linux/mm/memblock.c
<<
>>
Prefs
   1/*
   2 * Procedures for maintaining information about logical memory blocks.
   3 *
   4 * Peter Bergner, IBM Corp.     June 2001.
   5 * Copyright (C) 2001 Peter Bergner.
   6 *
   7 *      This program is free software; you can redistribute it and/or
   8 *      modify it under the terms of the GNU General Public License
   9 *      as published by the Free Software Foundation; either version
  10 *      2 of the License, or (at your option) any later version.
  11 */
  12
  13#include <linux/kernel.h>
  14#include <linux/slab.h>
  15#include <linux/init.h>
  16#include <linux/bitops.h>
  17#include <linux/poison.h>
  18#include <linux/pfn.h>
  19#include <linux/debugfs.h>
  20#include <linux/seq_file.h>
  21#include <linux/memblock.h>
  22
  23static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
  24static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
  25
  26struct memblock memblock __initdata_memblock = {
  27        .memory.regions         = memblock_memory_init_regions,
  28        .memory.cnt             = 1,    /* empty dummy entry */
  29        .memory.max             = INIT_MEMBLOCK_REGIONS,
  30
  31        .reserved.regions       = memblock_reserved_init_regions,
  32        .reserved.cnt           = 1,    /* empty dummy entry */
  33        .reserved.max           = INIT_MEMBLOCK_REGIONS,
  34
  35        .current_limit          = MEMBLOCK_ALLOC_ANYWHERE,
  36};
  37
  38int memblock_debug __initdata_memblock;
  39static int memblock_can_resize __initdata_memblock;
  40
  41/* inline so we don't get a warning when pr_debug is compiled out */
  42static inline const char *memblock_type_name(struct memblock_type *type)
  43{
  44        if (type == &memblock.memory)
  45                return "memory";
  46        else if (type == &memblock.reserved)
  47                return "reserved";
  48        else
  49                return "unknown";
  50}
  51
  52/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
  53static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
  54{
  55        return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
  56}
  57
  58/*
  59 * Address comparison utilities
  60 */
  61static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
  62                                       phys_addr_t base2, phys_addr_t size2)
  63{
  64        return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
  65}
  66
  67static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
  68                                        phys_addr_t base, phys_addr_t size)
  69{
  70        unsigned long i;
  71
  72        for (i = 0; i < type->cnt; i++) {
  73                phys_addr_t rgnbase = type->regions[i].base;
  74                phys_addr_t rgnsize = type->regions[i].size;
  75                if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
  76                        break;
  77        }
  78
  79        return (i < type->cnt) ? i : -1;
  80}
  81
  82/**
  83 * memblock_find_in_range_node - find free area in given range and node
  84 * @start: start of candidate range
  85 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
  86 * @size: size of free area to find
  87 * @align: alignment of free area to find
  88 * @nid: nid of the free area to find, %MAX_NUMNODES for any node
  89 *
  90 * Find @size free area aligned to @align in the specified range and node.
  91 *
  92 * RETURNS:
  93 * Found address on success, %0 on failure.
  94 */
  95phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start,
  96                                        phys_addr_t end, phys_addr_t size,
  97                                        phys_addr_t align, int nid)
  98{
  99        phys_addr_t this_start, this_end, cand;
 100        u64 i;
 101
 102        /* pump up @end */
 103        if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
 104                end = memblock.current_limit;
 105
 106        /* avoid allocating the first page */
 107        start = max_t(phys_addr_t, start, PAGE_SIZE);
 108        end = max(start, end);
 109
 110        for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
 111                this_start = clamp(this_start, start, end);
 112                this_end = clamp(this_end, start, end);
 113
 114                if (this_end < size)
 115                        continue;
 116
 117                cand = round_down(this_end - size, align);
 118                if (cand >= this_start)
 119                        return cand;
 120        }
 121        return 0;
 122}
 123
 124/**
 125 * memblock_find_in_range - find free area in given range
 126 * @start: start of candidate range
 127 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 128 * @size: size of free area to find
 129 * @align: alignment of free area to find
 130 *
 131 * Find @size free area aligned to @align in the specified range.
 132 *
 133 * RETURNS:
 134 * Found address on success, %0 on failure.
 135 */
 136phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
 137                                        phys_addr_t end, phys_addr_t size,
 138                                        phys_addr_t align)
 139{
 140        return memblock_find_in_range_node(start, end, size, align,
 141                                           MAX_NUMNODES);
 142}
 143
 144/*
 145 * Free memblock.reserved.regions
 146 */
 147int __init_memblock memblock_free_reserved_regions(void)
 148{
 149        if (memblock.reserved.regions == memblock_reserved_init_regions)
 150                return 0;
 151
 152        return memblock_free(__pa(memblock.reserved.regions),
 153                 sizeof(struct memblock_region) * memblock.reserved.max);
 154}
 155
 156/*
 157 * Reserve memblock.reserved.regions
 158 */
 159int __init_memblock memblock_reserve_reserved_regions(void)
 160{
 161        if (memblock.reserved.regions == memblock_reserved_init_regions)
 162                return 0;
 163
 164        return memblock_reserve(__pa(memblock.reserved.regions),
 165                 sizeof(struct memblock_region) * memblock.reserved.max);
 166}
 167
 168static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
 169{
 170        type->total_size -= type->regions[r].size;
 171        memmove(&type->regions[r], &type->regions[r + 1],
 172                (type->cnt - (r + 1)) * sizeof(type->regions[r]));
 173        type->cnt--;
 174
 175        /* Special case for empty arrays */
 176        if (type->cnt == 0) {
 177                WARN_ON(type->total_size != 0);
 178                type->cnt = 1;
 179                type->regions[0].base = 0;
 180                type->regions[0].size = 0;
 181                memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
 182        }
 183}
 184
 185static int __init_memblock memblock_double_array(struct memblock_type *type)
 186{
 187        struct memblock_region *new_array, *old_array;
 188        phys_addr_t old_size, new_size, addr;
 189        int use_slab = slab_is_available();
 190
 191        /* We don't allow resizing until we know about the reserved regions
 192         * of memory that aren't suitable for allocation
 193         */
 194        if (!memblock_can_resize)
 195                return -1;
 196
 197        /* Calculate new doubled size */
 198        old_size = type->max * sizeof(struct memblock_region);
 199        new_size = old_size << 1;
 200
 201        /* Try to find some space for it.
 202         *
 203         * WARNING: We assume that either slab_is_available() and we use it or
 204         * we use MEMBLOCK for allocations. That means that this is unsafe to use
 205         * when bootmem is currently active (unless bootmem itself is implemented
 206         * on top of MEMBLOCK which isn't the case yet)
 207         *
 208         * This should however not be an issue for now, as we currently only
 209         * call into MEMBLOCK while it's still active, or much later when slab is
 210         * active for memory hotplug operations
 211         */
 212        if (use_slab) {
 213                new_array = kmalloc(new_size, GFP_KERNEL);
 214                addr = new_array ? __pa(new_array) : 0;
 215        } else
 216                addr = memblock_find_in_range(0, MEMBLOCK_ALLOC_ACCESSIBLE, new_size, sizeof(phys_addr_t));
 217        if (!addr) {
 218                pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
 219                       memblock_type_name(type), type->max, type->max * 2);
 220                return -1;
 221        }
 222        new_array = __va(addr);
 223
 224        memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]",
 225                 memblock_type_name(type), type->max * 2, (u64)addr, (u64)addr + new_size - 1);
 226
 227        /* Found space, we now need to move the array over before
 228         * we add the reserved region since it may be our reserved
 229         * array itself that is full.
 230         */
 231        memcpy(new_array, type->regions, old_size);
 232        memset(new_array + type->max, 0, old_size);
 233        old_array = type->regions;
 234        type->regions = new_array;
 235        type->max <<= 1;
 236
 237        /* If we use SLAB that's it, we are done */
 238        if (use_slab)
 239                return 0;
 240
 241        /* Add the new reserved region now. Should not fail ! */
 242        BUG_ON(memblock_reserve(addr, new_size));
 243
 244        /* If the array wasn't our static init one, then free it. We only do
 245         * that before SLAB is available as later on, we don't know whether
 246         * to use kfree or free_bootmem_pages(). Shouldn't be a big deal
 247         * anyways
 248         */
 249        if (old_array != memblock_memory_init_regions &&
 250            old_array != memblock_reserved_init_regions)
 251                memblock_free(__pa(old_array), old_size);
 252
 253        return 0;
 254}
 255
 256/**
 257 * memblock_merge_regions - merge neighboring compatible regions
 258 * @type: memblock type to scan
 259 *
 260 * Scan @type and merge neighboring compatible regions.
 261 */
 262static void __init_memblock memblock_merge_regions(struct memblock_type *type)
 263{
 264        int i = 0;
 265
 266        /* cnt never goes below 1 */
 267        while (i < type->cnt - 1) {
 268                struct memblock_region *this = &type->regions[i];
 269                struct memblock_region *next = &type->regions[i + 1];
 270
 271                if (this->base + this->size != next->base ||
 272                    memblock_get_region_node(this) !=
 273                    memblock_get_region_node(next)) {
 274                        BUG_ON(this->base + this->size > next->base);
 275                        i++;
 276                        continue;
 277                }
 278
 279                this->size += next->size;
 280                memmove(next, next + 1, (type->cnt - (i + 1)) * sizeof(*next));
 281                type->cnt--;
 282        }
 283}
 284
 285/**
 286 * memblock_insert_region - insert new memblock region
 287 * @type: memblock type to insert into
 288 * @idx: index for the insertion point
 289 * @base: base address of the new region
 290 * @size: size of the new region
 291 *
 292 * Insert new memblock region [@base,@base+@size) into @type at @idx.
 293 * @type must already have extra room to accomodate the new region.
 294 */
 295static void __init_memblock memblock_insert_region(struct memblock_type *type,
 296                                                   int idx, phys_addr_t base,
 297                                                   phys_addr_t size, int nid)
 298{
 299        struct memblock_region *rgn = &type->regions[idx];
 300
 301        BUG_ON(type->cnt >= type->max);
 302        memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
 303        rgn->base = base;
 304        rgn->size = size;
 305        memblock_set_region_node(rgn, nid);
 306        type->cnt++;
 307        type->total_size += size;
 308}
 309
 310/**
 311 * memblock_add_region - add new memblock region
 312 * @type: memblock type to add new region into
 313 * @base: base address of the new region
 314 * @size: size of the new region
 315 * @nid: nid of the new region
 316 *
 317 * Add new memblock region [@base,@base+@size) into @type.  The new region
 318 * is allowed to overlap with existing ones - overlaps don't affect already
 319 * existing regions.  @type is guaranteed to be minimal (all neighbouring
 320 * compatible regions are merged) after the addition.
 321 *
 322 * RETURNS:
 323 * 0 on success, -errno on failure.
 324 */
 325static int __init_memblock memblock_add_region(struct memblock_type *type,
 326                                phys_addr_t base, phys_addr_t size, int nid)
 327{
 328        bool insert = false;
 329        phys_addr_t obase = base;
 330        phys_addr_t end = base + memblock_cap_size(base, &size);
 331        int i, nr_new;
 332
 333        /* special case for empty array */
 334        if (type->regions[0].size == 0) {
 335                WARN_ON(type->cnt != 1 || type->total_size);
 336                type->regions[0].base = base;
 337                type->regions[0].size = size;
 338                memblock_set_region_node(&type->regions[0], nid);
 339                type->total_size = size;
 340                return 0;
 341        }
 342repeat:
 343        /*
 344         * The following is executed twice.  Once with %false @insert and
 345         * then with %true.  The first counts the number of regions needed
 346         * to accomodate the new area.  The second actually inserts them.
 347         */
 348        base = obase;
 349        nr_new = 0;
 350
 351        for (i = 0; i < type->cnt; i++) {
 352                struct memblock_region *rgn = &type->regions[i];
 353                phys_addr_t rbase = rgn->base;
 354                phys_addr_t rend = rbase + rgn->size;
 355
 356                if (rbase >= end)
 357                        break;
 358                if (rend <= base)
 359                        continue;
 360                /*
 361                 * @rgn overlaps.  If it separates the lower part of new
 362                 * area, insert that portion.
 363                 */
 364                if (rbase > base) {
 365                        nr_new++;
 366                        if (insert)
 367                                memblock_insert_region(type, i++, base,
 368                                                       rbase - base, nid);
 369                }
 370                /* area below @rend is dealt with, forget about it */
 371                base = min(rend, end);
 372        }
 373
 374        /* insert the remaining portion */
 375        if (base < end) {
 376                nr_new++;
 377                if (insert)
 378                        memblock_insert_region(type, i, base, end - base, nid);
 379        }
 380
 381        /*
 382         * If this was the first round, resize array and repeat for actual
 383         * insertions; otherwise, merge and return.
 384         */
 385        if (!insert) {
 386                while (type->cnt + nr_new > type->max)
 387                        if (memblock_double_array(type) < 0)
 388                                return -ENOMEM;
 389                insert = true;
 390                goto repeat;
 391        } else {
 392                memblock_merge_regions(type);
 393                return 0;
 394        }
 395}
 396
 397int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
 398                                       int nid)
 399{
 400        return memblock_add_region(&memblock.memory, base, size, nid);
 401}
 402
 403int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
 404{
 405        return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES);
 406}
 407
 408/**
 409 * memblock_isolate_range - isolate given range into disjoint memblocks
 410 * @type: memblock type to isolate range for
 411 * @base: base of range to isolate
 412 * @size: size of range to isolate
 413 * @start_rgn: out parameter for the start of isolated region
 414 * @end_rgn: out parameter for the end of isolated region
 415 *
 416 * Walk @type and ensure that regions don't cross the boundaries defined by
 417 * [@base,@base+@size).  Crossing regions are split at the boundaries,
 418 * which may create at most two more regions.  The index of the first
 419 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
 420 *
 421 * RETURNS:
 422 * 0 on success, -errno on failure.
 423 */
 424static int __init_memblock memblock_isolate_range(struct memblock_type *type,
 425                                        phys_addr_t base, phys_addr_t size,
 426                                        int *start_rgn, int *end_rgn)
 427{
 428        phys_addr_t end = base + memblock_cap_size(base, &size);
 429        int i;
 430
 431        *start_rgn = *end_rgn = 0;
 432
 433        /* we'll create at most two more regions */
 434        while (type->cnt + 2 > type->max)
 435                if (memblock_double_array(type) < 0)
 436                        return -ENOMEM;
 437
 438        for (i = 0; i < type->cnt; i++) {
 439                struct memblock_region *rgn = &type->regions[i];
 440                phys_addr_t rbase = rgn->base;
 441                phys_addr_t rend = rbase + rgn->size;
 442
 443                if (rbase >= end)
 444                        break;
 445                if (rend <= base)
 446                        continue;
 447
 448                if (rbase < base) {
 449                        /*
 450                         * @rgn intersects from below.  Split and continue
 451                         * to process the next region - the new top half.
 452                         */
 453                        rgn->base = base;
 454                        rgn->size -= base - rbase;
 455                        type->total_size -= base - rbase;
 456                        memblock_insert_region(type, i, rbase, base - rbase,
 457                                               memblock_get_region_node(rgn));
 458                } else if (rend > end) {
 459                        /*
 460                         * @rgn intersects from above.  Split and redo the
 461                         * current region - the new bottom half.
 462                         */
 463                        rgn->base = end;
 464                        rgn->size -= end - rbase;
 465                        type->total_size -= end - rbase;
 466                        memblock_insert_region(type, i--, rbase, end - rbase,
 467                                               memblock_get_region_node(rgn));
 468                } else {
 469                        /* @rgn is fully contained, record it */
 470                        if (!*end_rgn)
 471                                *start_rgn = i;
 472                        *end_rgn = i + 1;
 473                }
 474        }
 475
 476        return 0;
 477}
 478
 479static int __init_memblock __memblock_remove(struct memblock_type *type,
 480                                             phys_addr_t base, phys_addr_t size)
 481{
 482        int start_rgn, end_rgn;
 483        int i, ret;
 484
 485        ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 486        if (ret)
 487                return ret;
 488
 489        for (i = end_rgn - 1; i >= start_rgn; i--)
 490                memblock_remove_region(type, i);
 491        return 0;
 492}
 493
 494int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
 495{
 496        return __memblock_remove(&memblock.memory, base, size);
 497}
 498
 499int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
 500{
 501        memblock_dbg("   memblock_free: [%#016llx-%#016llx] %pF\n",
 502                     (unsigned long long)base,
 503                     (unsigned long long)base + size,
 504                     (void *)_RET_IP_);
 505
 506        return __memblock_remove(&memblock.reserved, base, size);
 507}
 508
 509int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
 510{
 511        struct memblock_type *_rgn = &memblock.reserved;
 512
 513        memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n",
 514                     (unsigned long long)base,
 515                     (unsigned long long)base + size,
 516                     (void *)_RET_IP_);
 517        BUG_ON(0 == size);
 518
 519        return memblock_add_region(_rgn, base, size, MAX_NUMNODES);
 520}
 521
 522/**
 523 * __next_free_mem_range - next function for for_each_free_mem_range()
 524 * @idx: pointer to u64 loop variable
 525 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
 526 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
 527 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
 528 * @p_nid: ptr to int for nid of the range, can be %NULL
 529 *
 530 * Find the first free area from *@idx which matches @nid, fill the out
 531 * parameters, and update *@idx for the next iteration.  The lower 32bit of
 532 * *@idx contains index into memory region and the upper 32bit indexes the
 533 * areas before each reserved region.  For example, if reserved regions
 534 * look like the following,
 535 *
 536 *      0:[0-16), 1:[32-48), 2:[128-130)
 537 *
 538 * The upper 32bit indexes the following regions.
 539 *
 540 *      0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
 541 *
 542 * As both region arrays are sorted, the function advances the two indices
 543 * in lockstep and returns each intersection.
 544 */
 545void __init_memblock __next_free_mem_range(u64 *idx, int nid,
 546                                           phys_addr_t *out_start,
 547                                           phys_addr_t *out_end, int *out_nid)
 548{
 549        struct memblock_type *mem = &memblock.memory;
 550        struct memblock_type *rsv = &memblock.reserved;
 551        int mi = *idx & 0xffffffff;
 552        int ri = *idx >> 32;
 553
 554        for ( ; mi < mem->cnt; mi++) {
 555                struct memblock_region *m = &mem->regions[mi];
 556                phys_addr_t m_start = m->base;
 557                phys_addr_t m_end = m->base + m->size;
 558
 559                /* only memory regions are associated with nodes, check it */
 560                if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
 561                        continue;
 562
 563                /* scan areas before each reservation for intersection */
 564                for ( ; ri < rsv->cnt + 1; ri++) {
 565                        struct memblock_region *r = &rsv->regions[ri];
 566                        phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
 567                        phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
 568
 569                        /* if ri advanced past mi, break out to advance mi */
 570                        if (r_start >= m_end)
 571                                break;
 572                        /* if the two regions intersect, we're done */
 573                        if (m_start < r_end) {
 574                                if (out_start)
 575                                        *out_start = max(m_start, r_start);
 576                                if (out_end)
 577                                        *out_end = min(m_end, r_end);
 578                                if (out_nid)
 579                                        *out_nid = memblock_get_region_node(m);
 580                                /*
 581                                 * The region which ends first is advanced
 582                                 * for the next iteration.
 583                                 */
 584                                if (m_end <= r_end)
 585                                        mi++;
 586                                else
 587                                        ri++;
 588                                *idx = (u32)mi | (u64)ri << 32;
 589                                return;
 590                        }
 591                }
 592        }
 593
 594        /* signal end of iteration */
 595        *idx = ULLONG_MAX;
 596}
 597
 598/**
 599 * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse()
 600 * @idx: pointer to u64 loop variable
 601 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
 602 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
 603 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
 604 * @p_nid: ptr to int for nid of the range, can be %NULL
 605 *
 606 * Reverse of __next_free_mem_range().
 607 */
 608void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid,
 609                                           phys_addr_t *out_start,
 610                                           phys_addr_t *out_end, int *out_nid)
 611{
 612        struct memblock_type *mem = &memblock.memory;
 613        struct memblock_type *rsv = &memblock.reserved;
 614        int mi = *idx & 0xffffffff;
 615        int ri = *idx >> 32;
 616
 617        if (*idx == (u64)ULLONG_MAX) {
 618                mi = mem->cnt - 1;
 619                ri = rsv->cnt;
 620        }
 621
 622        for ( ; mi >= 0; mi--) {
 623                struct memblock_region *m = &mem->regions[mi];
 624                phys_addr_t m_start = m->base;
 625                phys_addr_t m_end = m->base + m->size;
 626
 627                /* only memory regions are associated with nodes, check it */
 628                if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
 629                        continue;
 630
 631                /* scan areas before each reservation for intersection */
 632                for ( ; ri >= 0; ri--) {
 633                        struct memblock_region *r = &rsv->regions[ri];
 634                        phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
 635                        phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
 636
 637                        /* if ri advanced past mi, break out to advance mi */
 638                        if (r_end <= m_start)
 639                                break;
 640                        /* if the two regions intersect, we're done */
 641                        if (m_end > r_start) {
 642                                if (out_start)
 643                                        *out_start = max(m_start, r_start);
 644                                if (out_end)
 645                                        *out_end = min(m_end, r_end);
 646                                if (out_nid)
 647                                        *out_nid = memblock_get_region_node(m);
 648
 649                                if (m_start >= r_start)
 650                                        mi--;
 651                                else
 652                                        ri--;
 653                                *idx = (u32)mi | (u64)ri << 32;
 654                                return;
 655                        }
 656                }
 657        }
 658
 659        *idx = ULLONG_MAX;
 660}
 661
 662#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 663/*
 664 * Common iterator interface used to define for_each_mem_range().
 665 */
 666void __init_memblock __next_mem_pfn_range(int *idx, int nid,
 667                                unsigned long *out_start_pfn,
 668                                unsigned long *out_end_pfn, int *out_nid)
 669{
 670        struct memblock_type *type = &memblock.memory;
 671        struct memblock_region *r;
 672
 673        while (++*idx < type->cnt) {
 674                r = &type->regions[*idx];
 675
 676                if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
 677                        continue;
 678                if (nid == MAX_NUMNODES || nid == r->nid)
 679                        break;
 680        }
 681        if (*idx >= type->cnt) {
 682                *idx = -1;
 683                return;
 684        }
 685
 686        if (out_start_pfn)
 687                *out_start_pfn = PFN_UP(r->base);
 688        if (out_end_pfn)
 689                *out_end_pfn = PFN_DOWN(r->base + r->size);
 690        if (out_nid)
 691                *out_nid = r->nid;
 692}
 693
 694/**
 695 * memblock_set_node - set node ID on memblock regions
 696 * @base: base of area to set node ID for
 697 * @size: size of area to set node ID for
 698 * @nid: node ID to set
 699 *
 700 * Set the nid of memblock memory regions in [@base,@base+@size) to @nid.
 701 * Regions which cross the area boundaries are split as necessary.
 702 *
 703 * RETURNS:
 704 * 0 on success, -errno on failure.
 705 */
 706int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
 707                                      int nid)
 708{
 709        struct memblock_type *type = &memblock.memory;
 710        int start_rgn, end_rgn;
 711        int i, ret;
 712
 713        ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 714        if (ret)
 715                return ret;
 716
 717        for (i = start_rgn; i < end_rgn; i++)
 718                type->regions[i].nid = nid;
 719
 720        memblock_merge_regions(type);
 721        return 0;
 722}
 723#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
 724
 725static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
 726                                        phys_addr_t align, phys_addr_t max_addr,
 727                                        int nid)
 728{
 729        phys_addr_t found;
 730
 731        /* align @size to avoid excessive fragmentation on reserved array */
 732        size = round_up(size, align);
 733
 734        found = memblock_find_in_range_node(0, max_addr, size, align, nid);
 735        if (found && !memblock_reserve(found, size))
 736                return found;
 737
 738        return 0;
 739}
 740
 741phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
 742{
 743        return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
 744}
 745
 746phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
 747{
 748        return memblock_alloc_base_nid(size, align, max_addr, MAX_NUMNODES);
 749}
 750
 751phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
 752{
 753        phys_addr_t alloc;
 754
 755        alloc = __memblock_alloc_base(size, align, max_addr);
 756
 757        if (alloc == 0)
 758                panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
 759                      (unsigned long long) size, (unsigned long long) max_addr);
 760
 761        return alloc;
 762}
 763
 764phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
 765{
 766        return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
 767}
 768
 769phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
 770{
 771        phys_addr_t res = memblock_alloc_nid(size, align, nid);
 772
 773        if (res)
 774                return res;
 775        return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
 776}
 777
 778
 779/*
 780 * Remaining API functions
 781 */
 782
 783phys_addr_t __init memblock_phys_mem_size(void)
 784{
 785        return memblock.memory.total_size;
 786}
 787
 788/* lowest address */
 789phys_addr_t __init_memblock memblock_start_of_DRAM(void)
 790{
 791        return memblock.memory.regions[0].base;
 792}
 793
 794phys_addr_t __init_memblock memblock_end_of_DRAM(void)
 795{
 796        int idx = memblock.memory.cnt - 1;
 797
 798        return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
 799}
 800
 801void __init memblock_enforce_memory_limit(phys_addr_t limit)
 802{
 803        unsigned long i;
 804        phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
 805
 806        if (!limit)
 807                return;
 808
 809        /* find out max address */
 810        for (i = 0; i < memblock.memory.cnt; i++) {
 811                struct memblock_region *r = &memblock.memory.regions[i];
 812
 813                if (limit <= r->size) {
 814                        max_addr = r->base + limit;
 815                        break;
 816                }
 817                limit -= r->size;
 818        }
 819
 820        /* truncate both memory and reserved regions */
 821        __memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX);
 822        __memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX);
 823}
 824
 825static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
 826{
 827        unsigned int left = 0, right = type->cnt;
 828
 829        do {
 830                unsigned int mid = (right + left) / 2;
 831
 832                if (addr < type->regions[mid].base)
 833                        right = mid;
 834                else if (addr >= (type->regions[mid].base +
 835                                  type->regions[mid].size))
 836                        left = mid + 1;
 837                else
 838                        return mid;
 839        } while (left < right);
 840        return -1;
 841}
 842
 843int __init memblock_is_reserved(phys_addr_t addr)
 844{
 845        return memblock_search(&memblock.reserved, addr) != -1;
 846}
 847
 848int __init_memblock memblock_is_memory(phys_addr_t addr)
 849{
 850        return memblock_search(&memblock.memory, addr) != -1;
 851}
 852
 853int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
 854{
 855        int idx = memblock_search(&memblock.memory, base);
 856        phys_addr_t end = base + memblock_cap_size(base, &size);
 857
 858        if (idx == -1)
 859                return 0;
 860        return memblock.memory.regions[idx].base <= base &&
 861                (memblock.memory.regions[idx].base +
 862                 memblock.memory.regions[idx].size) >= end;
 863}
 864
 865int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
 866{
 867        memblock_cap_size(base, &size);
 868        return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
 869}
 870
 871
 872void __init_memblock memblock_set_current_limit(phys_addr_t limit)
 873{
 874        memblock.current_limit = limit;
 875}
 876
 877static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
 878{
 879        unsigned long long base, size;
 880        int i;
 881
 882        pr_info(" %s.cnt  = 0x%lx\n", name, type->cnt);
 883
 884        for (i = 0; i < type->cnt; i++) {
 885                struct memblock_region *rgn = &type->regions[i];
 886                char nid_buf[32] = "";
 887
 888                base = rgn->base;
 889                size = rgn->size;
 890#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 891                if (memblock_get_region_node(rgn) != MAX_NUMNODES)
 892                        snprintf(nid_buf, sizeof(nid_buf), " on node %d",
 893                                 memblock_get_region_node(rgn));
 894#endif
 895                pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n",
 896                        name, i, base, base + size - 1, size, nid_buf);
 897        }
 898}
 899
 900void __init_memblock __memblock_dump_all(void)
 901{
 902        pr_info("MEMBLOCK configuration:\n");
 903        pr_info(" memory size = %#llx reserved size = %#llx\n",
 904                (unsigned long long)memblock.memory.total_size,
 905                (unsigned long long)memblock.reserved.total_size);
 906
 907        memblock_dump(&memblock.memory, "memory");
 908        memblock_dump(&memblock.reserved, "reserved");
 909}
 910
 911void __init memblock_allow_resize(void)
 912{
 913        memblock_can_resize = 1;
 914}
 915
 916static int __init early_memblock(char *p)
 917{
 918        if (p && strstr(p, "debug"))
 919                memblock_debug = 1;
 920        return 0;
 921}
 922early_param("memblock", early_memblock);
 923
 924#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
 925
 926static int memblock_debug_show(struct seq_file *m, void *private)
 927{
 928        struct memblock_type *type = m->private;
 929        struct memblock_region *reg;
 930        int i;
 931
 932        for (i = 0; i < type->cnt; i++) {
 933                reg = &type->regions[i];
 934                seq_printf(m, "%4d: ", i);
 935                if (sizeof(phys_addr_t) == 4)
 936                        seq_printf(m, "0x%08lx..0x%08lx\n",
 937                                   (unsigned long)reg->base,
 938                                   (unsigned long)(reg->base + reg->size - 1));
 939                else
 940                        seq_printf(m, "0x%016llx..0x%016llx\n",
 941                                   (unsigned long long)reg->base,
 942                                   (unsigned long long)(reg->base + reg->size - 1));
 943
 944        }
 945        return 0;
 946}
 947
 948static int memblock_debug_open(struct inode *inode, struct file *file)
 949{
 950        return single_open(file, memblock_debug_show, inode->i_private);
 951}
 952
 953static const struct file_operations memblock_debug_fops = {
 954        .open = memblock_debug_open,
 955        .read = seq_read,
 956        .llseek = seq_lseek,
 957        .release = single_release,
 958};
 959
 960static int __init memblock_init_debugfs(void)
 961{
 962        struct dentry *root = debugfs_create_dir("memblock", NULL);
 963        if (!root)
 964                return -ENXIO;
 965        debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
 966        debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
 967
 968        return 0;
 969}
 970__initcall(memblock_init_debugfs);
 971
 972#endif /* CONFIG_DEBUG_FS */
 973