu_freeing;
 250                /*
 251                 * But when using vfree(), that cannot be done at
 252                 * interrupt time, so we must then queue the work.
 253                 */
 254                struct work_struct work_freeing;
 255        };
 256
 257        /*
 258         * Per cgroup active and inactive list, similar to the
 259         * per zone LRU lists.
 260         */
 261        struct mem_cgroup_lru_info info;
 262        int last_scanned_node;
 263#if MAX_NUMNODES > 1
 264        nodemask_t      scan_nodes;
 265        atomic_t        numainfo_events;
 266        atomic_t        numainfo_updating;
 267#endif
 268        /*
 269         * Should the accounting and control be hierarchical, per subtree?
 270         */
 271        bool use_hierarchy;
 272
 273        bool            oom_lock;
 274        atomic_t        under_oom;
 275
 276        atomic_t        refcnt;
 277
 278        int     swappiness;
 279        /* OOM-Killer disable */
 280        int             oom_kill_disable;
 281
 282        /* set when res.limit == memsw.limit */
 283        bool            memsw_is_minimum;
 284
 285        /* protect arrays of thresholds */
 286        struct mutex thresholds_lock;
 287
 288        /* thresholds for memory usage. RCU-protected */
 289        struct mem_cgroup_thresholds thresholds;
 290
 291        /* thresholds for mem+swap usage. RCU-protected */
 292        struct mem_cgroup_thresholds memsw_thresholds;
 293
 294        /* For oom notifier event fd */
 295        struct list_head oom_notify;
 296
 297        /*
 298         * Should we move charges of a task when a task is moved into this
 299         * mem_cgroup ? And what type of charges should we move ?
 300         */
 301        unsigned long   move_charge_at_immigrate;
 302        /*
 303         * percpu counter.
 304         */
 305        struct mem_cgroup_stat_cpu *stat;
 306        /*
 307         * used when a cpu is offlined or other synchronizations
 308         * See mem_cgroup_read_stat().
 309         */
 310        struct mem_cgroup_stat_cpu nocpu_base;
 311        spinlock_t pcp_counter_lock;
 312
 313#ifdef CONFIG_INET
 314        struct tcp_memcontrol tcp_mem;
 315#endif
 316};
 317
 318/* Stuffs for move charges at task migration. */
 319/*
 320 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 321 * left-shifted bitmap of these types.
 322 */
 323enum move_type {
 324        MOVE_CHARGE_TYPE_ANON,  /* private anonymous page and swap of it */
 325        MOVE_CHARGE_TYPE_FILE,  /* file page(including tmpfs) and swap of it */
 326        NR_MOVE_TYPE,
 327};
 328
 329/* "mc" and its members are protected by cgroup_mutex */
 330static struct move_charge_struct {
 331        spinlock_t        lock; /* for from, to */
 332        struct mem_cgroup *from;
 333        struct mem_cgroup *to;
 334        unsigned long precharge;
 335        unsigned long moved_charge;
 336        unsigned long moved_swap;
 337        struct task_struct *moving_task;        /* a task moving charges */
 338        wait_queue_head_t waitq;                /* a waitq for other context */
 339} mc = {
 340        .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
 341        .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
 342};
 343
 344static bool move_anon(void)
 345{
 346        return test_bit(MOVE_CHARGE_TYPE_ANON,
 347                                        &mc.to->move_charge_at_immigrate);
 348}
 349
 350static bool move_file(void)
 351{
 352        return test_bit(MOVE_CHARGE_TYPE_FILE,
 353                                        &mc.to->move_charge_at_immigrate);
 354}
 355
 356/*
 357 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 358 * limit reclaim to prevent infinite loops, if they ever occur.
 359 */
 360#define MEM_CGROUP_MAX_RECLAIM_LOOPS            (100)
 361#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
 362
 363enum charge_type {
 364        MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
 365        MEM_CGROUP_CHARGE_TYPE_MAPPED,
 366        MEM_CGROUP_CHARGE_TYPE_SHMEM,   /* used by page migration of shmem */
 367        MEM_CGROUP_CHARGE_TYPE_FORCE,   /* used by force_empty */
 368        MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
 369        MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
 370        NR_CHARGE_TYPE,
 371};
 372
 373/* for encoding cft->private value on file */
 374#define _MEM                    (0)
 375#define _MEMSWAP                (1)
 376#define _OOM_TYPE               (2)
 377#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
 378#define MEMFILE_TYPE(val)       (((val) >> 16) & 0xffff)
 379#define MEMFILE_ATTR(val)       ((val) & 0xffff)
 380/* Used for OOM nofiier */
 381#define OOM_CONTROL             (0)
 382
 383/*
 384 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 385 */
 386#define MEM_CGROUP_RECLAIM_NOSWAP_BIT   0x0
 387#define MEM_CGROUP_RECLAIM_NOSWAP       (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
 388#define MEM_CGROUP_RECLAIM_SHRINK_BIT   0x1
 389#define MEM_CGROUP_RECLAIM_SHRINK       (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
 390
 391static void mem_cgroup_get(struct mem_cgroup *memcg);
 392static void mem_cgroup_put(struct mem_cgroup *memcg);
 393
 394/* Writing them here to avoid exposing memcg's inner layout */
 395#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
 396#include <net/sock.h>
 397#include <net/ip.h>
 398
 399static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
 400void sock_update_memcg(struct sock *sk)
 401{
 402        if (mem_cgroup_sockets_enabled) {
 403                struct mem_cgroup *memcg;
 404
 405                BUG_ON(!sk->sk_prot->proto_cgroup);
 406
 407                /* Socket cloning can throw us here with sk_cgrp already
 408                 * filled. It won't however, necessarily happen from
 409                 * process context. So the test for root memcg given
 410                 * the current task's memcg won't help us in this case.
 411                 *
 412                 * Respecting the original socket's memcg is a better
 413                 * decision in this case.
 414                 */
 415                if (sk->sk_cgrp) {
 416                        BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
 417                        mem_cgroup_get(sk->sk_cgrp->memcg);
 418                        return;
 419                }
 420
 421                rcu_read_lock();
 422                memcg = mem_cgroup_from_task(current);
 423                if (!mem_cgroup_is_root(memcg)) {
 424                        mem_cgroup_get(memcg);
 425                        sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
 426                }
 427                rcu_read_unlock();
 428        }
 429}
 430EXPORT_SYMBOL(sock_update_memcg);
 431
 432void sock_release_memcg(struct sock *sk)
 433{
 434        if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
 435                struct mem_cgroup *memcg;
 436                WARN_ON(!sk->sk_cgrp->memcg);
 437                memcg = sk->sk_cgrp->memcg;
 438                mem_cgroup_put(memcg);
 439        }
 440}
 441
 442#ifdef CONFIG_INET
 443struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
 444{
 445        if (!memcg || mem_cgroup_is_root(memcg))
 446                return NULL;
 447
 448        return &memcg->tcp_mem.cg_proto;
 449}
 450EXPORT_SYMBOL(tcp_proto_cgroup);
 451#endif /* CONFIG_INET */
 452#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
 453
 454static void drain_all_stock_async(struct mem_cgroup *memcg);
 455
 456static struct mem_cgroup_per_zone *
 457mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
 458{
 459        return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
 460}
 461
 462struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
 463{
 464        return &memcg->css;
 465}
 466
 467static struct mem_cgroup_per_zone *
 468page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
 469{
 470        int nid = page_to_nid(page);
 471        int zid = page_zonenum(page);
 472
 473        return mem_cgroup_zoneinfo(memcg, nid, zid);
 474}
 475
 476static struct mem_cgroup_tree_per_zone *
 477soft_limit_tree_node_zone(int nid, int zid)
 478{
 479        return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
 480}
 481
 482static struct mem_cgroup_tree_per_zone *
 483soft_limit_tree_from_page(struct page *page)
 484{
 485        int nid = page_to_nid(page);
 486        int zid = page_zonenum(page);
 487
 488        return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
 489}
 490
 491static void
 492__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
 493                                struct mem_cgroup_per_zone *mz,
 494                                struct mem_cgroup_tree_per_zone *mctz,
 495                                unsigned long long new_usage_in_excess)
 496{
 497        struct rb_node **p = &mctz->rb_root.rb_node;
 498        struct rb_node *parent = NULL;
 499        struct mem_cgroup_per_zone *mz_node;
 500
 501        if (mz->on_tree)
 502                return;
 503
 504        mz->usage_in_excess = new_usage_in_excess;
 505        if (!mz->usage_in_excess)
 506                return;
 507        while (*p) {
 508                parent = *p;
 509                mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
 510                                        tree_node);
 511                if (mz->usage_in_excess < mz_node->usage_in_excess)
 512                        p = &(*p)->rb_left;
 513                /*
 514                 * We can't avoid mem cgroups that are over their soft
 515                 * limit by the same amount
 516                 */
 517                else if (mz->usage_in_excess >= mz_node->usage_in_excess)
 518                        p = &(*p)->rb_right;
 519        }
 520        rb_link_node(&mz->tree_node, parent, p);
 521        rb_insert_color(&mz->tree_node, &mctz->rb_root);
 522        mz->on_tree = true;
 523}
 524
 525static void
 526__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
 527                                struct mem_cgroup_per_zone *mz,
 528                                struct mem_cgroup_tree_per_zone *mctz)
 529{
 530        if (!mz->on_tree)
 531                return;
 532        rb_erase(&mz->tree_node, &mctz->rb_root);
 533        mz->on_tree = false;
 534}
 535
 536static void
 537mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
 538                                struct mem_cgroup_per_zone *mz,
 539                                struct mem_cgroup_tree_per_zone *mctz)
 540{
 541        spin_lock(&mctz->lock);
 542        __mem_cgroup_remove_exceeded(memcg, mz, mctz);
 543        spin_unlock(&mctz->lock);
 544}
 545
 546
 547static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
 548{
 549        unsigned long long excess;
 550        struct mem_cgroup_per_zone *mz;
 551        struct mem_cgroup_tree_per_zone *mctz;
 552        int nid = page_to_nid(page);
 553        int zid = page_zonenum(page);
 554        mctz = soft_limit_tree_from_page(page);
 555
 556        /*
 557         * Necessary to update all ancestors when hierarchy is used.
 558         * because their event counter is not touched.
 559         */
 560        for (; memcg; memcg = parent_mem_cgroup(memcg)) {
 561                mz = mem_cgroup_zoneinfo(memcg, nid, zid);
 562                excess = res_counter_soft_limit_excess(&memcg->res);
 563                /*
 564                 * We have to update the tree if mz is on RB-tree or
 565                 * mem is over its softlimit.
 566                 */
 567                if (excess || mz->on_tree) {
 568                        spin_lock(&mctz->lock);
 569                        /* if on-tree, remove it */
 570                        if (mz->on_tree)
 571                                __mem_cgroup_remove_exceeded(memcg, mz, mctz);
 572                        /*
 573                         * Insert again. mz->usage_in_excess will be updated.
 574                         * If excess is 0, no tree ops.
 575                         */
 576                        __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
 577                        spin_unlock(&mctz->lock);
 578                }
 579        }
 580}
 581
 582static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
 583{
 584        int node, zone;
 585        struct mem_cgroup_per_zone *mz;
 586        struct mem_cgroup_tree_per_zone *mctz;
 587
 588        for_each_node(node) {
 589                for (zone = 0; zone < MAX_NR_ZONES; zone++) {
 590                        mz = mem_cgroup_zoneinfo(memcg, node, zone);
 591                        mctz = soft_limit_tree_node_zone(node, zone);
 592                        mem_cgroup_remove_exceeded(memcg, mz, mctz);
 593                }
 594        }
 595}
 596
 597static struct mem_cgroup_per_zone *
 598__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
 599{
 600        struct rb_node *rightmost = NULL;
 601        struct mem_cgroup_per_zone *mz;
 602
 603retry:
 604        mz = NULL;
 605        rightmost = rb_last(&mctz->rb_root);
 606        if (!rightmost)
 607                goto done;              /* Nothing to reclaim from */
 608
 609        mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
 610        /*
 611         * Remove the node now but someone else can add it back,
 612         * we will to add it back at the end of reclaim to its correct
 613         * position in the tree.
 614         */
 615        __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
 616        if (!res_counter_soft_limit_excess(&mz->mem->res) ||
 617                !css_tryget(&mz->mem->css))
 618                goto retry;
 619done:
 620        return mz;
 621}
 622
 623static struct mem_cgroup_per_zone *
 624mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
 625{
 626        struct mem_cgroup_per_zone *mz;
 627
 628        spin_lock(&mctz->lock);
 629        mz = __mem_cgroup_largest_soft_limit_node(mctz);
 630        spin_unlock(&mctz->lock);
 631        return mz;
 632}
 633
 634/*
 635 * Implementation Note: reading percpu statistics for memcg.
 636 *
 637 * Both of vmstat[] and percpu_counter has threshold and do periodic
 638 * synchronization to implement "quick" read. There are trade-off between
 639 * reading cost and precision of value. Then, we may have a chance to implement
 640 * a periodic synchronizion of counter in memcg's counter.
 641 *
 642 * But this _read() function is used for user interface now. The user accounts
 643 * memory usage by memory cgroup and he _always_ requires exact value because
 644 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 645 * have to visit all online cpus and make sum. So, for now, unnecessary
 646 * synchronization is not implemented. (just implemented for cpu hotplug)
 647 *
 648 * If there are kernel internal actions which can make use of some not-exact
 649 * value, and reading all cpu value can be performance bottleneck in some
 650 * common workload, threashold and synchonization as vmstat[] should be
 651 * implemented.
 652 */
 653static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
 654                                 enum mem_cgroup_stat_index idx)
 655{
 656        long val = 0;
 657        int cpu;
 658
 659        get_online_cpus();
 660        for_each_online_cpu(cpu)
 661                val += per_cpu(memcg->stat->count[idx], cpu);
 662#ifdef CONFIG_HOTPLUG_CPU
 663        spin_lock(&memcg->pcp_counter_lock);
 664        val += memcg->nocpu_base.count[idx];
 665        spin_unlock(&memcg->pcp_counter_lock);
 666#endif
 667        put_online_cpus();
 668        return val;
 669}
 670
 671static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
 672                                         bool charge)
 673{
 674        int val = (charge) ? 1 : -1;
 675        this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
 676}
 677
 678static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
 679                                            enum mem_cgroup_events_index idx)
 680{
 681        unsigned long val = 0;
 682        int cpu;
 683
 684        for_each_online_cpu(cpu)
 685                val += per_cpu(memcg->stat->events[idx], cpu);
 686#ifdef CONFIG_HOTPLUG_CPU
 687        spin_lock(&memcg->pcp_counter_lock);
 688        val += memcg->nocpu_base.events[idx];
 689        spin_unlock(&memcg->pcp_counter_lock);
 690#endif
 691        return val;
 692}
 693
 694static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
 695                                         bool file, int nr_pages)
 696{
 697        preempt_disable();
 698
 699        if (file)
 700                __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
 701                                nr_pages);
 702        else
 703                __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
 704                                nr_pages);
 705
 706        /* pagein of a big page is an event. So, ignore page size */
 707        if (nr_pages > 0)
 708                __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
 709        else {
 710                __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
 711                nr_pages = -nr_pages; /* for event */
 712        }
 713
 714        __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
 715
 716        preempt_enable();
 717}
 718
 719unsigned long
 720mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
 721                        unsigned int lru_mask)
 722{
 723        struct mem_cgroup_per_zone *mz;
 724        enum lru_list l;
 725        unsigned long ret = 0;
 726
 727        mz = mem_cgroup_zoneinfo(memcg, nid, zid);
 728
 729        for_each_lru(l) {
 730                if (BIT(l) & lru_mask)
 731                        ret += MEM_CGROUP_ZSTAT(mz, l);
 732        }
 733        return ret;
 734}
 735
 736static unsigned long
 737mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
 738                        int nid, unsigned int lru_mask)
 739{
 740        u64 total = 0;
 741        int zid;
 742
 743        for (zid = 0; zid < MAX_NR_ZONES; zid++)
 744                total += mem_cgroup_zone_nr_lru_pages(memcg,
 745                                                nid, zid, lru_mask);
 746
 747        return total;
 748}
 749
 750static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
 751                        unsigned int lru_mask)
 752{
 753        int nid;
 754        u64 total = 0;
 755
 756        for_each_node_state(nid, N_HIGH_MEMORY)
 757                total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
 758        return total;
 759}
 760
 761static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
 762                                       enum mem_cgroup_events_target target)
 763{
 764        unsigned long val, next;
 765
 766        val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
 767        next = __this_cpu_read(memcg->stat->targets[target]);
 768        /* from time_after() in jiffies.h */
 769        if ((long)next - (long)val < 0) {
 770                switch (target) {
 771                case MEM_CGROUP_TARGET_THRESH:
 772                        next = val + THRESHOLDS_EVENTS_TARGET;
 773                        break;
 774                case MEM_CGROUP_TARGET_SOFTLIMIT:
 775                        next = val + SOFTLIMIT_EVENTS_TARGET;
 776                        break;
 777                case MEM_CGROUP_TARGET_NUMAINFO:
 778                        next = val + NUMAINFO_EVENTS_TARGET;
 779                        break;
 780                default:
 781                        break;
 782                }
 783                __this_cpu_write(memcg->stat->targets[target], next);
 784                return true;
 785        }
 786        return false;
 787}
 788
 789/*
 790 * Check events in order.
 791 *
 792 */
 793static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
 794{
 795        preempt_disable();
 796        /* threshold event is triggered in finer grain than soft limit */
 797        if (unlikely(mem_cgroup_event_ratelimit(memcg,
 798                                                MEM_CGROUP_TARGET_THRESH))) {
 799                bool do_softlimit;
 800                bool do_numainfo __maybe_unused;
 801
 802                do_softlimit = mem_cgroup_event_ratelimit(memcg,
 803                                                MEM_CGROUP_TARGET_SOFTLIMIT);
 804#if MAX_NUMNODES > 1
 805                do_numainfo = mem_cgroup_event_ratelimit(memcg,
 806                                                MEM_CGROUP_TARGET_NUMAINFO);
 807#endif
 808                preempt_enable();
 809
 810                mem_cgroup_threshold(memcg);
 811                if (unlikely(do_softlimit))
 812                        mem_cgroup_update_tree(memcg, page);
 813#if MAX_NUMNODES > 1
 814                if (unlikely(do_numainfo))
 815                        atomic_inc(&memcg->numainfo_events);
 816#endif
 817        } else
 818                preempt_enable();
 819}
 820
 821struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
 822{
 823        return container_of(cgroup_subsys_state(cont,
 824                                mem_cgroup_subsys_id), struct mem_cgroup,
 825                                css);
 826}
 827
 828struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
 829{
 830        /*
 831         * mm_update_next_owner() may clear mm->owner to NULL
 832         * if it races with swapoff, page migration, etc.
 833         * So this can be called with p == NULL.
 834         */
 835        if (unlikely(!p))
 836                return NULL;
 837
 838        return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
 839                                struct mem_cgroup, css);
 840}
 841
 842struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
 843{
 844        struct mem_cgroup *memcg = NULL;
 845
 846        if (!mm)
 847                return NULL;
 848        /*
 849         * Because we have no locks, mm->owner's may be being moved to other
 850         * cgroup. We use css_tryget() here even if this looks
 851         * pessimistic (rather than adding locks here).
 852         */
 853        rcu_read_lock();
 854        do {
 855                memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
 856                if (unlikely(!memcg))
 857                        break;
 858        } while (!css_tryget(&memcg->css));
 859        rcu_read_unlock();
 860        return memcg;
 861}
 862
 863/**
 864 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 865 * @root: hierarchy root
 866 * @prev: previously returned memcg, NULL on first invocation
 867 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 868 *
 869 * Returns references to children of the hierarchy below @root, or
 870 * @root itself, or %NULL after a full round-trip.
 871 *
 872 * Caller must pass the return value in @prev on subsequent
 873 * invocations for reference counting, or use mem_cgroup_iter_break()
 874 * to cancel a hierarchy walk before the round-trip is complete.
 875 *
 876 * Reclaimers can specify a zone and a priority level in @reclaim to
 877 * divide up the memcgs in the hierarchy among all concurrent
 878 * reclaimers operating on the same zone and priority.
 879 */
 880struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
 881                                   struct mem_cgroup *prev,
 882                                   struct mem_cgroup_reclaim_cookie *reclaim)
 883{
 884        struct mem_cgroup *memcg = NULL;
 885        int id = 0;
 886
 887        if (mem_cgroup_disabled())
 888                return NULL;
 889
 890        if (!root)
 891                root = root_mem_cgroup;
 892
 893        if (prev && !reclaim)
 894                id = css_id(&prev->css);
 895
 896        if (prev && prev != root)
 897                css_put(&prev->css);
 898
 899        if (!root->use_hierarchy && root != root_mem_cgroup) {
 900                if (prev)
 901                        return NULL;
 902                return root;
 903        }
 904
 905        while (!memcg) {
 906                struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
 907                struct cgroup_subsys_state *css;
 908
 909                if (reclaim) {
 910                        int nid = zone_to_nid(reclaim->zone);
 911                        int zid = zone_idx(reclaim->zone);
 912                        struct mem_cgroup_per_zone *mz;
 913
 914                        mz = mem_cgroup_zoneinfo(root, nid, zid);
 915                        iter = &mz->reclaim_iter[reclaim->priority];
 916                        if (prev && reclaim->generation != iter->generation)
 917                                return NULL;
 918                        id = iter->position;
 919                }
 920
 921                rcu_read_lock();
 922                css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
 923                if (css) {
 924                        if (css == &root->css || css_tryget(css))
 925                                memcg = container_of(css,
 926                                                     struct mem_cgroup, css);
 927                } else
 928                        id = 0;
 929                rcu_read_unlock();
 930
 931                if (reclaim) {
 932                        iter->position = id;
 933                        if (!css)
 934                                iter->generation++;
 935                        else if (!prev && memcg)
 936                                reclaim->generation = iter->generation;
 937                }
 938
 939                if (prev && !css)
 940                        return NULL;
 941        }
 942        return memcg;
 943}
 944
 945/**
 946 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 947 * @root: hierarchy root
 948 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 949 */
 950void mem_cgroup_iter_break(struct mem_cgroup *root,
 951                           struct mem_cgroup *prev)
 952{
 953        if (!root)
 954                root = root_mem_cgroup;
 955        if (prev && prev != root)
 956                css_put(&prev->css);
 957}
 958
 959/*
 960 * Iteration constructs for visiting all cgroups (under a tree).  If
 961 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 962 * be used for reference counting.
 963 */
 964#define for_each_mem_cgroup_tree(iter, root)            \
 965        for (iter = mem_cgroup_iter(root, NULL, NULL);  \
 966             iter != NULL;                              \
 967             iter = mem_cgroup_iter(root, iter, NULL))
 968
 969#define for_each_mem_cgroup(iter)                       \
 970        for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
 971             iter != NULL;                              \
 972             iter = mem_cgroup_iter(NULL, iter, NULL))
 973
 974static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
 975{
 976        return (memcg == root_mem_cgroup);
 977}
 978
 979void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
 980{
 981        struct mem_cgroup *memcg;
 982
 983        if (!mm)
 984                return;
 985
 986        rcu_read_lock();
 987        memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
 988        if (unlikely(!memcg))
 989                goto out;
 990
 991        switch (idx) {
 992        case PGFAULT:
 993                this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
 994                break;
 995        case PGMAJFAULT:
 996                this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
 997                break;
 998        default:
 999                BUG();
1000        }
1001out:
1002        rcu_read_unlock();
1003}
1004EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1005
1006/**
1007 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1008 * @zone: zone of the wanted lruvec
1009 * @mem: memcg of the wanted lruvec
1010 *
1011 * Returns the lru list vector holding pages for the given @zone and
1012 * @mem.  This can be the global zone lruvec, if the memory controller
1013 * is disabled.
1014 */
1015struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1016                                      struct mem_cgroup *memcg)
1017{
1018        struct mem_cgroup_per_zone *mz;
1019
1020        if (mem_cgroup_disabled())
1021                return &zone->lruvec;
1022
1023        mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1024        return &mz->lruvec;
1025}
1026
1027/*
1028 * Following LRU functions are allowed to be used without PCG_LOCK.
1029 * Operations are called by routine of global LRU independently from memcg.
1030 * What we have to take care of here is validness of pc->mem_cgroup.
1031 *
1032 * Changes to pc->mem_cgroup happens when
1033 * 1. charge
1034 * 2. moving account
1035 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1036 * It is added to LRU before charge.
1037 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1038 * When moving account, the page is not on LRU. It's isolated.
1039 */
1040
1041/**
1042 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1043 * @zone: zone of the page
1044 * @page: the page
1045 * @lru: current lru
1046 *
1047 * This function accounts for @page being added to @lru, and returns
1048 * the lruvec for the given @zone and the memcg @page is charged to.
1049 *
1050 * The callsite is then responsible for physically linking the page to
1051 * the returned lruvec->lists[@lru].
1052 */
1053struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1054                                       enum lru_list lru)
1055{
1056        struct mem_cgroup_per_zone *mz;
1057        struct mem_cgroup *memcg;
1058        struct page_cgroup *pc;
1059
1060        if (mem_cgroup_disabled())
1061                return &zone->lruvec;
1062
1063        pc = lookup_page_cgroup(page);
1064        memcg = pc->mem_cgroup;
1065
1066        /*
1067         * Surreptitiously switch any uncharged page to root:
1068         * an uncharged page off lru does nothing to secure
1069         * its former mem_cgroup from sudden removal.
1070         *
1071         * Our caller holds lru_lock, and PageCgroupUsed is updated
1072         * under page_cgroup lock: between them, they make all uses
1073         * of pc->mem_cgroup safe.
1074         */
1075        if (!PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1076                pc->mem_cgroup = memcg = root_mem_cgroup;
1077
1078        mz = page_cgroup_zoneinfo(memcg, page);
1079        /* compound_order() is stabilized through lru_lock */
1080        MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1081        return &mz->lruvec;
1082}
1083
1084/**
1085 * mem_cgroup_lru_del_list - account for removing an lru page
1086 * @page: the page
1087 * @lru: target lru
1088 *
1089 * This function accounts for @page being removed from @lru.
1090 *
1091 * The callsite is then responsible for physically unlinking
1092 * @page->lru.
1093 */
1094void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1095{
1096        struct mem_cgroup_per_zone *mz;
1097        struct mem_cgroup *memcg;
1098        struct page_cgroup *pc;
1099
1100        if (mem_cgroup_disabled())
1101                return;
1102
1103        pc = lookup_page_cgroup(page);
1104        memcg = pc->mem_cgroup;
1105        VM_BUG_ON(!memcg);
1106        mz = page_cgroup_zoneinfo(memcg, page);
1107        /* huge page split is done under lru_lock. so, we have no races. */
1108        VM_BUG_ON(MEM_CGROUP_ZSTAT(mz, lru) < (1 << compound_order(page)));
1109        MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
1110}
1111
1112void mem_cgroup_lru_del(struct page *page)
1113{
1114        mem_cgroup_lru_del_list(page, page_lru(page));
1115}
1116
1117/**
1118 * mem_cgroup_lru_move_lists - account for moving a page between lrus
1119 * @zone: zone of the page
1120 * @page: the page
1121 * @from: current lru
1122 * @to: target lru
1123 *
1124 * This function accounts for @page being moved between the lrus @from
1125 * and @to, and returns the lruvec for the given @zone and the memcg
1126 * @page is charged to.
1127 *
1128 * The callsite is then responsible for physically relinking
1129 * @page->lru to the returned lruvec->lists[@to].
1130 */
1131struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1132                                         struct page *page,
1133                                         enum lru_list from,
1134                                         enum lru_list to)
1135{
1136        /* XXX: Optimize this, especially for @from == @to */
1137        mem_cgroup_lru_del_list(page, from);
1138        return mem_cgroup_lru_add_list(zone, page, to);
1139}
1140
1141/*
1142 * Checks whether given mem is same or in the root_mem_cgroup's
1143 * hierarchy subtree
1144 */
1145static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1146                struct mem_cgroup *memcg)
1147{
1148        if (root_memcg != memcg) {
1149                return (root_memcg->use_hierarchy &&
1150                        css_is_ancestor(&memcg->css, &root_memcg->css));
1151        }
1152
1153        return true;
1154}
1155
1156int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1157{
1158        int ret;
1159        struct mem_cgroup *curr = NULL;
1160        struct task_struct *p;
1161
1162        p = find_lock_task_mm(task);
1163        if (p) {
1164                curr = try_get_mem_cgroup_from_mm(p->mm);
1165                task_unlock(p);
1166        } else {
1167                /*
1168                 * All threads may have already detached their mm's, but the oom
1169                 * killer still needs to detect if they have already been oom
1170                 * killed to prevent needlessly killing additional tasks.
1171                 */
1172                task_lock(task);
1173                curr = mem_cgroup_from_task(task);
1174                if (curr)
1175                        css_get(&curr->css);
1176                task_unlock(task);
1177        }
1178        if (!curr)
1179                return 0;
1180        /*
1181         * We should check use_hierarchy of "memcg" not "curr". Because checking
1182         * use_hierarchy of "curr" here make this function true if hierarchy is
1183         * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1184         * hierarchy(even if use_hierarchy is disabled in "memcg").
1185         */
1186        ret = mem_cgroup_same_or_subtree(memcg, curr);
1187        css_put(&curr->css);
1188        return ret;
1189}
1190
1191int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1192{
1193        unsigned long inactive_ratio;
1194        int nid = zone_to_nid(zone);
1195        int zid = zone_idx(zone);
1196        unsigned long inactive;
1197        unsigned long active;
1198        unsigned long gb;
1199
1200        inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1201                                                BIT(LRU_INACTIVE_ANON));
1202        active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1203                                              BIT(LRU_ACTIVE_ANON));
1204
1205        gb = (inactive + active) >> (30 - PAGE_SHIFT);
1206        if (gb)
1207                inactive_ratio = int_sqrt(10 * gb);
1208        else
1209                inactive_ratio = 1;
1210
1211        return inactive * inactive_ratio < active;
1212}
1213
1214int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1215{
1216        unsigned long active;
1217        unsigned long inactive;
1218        int zid = zone_idx(zone);
1219        int nid = zone_to_nid(zone);
1220
1221        inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1222                                                BIT(LRU_INACTIVE_FILE));
1223        active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1224                                              BIT(LRU_ACTIVE_FILE));
1225
1226        return (active > inactive);
1227}
1228
1229struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1230                                                      struct zone *zone)
1231{
1232        int nid = zone_to_nid(zone);
1233        int zid = zone_idx(zone);
1234        struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1235
1236        return &mz->reclaim_stat;
1237}
1238
1239struct zone_reclaim_stat *
1240mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1241{
1242        struct page_cgroup *pc;
1243        struct mem_cgroup_per_zone *mz;
1244
1245        if (mem_cgroup_disabled())
1246                return NULL;
1247
1248        pc = lookup_page_cgroup(page);
1249        if (!PageCgroupUsed(pc))
1250                return NULL;
1251        /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1252        smp_rmb();
1253        mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1254        return &mz->reclaim_stat;
1255}
1256
1257#define mem_cgroup_from_res_counter(counter, member)    \
1258        container_of(counter, struct mem_cgroup, member)
1259
1260/**
1261 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1262 * @mem: the memory cgroup
1263 *
1264 * Returns the maximum amount of memory @mem can be charged with, in
1265 * pages.
1266 */
1267static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1268{
1269        unsigned long long margin;
1270
1271        margin = res_counter_margin(&memcg->res);
1272        if (do_swap_account)
1273                margin = min(margin, res_counter_margin(&memcg->memsw));
1274        return margin >> PAGE_SHIFT;
1275}
1276
1277int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1278{
1279        struct cgroup *cgrp = memcg->css.cgroup;
1280
1281        /* root ? */
1282        if (cgrp->parent == NULL)
1283                return vm_swappiness;
1284
1285        return memcg->swappiness;
1286}
1287
1288static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1289{
1290        int cpu;
1291
1292        get_online_cpus();
1293        spin_lock(&memcg->pcp_counter_lock);
1294        for_each_online_cpu(cpu)
1295                per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1296        memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1297        spin_unlock(&memcg->pcp_counter_lock);
1298        put_online_cpus();
1299
1300        synchronize_rcu();
1301}
1302
1303static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1304{
1305        int cpu;
1306
1307        if (!memcg)
1308                return;
1309        get_online_cpus();
1310        spin_lock(&memcg->pcp_counter_lock);
1311        for_each_online_cpu(cpu)
1312                per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1313        memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1314        spin_unlock(&memcg->pcp_counter_lock);
1315        put_online_cpus();
1316}
1317/*
1318 * 2 routines for checking "mem" is under move_account() or not.
1319 *
1320 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1321 *                        for avoiding race in accounting. If true,
1322 *                        pc->mem_cgroup may be overwritten.
1323 *
1324 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1325 *                        under hierarchy of moving cgroups. This is for
1326 *                        waiting at hith-memory prressure caused by "move".
1327 */
1328
1329static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1330{
1331        VM_BUG_ON(!rcu_read_lock_held());
1332        return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1333}
1334
1335static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1336{
1337        struct mem_cgroup *from;
1338        struct mem_cgroup *to;
1339        bool ret = false;
1340        /*
1341         * Unlike task_move routines, we access mc.to, mc.from not under
1342         * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1343         */
1344        spin_lock(&mc.lock);
1345        from = mc.from;
1346        to = mc.to;
1347        if (!from)
1348                goto unlock;
1349
1350        ret = mem_cgroup_same_or_subtree(memcg, from)
1351                || mem_cgroup_same_or_subtree(memcg, to);
1352unlock:
1353        spin_unlock(&mc.lock);
1354        return ret;
1355}
1356
1357static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1358{
1359        if (mc.moving_task && current != mc.moving_task) {
1360                if (mem_cgroup_under_move(memcg)) {
1361                        DEFINE_WAIT(wait);
1362                        prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1363                        /* moving charge context might have finished. */
1364                        if (mc.moving_task)
1365                                schedule();
1366                        finish_wait(&mc.waitq, &wait);
1367                        return true;
1368                }
1369        }
1370        return false;
1371}
1372
1373/**
1374 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1375 * @memcg: The memory cgroup that went over limit
1376 * @p: Task that is going to be killed
1377 *
1378 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1379 * enabled
1380 */
1381void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1382{
1383        struct cgroup *task_cgrp;
1384        struct cgroup *mem_cgrp;
1385        /*
1386         * Need a buffer in BSS, can't rely on allocations. The code relies
1387         * on the assumption that OOM is serialized for memory controller.
1388         * If this assumption is broken, revisit this code.
1389         */
1390        static char memcg_name[PATH_MAX];
1391        int ret;
1392
1393        if (!memcg || !p)
1394                return;
1395
1396
1397        rcu_read_lock();
1398
1399        mem_cgrp = memcg->css.cgroup;
1400        task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1401
1402        ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1403        if (ret < 0) {
1404                /*
1405                 * Unfortunately, we are unable to convert to a useful name
1406                 * But we'll still print out the usage information
1407                 */
1408                rcu_read_unlock();
1409                goto done;
1410        }
1411        rcu_read_unlock();
1412
1413        printk(KERN_INFO "Task in %s killed", memcg_name);
1414
1415        rcu_read_lock();
1416        ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1417        if (ret < 0) {
1418                rcu_read_unlock();
1419                goto done;
1420        }
1421        rcu_read_unlock();
1422
1423        /*
1424         * Continues from above, so we don't need an KERN_ level
1425         */
1426        printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1427done:
1428
1429        printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1430                res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1431                res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1432                res_counter_read_u64(&memcg->res, RES_FAILCNT));
1433        printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1434                "failcnt %llu\n",
1435                res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1436                res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1437                res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1438}
1439
1440/*
1441 * This function returns the number of memcg under hierarchy tree. Returns
1442 * 1(self count) if no children.
1443 */
1444static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1445{
1446        int num = 0;
1447        struct mem_cgroup *iter;
1448
1449        for_each_mem_cgroup_tree(iter, memcg)
1450                num++;
1451        return num;
1452}
1453
1454/*
1455 * Return the memory (and swap, if configured) limit for a memcg.
1456 */
1457u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1458{
1459        u64 limit;
1460        u64 memsw;
1461
1462        limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1463        limit += total_swap_pages << PAGE_SHIFT;
1464
1465        memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1466        /*
1467         * If memsw is finite and limits the amount of swap space available
1468         * to this memcg, return that limit.
1469         */
1470        return min(limit, memsw);
1471}
1472
1473static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1474                                        gfp_t gfp_mask,
1475                                        unsigned long flags)
1476{
1477        unsigned long total = 0;
1478        bool noswap = false;
1479        int loop;
1480
1481        if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1482                noswap = true;
1483        if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1484                noswap = true;
1485
1486        for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1487                if (loop)
1488                        drain_all_stock_async(memcg);
1489                total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1490                /*
1491                 * Allow limit shrinkers, which are triggered directly
1492                 * by userspace, to catch signals and stop reclaim
1493                 * after minimal progress, regardless of the margin.
1494                 */
1495                if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1496                        break;
1497                if (mem_cgroup_margin(memcg))
1498                        break;
1499                /*
1500                 * If nothing was reclaimed after two attempts, there
1501                 * may be no reclaimable pages in this hierarchy.
1502                 */
1503                if (loop && !total)
1504                        break;
1505        }
1506        return total;
1507}
1508
1509/**
1510 * test_mem_cgroup_node_reclaimable
1511 * @mem: the target memcg
1512 * @nid: the node ID to be checked.
1513 * @noswap : specify true here if the user wants flle only information.
1514 *
1515 * This function returns whether the specified memcg contains any
1516 * reclaimable pages on a node. Returns true if there are any reclaimable
1517 * pages in the node.
1518 */
1519static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1520                int nid, bool noswap)
1521{
1522        if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1523                return true;
1524        if (noswap || !total_swap_pages)
1525                return false;
1526        if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1527                return true;
1528        return false;
1529
1530}
1531#if MAX_NUMNODES > 1
1532
1533/*
1534 * Always updating the nodemask is not very good - even if we have an empty
1535 * list or the wrong list here, we can start from some node and traverse all
1536 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1537 *
1538 */
1539static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1540{
1541        int nid;
1542        /*
1543         * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1544         * pagein/pageout changes since the last update.
1545         */
1546        if (!atomic_read(&memcg->numainfo_events))
1547                return;
1548        if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1549                return;
1550
1551        /* make a nodemask where this memcg uses memory from */
1552        memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1553
1554        for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1555
1556                if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1557                        node_clear(nid, memcg->scan_nodes);
1558        }
1559
1560        atomic_set(&memcg->numainfo_events, 0);
1561        atomic_set(&memcg->numainfo_updating, 0);
1562}
1563
1564/*
1565 * Selecting a node where we start reclaim from. Because what we need is just
1566 * reducing usage counter, start from anywhere is O,K. Considering
1567 * memory reclaim from current node, there are pros. and cons.
1568 *
1569 * Freeing memory from current node means freeing memory from a node which
1570 * we'll use or we've used. So, it may make LRU bad. And if several threads
1571 * hit limits, it will see a contention on a node. But freeing from remote
1572 * node means more costs for memory reclaim because of memory latency.
1573 *
1574 * Now, we use round-robin. Better algorithm is welcomed.
1575 */
1576int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1577{
1578        int node;
1579
1580        mem_cgroup_may_update_nodemask(memcg);
1581        node = memcg->last_scanned_node;
1582
1583        node = next_node(node, memcg->scan_nodes);
1584        if (node == MAX_NUMNODES)
1585                node = first_node(memcg->scan_nodes);
1586        /*
1587         * We call this when we hit limit, not when pages are added to LRU.
1588         * No LRU may hold pages because all pages are UNEVICTABLE or
1589         * memcg is too small and all pages are not on LRU. In that case,
1590         * we use curret node.
1591         */
1592        if (unlikely(node == MAX_NUMNODES))
1593                node = numa_node_id();
1594
1595        memcg->last_scanned_node = node;
1596        return node;
1597}
1598
1599/*
1600 * Check all nodes whether it contains reclaimable pages or not.
1601 * For quick scan, we make use of scan_nodes. This will allow us to skip
1602 * unused nodes. But scan_nodes is lazily updated and may not cotain
1603 * enough new information. We need to do double check.
1604 */
1605bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1606{
1607        int nid;
1608
1609        /*
1610         * quick check...making use of scan_node.
1611         * We can skip unused nodes.
1612         */
1613        if (!nodes_empty(memcg->scan_nodes)) {
1614                for (nid = first_node(memcg->scan_nodes);
1615                     nid < MAX_NUMNODES;
1616                     nid = next_node(nid, memcg->scan_nodes)) {
1617
1618                        if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1619                                return true;
1620                }
1621        }
1622        /*
1623         * Check rest of nodes.
1624         */
1625        for_each_node_state(nid, N_HIGH_MEMORY) {
1626                if (node_isset(nid, memcg->scan_nodes))
1627                        continue;
1628                if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1629                        return true;
1630        }
1631        return false;
1632}
1633
1634#else
1635int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1636{
1637        return 0;
1638}
1639
1640bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1641{
1642        return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1643}
1644#endif
1645
1646static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1647                                   struct zone *zone,
1648                                   gfp_t gfp_mask,
1649                                   unsigned long *total_scanned)
1650{
1651        struct mem_cgroup *victim = NULL;
1652        int total = 0;
1653        int loop = 0;
1654        unsigned long excess;
1655        unsigned long nr_scanned;
1656        struct mem_cgroup_reclaim_cookie reclaim = {
1657                .zone = zone,
1658                .priority = 0,
1659        };
1660
1661        excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1662
1663        while (1) {
1664                victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1665                if (!victim) {
1666                        loop++;
1667                        if (loop >= 2) {
1668                                /*
1669                                 * If we have not been able to reclaim
1670                                 * anything, it might because there are
1671                                 * no reclaimable pages under this hierarchy
1672                                 */
1673                                if (!total)
1674                                        break;
1675                                /*
1676                                 * We want to do more targeted reclaim.
1677                                 * excess >> 2 is not to excessive so as to
1678                                 * reclaim too much, nor too less that we keep
1679                                 * coming back to reclaim from this cgroup
1680                                 */
1681                                if (total >= (excess >> 2) ||
1682                                        (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1683                                        break;
1684                        }
1685                        continue;
1686                }
1687                if (!mem_cgroup_reclaimable(victim, false))
1688                        continue;
1689                total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1690                                                     zone, &nr_scanned);
1691                *total_scanned += nr_scanned;
1692                if (!res_counter_soft_limit_excess(&root_memcg->res))
1693                        break;
1694        }
1695        mem_cgroup_iter_break(root_memcg, victim);
1696        return total;
1697}
1698
1699/*
1700 * Check OOM-Killer is already running under our hierarchy.
1701 * If someone is running, return false.
1702 * Has to be called with memcg_oom_lock
1703 */
1704static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1705{
1706        struct mem_cgroup *iter, *failed = NULL;
1707
1708        for_each_mem_cgroup_tree(iter, memcg) {
1709                if (iter->oom_lock) {
1710                        /*
1711                         * this subtree of our hierarchy is already locked
1712                         * so we cannot give a lock.
1713                         */
1714                        failed = iter;
1715                        mem_cgroup_iter_break(memcg, iter);
1716                        break;
1717                } else
1718                        iter->oom_lock = true;
1719        }
1720
1721        if (!failed)
1722                return true;
1723
1724        /*
1725         * OK, we failed to lock the whole subtree so we have to clean up
1726         * what we set up to the failing subtree
1727         */
1728        for_each_mem_cgroup_tree(iter, memcg) {
1729                if (iter == failed) {
1730                        mem_cgroup_iter_break(memcg, iter);
1731                        break;
1732                }
1733                iter->oom_lock = false;
1734        }
1735        return false;
1736}
1737
1738/*
1739 * Has to be called with memcg_oom_lock
1740 */
1741static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1742{
1743        struct mem_cgroup *iter;
1744
1745        for_each_mem_cgroup_tree(iter, memcg)
1746                iter->oom_lock = false;
1747        return 0;
1748}
1749
1750static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1751{
1752        struct mem_cgroup *iter;
1753
1754        for_each_mem_cgroup_tree(iter, memcg)
1755                atomic_inc(&iter->under_oom);
1756}
1757
1758static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1759{
1760        struct mem_cgroup *iter;
1761
1762        /*
1763         * When a new child is created while the hierarchy is under oom,
1764         * mem_cgroup_oom_lock() may not be called. We have to use
1765         * atomic_add_unless() here.
1766         */
1767        for_each_mem_cgroup_tree(iter, memcg)
1768                atomic_add_unless(&iter->under_oom, -1, 0);
1769}
1770
1771static DEFINE_SPINLOCK(memcg_oom_lock);
1772static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1773
1774struct oom_wait_info {
1775        struct mem_cgroup *mem;
1776        wait_queue_t    wait;
1777};
1778
1779static int memcg_oom_wake_function(wait_queue_t *wait,
1780        unsigned mode, int sync, void *arg)
1781{
1782        struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
1783                          *oom_wait_memcg;
1784        struct oom_wait_info *oom_wait_info;
1785
1786        oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1787        oom_wait_memcg = oom_wait_info->mem;
1788
1789        /*
1790         * Both of oom_wait_info->mem and wake_mem are stable under us.
1791         * Then we can use css_is_ancestor without taking care of RCU.
1792         */
1793        if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1794                && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1795                return 0;
1796        return autoremove_wake_function(wait, mode, sync, arg);
1797}
1798
1799static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1800{
1801        /* for filtering, pass "memcg" as argument. */
1802        __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1803}
1804
1805static void memcg_oom_recover(struct mem_cgroup *memcg)
1806{
1807        if (memcg && atomic_read(&memcg->under_oom))
1808                memcg_wakeup_oom(memcg);
1809}
1810
1811/*
1812 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1813 */
1814bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1815{
1816        struct oom_wait_info owait;
1817        bool locked, need_to_kill;
1818
1819        owait.mem = memcg;
1820        owait.wait.flags = 0;
1821        owait.wait.func = memcg_oom_wake_function;
1822        owait.wait.private = current;
1823        INIT_LIST_HEAD(&owait.wait.task_list);
1824        need_to_kill = true;
1825        mem_cgroup_mark_under_oom(memcg);
1826
1827        /* At first, try to OOM lock hierarchy under memcg.*/
1828        spin_lock(&memcg_oom_lock);
1829        locked = mem_cgroup_oom_lock(memcg);
1830        /*
1831         * Even if signal_pending(), we can't quit charge() loop without
1832         * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1833         * under OOM is always welcomed, use TASK_KILLABLE here.
1834         */
1835        prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1836        if (!locked || memcg->oom_kill_disable)
1837                need_to_kill = false;
1838        if (locked)
1839                mem_cgroup_oom_notify(memcg);
1840        spin_unlock(&memcg_oom_lock);
1841
1842        if (need_to_kill) {
1843                finish_wait(&memcg_oom_waitq, &owait.wait);
1844                mem_cgroup_out_of_memory(memcg, mask);
1845        } else {
1846                schedule();
1847                finish_wait(&memcg_oom_waitq, &owait.wait);
1848        }
1849        spin_lock(&memcg_oom_lock);
1850        if (locked)
1851                mem_cgroup_oom_unlock(memcg);
1852        memcg_wakeup_oom(memcg);
1853        spin_unlock(&memcg_oom_lock);
1854
1855        mem_cgroup_unmark_under_oom(memcg);
1856
1857        if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1858                return false;
1859        /* Give chance to dying process */
1860        schedule_timeout_uninterruptible(1);
1861        return true;
1862}
1863
1864/*
1865 * Currently used to update mapped file statistics, but the routine can be
1866 * generalized to update other statistics as well.
1867 *
1868 * Notes: Race condition
1869 *
1870 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1871 * it tends to be costly. But considering some conditions, we doesn't need
1872 * to do so _always_.
1873 *
1874 * Considering "charge", lock_page_cgroup() is not required because all
1875 * file-stat operations happen after a page is attached to radix-tree. There
1876 * are no race with "charge".
1877 *
1878 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1879 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1880 * if there are race with "uncharge". Statistics itself is properly handled
1881 * by flags.
1882 *
1883 * Considering "move", this is an only case we see a race. To make the race
1884 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1885 * possibility of race condition. If there is, we take a lock.
1886 */
1887
1888void mem_cgroup_update_page_stat(struct page *page,
1889                                 enum mem_cgroup_page_stat_item idx, int val)
1890{
1891        struct mem_cgroup *memcg;
1892        struct page_cgroup *pc = lookup_page_cgroup(page);
1893        bool need_unlock = false;
1894        unsigned long uninitialized_var(flags);
1895
1896        if (mem_cgroup_disabled())
1897                return;
1898
1899        rcu_read_lock();
1900        memcg = pc->mem_cgroup;
1901        if (unlikely(!memcg || !PageCgroupUsed(pc)))
1902                goto out;
1903        /* pc->mem_cgroup is unstable ? */
1904        if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
1905                /* take a lock against to access pc->mem_cgroup */
1906                move_lock_page_cgroup(pc, &flags);
1907                need_unlock = true;
1908                memcg = pc->mem_cgroup;
1909                if (!memcg || !PageCgroupUsed(pc))
1910                        goto out;
1911        }
1912
1913        switch (idx) {
1914        case MEMCG_NR_FILE_MAPPED:
1915                if (val > 0)
1916                        SetPageCgroupFileMapped(pc);
1917                else if (!page_mapped(page))
1918                        ClearPageCgroupFileMapped(pc);
1919                idx = MEM_CGROUP_STAT_FILE_MAPPED;
1920                break;
1921        default:
1922                BUG();
1923        }
1924
1925        this_cpu_add(memcg->stat->count[idx], val);
1926
1927out:
1928        if (unlikely(need_unlock))
1929                move_unlock_page_cgroup(pc, &flags);
1930        rcu_read_unlock();
1931        return;
1932}
1933EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1934
1935/*
1936 * size of first charge trial. "32" comes from vmscan.c's magic value.
1937 * TODO: maybe necessary to use big numbers in big irons.
1938 */
1939#define CHARGE_BATCH    32U
1940struct memcg_stock_pcp {
1941        struct mem_cgroup *cached; /* this never be root cgroup */
1942        unsigned int nr_pages;
1943        struct work_struct work;
1944        unsigned long flags;
1945#define FLUSHING_CACHED_CHARGE  (0)
1946};
1947static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1948static DEFINE_MUTEX(percpu_charge_mutex);
1949
1950/*
1951 * Try to consume stocked charge on this cpu. If success, one page is consumed
1952 * from local stock and true is returned. If the stock is 0 or charges from a
1953 * cgroup which is not current target, returns false. This stock will be
1954 * refilled.
1955 */
1956static bool consume_stock(struct mem_cgroup *memcg)
1957{
1958        struct memcg_stock_pcp *stock;
1959        bool ret = true;
1960
1961        stock = &get_cpu_var(memcg_stock);
1962        if (memcg == stock->cached && stock->nr_pages)
1963                stock->nr_pages--;
1964        else /* need to call res_counter_charge */
1965                ret = false;
1966        put_cpu_var(memcg_stock);
1967        return ret;
1968}
1969
1970/*
1971 * Returns stocks cached in percpu to res_counter and reset cached information.
1972 */
1973static void drain_stock(struct memcg_stock_pcp *stock)
1974{
1975        struct mem_cgroup *old = stock->cached;
1976
1977        if (stock->nr_pages) {
1978                unsigned long bytes = stock->nr_pages * PAGE_SIZE;
1979
1980                res_counter_uncharge(&old->res, bytes);
1981                if (do_swap_account)
1982                        res_counter_uncharge(&old->memsw, bytes);
1983                stock->nr_pages = 0;
1984        }
1985        stock->cached = NULL;
1986}
1987
1988/*
1989 * This must be called under preempt disabled or must be called by
1990 * a thread which is pinned to local cpu.
1991 */
1992static void drain_local_stock(struct work_struct *dummy)
1993{
1994        struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1995        drain_stock(stock);
1996        clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1997}
1998
1999/*
2000 * Cache charges(val) which is from res_counter, to local per_cpu area.
2001 * This will be consumed by consume_stock() function, later.
2002 */
2003static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2004{
2005        struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2006
2007        if (stock->cached != memcg) { /* reset if necessary */
2008                drain_stock(stock);
2009                stock->cached = memcg;
2010        }
2011        stock->nr_pages += nr_pages;
2012        put_cpu_var(memcg_stock);
2013}
2014
2015/*
2016 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2017 * of the hierarchy under it. sync flag says whether we should block
2018 * until the work is done.
2019 */
2020static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2021{
2022        int cpu, curcpu;
2023
2024        /* Notify other cpus that system-wide "drain" is running */
2025        get_online_cpus();
2026        curcpu = get_cpu();
2027        for_each_online_cpu(cpu) {
2028                struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2029                struct mem_cgroup *memcg;
2030
2031                memcg = stock->cached;
2032                if (!memcg || !stock->nr_pages)
2033                        continue;
2034                if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2035                        continue;
2036                if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2037                        if (cpu == curcpu)
2038                                drain_local_stock(&stock->work);
2039                        else
2040                                schedule_work_on(cpu, &stock->work);
2041                }
2042        }
2043        put_cpu();
2044
2045        if (!sync)
2046                goto out;
2047
2048        for_each_online_cpu(cpu) {
2049                struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2050                if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2051                        flush_work(&stock->work);
2052        }
2053out:
2054        put_online_cpus();
2055}
2056
2057/*
2058 * Tries to drain stocked charges in other cpus. This function is asynchronous
2059 * and just put a work per cpu for draining localy on each cpu. Caller can
2060 * expects some charges will be back to res_counter later but cannot wait for
2061 * it.
2062 */
2063static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2064{
2065        /*
2066         * If someone calls draining, avoid adding more kworker runs.
2067         */
2068        if (!mutex_trylock(&percpu_charge_mutex))
2069                return;
2070        drain_all_stock(root_memcg, false);
2071        mutex_unlock(&percpu_charge_mutex);
2072}
2073
2074/* This is a synchronous drain interface. */
2075static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2076{
2077        /* called when force_empty is called */
2078        mutex_lock(&percpu_charge_mutex);
2079        drain_all_stock(root_memcg, true);
2080        mutex_unlock(&percpu_charge_mutex);
2081}
2082
2083/*
2084 * This function drains percpu counter value from DEAD cpu and
2085 * move it to local cpu. Note that this function can be preempted.
2086 */
2087static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2088{
2089        int i;
2090
2091        spin_lock(&memcg->pcp_counter_lock);
2092        for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2093                long x = per_cpu(memcg->stat->count[i], cpu);
2094
2095                per_cpu(memcg->stat->count[i], cpu) = 0;
2096                memcg->nocpu_base.count[i] += x;
2097        }
2098        for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2099                unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2100
2101                per_cpu(memcg->stat->events[i], cpu) = 0;
2102                memcg->nocpu_base.events[i] += x;
2103        }
2104        /* need to clear ON_MOVE value, works as a kind of lock. */
2105        per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2106        spin_unlock(&memcg->pcp_counter_lock);
2107}
2108
2109static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2110{
2111        int idx = MEM_CGROUP_ON_MOVE;
2112
2113        spin_lock(&memcg->pcp_counter_lock);
2114        per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
2115        spin_unlock(&memcg->pcp_counter_lock);
2116}
2117
2118static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2119                                        unsigned long action,
2120                                        void *hcpu)
2121{
2122        int cpu = (unsigned long)hcpu;
2123        struct memcg_stock_pcp *stock;
2124        struct mem_cgroup *iter;
2125
2126        if ((action == CPU_ONLINE)) {
2127                for_each_mem_cgroup(iter)
2128                        synchronize_mem_cgroup_on_move(iter, cpu);
2129                return NOTIFY_OK;
2130        }
2131
2132        if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2133                return NOTIFY_OK;
2134
2135        for_each_mem_cgroup(iter)
2136                mem_cgroup_drain_pcp_counter(iter, cpu);
2137
2138        stock = &per_cpu(memcg_stock, cpu);
2139        drain_stock(stock);
2140        return NOTIFY_OK;
2141}
2142
2143
2144/* See __mem_cgroup_try_charge() for details */
2145enum {
2146        CHARGE_OK,              /* success */
2147        CHARGE_RETRY,           /* need to retry but retry is not bad */
2148        CHARGE_NOMEM,           /* we can't do more. return -ENOMEM */
2149        CHARGE_WOULDBLOCK,      /* GFP_WAIT wasn't set and no enough res. */
2150        CHARGE_OOM_DIE,         /* the current is killed because of OOM */
2151};
2152
2153static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2154                                unsigned int nr_pages, bool oom_check)
2155{
2156        unsigned long csize = nr_pages * PAGE_SIZE;
2157        struct mem_cgroup *mem_over_limit;
2158        struct res_counter *fail_res;
2159        unsigned long flags = 0;
2160        int ret;
2161
2162        ret = res_counter_charge(&memcg->res, csize, &fail_res);
2163
2164        if (likely(!ret)) {
2165                if (!do_swap_account)
2166                        return CHARGE_OK;
2167                ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2168                if (likely(!ret))
2169                        return CHARGE_OK;
2170
2171                res_counter_uncharge(&memcg->res, csize);
2172                mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2173                flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2174        } else
2175                mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2176        /*
2177         * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2178         * of regular pages (CHARGE_BATCH), or a single regular page (1).
2179         *
2180         * Never reclaim on behalf of optional batching, retry with a
2181         * single page instead.
2182         */
2183        if (nr_pages == CHARGE_BATCH)
2184                return CHARGE_RETRY;
2185
2186        if (!(gfp_mask & __GFP_WAIT))
2187                return CHARGE_WOULDBLOCK;
2188
2189        ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2190        if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2191                return CHARGE_RETRY;
2192        /*
2193         * Even though the limit is exceeded at this point, reclaim
2194         * may have been able to free some pages.  Retry the charge
2195         * before killing the task.
2196         *
2197         * Only for regular pages, though: huge pages are rather
2198         * unlikely to succeed so close to the limit, and we fall back
2199         * to regular pages anyway in case of failure.
2200         */
2201        if (nr_pages == 1 && ret)
2202                return CHARGE_RETRY;
2203
2204        /*
2205         * At task move, charge accounts can be doubly counted. So, it's
2206         * better to wait until the end of task_move if something is going on.
2207         */
2208        if (mem_cgroup_wait_acct_move(mem_over_limit))
2209                return CHARGE_RETRY;
2210
2211        /* If we don't need to call oom-killer at el, return immediately */
2212        if (!oom_check)
2213                return CHARGE_NOMEM;
2214        /* check OOM */
2215        if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2216                return CHARGE_OOM_DIE;
2217
2218        return CHARGE_RETRY;
2219}
2220
2221/*
2222 * __mem_cgroup_try_charge() does
2223 * 1. detect memcg to be charged against from passed *mm and *ptr,
2224 * 2. update res_counter
2225 * 3. call memory reclaim if necessary.
2226 *
2227 * In some special case, if the task is fatal, fatal_signal_pending() or
2228 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2229 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2230 * as possible without any hazards. 2: all pages should have a valid
2231 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2232 * pointer, that is treated as a charge to root_mem_cgroup.
2233 *
2234 * So __mem_cgroup_try_charge() will return
2235 *  0       ...  on success, filling *ptr with a valid memcg pointer.
2236 *  -ENOMEM ...  charge failure because of resource limits.
2237 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
2238 *
2239 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2240 * the oom-killer can be invoked.
2241 */
2242static int __mem_cgroup_try_charge(struct mm_struct *mm,
2243                                   gfp_t gfp_mask,
2244                                   unsigned int nr_pages,
2245                                   struct mem_cgroup **ptr,
2246                                   bool oom)
2247{
2248        unsigned int batch = max(CHARGE_BATCH, nr_pages);
2249        int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2250        struct mem_cgroup *memcg = NULL;
2251        int ret;
2252
2253        /*
2254         * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2255         * in system level. So, allow to go ahead dying process in addition to
2256         * MEMDIE process.
2257         */
2258        if (unlikely(test_thread_flag(TIF_MEMDIE)
2259                     || fatal_signal_pending(current)))
2260                goto bypass;
2261
2262        /*
2263         * We always charge the cgroup the mm_struct belongs to.
2264         * The mm_struct's mem_cgroup changes on task migration if the
2265         * thread group leader migrates. It's possible that mm is not
2266         * set, if so charge the init_mm (happens for pagecache usage).
2267         */
2268        if (!*ptr && !mm)
2269                *ptr = root_mem_cgroup;
2270again:
2271        if (*ptr) { /* css should be a valid one */
2272                memcg = *ptr;
2273                VM_BUG_ON(css_is_removed(&memcg->css));
2274                if (mem_cgroup_is_root(memcg))
2275                        goto done;
2276                if (nr_pages == 1 && consume_stock(memcg))
2277                        goto done;
2278                css_get(&memcg->css);
2279        } else {
2280                struct task_struct *p;
2281
2282                rcu_read_lock();
2283                p = rcu_dereference(mm->owner);
2284                /*
2285                 * Because we don't have task_lock(), "p" can exit.
2286                 * In that case, "memcg" can point to root or p can be NULL with
2287                 * race with swapoff. Then, we have small risk of mis-accouning.
2288                 * But such kind of mis-account by race always happens because
2289                 * we don't have cgroup_mutex(). It's overkill and we allo that
2290                 * small race, here.
2291                 * (*) swapoff at el will charge against mm-struct not against
2292                 * task-struct. So, mm->owner can be NULL.
2293                 */
2294                memcg = mem_cgroup_from_task(p);
2295                if (!memcg)
2296                        memcg = root_mem_cgroup;
2297                if (mem_cgroup_is_root(memcg)) {
2298                        rcu_read_unlock();
2299                        goto done;
2300                }
2301                if (nr_pages == 1 && consume_stock(memcg)) {
2302                        /*
2303                         * It seems dagerous to access memcg without css_get().
2304                         * But considering how consume_stok works, it's not
2305                         * necessary. If consume_stock success, some charges
2306                         * from this memcg are cached on this cpu. So, we
2307                         * don't need to call css_get()/css_tryget() before
2308                         * calling consume_stock().
2309                         */
2310                        rcu_read_unlock();
2311                        goto done;
2312                }
2313                /* after here, we may be blocked. we need to get refcnt */
2314                if (!css_tryget(&memcg->css)) {
2315                        rcu_read_unlock();
2316                        goto again;
2317                }
2318                rcu_read_unlock();
2319        }
2320
2321        do {
2322                bool oom_check;
2323
2324                /* If killed, bypass charge */
2325                if (fatal_signal_pending(current)) {
2326                        css_put(&memcg->css);
2327                        goto bypass;
2328                }
2329
2330                oom_check = false;
2331                if (oom && !nr_oom_retries) {
2332                        oom_check = true;
2333                        nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2334                }
2335
2336                ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2337                switch (ret) {
2338                case CHARGE_OK:
2339                        break;
2340                case CHARGE_RETRY: /* not in OOM situation but retry */
2341                        batch = nr_pages;
2342                        css_put(&memcg->css);
2343                        memcg = NULL;
2344                        goto again;
2345                case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2346                        css_put(&memcg->css);
2347                        goto nomem;
2348                case CHARGE_NOMEM: /* OOM routine works */
2349                        if (!oom) {
2350                                css_put(&memcg->css);
2351                                goto nomem;
2352                        }
2353                        /* If oom, we never return -ENOMEM */
2354                        nr_oom_retries--;
2355                        break;
2356                case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2357                        css_put(&memcg->css);
2358                        goto bypass;
2359                }
2360        } while (ret != CHARGE_OK);
2361
2362        if (batch > nr_pages)
2363                refill_stock(memcg, batch - nr_pages);
2364        css_put(&memcg->css);
2365done:
2366        *ptr = memcg;
2367        return 0;
2368nomem:
2369        *ptr = NULL;
2370        return -ENOMEM;
2371bypass:
2372        *ptr = root_mem_cgroup;
2373        return -EINTR;
2374}
2375
2376/*
2377 * Somemtimes we have to undo a charge we got by try_charge().
2378 * This function is for that and do uncharge, put css's refcnt.
2379 * gotten by try_charge().
2380 */
2381static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2382                                       unsigned int nr_pages)
2383{
2384        if (!mem_cgroup_is_root(memcg)) {
2385                unsigned long bytes = nr_pages * PAGE_SIZE;
2386
2387                res_counter_uncharge(&memcg->res, bytes);
2388                if (do_swap_account)
2389                        res_counter_uncharge(&memcg->memsw, bytes);
2390        }
2391}
2392
2393/*
2394 * A helper function to get mem_cgroup from ID. must be called under
2395 * rcu_read_lock(). The caller must check css_is_removed() or some if
2396 * it's concern. (dropping refcnt from swap can be called against removed
2397 * memcg.)
2398 */
2399static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2400{
2401        struct cgroup_subsys_state *css;
2402
2403        /* ID 0 is unused ID */
2404        if (!id)
2405                return NULL;
2406        css = css_lookup(&mem_cgroup_subsys, id);
2407        if (!css)
2408                return NULL;
2409        return container_of(css, struct mem_cgroup, css);
2410}
2411
2412struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2413{
2414        struct mem_cgroup *memcg = NULL;
2415        struct page_cgroup *pc;
2416        unsigned short id;
2417        swp_entry_t ent;
2418
2419        VM_BUG_ON(!PageLocked(page));
2420
2421        pc = lookup_page_cgroup(page);
2422        lock_page_cgroup(pc);
2423        if (PageCgroupUsed(pc)) {
2424                memcg = pc->mem_cgroup;
2425                if (memcg && !css_tryget(&memcg->css))
2426                        memcg = NULL;
2427        } else if (PageSwapCache(page)) {
2428                ent.val = page_private(page);
2429                id = lookup_swap_cgroup_id(ent);
2430                rcu_read_lock();
2431                memcg = mem_cgroup_lookup(id);
2432                if (memcg && !css_tryget(&memcg->css))
2433                        memcg = NULL;
2434                rcu_read_unlock();
2435        }
2436        unlock_page_cgroup(pc);
2437        return memcg;
2438}
2439
2440static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2441                                       struct page *page,
2442                                       unsigned int nr_pages,
2443                                       struct page_cgroup *pc,
2444                                       enum charge_type ctype,
2445                                       bool lrucare)
2446{
2447        struct zone *uninitialized_var(zone);
2448        bool was_on_lru = false;
2449
2450        lock_page_cgroup(pc);
2451        if (unlikely(PageCgroupUsed(pc))) {
2452                unlock_page_cgroup(pc);
2453                __mem_cgroup_cancel_charge(memcg, nr_pages);
2454                return;
2455        }
2456        /*
2457         * we don't need page_cgroup_lock about tail pages, becase they are not
2458         * accessed by any other context at this point.
2459         */
2460
2461        /*
2462         * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2463         * may already be on some other mem_cgroup's LRU.  Take care of it.
2464         */
2465        if (lrucare) {
2466                zone = page_zone(page);
2467                spin_lock_irq(&zone->lru_lock);
2468                if (PageLRU(page)) {
2469                        ClearPageLRU(page);
2470                        del_page_from_lru_list(zone, page, page_lru(page));
2471                        was_on_lru = true;
2472                }
2473        }
2474
2475        pc->mem_cgroup = memcg;
2476        /*
2477         * We access a page_cgroup asynchronously without lock_page_cgroup().
2478         * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2479         * is accessed after testing USED bit. To make pc->mem_cgroup visible
2480         * before USED bit, we need memory barrier here.
2481         * See mem_cgroup_add_lru_list(), etc.
2482         */
2483        smp_wmb();
2484        switch (ctype) {
2485        case MEM_CGROUP_CHARGE_TYPE_CACHE:
2486        case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2487                SetPageCgroupCache(pc);
2488                SetPageCgroupUsed(pc);
2489                break;
2490        case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2491                ClearPageCgroupCache(pc);
2492                SetPageCgroupUsed(pc);
2493                break;
2494        default:
2495                break;
2496        }
2497
2498        if (lrucare) {
2499                if (was_on_lru) {
2500                        VM_BUG_ON(PageLRU(page));
2501                        SetPageLRU(page);
2502                        add_page_to_lru_list(zone, page, page_lru(page));
2503                }
2504                spin_unlock_irq(&zone->lru_lock);
2505        }
2506
2507        mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2508        unlock_page_cgroup(pc);
2509
2510        /*
2511         * "charge_statistics" updated event counter. Then, check it.
2512         * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2513         * if they exceeds softlimit.
2514         */
2515        memcg_check_events(memcg, page);
2516}
2517
2518#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2519
2520#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2521                        (1 << PCG_MIGRATION))
2522/*
2523 * Because tail pages are not marked as "used", set it. We're under
2524 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2525 * charge/uncharge will be never happen and move_account() is done under
2526 * compound_lock(), so we don't have to take care of races.
2527 */
2528void mem_cgroup_split_huge_fixup(struct page *head)
2529{
2530        struct page_cgroup *head_pc = lookup_page_cgroup(head);
2531        struct page_cgroup *pc;
2532        int i;
2533
2534        if (mem_cgroup_disabled())
2535                return;
2536        for (i = 1; i < HPAGE_PMD_NR; i++) {
2537                pc = head_pc + i;
2538                pc->mem_cgroup = head_pc->mem_cgroup;
2539                smp_wmb();/* see __commit_charge() */
2540                pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2541        }
2542}
2543#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2544
2545/**
2546 * mem_cgroup_move_account - move account of the page
2547 * @page: the page
2548 * @nr_pages: number of regular pages (>1 for huge pages)
2549 * @pc: page_cgroup of the page.
2550 * @from: mem_cgroup which the page is moved from.
2551 * @to: mem_cgroup which the page is moved to. @from != @to.
2552 * @uncharge: whether we should call uncharge and css_put against @from.
2553 *
2554 * The caller must confirm following.
2555 * - page is not on LRU (isolate_page() is useful.)
2556 * - compound_lock is held when nr_pages > 1
2557 *
2558 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2559 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2560 * true, this function does "uncharge" from old cgroup, but it doesn't if
2561 * @uncharge is false, so a caller should do "uncharge".
2562 */
2563static int mem_cgroup_move_account(struct page *page,
2564                                   unsigned int nr_pages,
2565                                   struct page_cgroup *pc,
2566                                   struct mem_cgroup *from,
2567                                   struct mem_cgroup *to,
2568                                   bool uncharge)
2569{
2570        unsigned long flags;
2571        int ret;
2572
2573        VM_BUG_ON(from == to);
2574        VM_BUG_ON(PageLRU(page));
2575        /*
2576         * The page is isolated from LRU. So, collapse function
2577         * will not handle this page. But page splitting can happen.
2578         * Do this check under compound_page_lock(). The caller should
2579         * hold it.
2580         */
2581        ret = -EBUSY;
2582        if (nr_pages > 1 && !PageTransHuge(page))
2583                goto out;
2584
2585        lock_page_cgroup(pc);
2586
2587        ret = -EINVAL;
2588        if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2589                goto unlock;
2590
2591        move_lock_page_cgroup(pc, &flags);
2592
2593        if (PageCgroupFileMapped(pc)) {
2594                /* Update mapped_file data for mem_cgroup */
2595                preempt_disable();
2596                __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2597                __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2598                preempt_enable();
2599        }
2600        mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2601        if (uncharge)
2602                /* This is not "cancel", but cancel_charge does all we need. */
2603                __mem_cgroup_cancel_charge(from, nr_pages);
2604
2605        /* caller should have done css_get */
2606        pc->mem_cgroup = to;
2607        mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2608        /*
2609         * We charges against "to" which may not have any tasks. Then, "to"
2610         * can be under rmdir(). But in current implementation, caller of
2611         * this function is just force_empty() and move charge, so it's
2612         * guaranteed that "to" is never removed. So, we don't check rmdir
2613         * status here.
2614         */
2615        move_unlock_page_cgroup(pc, &flags);
2616        ret = 0;
2617unlock:
2618        unlock_page_cgroup(pc);
2619        /*
2620         * check events
2621         */
2622        memcg_check_events(to, page);
2623        memcg_check_events(from, page);
2624out:
2625        return ret;
2626}
2627
2628/*
2629 * move charges to its parent.
2630 */
2631
2632static int mem_cgroup_move_parent(struct page *page,
2633                                  struct page_cgroup *pc,
2634                                  struct mem_cgroup *child,
2635                                  gfp_t gfp_mask)
2636{
2637        struct cgroup *cg = child->css.cgroup;
2638        struct cgroup *pcg = cg->parent;
2639        struct mem_cgroup *parent;
2640        unsigned int nr_pages;
2641        unsigned long uninitialized_var(flags);
2642        int ret;
2643
2644        /* Is ROOT ? */
2645        if (!pcg)
2646                return -EINVAL;
2647
2648        ret = -EBUSY;
2649        if (!get_page_unless_zero(page))
2650                goto out;
2651        if (isolate_lru_page(page))
2652                goto put;
2653
2654        nr_pages = hpage_nr_pages(page);
2655
2656        parent = mem_cgroup_from_cont(pcg);
2657        ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2658        if (ret)
2659                goto put_back;
2660
2661        if (nr_pages > 1)
2662                flags = compound_lock_irqsave(page);
2663
2664        ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2665        if (ret)
2666                __mem_cgroup_cancel_charge(parent, nr_pages);
2667
2668        if (nr_pages > 1)
2669                compound_unlock_irqrestore(page, flags);
2670put_back:
2671        putback_lru_page(page);
2672put:
2673        put_page(page);
2674out:
2675        return ret;
2676}
2677
2678/*
2679 * Charge the memory controller for page usage.
2680 * Return
2681 * 0 if the charge was successful
2682 * < 0 if the cgroup is over its limit
2683 */
2684static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2685                                gfp_t gfp_mask, enum charge_type ctype)
2686{
2687        struct mem_cgroup *memcg = NULL;
2688        unsigned int nr_pages = 1;
2689        struct page_cgroup *pc;
2690        bool oom = true;
2691        int ret;
2692
2693        if (PageTransHuge(page)) {
2694                nr_pages <<= compound_order(page);
2695                VM_BUG_ON(!PageTransHuge(page));
2696                /*
2697                 * Never OOM-kill a process for a huge page.  The
2698                 * fault handler will fall back to regular pages.
2699                 */
2700                oom = false;
2701        }
2702
2703        pc = lookup_page_cgroup(page);
2704        ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2705        if (ret == -ENOMEM)
2706                return ret;
2707        __mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype, false);
2708        return 0;
2709}
2710
2711int mem_cgroup_newpage_charge(struct page *page,
2712                              struct mm_struct *mm, gfp_t gfp_mask)
2713{
2714        if (mem_cgroup_disabled())
2715                return 0;
2716        VM_BUG_ON(page_mapped(page));
2717        VM_BUG_ON(page->mapping && !PageAnon(page));
2718        VM_BUG_ON(!mm);
2719        return mem_cgroup_charge_common(page, mm, gfp_mask,
2720                                        MEM_CGROUP_CHARGE_TYPE_MAPPED);
2721}
2722
2723static void
2724__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2725                                        enum charge_type ctype);
2726
2727int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2728                                gfp_t gfp_mask)
2729{
2730        struct mem_cgroup *memcg = NULL;
2731        enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2732        int ret;
2733
2734        if (mem_cgroup_disabled())
2735                return 0;
2736        if (PageCompound(page))
2737                return 0;
2738
2739        if (unlikely(!mm))
2740                mm = &init_mm;
2741        if (!page_is_file_cache(page))
2742                type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2743
2744        if (!PageSwapCache(page))
2745                ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2746        else { /* page is swapcache/shmem */
2747                ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2748                if (!ret)
2749                        __mem_cgroup_commit_charge_swapin(page, memcg, type);
2750        }
2751        return ret;
2752}
2753
2754/*
2755 * While swap-in, try_charge -> commit or cancel, the page is locked.
2756 * And when try_charge() successfully returns, one refcnt to memcg without
2757 * struct page_cgroup is acquired. This refcnt will be consumed by
2758 * "commit()" or removed by "cancel()"
2759 */
2760int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2761                                 struct page *page,
2762                                 gfp_t mask, struct mem_cgroup **memcgp)
2763{
2764        struct mem_cgroup *memcg;
2765        int ret;
2766
2767        *memcgp = NULL;
2768
2769        if (mem_cgroup_disabled())
2770                return 0;
2771
2772        if (!do_swap_account)
2773                goto charge_cur_mm;
2774        /*
2775         * A racing thread's fault, or swapoff, may have already updated
2776         * the pte, and even removed page from swap cache: in those cases
2777         * do_swap_page()'s pte_same() test will fail; but there's also a
2778         * KSM case which does need to charge the page.
2779         */
2780        if (!PageSwapCache(page))
2781                goto charge_cur_mm;
2782        memcg = try_get_mem_cgroup_from_page(page);
2783        if (!memcg)
2784                goto charge_cur_mm;
2785        *memcgp = memcg;
2786        ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2787        css_put(&memcg->css);
2788        if (ret == -EINTR)
2789                ret = 0;
2790        return ret;
2791charge_cur_mm:
2792        if (unlikely(!mm))
2793                mm = &init_mm;
2794        ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2795        if (ret == -EINTR)
2796                ret = 0;
2797        return ret;
2798}
2799
2800static void
2801__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2802                                        enum charge_type ctype)
2803{
2804        struct page_cgroup *pc;
2805
2806        if (mem_cgroup_disabled())
2807                return;
2808        if (!memcg)
2809                return;
2810        cgroup_exclude_rmdir(&memcg->css);
2811
2812        pc = lookup_page_cgroup(page);
2813        __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype, true);
2814        /*
2815         * Now swap is on-memory. This means this page may be
2816         * counted both as mem and swap....double count.
2817         * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2818         * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2819         * may call delete_from_swap_cache() before reach here.
2820         */
2821        if (do_swap_account && PageSwapCache(page)) {
2822                swp_entry_t ent = {.val = page_private(page)};
2823                struct mem_cgroup *swap_memcg;
2824                unsigned short id;
2825
2826                id = swap_cgroup_record(ent, 0);
2827                rcu_read_lock();
2828                swap_memcg = mem_cgroup_lookup(id);
2829                if (swap_memcg) {
2830                        /*
2831                         * This recorded memcg can be obsolete one. So, avoid
2832                         * calling css_tryget
2833                         */
2834                        if (!mem_cgroup_is_root(swap_memcg))
2835                                res_counter_uncharge(&swap_memcg->memsw,
2836                                                     PAGE_SIZE);
2837                        mem_cgroup_swap_statistics(swap_memcg, false);
2838                        mem_cgroup_put(swap_memcg);
2839                }
2840                rcu_read_unlock();
2841        }
2842        /*
2843         * At swapin, we may charge account against cgroup which has no tasks.
2844         * So, rmdir()->pre_destroy() can be called while we do this charge.
2845         * In that case, we need to call pre_destroy() again. check it here.
2846         */
2847        cgroup_release_and_wakeup_rmdir(&memcg->css);
2848}
2849
2850void mem_cgroup_commit_charge_swapin(struct page *page,
2851                                     struct mem_cgroup *memcg)
2852{
2853        __mem_cgroup_commit_charge_swapin(page, memcg,
2854                                          MEM_CGROUP_CHARGE_TYPE_MAPPED);
2855}
2856
2857void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2858{
2859        if (mem_cgroup_disabled())
2860                return;
2861        if (!memcg)
2862                return;
2863        __mem_cgroup_cancel_charge(memcg, 1);
2864}
2865
2866static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2867                                   unsigned int nr_pages,
2868                                   const enum charge_type ctype)
2869{
2870        struct memcg_batch_info *batch = NULL;
2871        bool uncharge_memsw = true;
2872
2873        /* If swapout, usage of swap doesn't decrease */
2874        if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2875                uncharge_memsw = false;
2876
2877        batch = &current->memcg_batch;
2878        /*
2879         * In usual, we do css_get() when we remember memcg pointer.
2880         * But in this case, we keep res->usage until end of a series of
2881         * uncharges. Then, it's ok to ignore memcg's refcnt.
2882         */
2883        if (!batch->memcg)
2884                batch->memcg = memcg;
2885        /*
2886         * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2887         * In those cases, all pages freed continuously can be expected to be in
2888         * the same cgroup and we have chance to coalesce uncharges.
2889         * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2890         * because we want to do uncharge as soon as possible.
2891         */
2892
2893        if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2894                goto direct_uncharge;
2895
2896        if (nr_pages > 1)
2897                goto direct_uncharge;
2898
2899        /*
2900         * In typical case, batch->memcg == mem. This means we can
2901         * merge a series of uncharges to an uncharge of res_counter.
2902         * If not, we uncharge res_counter ony by one.
2903         */
2904        if (batch->memcg != memcg)
2905                goto direct_uncharge;
2906        /* remember freed charge and uncharge it later */
2907        batch->nr_pages++;
2908        if (uncharge_memsw)
2909                batch->memsw_nr_pages++;
2910        return;
2911direct_uncharge:
2912        res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2913        if (uncharge_memsw)
2914                res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2915        if (unlikely(batch->memcg != memcg))
2916                memcg_oom_recover(memcg);
2917        return;
2918}
2919
2920/*
2921 * uncharge if !page_mapped(page)
2922 */
2923static struct mem_cgroup *
2924__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2925{
2926        struct mem_cgroup *memcg = NULL;
2927        unsigned int nr_pages = 1;
2928        struct page_cgroup *pc;
2929
2930        if (mem_cgroup_disabled())
2931                return NULL;
2932
2933        if (PageSwapCache(page))
2934                return NULL;
2935
2936        if (PageTransHuge(page)) {
2937                nr_pages <<= compound_order(page);
2938                VM_BUG_ON(!PageTransHuge(page));
2939        }
2940        /*
2941         * Check if our page_cgroup is valid
2942         */
2943        pc = lookup_page_cgroup(page);
2944        if (unlikely(!PageCgroupUsed(pc)))
2945                return NULL;
2946
2947        lock_page_cgroup(pc);
2948
2949        memcg = pc->mem_cgroup;
2950
2951        if (!PageCgroupUsed(pc))
2952                goto unlock_out;
2953
2954        switch (ctype) {
2955        case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2956        case MEM_CGROUP_CHARGE_TYPE_DROP:
2957                /* See mem_cgroup_prepare_migration() */
2958                if (page_mapped(page) || PageCgroupMigration(pc))
2959                        goto unlock_out;
2960                break;
2961        case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2962                if (!PageAnon(page)) {  /* Shared memory */
2963                        if (page->mapping && !page_is_file_cache(page))
2964                                goto unlock_out;
2965                } else if (page_mapped(page)) /* Anon */
2966                                goto unlock_out;
2967                break;
2968        default:
2969                break;
2970        }
2971
2972        mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
2973
2974        ClearPageCgroupUsed(pc);
2975        /*
2976         * pc->mem_cgroup is not cleared here. It will be accessed when it's
2977         * freed from LRU. This is safe because uncharged page is expected not
2978         * to be reused (freed soon). Exception is SwapCache, it's handled by
2979         * special functions.
2980         */
2981
2982        unlock_page_cgroup(pc);
2983        /*
2984         * even after unlock, we have memcg->res.usage here and this memcg
2985         * will never be freed.
2986         */
2987        memcg_check_events(memcg, page);
2988        if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2989                mem_cgroup_swap_statistics(memcg, true);
2990                mem_cgroup_get(memcg);
2991        }
2992        if (!mem_cgroup_is_root(memcg))
2993                mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
2994
2995        return memcg;
2996
2997unlock_out:
2998        unlock_page_cgroup(pc);
2999        return NULL;
3000}
3001
3002void mem_cgroup_uncharge_page(struct page *page)
3003{
3004        /* early check. */
3005        if (page_mapped(page))
3006                return;
3007        VM_BUG_ON(page->mapping && !PageAnon(page));
3008        __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3009}
3010
3011void mem_cgroup_uncharge_cache_page(struct page *page)
3012{
3013        VM_BUG_ON(page_mapped(page));
3014        VM_BUG_ON(page->mapping);
3015        __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3016}
3017
3018/*
3019 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3020 * In that cases, pages are freed continuously and we can expect pages
3021 * are in the same memcg. All these calls itself limits the number of
3022 * pages freed at once, then uncharge_start/end() is called properly.
3023 * This may be called prural(2) times in a context,
3024 */
3025
3026void mem_cgroup_uncharge_start(void)
3027{
3028        current->memcg_batch.do_batch++;
3029        /* We can do nest. */
3030        if (current->memcg_batch.do_batch == 1) {
3031                current->memcg_batch.memcg = NULL;
3032                current->memcg_batch.nr_pages = 0;
3033                current->memcg_batch.memsw_nr_pages = 0;
3034        }
3035}
3036
3037void mem_cgroup_uncharge_end(void)
3038{
3039        struct memcg_batch_info *batch = &current->memcg_batch;
3040
3041        if (!batch->do_batch)
3042                return;
3043
3044        batch->do_batch--;
3045        if (batch->do_batch) /* If stacked, do nothing. */
3046                return;
3047
3048        if (!batch->memcg)
3049                return;
3050        /*
3051         * This "batch->memcg" is valid without any css_get/put etc...
3052         * bacause we hide charges behind us.
3053         */
3054        if (batch->nr_pages)
3055                res_counter_uncharge(&batch->memcg->res,
3056                                     batch->nr_pages * PAGE_SIZE);
3057        if (batch->memsw_nr_pages)
3058                res_counter_uncharge(&batch->memcg->memsw,
3059                                     batch->memsw_nr_pages * PAGE_SIZE);
3060        memcg_oom_recover(batch->memcg);
3061        /* forget this pointer (for sanity check) */
3062        batch->memcg = NULL;
3063}
3064
3065#ifdef CONFIG_SWAP
3066/*
3067 * called after __delete_from_swap_cache() and drop "page" account.
3068 * memcg information is recorded to swap_cgroup of "ent"
3069 */
3070void
3071mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3072{
3073        struct mem_cgroup *memcg;
3074        int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3075
3076        if (!swapout) /* this was a swap cache but the swap is unused ! */
3077                ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3078
3079        memcg = __mem_cgroup_uncharge_common(page, ctype);
3080
3081        /*
3082         * record memcg information,  if swapout && memcg != NULL,
3083         * mem_cgroup_get() was called in uncharge().
3084         */
3085        if (do_swap_account && swapout && memcg)
3086                swap_cgroup_record(ent, css_id(&memcg->css));
3087}
3088#endif
3089
3090#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3091/*
3092 * called from swap_entry_free(). remove record in swap_cgroup and
3093 * uncharge "memsw" account.
3094 */
3095void mem_cgroup_uncharge_swap(swp_entry_t ent)
3096{
3097        struct mem_cgroup *memcg;
3098        unsigned short id;
3099
3100        if (!do_swap_account)
3101                return;
3102
3103        id = swap_cgroup_record(ent, 0);
3104        rcu_read_lock();
3105        memcg = mem_cgroup_lookup(id);
3106        if (memcg) {
3107                /*
3108                 * We uncharge this because swap is freed.
3109                 * This memcg can be obsolete one. We avoid calling css_tryget
3110                 */
3111                if (!mem_cgroup_is_root(memcg))
3112                        res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3113                mem_cgroup_swap_statistics(memcg, false);
3114                mem_cgroup_put(memcg);
3115        }
3116        rcu_read_unlock();
3117}
3118
3119/**
3120 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3121 * @entry: swap entry to be moved
3122 * @from:  mem_cgroup which the entry is moved from
3123 * @to:  mem_cgroup which the entry is moved to
3124 * @need_fixup: whether we should fixup res_counters and refcounts.
3125 *
3126 * It succeeds only when the swap_cgroup's record for this entry is the same
3127 * as the mem_cgroup's id of @from.
3128 *
3129 * Returns 0 on success, -EINVAL on failure.
3130 *
3131 * The caller must have charged to @to, IOW, called res_counter_charge() about
3132 * both res and memsw, and called css_get().
3133 */
3134static int mem_cgroup_move_swap_account(swp_entry_t entry,
3135                struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3136{
3137        unsigned short old_id, new_id;
3138
3139        old_id = css_id(&from->css);
3140        new_id = css_id(&to->css);
3141
3142        if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3143                mem_cgroup_swap_statistics(from, false);
3144                mem_cgroup_swap_statistics(to, true);
3145                /*
3146                 * This function is only called from task migration context now.
3147                 * It postpones res_counter and refcount handling till the end
3148                 * of task migration(mem_cgroup_clear_mc()) for performance
3149                 * improvement. But we cannot postpone mem_cgroup_get(to)
3150                 * because if the process that has been moved to @to does
3151                 * swap-in, the refcount of @to might be decreased to 0.
3152                 */
3153                mem_cgroup_get(to);
3154                if (need_fixup) {
3155                        if (!mem_cgroup_is_root(from))
3156                                res_counter_uncharge(&from->memsw, PAGE_SIZE);
3157                        mem_cgroup_put(from);
3158                        /*
3159                         * we charged both to->res and to->memsw, so we should
3160                         * uncharge to->res.
3161                         */
3162                        if (!mem_cgroup_is_root(to))
3163                                res_counter_uncharge(&to->res, PAGE_SIZE);
3164                }
3165                return 0;
3166        }
3167        return -EINVAL;
3168}
3169#else
3170static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3171                struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3172{
3173        return -EINVAL;
3174}
3175#endif
3176
3177/*
3178 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3179 * page belongs to.
3180 */
3181int mem_cgroup_prepare_migration(struct page *page,
3182        struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3183{
3184        struct mem_cgroup *memcg = NULL;
3185        struct page_cgroup *pc;
3186        enum charge_type ctype;
3187        int ret = 0;
3188
3189        *memcgp = NULL;
3190
3191        VM_BUG_ON(PageTransHuge(page));
3192        if (mem_cgroup_disabled())
3193                return 0;
3194
3195        pc = lookup_page_cgroup(page);
3196        lock_page_cgroup(pc);
3197        if (PageCgroupUsed(pc)) {
3198                memcg = pc->mem_cgroup;
3199                css_get(&memcg->css);
3200                /*
3201                 * At migrating an anonymous page, its mapcount goes down
3202                 * to 0 and uncharge() will be called. But, even if it's fully
3203                 * unmapped, migration may fail and this page has to be
3204                 * charged again. We set MIGRATION flag here and delay uncharge
3205                 * until end_migration() is called
3206                 *
3207                 * Corner Case Thinking
3208                 * A)
3209                 * When the old page was mapped as Anon and it's unmap-and-freed
3210                 * while migration was ongoing.
3211                 * If unmap finds the old page, uncharge() of it will be delayed
3212                 * until end_migration(). If unmap finds a new page, it's
3213                 * uncharged when it make mapcount to be 1->0. If unmap code
3214                 * finds swap_migration_entry, the new page will not be mapped
3215                 * and end_migration() will find it(mapcount==0).
3216                 *
3217                 * B)
3218                 * When the old page was mapped but migraion fails, the kernel
3219                 * remaps it. A charge for it is kept by MIGRATION flag even
3220                 * if mapcount goes down to 0. We can do remap successfully
3221                 * without charging it again.
3222                 *
3223                 * C)
3224                 * The "old" page is under lock_page() until the end of
3225                 * migration, so, the old page itself will not be swapped-out.
3226                 * If the new page is swapped out before end_migraton, our
3227                 * hook to usual swap-out path will catch the event.
3228                 */
3229                if (PageAnon(page))
3230                        SetPageCgroupMigration(pc);
3231        }
3232        unlock_page_cgroup(pc);
3233        /*
3234         * If the page is not charged at this point,
3235         * we return here.
3236         */
3237        if (!memcg)
3238                return 0;
3239
3240        *memcgp = memcg;
3241        ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3242        css_put(&memcg->css);/* drop extra refcnt */
3243        if (ret) {
3244                if (PageAnon(page)) {
3245                        lock_page_cgroup(pc);
3246                        ClearPageCgroupMigration(pc);
3247                        unlock_page_cgroup(pc);
3248                        /*
3249                         * The old page may be fully unmapped while we kept it.
3250                         */
3251                        mem_cgroup_uncharge_page(page);
3252                }
3253                /* we'll need to revisit this error code (we have -EINTR) */
3254                return -ENOMEM;
3255        }
3256        /*
3257         * We charge new page before it's used/mapped. So, even if unlock_page()
3258         * is called before end_migration, we can catch all events on this new
3259         * page. In the case new page is migrated but not remapped, new page's
3260         * mapcount will be finally 0 and we call uncharge in end_migration().
3261         */
3262        pc = lookup_page_cgroup(newpage);
3263        if (PageAnon(page))
3264                ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3265        else if (page_is_file_cache(page))
3266                ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3267        else
3268                ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3269        __mem_cgroup_commit_charge(memcg, newpage, 1, pc, ctype, false);
3270        return ret;
3271}
3272
3273/* remove redundant charge if migration failed*/
3274void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3275        struct page *oldpage, struct page *newpage, bool migration_ok)
3276{
3277        struct page *used, *unused;
3278        struct page_cgroup *pc;
3279
3280        if (!memcg)
3281                return;
3282        /* blocks rmdir() */
3283        cgroup_exclude_rmdir(&memcg->css);
3284        if (!migration_ok) {
3285                used = oldpage;
3286                unused = newpage;
3287        } else {
3288                used = newpage;
3289                unused = oldpage;
3290        }
3291        /*
3292         * We disallowed uncharge of pages under migration because mapcount
3293         * of the page goes down to zero, temporarly.
3294         * Clear the flag and check the page should be charged.
3295         */
3296        pc = lookup_page_cgroup(oldpage);
3297        lock_page_cgroup(pc);
3298        ClearPageCgroupMigration(pc);
3299        unlock_page_cgroup(pc);
3300
3301        __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3302
3303        /*
3304         * If a page is a file cache, radix-tree replacement is very atomic
3305         * and we can skip this check. When it was an Anon page, its mapcount
3306         * goes down to 0. But because we added MIGRATION flage, it's not
3307         * uncharged yet. There are several case but page->mapcount check
3308         * and USED bit check in mem_cgroup_uncharge_page() will do enough
3309         * check. (see prepare_charge() also)
3310         */
3311        if (PageAnon(used))
3312                mem_cgroup_uncharge_page(used);
3313        /*
3314         * At migration, we may charge account against cgroup which has no
3315         * tasks.
3316         * So, rmdir()->pre_destroy() can be called while we do this charge.
3317         * In that case, we need to call pre_destroy() again. check it here.
3318         */
3319        cgroup_release_and_wakeup_rmdir(&memcg->css);
3320}
3321
3322/*
3323 * At replace page cache, newpage is not under any memcg but it's on
3324 * LRU. So, this function doesn't touch res_counter but handles LRU
3325 * in correct way. Both pages are locked so we cannot race with uncharge.
3326 */
3327void mem_cgroup_replace_page_cache(struct page *oldpage,
3328                                  struct page *newpage)
3329{
3330        struct mem_cgroup *memcg;
3331        struct page_cgroup *pc;
3332        enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3333
3334        if (mem_cgroup_disabled())
3335                return;
3336
3337        pc = lookup_page_cgroup(oldpage);
3338        /* fix accounting on old pages */
3339        lock_page_cgroup(pc);
3340        memcg = pc->mem_cgroup;
3341        mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -1);
3342        ClearPageCgroupUsed(pc);
3343        unlock_page_cgroup(pc);
3344
3345        if (PageSwapBacked(oldpage))
3346                type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3347
3348        /*
3349         * Even if newpage->mapping was NULL before starting replacement,
3350         * the newpage may be on LRU(or pagevec for LRU) already. We lock
3351         * LRU while we overwrite pc->mem_cgroup.
3352         */
3353        __mem_cgroup_commit_charge(memcg, newpage, 1, pc, type, true);
3354}
3355
3356#ifdef CONFIG_DEBUG_VM
3357static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3358{
3359        struct page_cgroup *pc;
3360
3361        pc = lookup_page_cgroup(page);
3362        /*
3363         * Can be NULL while feeding pages into the page allocator for
3364         * the first time, i.e. during boot or memory hotplug;
3365         * or when mem_cgroup_disabled().
3366         */
3367        if (likely(pc) && PageCgroupUsed(pc))
3368                return pc;
3369        return NULL;
3370}
3371
3372bool mem_cgroup_bad_page_check(struct page *page)
3373{
3374        if (mem_cgroup_disabled())
3375                return false;
3376
3377        return lookup_page_cgroup_used(page) != NULL;
3378}
3379
3380void mem_cgroup_print_bad_page(struct page *page)
3381{
3382        struct page_cgroup *pc;
3383
3384        pc = lookup_page_cgroup_used(page);
3385        if (pc) {
3386                printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3387                       pc, pc->flags, pc->mem_cgroup);
3388        }
3389}
3390#endif
3391
3392static DEFINE_MUTEX(set_limit_mutex);
3393
3394static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3395                                unsigned long long val)
3396{
3397        int retry_count;
3398        u64 memswlimit, memlimit;
3399        int ret = 0;
3400        int children = mem_cgroup_count_children(memcg);
3401        u64 curusage, oldusage;
3402        int enlarge;
3403
3404        /*
3405         * For keeping hierarchical_reclaim simple, how long we should retry
3406         * is depends on callers. We set our retry-count to be function
3407         * of # of children which we should visit in this loop.
3408         */
3409        retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3410
3411        oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3412
3413        enlarge = 0;
3414        while (retry_count) {
3415                if (signal_pending(current)) {
3416                        ret = -EINTR;
3417                        break;
3418                }
3419                /*
3420                 * Rather than hide all in some function, I do this in
3421                 * open coded manner. You see what this really does.
3422                 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3423                 */
3424                mutex_lock(&set_limit_mutex);
3425                memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3426                if (memswlimit < val) {
3427                        ret = -EINVAL;
3428                        mutex_unlock(&set_limit_mutex);
3429                        break;
3430                }
3431
3432                memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3433                if (memlimit < val)
3434                        enlarge = 1;
3435
3436                ret = res_counter_set_limit(&memcg->res, val);
3437                if (!ret) {
3438                        if (memswlimit == val)
3439                                memcg->memsw_is_minimum = true;
3440                        else
3441                                memcg->memsw_is_minimum = false;
3442                }
3443                mutex_unlock(&set_limit_mutex);
3444
3445                if (!ret)
3446                        break;
3447
3448                mem_cgroup_reclaim(memcg, GFP_KERNEL,
3449                                   MEM_CGROUP_RECLAIM_SHRINK);
3450                curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3451                /* Usage is reduced ? */
3452                if (curusage >= oldusage)
3453                        retry_count--;
3454                else
3455                        oldusage = curusage;
3456        }
3457        if (!ret && enlarge)
3458                memcg_oom_recover(memcg);
3459
3460        return ret;
3461}
3462
3463static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3464                                        unsigned long long val)
3465{
3466        int retry_count;
3467        u64 memlimit, memswlimit, oldusage, curusage;
3468        int children = mem_cgroup_count_children(memcg);
3469        int ret = -EBUSY;
3470        int enlarge = 0;
3471
3472        /* see mem_cgroup_resize_res_limit */
3473        retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3474        oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3475        while (retry_count) {
3476                if (signal_pending(current)) {
3477                        ret = -EINTR;
3478                        break;
3479                }
3480                /*
3481                 * Rather than hide all in some function, I do this in
3482                 * open coded manner. You see what this really does.
3483                 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3484                 */
3485                mutex_lock(&set_limit_mutex);
3486                memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3487                if (memlimit > val) {
3488                        ret = -EINVAL;
3489                        mutex_unlock(&set_limit_mutex);
3490                        break;
3491                }
3492                memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3493                if (memswlimit < val)
3494                        enlarge = 1;
3495                ret = res_counter_set_limit(&memcg->memsw, val);
3496                if (!ret) {
3497                        if (memlimit == val)
3498                                memcg->memsw_is_minimum = true;
3499                        else
3500                                memcg->memsw_is_minimum = false;
3501                }
3502                mutex_unlock(&set_limit_mutex);
3503
3504                if (!ret)
3505                        break;
3506
3507                mem_cgroup_reclaim(memcg, GFP_KERNEL,
3508                                   MEM_CGROUP_RECLAIM_NOSWAP |
3509                                   MEM_CGROUP_RECLAIM_SHRINK);
3510                curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3511                /* Usage is reduced ? */
3512                if (curusage >= oldusage)
3513                        retry_count--;
3514                else
3515                        oldusage = curusage;
3516        }
3517        if (!ret && enlarge)
3518                memcg_oom_recover(memcg);
3519        return ret;
3520}
3521
3522unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3523                                            gfp_t gfp_mask,
3524                                            unsigned long *total_scanned)
3525{
3526        unsigned long nr_reclaimed = 0;
3527        struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3528        unsigned long reclaimed;
3529        int loop = 0;
3530        struct mem_cgroup_tree_per_zone *mctz;
3531        unsigned long long excess;
3532        unsigned long nr_scanned;
3533
3534        if (order > 0)
3535                return 0;
3536
3537        mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3538        /*
3539         * This loop can run a while, specially if mem_cgroup's continuously
3540         * keep exceeding their soft limit and putting the system under
3541         * pressure
3542         */
3543        do {
3544                if (next_mz)
3545                        mz = next_mz;
3546                else
3547                        mz = mem_cgroup_largest_soft_limit_node(mctz);
3548                if (!mz)
3549                        break;
3550
3551                nr_scanned = 0;
3552                reclaimed = mem_cgroup_soft_reclaim(mz->mem, zone,
3553                                                    gfp_mask, &nr_scanned);
3554                nr_reclaimed += reclaimed;
3555                *total_scanned += nr_scanned;
3556                spin_lock(&mctz->lock);
3557
3558                /*
3559                 * If we failed to reclaim anything from this memory cgroup
3560                 * it is time to move on to the next cgroup
3561                 */
3562                next_mz = NULL;
3563                if (!reclaimed) {
3564                        do {
3565                                /*
3566                                 * Loop until we find yet another one.
3567                                 *
3568                                 * By the time we get the soft_limit lock
3569                                 * again, someone might have aded the
3570                                 * group back on the RB tree. Iterate to
3571                                 * make sure we get a different mem.
3572                                 * mem_cgroup_largest_soft_limit_node returns
3573                                 * NULL if no other cgroup is present on
3574                                 * the tree
3575                                 */
3576                                next_mz =
3577                                __mem_cgroup_largest_soft_limit_node(mctz);
3578                                if (next_mz == mz)
3579                                        css_put(&next_mz->mem->css);
3580                                else /* next_mz == NULL or other memcg */
3581                                        break;
3582                        } while (1);
3583                }
3584                __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3585                excess = res_counter_soft_limit_excess(&mz->mem->res);
3586                /*
3587                 * One school of thought says that we should not add
3588                 * back the node to the tree if reclaim returns 0.
3589                 * But our reclaim could return 0, simply because due
3590                 * to priority we are exposing a smaller subset of
3591                 * memory to reclaim from. Consider this as a longer
3592                 * term TODO.
3593                 */
3594                /* If excess == 0, no tree ops */
3595                __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3596                spin_unlock(&mctz->lock);
3597                css_put(&mz->mem->css);
3598                loop++;
3599                /*
3600                 * Could not reclaim anything and there are no more
3601                 * mem cgroups to try or we seem to be looping without
3602                 * reclaiming anything.
3603                 */
3604                if (!nr_reclaimed &&
3605                        (next_mz == NULL ||
3606                        loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3607                        break;
3608        } while (!nr_reclaimed);
3609        if (next_mz)
3610                css_put(&next_mz->mem->css);
3611        return nr_reclaimed;
3612}
3613
3614/*
3615 * This routine traverse page_cgroup in given list and drop them all.
3616 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3617 */
3618static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3619                                int node, int zid, enum lru_list lru)
3620{
3621        struct mem_cgroup_per_zone *mz;
3622        unsigned long flags, loop;
3623        struct list_head *list;
3624        struct page *busy;
3625        struct zone *zone;
3626        int ret = 0;
3627
3628        zone = &NODE_DATA(node)->node_zones[zid];
3629        mz = mem_cgroup_zoneinfo(memcg, node, zid);
3630        list = &mz->lruvec.lists[lru];
3631
3632        loop = MEM_CGROUP_ZSTAT(mz, lru);
3633        /* give some margin against EBUSY etc...*/
3634        loop += 256;
3635        busy = NULL;
3636        while (loop--) {
3637                struct page_cgroup *pc;
3638                struct page *page;
3639
3640                ret = 0;
3641                spin_lock_irqsave(&zone->lru_lock, flags);
3642                if (list_empty(list)) {
3643                        spin_unlock_irqrestore(&zone->lru_lock, flags);
3644                        break;
3645                }
3646                page = list_entry(list->prev, struct page, lru);
3647                if (busy == page) {
3648                        list_move(&page->lru, list);
3649                        busy = NULL;
3650                        spin_unlock_irqrestore(&zone->lru_lock, flags);
3651                        continue;
3652                }
3653                spin_unlock_irqrestore(&zone->lru_lock, flags);
3654
3655                pc = lookup_page_cgroup(page);
3656
3657                ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3658                if (ret == -ENOMEM || ret == -EINTR)
3659                        break;
3660
3661                if (ret == -EBUSY || ret == -EINVAL) {
3662                        /* found lock contention or "pc" is obsolete. */
3663                        busy = page;
3664                        cond_resched();
3665                } else
3666                        busy = NULL;
3667        }
3668
3669        if (!ret && !list_empty(list))
3670                return -EBUSY;
3671        return ret;
3672}
3673
3674/*
3675 * make mem_cgroup's charge to be 0 if there is no task.
3676 * This enables deleting this mem_cgroup.
3677 */
3678static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3679{
3680        int ret;
3681        int node, zid, shrink;
3682        int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3683        struct cgroup *cgrp = memcg->css.cgroup;
3684
3685        css_get(&memcg->css);
3686
3687        shrink = 0;
3688        /* should free all ? */
3689        if (free_all)
3690                goto try_to_free;
3691move_account:
3692        do {
3693                ret = -EBUSY;
3694                if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3695                        goto out;
3696                ret = -EINTR;
3697                if (signal_pending(current))
3698                        goto out;
3699                /* This is for making all *used* pages to be on LRU. */
3700                lru_add_drain_all();
3701                drain_all_stock_sync(memcg);
3702                ret = 0;
3703                mem_cgroup_start_move(memcg);
3704                for_each_node_state(node, N_HIGH_MEMORY) {
3705                        for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3706                                enum lru_list l;
3707                                for_each_lru(l) {
3708                                        ret = mem_cgroup_force_empty_list(memcg,
3709                                                        node, zid, l);
3710                                        if (ret)
3711                                                break;
3712                                }
3713                        }
3714                        if (ret)
3715                                break;
3716                }
3717                mem_cgroup_end_move(memcg);
3718                memcg_oom_recover(memcg);
3719                /* it seems parent cgroup doesn't have enough mem */
3720                if (ret == -ENOMEM)
3721                        goto try_to_free;
3722                cond_resched();
3723        /* "ret" should also be checked to ensure all lists are empty. */
3724        } while (memcg->res.usage > 0 || ret);
3725out:
3726        css_put(&memcg->css);
3727        return ret;
3728
3729try_to_free:
3730        /* returns EBUSY if there is a task or if we come here twice. */
3731        if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3732                ret = -EBUSY;
3733                goto out;
3734        }
3735        /* we call try-to-free pages for make this cgroup empty */
3736        lru_add_drain_all();
3737        /* try to free all pages in this cgroup */
3738        shrink = 1;
3739        while (nr_retries && memcg->res.usage > 0) {
3740                int progress;
3741
3742                if (signal_pending(current)) {
3743                        ret = -EINTR;
3744                        goto out;
3745                }
3746                progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3747                                                false);
3748                if (!progress) {
3749                        nr_retries--;
3750                        /* maybe some writeback is necessary */
3751                        congestion_wait(BLK_RW_ASYNC, HZ/10);
3752                }
3753
3754        }
3755        lru_add_drain();
3756        /* try move_account...there may be some *locked* pages. */
3757        goto move_account;
3758}
3759
3760int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3761{
3762        return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3763}
3764
3765
3766static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3767{
3768        return mem_cgroup_from_cont(cont)->use_hierarchy;
3769}
3770
3771static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3772                                        u64 val)
3773{
3774        int retval = 0;
3775        struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3776        struct cgroup *parent = cont->parent;
3777        struct mem_cgroup *parent_memcg = NULL;
3778
3779        if (parent)
3780                parent_memcg = mem_cgroup_from_cont(parent);
3781
3782        cgroup_lock();
3783        /*
3784         * If parent's use_hierarchy is set, we can't make any modifications
3785         * in the child subtrees. If it is unset, then the change can
3786         * occur, provided the current cgroup has no children.
3787         *
3788         * For the root cgroup, parent_mem is NULL, we allow value to be
3789         * set if there are no children.
3790         */
3791        if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3792                                (val == 1 || val == 0)) {
3793                if (list_empty(&cont->children))
3794                        memcg->use_hierarchy = val;
3795                else
3796                        retval = -EBUSY;
3797        } else
3798                retval = -EINVAL;
3799        cgroup_unlock();
3800
3801        return retval;
3802}
3803
3804
3805static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3806                                               enum mem_cgroup_stat_index idx)
3807{
3808        struct mem_cgroup *iter;
3809        long val = 0;
3810
3811        /* Per-cpu values can be negative, use a signed accumulator */
3812        for_each_mem_cgroup_tree(iter, memcg)
3813                val += mem_cgroup_read_stat(iter, idx);
3814
3815        if (val < 0) /* race ? */
3816                val = 0;
3817        return val;
3818}
3819
3820static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3821{
3822        u64 val;
3823
3824        if (!mem_cgroup_is_root(memcg)) {
3825                if (!swap)
3826                        return res_counter_read_u64(&memcg->res, RES_USAGE);
3827                else
3828                        return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3829        }
3830
3831        val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3832        val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3833
3834        if (swap)
3835                val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3836
3837        return val << PAGE_SHIFT;
3838}
3839
3840static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3841{
3842        struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3843        u64 val;
3844        int type, name;
3845
3846        type = MEMFILE_TYPE(cft->private);
3847        name = MEMFILE_ATTR(cft->private);
3848        switch (type) {
3849        case _MEM:
3850                if (name == RES_USAGE)
3851                        val = mem_cgroup_usage(memcg, false);
3852                else
3853                        val = res_counter_read_u64(&memcg->res, name);
3854                break;
3855        case _MEMSWAP:
3856                if (name == RES_USAGE)
3857                        val = mem_cgroup_usage(memcg, true);
3858                else
3859                        val = res_counter_read_u64(&memcg->memsw, name);
3860                break;
3861        default:
3862                BUG();
3863                break;
3864        }
3865        return val;
3866}
3867/*
3868 * The user of this function is...
3869 * RES_LIMIT.
3870 */
3871static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3872                            const char *buffer)
3873{
3874        struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3875        int type, name;
3876        unsigned long long val;
3877        int ret;
3878
3879        type = MEMFILE_TYPE(cft->private);
3880        name = MEMFILE_ATTR(cft->private);
3881        switch (name) {
3882        case RES_LIMIT:
3883                if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3884                        ret = -EINVAL;
3885                        break;
3886                }
3887                /* This function does all necessary parse...reuse it */
3888                ret = res_counter_memparse_write_strategy(buffer, &val);
3889                if (ret)
3890                        break;
3891                if (type == _MEM)
3892                        ret = mem_cgroup_resize_limit(memcg, val);
3893                else
3894                        ret = mem_cgroup_resize_memsw_limit(memcg, val);
3895                break;
3896        case RES_SOFT_LIMIT:
3897                ret = res_counter_memparse_write_strategy(buffer, &val);
3898                if (ret)
3899                        break;
3900                /*
3901                 * For memsw, soft limits are hard to implement in terms
3902                 * of semantics, for now, we support soft limits for
3903                 * control without swap
3904                 */
3905                if (type == _MEM)
3906                        ret = res_counter_set_soft_limit(&memcg->res, val);
3907                else
3908                        ret = -EINVAL;
3909                break;
3910        default:
3911                ret = -EINVAL; /* should be BUG() ? */
3912                break;
3913        }
3914        return ret;
3915}
3916
3917static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3918                unsigned long long *mem_limit, unsigned long long *memsw_limit)
3919{
3920        struct cgroup *cgroup;
3921        unsigned long long min_limit, min_memsw_limit, tmp;
3922
3923        min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3924        min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3925        cgroup = memcg->css.cgroup;
3926        if (!memcg->use_hierarchy)
3927                goto out;
3928
3929        while (cgroup->parent) {
3930                cgroup = cgroup->parent;
3931                memcg = mem_cgroup_from_cont(cgroup);
3932                if (!memcg->use_hierarchy)
3933                        break;
3934                tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3935                min_limit = min(min_limit, tmp);
3936                tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3937                min_memsw_limit = min(min_memsw_limit, tmp);
3938        }
3939out:
3940        *mem_limit = min_limit;
3941        *memsw_limit = min_memsw_limit;
3942        return;
3943}
3944
3945static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3946{
3947        struct mem_cgroup *memcg;
3948        int type, name;
3949
3950        memcg = mem_cgroup_from_cont(cont);
3951        type = MEMFILE_TYPE(event);
3952        name = MEMFILE_ATTR(event);
3953        switch (name) {
3954        case RES_MAX_USAGE:
3955                if (type == _MEM)
3956                        res_counter_reset_max(&memcg->res);
3957                else
3958                        res_counter_reset_max(&memcg->memsw);
3959                break;
3960        case RES_FAILCNT:
3961                if (type == _MEM)
3962                        res_counter_reset_failcnt(&memcg->res);
3963                else
3964                        res_counter_reset_failcnt(&memcg->memsw);
3965                break;
3966        }
3967
3968        return 0;
3969}
3970
3971static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3972                                        struct cftype *cft)
3973{
3974        return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3975}
3976
3977#ifdef CONFIG_MMU
3978static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3979                                        struct cftype *cft, u64 val)
3980{
3981        struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3982
3983        if (val >= (1 << NR_MOVE_TYPE))
3984                return -EINVAL;
3985        /*
3986         * We check this value several times in both in can_attach() and
3987         * attach(), so we need cgroup lock to prevent this value from being
3988         * inconsistent.
3989         */
3990        cgroup_lock();
3991        memcg->move_charge_at_immigrate = val;
3992        cgroup_unlock();
3993
3994        return 0;
3995}
3996#else
3997static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3998                                        struct cftype *cft, u64 val)
3999{
4000        return -ENOSYS;
4001}
4002#endif
4003
4004
4005/* For read statistics */
4006enum {
4007        MCS_CACHE,
4008        MCS_RSS,
4009        MCS_FILE_MAPPED,
4010        MCS_PGPGIN,
4011        MCS_PGPGOUT,
4012        MCS_SWAP,
4013        MCS_PGFAULT,
4014        MCS_PGMAJFAULT,
4015        MCS_INACTIVE_ANON,
4016        MCS_ACTIVE_ANON,
4017        MCS_INACTIVE_FILE,
4018        MCS_ACTIVE_FILE,
4019        MCS_UNEVICTABLE,
4020        NR_MCS_STAT,
4021};
4022
4023struct mcs_total_stat {
4024        s64 stat[NR_MCS_STAT];
4025};
4026
4027struct {
4028        char *local_name;
4029        char *total_name;
4030} memcg_stat_strings[NR_MCS_STAT] = {
4031        {"cache", "total_cache"},
4032        {"rss", "total_rss"},
4033        {"mapped_file", "total_mapped_file"},
4034        {"pgpgin", "total_pgpgin"},
4035        {"pgpgout", "total_pgpgout"},
4036        {"swap", "total_swap"},
4037        {"pgfault", "total_pgfault"},
4038        {"pgmajfault", "total_pgmajfault"},
4039        {"inactive_anon", "total_inactive_anon"},
4040        {"active_anon", "total_active_anon"},
4041        {"inactive_file", "total_inactive_file"},
4042        {"active_file", "total_active_file"},
4043        {"unevictable", "total_unevictable"}
4044};
4045
4046
4047static void
4048mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4049{
4050        s64 val;
4051
4052        /* per cpu stat */
4053        val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
4054        s->stat[MCS_CACHE] += val * PAGE_SIZE;
4055        val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
4056        s->stat[MCS_RSS] += val * PAGE_SIZE;
4057        val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4058        s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4059        val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
4060        s->stat[MCS_PGPGIN] += val;
4061        val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
4062        s->stat[MCS_PGPGOUT] += val;
4063        if (do_swap_account) {
4064                val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4065                s->stat[MCS_SWAP] += val * PAGE_SIZE;
4066        }
4067        val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4068        s->stat[MCS_PGFAULT] += val;
4069        val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4070        s->stat[MCS_PGMAJFAULT] += val;
4071
4072        /* per zone stat */
4073        val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
4074        s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4075        val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
4076        s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4077        val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
4078        s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4079        val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
4080        s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4081        val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4082        s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4083}
4084
4085static void
4086mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4087{
4088        struct mem_cgroup *iter;
4089
4090        for_each_mem_cgroup_tree(iter, memcg)
4091                mem_cgroup_get_local_stat(iter, s);
4092}
4093
4094#ifdef CONFIG_NUMA
4095static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4096{
4097        int nid;
4098        unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4099        unsigned long node_nr;
4100        struct cgroup *cont = m->private;
4101        struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4102
4103        total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4104        seq_printf(m, "total=%lu", total_nr);
4105        for_each_node_state(nid, N_HIGH_MEMORY) {
4106                node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4107                seq_printf(m, " N%d=%lu", nid, node_nr);
4108        }
4109        seq_putc(m, '\n');
4110
4111        file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4112        seq_printf(m, "file=%lu", file_nr);
4113        for_each_node_state(nid, N_HIGH_MEMORY) {
4114                node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4115                                LRU_ALL_FILE);
4116                seq_printf(m, " N%d=%lu", nid, node_nr);
4117        }
4118        seq_putc(m, '\n');
4119
4120        anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4121        seq_printf(m, "anon=%lu", anon_nr);
4122        for_each_node_state(nid, N_HIGH_MEMORY) {
4123                node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4124                                LRU_ALL_ANON);
4125                seq_printf(m, " N%d=%lu", nid, node_nr);
4126        }
4127        seq_putc(m, '\n');
4128
4129        unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4130        seq_printf(m, "unevictable=%lu", unevictable_nr);
4131        for_each_node_state(nid, N_HIGH_MEMORY) {
4132                node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4133                                BIT(LRU_UNEVICTABLE));
4134                seq_printf(m, " N%d=%lu", nid, node_nr);
4135        }
4136        seq_putc(m, '\n');
4137        return 0;
4138}
4139#endif /* CONFIG_NUMA */
4140
4141static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4142                                 struct cgroup_map_cb *cb)
4143{
4144        struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4145        struct mcs_total_stat mystat;
4146        int i;
4147
4148        memset(&mystat, 0, sizeof(mystat));
4149        mem_cgroup_get_local_stat(mem_cont, &mystat);
4150
4151
4152        for (i = 0; i < NR_MCS_STAT; i++) {
4153                if (i == MCS_SWAP && !do_swap_account)
4154                        continue;
4155                cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4156        }
4157
4158        /* Hierarchical information */
4159        {
4160                unsigned long long limit, memsw_limit;
4161                memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4162                cb->fill(cb, "hierarchical_memory_limit", limit);
4163                if (do_swap_account)
4164                        cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4165        }
4166
4167        memset(&mystat, 0, sizeof(mystat));
4168        mem_cgroup_get_total_stat(mem_cont, &mystat);
4169        for (i = 0; i < NR_MCS_STAT; i++) {
4170                if (i == MCS_SWAP && !do_swap_account)
4171                        continue;
4172                cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4173        }
4174
4175#ifdef CONFIG_DEBUG_VM
4176        {
4177                int nid, zid;
4178                struct mem_cgroup_per_zone *mz;
4179                unsigned long recent_rotated[2] = {0, 0};
4180                unsigned long recent_scanned[2] = {0, 0};
4181
4182                for_each_online_node(nid)
4183                        for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4184                                mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4185
4186                                recent_rotated[0] +=
4187                                        mz->reclaim_stat.recent_rotated[0];
4188                                recent_rotated[1] +=
4189                                        mz->reclaim_stat.recent_rotated[1];
4190                                recent_scanned[0] +=
4191                                        mz->reclaim_stat.recent_scanned[0];
4192                                recent_scanned[1] +=
4193                                        mz->reclaim_stat.recent_scanned[1];
4194                        }
4195                cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4196                cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4197                cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4198                cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4199        }
4200#endif
4201
4202        return 0;
4203}
4204
4205static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4206{
4207        struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4208
4209        return mem_cgroup_swappiness(memcg);
4210}
4211
4212static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4213                                       u64 val)
4214{
4215        struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4216        struct mem_cgroup *parent;
4217
4218        if (val > 100)
4219                return -EINVAL;
4220
4221        if (cgrp->parent == NULL)
4222                return -EINVAL;
4223
4224        parent = mem_cgroup_from_cont(cgrp->parent);
4225
4226        cgroup_lock();
4227
4228        /* If under hierarchy, only empty-root can set this value */
4229        if ((parent->use_hierarchy) ||
4230            (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4231                cgroup_unlock();
4232                return -EINVAL;
4233        }
4234
4235        memcg->swappiness = val;
4236
4237        cgroup_unlock();
4238
4239        return 0;
4240}
4241
4242static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4243{
4244        struct mem_cgroup_threshold_ary *t;
4245        u64 usage;
4246        int i;
4247
4248        rcu_read_lock();
4249        if (!swap)
4250                t = rcu_dereference(memcg->thresholds.primary);
4251        else
4252                t = rcu_dereference(memcg->memsw_thresholds.primary);
4253
4254        if (!t)
4255                goto unlock;
4256
4257        usage = mem_cgroup_usage(memcg, swap);
4258
4259        /*
4260         * current_threshold points to threshold just below usage.
4261         * If it's not true, a threshold was crossed after last
4262         * call of __mem_cgroup_threshold().
4263         */
4264        i = t->current_threshold;
4265
4266        /*
4267         * Iterate backward over array of thresholds starting from
4268         * current_threshold and check if a threshold is crossed.
4269         * If none of thresholds below usage is crossed, we read
4270         * only one element of the array here.
4271         */
4272        for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4273                eventfd_signal(t->entries[i].eventfd, 1);
4274
4275        /* i = current_threshold + 1 */
4276        i++;
4277
4278        /*
4279         * Iterate forward over array of thresholds starting from
4280         * current_threshold+1 and check if a threshold is crossed.
4281         * If none of thresholds above usage is crossed, we read
4282         * only one element of the array here.
4283         */
4284        for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4285                eventfd_signal(t->entries[i].eventfd, 1);
4286
4287        /* Update current_threshold */
4288        t->current_threshold = i - 1;
4289unlock:
4290        rcu_read_unlock();
4291}
4292
4293static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4294{
4295        while (memcg) {
4296                __mem_cgroup_threshold(memcg, false);
4297                if (do_swap_account)
4298                        __mem_cgroup_threshold(memcg, true);
4299
4300                memcg = parent_mem_cgroup(memcg);
4301        }
4302}
4303
4304static int compare_thresholds(const void *a, const void *b)
4305{
4306        const struct mem_cgroup_threshold *_a = a;
4307        const struct mem_cgroup_threshold *_b = b;
4308
4309        return _a->threshold - _b->threshold;
4310}
4311
4312static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4313{
4314        struct mem_cgroup_eventfd_list *ev;
4315
4316        list_for_each_entry(ev, &memcg->oom_notify, list)
4317                eventfd_signal(ev->eventfd, 1);
4318        return 0;
4319}
4320
4321static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4322{
4323        struct mem_cgroup *iter;
4324
4325        for_each_mem_cgroup_tree(iter, memcg)
4326                mem_cgroup_oom_notify_cb(iter);
4327}
4328
4329static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4330        struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4331{
4332        struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4333        struct mem_cgroup_thresholds *thresholds;
4334        struct mem_cgroup_threshold_ary *new;
4335        int type = MEMFILE_TYPE(cft->private);
4336        u64 threshold, usage;
4337        int i, size, ret;
4338
4339        ret = res_counter_memparse_write_strategy(args, &threshold);
4340        if (ret)
4341                return ret;
4342
4343        mutex_lock(&memcg->thresholds_lock);
4344
4345        if (type == _MEM)
4346                thresholds = &memcg->thresholds;
4347        else if (type == _MEMSWAP)
4348                thresholds = &memcg->memsw_thresholds;
4349        else
4350                BUG();
4351
4352        usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4353
4354        /* Check if a threshold crossed before adding a new one */
4355        if (thresholds->primary)
4356                __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4357
4358        size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4359
4360        /* Allocate memory for new array of thresholds */
4361        new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4362                        GFP_KERNEL);
4363        if (!new) {
4364                ret = -ENOMEM;
4365                goto unlock;
4366        }
4367        new->size = size;
4368
4369        /* Copy thresholds (if any) to new array */
4370        if (thresholds->primary) {
4371                memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4372                                sizeof(struct mem_cgroup_threshold));
4373        }
4374
4375        /* Add new threshold */
4376        new->entries[size - 1].eventfd = eventfd;
4377        new->entries[size - 1].threshold = threshold;
4378
4379        /* Sort thresholds. Registering of new threshold isn't time-critical */
4380        sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4381                        compare_thresholds, NULL);
4382
4383        /* Find current threshold */
4384        new->current_threshold = -1;
4385        for (i = 0; i < size; i++) {
4386                if (new->entries[i].threshold < usage) {
4387                        /*
4388                         * new->current_threshold will not be used until
4389                         * rcu_assign_pointer(), so it's safe to increment
4390                         * it here.
4391                         */
4392                        ++new->current_threshold;
4393                }
4394        }
4395
4396        /* Free old spare buffer and save old primary buffer as spare */
4397        kfree(thresholds->spare);
4398        thresholds->spare = thresholds->primary;
4399
4400        rcu_assign_pointer(thresholds->primary, new);
4401
4402        /* To be sure that nobody uses thresholds */
4403        synchronize_rcu();
4404
4405unlock:
4406        mutex_unlock(&memcg->thresholds_lock);
4407
4408        return ret;
4409}
4410
4411static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4412        struct cftype *cft, struct eventfd_ctx *eventfd)
4413{
4414        struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4415        struct mem_cgroup_thresholds *thresholds;
4416        struct mem_cgroup_threshold_ary *new;
4417        int type = MEMFILE_TYPE(cft->private);
4418        u64 usage;
4419        int i, j, size;
4420
4421        mutex_lock(&memcg->thresholds_lock);
4422        if (type == _MEM)
4423                thresholds = &memcg->thresholds;
4424        else if (type == _MEMSWAP)
4425                thresholds = &memcg->memsw_thresholds;
4426        else
4427                BUG();
4428
4429        /*
4430         * Something went wrong if we trying to unregister a threshold
4431         * if we don't have thresholds
4432         */
4433        BUG_ON(!thresholds);
4434
4435        if (!thresholds->primary)
4436                goto unlock;
4437
4438        usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4439
4440        /* Check if a threshold crossed before removing */
4441        __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4442
4443        /* Calculate new number of threshold */
4444        size = 0;
4445        for (i = 0; i < thresholds->primary->size; i++) {
4446                if (thresholds->primary->entries[i].eventfd != eventfd)
4447                        size++;
4448        }
4449
4450        new = thresholds->spare;
4451
4452        /* Set thresholds array to NULL if we don't have thresholds */
4453        if (!size) {
4454                kfree(new);
4455                new = NULL;
4456                goto swap_buffers;
4457        }
4458
4459        new->size = size;
4460
4461        /* Copy thresholds and find current threshold */
4462        new->current_threshold = -1;
4463        for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4464                if (thresholds->primary->entries[i].eventfd == eventfd)
4465                        continue;
4466
4467                new->entries[j] = thresholds->primary->entries[i];
4468                if (new->entries[j].threshold < usage) {
4469                        /*
4470                         * new->current_threshold will not be used
4471                         * until rcu_assign_pointer(), so it's safe to increment
4472                         * it here.
4473                         */
4474                        ++new->current_threshold;
4475                }
4476                j++;
4477        }
4478
4479swap_buffers:
4480        /* Swap primary and spare array */
4481        thresholds->spare = thresholds->primary;
4482        rcu_assign_pointer(thresholds->primary, new);
4483
4484        /* To be sure that nobody uses thresholds */
4485        synchronize_rcu();
4486unlock:
4487        mutex_unlock(&memcg->thresholds_lock);
4488}
4489
4490static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4491        struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4492{
4493        struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4494        struct mem_cgroup_eventfd_list *event;
4495        int type = MEMFILE_TYPE(cft->private);
4496
4497        BUG_ON(type != _OOM_TYPE);
4498        event = kmalloc(sizeof(*event), GFP_KERNEL);
4499        if (!event)
4500                return -ENOMEM;
4501
4502        spin_lock(&memcg_oom_lock);
4503
4504        event->eventfd = eventfd;
4505        list_add(&event->list, &memcg->oom_notify);
4506
4507        /* already in OOM ? */
4508        if (atomic_read(&memcg->under_oom))
4509                eventfd_signal(eventfd, 1);
4510        spin_unlock(&memcg_oom_lock);
4511
4512        return 0;
4513}
4514
4515static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4516        struct cftype *cft, struct eventfd_ctx *eventfd)
4517{
4518        struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4519        struct mem_cgroup_eventfd_list *ev, *tmp;
4520        int type = MEMFILE_TYPE(cft->private);
4521
4522        BUG_ON(type != _OOM_TYPE);
4523
4524        spin_lock(&memcg_oom_lock);
4525
4526        list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4527                if (ev->eventfd == eventfd) {
4528                        list_del(&ev->list);
4529                        kfree(ev);
4530                }
4531        }
4532
4533        spin_unlock(&memcg_oom_lock);
4534}
4535
4536static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4537        struct cftype *cft,  struct cgroup_map_cb *cb)
4538{
4539        struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4540
4541        cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4542
4543        if (atomic_read(&memcg->under_oom))
4544                cb->fill(cb, "under_oom", 1);
4545        else
4546                cb->fill(cb, "under_oom", 0);
4547        return 0;
4548}
4549
4550static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4551        struct cftype *cft, u64 val)
4552{
4553        struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4554        struct mem_cgroup *parent;
4555
4556        /* cannot set to root cgroup and only 0 and 1 are allowed */
4557        if (!cgrp->parent || !((val == 0) || (val == 1)))
4558                return -EINVAL;
4559
4560        parent = mem_cgroup_from_cont(cgrp->parent);
4561
4562        cgroup_lock();
4563        /* oom-kill-disable is a flag for subhierarchy. */
4564        if ((parent->use_hierarchy) ||
4565            (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4566                cgroup_unlock();
4567                return -EINVAL;
4568        }
4569        memcg->oom_kill_disable = val;
4570        if (!val)
4571                memcg_oom_recover(memcg);
4572        cgroup_unlock();
4573        return 0;
4574}
4575
4576#ifdef CONFIG_NUMA
4577static const struct file_operations mem_control_numa_stat_file_operations = {
4578        .read = seq_read,
4579        .llseek = seq_lseek,
4580        .release = single_release,
4581};
4582
4583static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4584{
4585        struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4586
4587        file->f_op = &mem_control_numa_stat_file_operations;
4588        return single_open(file, mem_control_numa_stat_show, cont);
4589}
4590#endif /* CONFIG_NUMA */
4591
4592#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4593static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4594{
4595        /*
4596         * Part of this would be better living in a separate allocation
4597         * function, leaving us with just the cgroup tree population work.
4598         * We, however, depend on state such as network's proto_list that
4599         * is only initialized after cgroup creation. I found the less
4600         * cumbersome way to deal with it to defer it all to populate time
4601         */
4602        return mem_cgroup_sockets_init(cont, ss);
4603};
4604
4605static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4606                                struct cgroup *cont)
4607{
4608        mem_cgroup_sockets_destroy(cont, ss);
4609}
4610#else
4611static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4612{
4613        return 0;
4614}
4615
4616static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4617                                struct cgroup *cont)
4618{
4619}
4620#endif
4621
4622static struct cftype mem_cgroup_files[] = {
4623        {
4624                .name = "usage_in_bytes",
4625                .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4626                .read_u64 = mem_cgroup_read,
4627                .register_event = mem_cgroup_usage_register_event,
4628                .unregister_event = mem_cgroup_usage_unregister_event,
4629        },
4630        {
4631                .name = "max_usage_in_bytes",
4632                .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4633                .trigger = mem_cgroup_reset,
4634                .read_u64 = mem_cgroup_read,
4635        },
4636        {
4637                .name = "limit_in_bytes",
4638                .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4639                .write_string = mem_cgroup_write,
4640                .read_u64 = mem_cgroup_read,
4641        },
4642        {
4643                .name = "soft_limit_in_bytes",
4644                .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4645                .write_string = mem_cgroup_write,
4646                .read_u64 = mem_cgroup_read,
4647        },
4648        {
4649                .name = "failcnt",
4650                .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4651                .trigger = mem_cgroup_reset,
4652                .read_u64 = mem_cgroup_read,
4653        },
4654        {
4655                .name = "stat",
4656                .read_map = mem_control_stat_show,
4657        },
4658        {
4659                .name = "force_empty",
4660                .trigger = mem_cgroup_force_empty_write,
4661        },
4662        {
4663                .name = "use_hierarchy",
4664                .write_u64 = mem_cgroup_hierarchy_write,
4665                .read_u64 = mem_cgroup_hierarchy_read,
4666        },
4667        {
4668                .name = "swappiness",
4669                .read_u64 = mem_cgroup_swappiness_read,
4670                .write_u64 = mem_cgroup_swappiness_write,
4671        },
4672        {
4673                .name = "move_charge_at_immigrate",
4674                .read_u64 = mem_cgroup_move_charge_read,
4675                .write_u64 = mem_cgroup_move_charge_write,
4676        },
4677        {
4678                .name = "oom_control",
4679                .read_map = mem_cgroup_oom_control_read,
4680                .write_u64 = mem_cgroup_oom_control_write,
4681                .register_event = mem_cgroup_oom_register_event,
4682                .unregister_event = mem_cgroup_oom_unregister_event,
4683                .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4684        },
4685#ifdef CONFIG_NUMA
4686        {
4687                .name = "numa_stat",
4688                .open = mem_control_numa_stat_open,
4689                .mode = S_IRUGO,
4690        },
4691#endif
4692};
4693
4694#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4695static struct cftype memsw_cgroup_files[] = {
4696        {
4697                .name = "memsw.usage_in_bytes",
4698                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4699                .read_u64 = mem_cgroup_read,
4700                .register_event = mem_cgroup_usage_register_event,
4701                .unregister_event = mem_cgroup_usage_unregister_event,
4702        },
4703        {
4704                .name = "memsw.max_usage_in_bytes",
4705                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4706                .trigger = mem_cgroup_reset,
4707                .read_u64 = mem_cgroup_read,
4708        },
4709        {
4710                .name = "memsw.limit_in_bytes",
4711                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4712                .write_string = mem_cgroup_write,
4713                .read_u64 = mem_cgroup_read,
4714        },
4715        {
4716                .name = "memsw.failcnt",
4717                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4718                .trigger = mem_cgroup_reset,
4719                .read_u64 = mem_cgroup_read,
4720        },
4721};
4722
4723static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4724{
4725        if (!do_swap_account)
4726                return 0;
4727        return cgroup_add_files(cont, ss, memsw_cgroup_files,
4728                                ARRAY_SIZE(memsw_cgroup_files));
4729};
4730#else
4731static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4732{
4733        return 0;
4734}
4735#endif
4736
4737static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4738{
4739        struct mem_cgroup_per_node *pn;
4740        struct mem_cgroup_per_zone *mz;
4741        enum lru_list l;
4742        int zone, tmp = node;
4743        /*
4744         * This routine is called against possible nodes.
4745         * But it's BUG to call kmalloc() against offline node.
4746         *
4747         * TODO: this routine can waste much memory for nodes which will
4748         *       never be onlined. It's better to use memory hotplug callback
4749         *       function.
4750         */
4751        if (!node_state(node, N_NORMAL_MEMORY))
4752                tmp = -1;
4753        pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4754        if (!pn)
4755                return 1;
4756
4757        for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4758                mz = &pn->zoneinfo[zone];
4759                for_each_lru(l)
4760                        INIT_LIST_HEAD(&mz->lruvec.lists[l]);
4761                mz->usage_in_excess = 0;
4762                mz->on_tree = false;
4763                mz->mem = memcg;
4764        }
4765        memcg->info.nodeinfo[node] = pn;
4766        return 0;
4767}
4768
4769static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4770{
4771        kfree(memcg->info.nodeinfo[node]);
4772}
4773
4774static struct mem_cgroup *mem_cgroup_alloc(void)
4775{
4776        struct mem_cgroup *mem;
4777        int size = sizeof(struct mem_cgroup);
4778
4779        /* Can be very big if MAX_NUMNODES is very big */
4780        if (size < PAGE_SIZE)
4781                mem = kzalloc(size, GFP_KERNEL);
4782        else
4783                mem = vzalloc(size);
4784
4785        if (!mem)
4786                return NULL;
4787
4788        mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4789        if (!mem->stat)
4790                goto out_free;
4791        spin_lock_init(&mem->pcp_counter_lock);
4792        return mem;
4793
4794out_free:
4795        if (size < PAGE_SIZE)
4796                kfree(mem);
4797        else
4798                vfree(mem);
4799        return NULL;
4800}
4801
4802/*
4803 * Helpers for freeing a vzalloc()ed mem_cgroup by RCU,
4804 * but in process context.  The work_freeing structure is overlaid
4805 * on the rcu_freeing structure, which itself is overlaid on memsw.
4806 */
4807static void vfree_work(struct work_struct *work)
4808{
4809        struct mem_cgroup *memcg;
4810
4811        memcg = container_of(work, struct mem_cgroup, work_freeing);
4812        vfree(memcg);
4813}
4814static void vfree_rcu(struct rcu_head *rcu_head)
4815{
4816        struct mem_cgroup *memcg;
4817
4818        memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4819        INIT_WORK(&memcg->work_freeing, vfree_work);
4820        schedule_work(&memcg->work_freeing);
4821}
4822
4823/*
4824 * At destroying mem_cgroup, references from swap_cgroup can remain.
4825 * (scanning all at force_empty is too costly...)
4826 *
4827 * Instead of clearing all references at force_empty, we remember
4828 * the number of reference from swap_cgroup and free mem_cgroup when
4829 * it goes down to 0.
4830 *
4831 * Removal of cgroup itself succeeds regardless of refs from swap.
4832 */
4833
4834static void __mem_cgroup_free(struct mem_cgroup *memcg)
4835{
4836        int node;
4837
4838        mem_cgroup_remove_from_trees(memcg);
4839        free_css_id(&mem_cgroup_subsys, &memcg->css);
4840
4841        for_each_node(node)
4842                free_mem_cgroup_per_zone_info(memcg, node);
4843
4844        free_percpu(memcg->stat);
4845        if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4846                kfree_rcu(memcg, rcu_freeing);
4847        else