linux/block/cfq-iosched.c
<<
>>
Prefs
   1/*
   2 *  CFQ, or complete fairness queueing, disk scheduler.
   3 *
   4 *  Based on ideas from a previously unfinished io
   5 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
   6 *
   7 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
   8 */
   9#include <linux/module.h>
  10#include <linux/slab.h>
  11#include <linux/blkdev.h>
  12#include <linux/elevator.h>
  13#include <linux/jiffies.h>
  14#include <linux/rbtree.h>
  15#include <linux/ioprio.h>
  16#include <linux/blktrace_api.h>
  17#include "blk.h"
  18#include "cfq.h"
  19
  20/*
  21 * tunables
  22 */
  23/* max queue in one round of service */
  24static const int cfq_quantum = 8;
  25static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  26/* maximum backwards seek, in KiB */
  27static const int cfq_back_max = 16 * 1024;
  28/* penalty of a backwards seek */
  29static const int cfq_back_penalty = 2;
  30static const int cfq_slice_sync = HZ / 10;
  31static int cfq_slice_async = HZ / 25;
  32static const int cfq_slice_async_rq = 2;
  33static int cfq_slice_idle = HZ / 125;
  34static int cfq_group_idle = HZ / 125;
  35static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  36static const int cfq_hist_divisor = 4;
  37
  38/*
  39 * offset from end of service tree
  40 */
  41#define CFQ_IDLE_DELAY          (HZ / 5)
  42
  43/*
  44 * below this threshold, we consider thinktime immediate
  45 */
  46#define CFQ_MIN_TT              (2)
  47
  48#define CFQ_SLICE_SCALE         (5)
  49#define CFQ_HW_QUEUE_MIN        (5)
  50#define CFQ_SERVICE_SHIFT       12
  51
  52#define CFQQ_SEEK_THR           (sector_t)(8 * 100)
  53#define CFQQ_CLOSE_THR          (sector_t)(8 * 1024)
  54#define CFQQ_SECT_THR_NONROT    (sector_t)(2 * 32)
  55#define CFQQ_SEEKY(cfqq)        (hweight32(cfqq->seek_history) > 32/8)
  56
  57#define RQ_CIC(rq)              icq_to_cic((rq)->elv.icq)
  58#define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elv.priv[0])
  59#define RQ_CFQG(rq)             (struct cfq_group *) ((rq)->elv.priv[1])
  60
  61static struct kmem_cache *cfq_pool;
  62
  63#define CFQ_PRIO_LISTS          IOPRIO_BE_NR
  64#define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  65#define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  66
  67#define sample_valid(samples)   ((samples) > 80)
  68#define rb_entry_cfqg(node)     rb_entry((node), struct cfq_group, rb_node)
  69
  70struct cfq_ttime {
  71        unsigned long last_end_request;
  72
  73        unsigned long ttime_total;
  74        unsigned long ttime_samples;
  75        unsigned long ttime_mean;
  76};
  77
  78/*
  79 * Most of our rbtree usage is for sorting with min extraction, so
  80 * if we cache the leftmost node we don't have to walk down the tree
  81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  82 * move this into the elevator for the rq sorting as well.
  83 */
  84struct cfq_rb_root {
  85        struct rb_root rb;
  86        struct rb_node *left;
  87        unsigned count;
  88        unsigned total_weight;
  89        u64 min_vdisktime;
  90        struct cfq_ttime ttime;
  91};
  92#define CFQ_RB_ROOT     (struct cfq_rb_root) { .rb = RB_ROOT, \
  93                        .ttime = {.last_end_request = jiffies,},}
  94
  95/*
  96 * Per process-grouping structure
  97 */
  98struct cfq_queue {
  99        /* reference count */
 100        int ref;
 101        /* various state flags, see below */
 102        unsigned int flags;
 103        /* parent cfq_data */
 104        struct cfq_data *cfqd;
 105        /* service_tree member */
 106        struct rb_node rb_node;
 107        /* service_tree key */
 108        unsigned long rb_key;
 109        /* prio tree member */
 110        struct rb_node p_node;
 111        /* prio tree root we belong to, if any */
 112        struct rb_root *p_root;
 113        /* sorted list of pending requests */
 114        struct rb_root sort_list;
 115        /* if fifo isn't expired, next request to serve */
 116        struct request *next_rq;
 117        /* requests queued in sort_list */
 118        int queued[2];
 119        /* currently allocated requests */
 120        int allocated[2];
 121        /* fifo list of requests in sort_list */
 122        struct list_head fifo;
 123
 124        /* time when queue got scheduled in to dispatch first request. */
 125        unsigned long dispatch_start;
 126        unsigned int allocated_slice;
 127        unsigned int slice_dispatch;
 128        /* time when first request from queue completed and slice started. */
 129        unsigned long slice_start;
 130        unsigned long slice_end;
 131        long slice_resid;
 132
 133        /* pending priority requests */
 134        int prio_pending;
 135        /* number of requests that are on the dispatch list or inside driver */
 136        int dispatched;
 137
 138        /* io prio of this group */
 139        unsigned short ioprio, org_ioprio;
 140        unsigned short ioprio_class;
 141
 142        pid_t pid;
 143
 144        u32 seek_history;
 145        sector_t last_request_pos;
 146
 147        struct cfq_rb_root *service_tree;
 148        struct cfq_queue *new_cfqq;
 149        struct cfq_group *cfqg;
 150        /* Number of sectors dispatched from queue in single dispatch round */
 151        unsigned long nr_sectors;
 152};
 153
 154/*
 155 * First index in the service_trees.
 156 * IDLE is handled separately, so it has negative index
 157 */
 158enum wl_prio_t {
 159        BE_WORKLOAD = 0,
 160        RT_WORKLOAD = 1,
 161        IDLE_WORKLOAD = 2,
 162        CFQ_PRIO_NR,
 163};
 164
 165/*
 166 * Second index in the service_trees.
 167 */
 168enum wl_type_t {
 169        ASYNC_WORKLOAD = 0,
 170        SYNC_NOIDLE_WORKLOAD = 1,
 171        SYNC_WORKLOAD = 2
 172};
 173
 174/* This is per cgroup per device grouping structure */
 175struct cfq_group {
 176        /* group service_tree member */
 177        struct rb_node rb_node;
 178
 179        /* group service_tree key */
 180        u64 vdisktime;
 181        unsigned int weight;
 182        unsigned int new_weight;
 183        bool needs_update;
 184
 185        /* number of cfqq currently on this group */
 186        int nr_cfqq;
 187
 188        /*
 189         * Per group busy queues average. Useful for workload slice calc. We
 190         * create the array for each prio class but at run time it is used
 191         * only for RT and BE class and slot for IDLE class remains unused.
 192         * This is primarily done to avoid confusion and a gcc warning.
 193         */
 194        unsigned int busy_queues_avg[CFQ_PRIO_NR];
 195        /*
 196         * rr lists of queues with requests. We maintain service trees for
 197         * RT and BE classes. These trees are subdivided in subclasses
 198         * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
 199         * class there is no subclassification and all the cfq queues go on
 200         * a single tree service_tree_idle.
 201         * Counts are embedded in the cfq_rb_root
 202         */
 203        struct cfq_rb_root service_trees[2][3];
 204        struct cfq_rb_root service_tree_idle;
 205
 206        unsigned long saved_workload_slice;
 207        enum wl_type_t saved_workload;
 208        enum wl_prio_t saved_serving_prio;
 209        struct blkio_group blkg;
 210#ifdef CONFIG_CFQ_GROUP_IOSCHED
 211        struct hlist_node cfqd_node;
 212        int ref;
 213#endif
 214        /* number of requests that are on the dispatch list or inside driver */
 215        int dispatched;
 216        struct cfq_ttime ttime;
 217};
 218
 219struct cfq_io_cq {
 220        struct io_cq            icq;            /* must be the first member */
 221        struct cfq_queue        *cfqq[2];
 222        struct cfq_ttime        ttime;
 223};
 224
 225/*
 226 * Per block device queue structure
 227 */
 228struct cfq_data {
 229        struct request_queue *queue;
 230        /* Root service tree for cfq_groups */
 231        struct cfq_rb_root grp_service_tree;
 232        struct cfq_group root_group;
 233
 234        /*
 235         * The priority currently being served
 236         */
 237        enum wl_prio_t serving_prio;
 238        enum wl_type_t serving_type;
 239        unsigned long workload_expires;
 240        struct cfq_group *serving_group;
 241
 242        /*
 243         * Each priority tree is sorted by next_request position.  These
 244         * trees are used when determining if two or more queues are
 245         * interleaving requests (see cfq_close_cooperator).
 246         */
 247        struct rb_root prio_trees[CFQ_PRIO_LISTS];
 248
 249        unsigned int busy_queues;
 250        unsigned int busy_sync_queues;
 251
 252        int rq_in_driver;
 253        int rq_in_flight[2];
 254
 255        /*
 256         * queue-depth detection
 257         */
 258        int rq_queued;
 259        int hw_tag;
 260        /*
 261         * hw_tag can be
 262         * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
 263         *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
 264         *  0 => no NCQ
 265         */
 266        int hw_tag_est_depth;
 267        unsigned int hw_tag_samples;
 268
 269        /*
 270         * idle window management
 271         */
 272        struct timer_list idle_slice_timer;
 273        struct work_struct unplug_work;
 274
 275        struct cfq_queue *active_queue;
 276        struct cfq_io_cq *active_cic;
 277
 278        /*
 279         * async queue for each priority case
 280         */
 281        struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
 282        struct cfq_queue *async_idle_cfqq;
 283
 284        sector_t last_position;
 285
 286        /*
 287         * tunables, see top of file
 288         */
 289        unsigned int cfq_quantum;
 290        unsigned int cfq_fifo_expire[2];
 291        unsigned int cfq_back_penalty;
 292        unsigned int cfq_back_max;
 293        unsigned int cfq_slice[2];
 294        unsigned int cfq_slice_async_rq;
 295        unsigned int cfq_slice_idle;
 296        unsigned int cfq_group_idle;
 297        unsigned int cfq_latency;
 298
 299        /*
 300         * Fallback dummy cfqq for extreme OOM conditions
 301         */
 302        struct cfq_queue oom_cfqq;
 303
 304        unsigned long last_delayed_sync;
 305
 306        /* List of cfq groups being managed on this device*/
 307        struct hlist_head cfqg_list;
 308
 309        /* Number of groups which are on blkcg->blkg_list */
 310        unsigned int nr_blkcg_linked_grps;
 311};
 312
 313static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
 314
 315static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
 316                                            enum wl_prio_t prio,
 317                                            enum wl_type_t type)
 318{
 319        if (!cfqg)
 320                return NULL;
 321
 322        if (prio == IDLE_WORKLOAD)
 323                return &cfqg->service_tree_idle;
 324
 325        return &cfqg->service_trees[prio][type];
 326}
 327
 328enum cfqq_state_flags {
 329        CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
 330        CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
 331        CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
 332        CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
 333        CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
 334        CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
 335        CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
 336        CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
 337        CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
 338        CFQ_CFQQ_FLAG_coop,             /* cfqq is shared */
 339        CFQ_CFQQ_FLAG_split_coop,       /* shared cfqq will be splitted */
 340        CFQ_CFQQ_FLAG_deep,             /* sync cfqq experienced large depth */
 341        CFQ_CFQQ_FLAG_wait_busy,        /* Waiting for next request */
 342};
 343
 344#define CFQ_CFQQ_FNS(name)                                              \
 345static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
 346{                                                                       \
 347        (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
 348}                                                                       \
 349static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
 350{                                                                       \
 351        (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
 352}                                                                       \
 353static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
 354{                                                                       \
 355        return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
 356}
 357
 358CFQ_CFQQ_FNS(on_rr);
 359CFQ_CFQQ_FNS(wait_request);
 360CFQ_CFQQ_FNS(must_dispatch);
 361CFQ_CFQQ_FNS(must_alloc_slice);
 362CFQ_CFQQ_FNS(fifo_expire);
 363CFQ_CFQQ_FNS(idle_window);
 364CFQ_CFQQ_FNS(prio_changed);
 365CFQ_CFQQ_FNS(slice_new);
 366CFQ_CFQQ_FNS(sync);
 367CFQ_CFQQ_FNS(coop);
 368CFQ_CFQQ_FNS(split_coop);
 369CFQ_CFQQ_FNS(deep);
 370CFQ_CFQQ_FNS(wait_busy);
 371#undef CFQ_CFQQ_FNS
 372
 373#ifdef CONFIG_CFQ_GROUP_IOSCHED
 374#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
 375        blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
 376                        cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
 377                        blkg_path(&(cfqq)->cfqg->blkg), ##args)
 378
 379#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)                          \
 380        blk_add_trace_msg((cfqd)->queue, "%s " fmt,                     \
 381                                blkg_path(&(cfqg)->blkg), ##args)       \
 382
 383#else
 384#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
 385        blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
 386#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)          do {} while (0)
 387#endif
 388#define cfq_log(cfqd, fmt, args...)     \
 389        blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
 390
 391/* Traverses through cfq group service trees */
 392#define for_each_cfqg_st(cfqg, i, j, st) \
 393        for (i = 0; i <= IDLE_WORKLOAD; i++) \
 394                for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
 395                        : &cfqg->service_tree_idle; \
 396                        (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
 397                        (i == IDLE_WORKLOAD && j == 0); \
 398                        j++, st = i < IDLE_WORKLOAD ? \
 399                        &cfqg->service_trees[i][j]: NULL) \
 400
 401static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
 402        struct cfq_ttime *ttime, bool group_idle)
 403{
 404        unsigned long slice;
 405        if (!sample_valid(ttime->ttime_samples))
 406                return false;
 407        if (group_idle)
 408                slice = cfqd->cfq_group_idle;
 409        else
 410                slice = cfqd->cfq_slice_idle;
 411        return ttime->ttime_mean > slice;
 412}
 413
 414static inline bool iops_mode(struct cfq_data *cfqd)
 415{
 416        /*
 417         * If we are not idling on queues and it is a NCQ drive, parallel
 418         * execution of requests is on and measuring time is not possible
 419         * in most of the cases until and unless we drive shallower queue
 420         * depths and that becomes a performance bottleneck. In such cases
 421         * switch to start providing fairness in terms of number of IOs.
 422         */
 423        if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
 424                return true;
 425        else
 426                return false;
 427}
 428
 429static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
 430{
 431        if (cfq_class_idle(cfqq))
 432                return IDLE_WORKLOAD;
 433        if (cfq_class_rt(cfqq))
 434                return RT_WORKLOAD;
 435        return BE_WORKLOAD;
 436}
 437
 438
 439static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
 440{
 441        if (!cfq_cfqq_sync(cfqq))
 442                return ASYNC_WORKLOAD;
 443        if (!cfq_cfqq_idle_window(cfqq))
 444                return SYNC_NOIDLE_WORKLOAD;
 445        return SYNC_WORKLOAD;
 446}
 447
 448static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
 449                                        struct cfq_data *cfqd,
 450                                        struct cfq_group *cfqg)
 451{
 452        if (wl == IDLE_WORKLOAD)
 453                return cfqg->service_tree_idle.count;
 454
 455        return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
 456                + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
 457                + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
 458}
 459
 460static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
 461                                        struct cfq_group *cfqg)
 462{
 463        return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
 464                + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
 465}
 466
 467static void cfq_dispatch_insert(struct request_queue *, struct request *);
 468static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
 469                                       struct io_context *, gfp_t);
 470
 471static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
 472{
 473        /* cic->icq is the first member, %NULL will convert to %NULL */
 474        return container_of(icq, struct cfq_io_cq, icq);
 475}
 476
 477static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
 478                                               struct io_context *ioc)
 479{
 480        if (ioc)
 481                return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
 482        return NULL;
 483}
 484
 485static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
 486{
 487        return cic->cfqq[is_sync];
 488}
 489
 490static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
 491                                bool is_sync)
 492{
 493        cic->cfqq[is_sync] = cfqq;
 494}
 495
 496static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
 497{
 498        return cic->icq.q->elevator->elevator_data;
 499}
 500
 501/*
 502 * We regard a request as SYNC, if it's either a read or has the SYNC bit
 503 * set (in which case it could also be direct WRITE).
 504 */
 505static inline bool cfq_bio_sync(struct bio *bio)
 506{
 507        return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
 508}
 509
 510/*
 511 * scheduler run of queue, if there are requests pending and no one in the
 512 * driver that will restart queueing
 513 */
 514static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
 515{
 516        if (cfqd->busy_queues) {
 517                cfq_log(cfqd, "schedule dispatch");
 518                kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
 519        }
 520}
 521
 522/*
 523 * Scale schedule slice based on io priority. Use the sync time slice only
 524 * if a queue is marked sync and has sync io queued. A sync queue with async
 525 * io only, should not get full sync slice length.
 526 */
 527static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
 528                                 unsigned short prio)
 529{
 530        const int base_slice = cfqd->cfq_slice[sync];
 531
 532        WARN_ON(prio >= IOPRIO_BE_NR);
 533
 534        return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
 535}
 536
 537static inline int
 538cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
 539{
 540        return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
 541}
 542
 543static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
 544{
 545        u64 d = delta << CFQ_SERVICE_SHIFT;
 546
 547        d = d * BLKIO_WEIGHT_DEFAULT;
 548        do_div(d, cfqg->weight);
 549        return d;
 550}
 551
 552static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
 553{
 554        s64 delta = (s64)(vdisktime - min_vdisktime);
 555        if (delta > 0)
 556                min_vdisktime = vdisktime;
 557
 558        return min_vdisktime;
 559}
 560
 561static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
 562{
 563        s64 delta = (s64)(vdisktime - min_vdisktime);
 564        if (delta < 0)
 565                min_vdisktime = vdisktime;
 566
 567        return min_vdisktime;
 568}
 569
 570static void update_min_vdisktime(struct cfq_rb_root *st)
 571{
 572        struct cfq_group *cfqg;
 573
 574        if (st->left) {
 575                cfqg = rb_entry_cfqg(st->left);
 576                st->min_vdisktime = max_vdisktime(st->min_vdisktime,
 577                                                  cfqg->vdisktime);
 578        }
 579}
 580
 581/*
 582 * get averaged number of queues of RT/BE priority.
 583 * average is updated, with a formula that gives more weight to higher numbers,
 584 * to quickly follows sudden increases and decrease slowly
 585 */
 586
 587static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
 588                                        struct cfq_group *cfqg, bool rt)
 589{
 590        unsigned min_q, max_q;
 591        unsigned mult  = cfq_hist_divisor - 1;
 592        unsigned round = cfq_hist_divisor / 2;
 593        unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
 594
 595        min_q = min(cfqg->busy_queues_avg[rt], busy);
 596        max_q = max(cfqg->busy_queues_avg[rt], busy);
 597        cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
 598                cfq_hist_divisor;
 599        return cfqg->busy_queues_avg[rt];
 600}
 601
 602static inline unsigned
 603cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
 604{
 605        struct cfq_rb_root *st = &cfqd->grp_service_tree;
 606
 607        return cfq_target_latency * cfqg->weight / st->total_weight;
 608}
 609
 610static inline unsigned
 611cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
 612{
 613        unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
 614        if (cfqd->cfq_latency) {
 615                /*
 616                 * interested queues (we consider only the ones with the same
 617                 * priority class in the cfq group)
 618                 */
 619                unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
 620                                                cfq_class_rt(cfqq));
 621                unsigned sync_slice = cfqd->cfq_slice[1];
 622                unsigned expect_latency = sync_slice * iq;
 623                unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
 624
 625                if (expect_latency > group_slice) {
 626                        unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
 627                        /* scale low_slice according to IO priority
 628                         * and sync vs async */
 629                        unsigned low_slice =
 630                                min(slice, base_low_slice * slice / sync_slice);
 631                        /* the adapted slice value is scaled to fit all iqs
 632                         * into the target latency */
 633                        slice = max(slice * group_slice / expect_latency,
 634                                    low_slice);
 635                }
 636        }
 637        return slice;
 638}
 639
 640static inline void
 641cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
 642{
 643        unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
 644
 645        cfqq->slice_start = jiffies;
 646        cfqq->slice_end = jiffies + slice;
 647        cfqq->allocated_slice = slice;
 648        cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
 649}
 650
 651/*
 652 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
 653 * isn't valid until the first request from the dispatch is activated
 654 * and the slice time set.
 655 */
 656static inline bool cfq_slice_used(struct cfq_queue *cfqq)
 657{
 658        if (cfq_cfqq_slice_new(cfqq))
 659                return false;
 660        if (time_before(jiffies, cfqq->slice_end))
 661                return false;
 662
 663        return true;
 664}
 665
 666/*
 667 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
 668 * We choose the request that is closest to the head right now. Distance
 669 * behind the head is penalized and only allowed to a certain extent.
 670 */
 671static struct request *
 672cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
 673{
 674        sector_t s1, s2, d1 = 0, d2 = 0;
 675        unsigned long back_max;
 676#define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
 677#define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
 678        unsigned wrap = 0; /* bit mask: requests behind the disk head? */
 679
 680        if (rq1 == NULL || rq1 == rq2)
 681                return rq2;
 682        if (rq2 == NULL)
 683                return rq1;
 684
 685        if (rq_is_sync(rq1) != rq_is_sync(rq2))
 686                return rq_is_sync(rq1) ? rq1 : rq2;
 687
 688        if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
 689                return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
 690
 691        s1 = blk_rq_pos(rq1);
 692        s2 = blk_rq_pos(rq2);
 693
 694        /*
 695         * by definition, 1KiB is 2 sectors
 696         */
 697        back_max = cfqd->cfq_back_max * 2;
 698
 699        /*
 700         * Strict one way elevator _except_ in the case where we allow
 701         * short backward seeks which are biased as twice the cost of a
 702         * similar forward seek.
 703         */
 704        if (s1 >= last)
 705                d1 = s1 - last;
 706        else if (s1 + back_max >= last)
 707                d1 = (last - s1) * cfqd->cfq_back_penalty;
 708        else
 709                wrap |= CFQ_RQ1_WRAP;
 710
 711        if (s2 >= last)
 712                d2 = s2 - last;
 713        else if (s2 + back_max >= last)
 714                d2 = (last - s2) * cfqd->cfq_back_penalty;
 715        else
 716                wrap |= CFQ_RQ2_WRAP;
 717
 718        /* Found required data */
 719
 720        /*
 721         * By doing switch() on the bit mask "wrap" we avoid having to
 722         * check two variables for all permutations: --> faster!
 723         */
 724        switch (wrap) {
 725        case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
 726                if (d1 < d2)
 727                        return rq1;
 728                else if (d2 < d1)
 729                        return rq2;
 730                else {
 731                        if (s1 >= s2)
 732                                return rq1;
 733                        else
 734                                return rq2;
 735                }
 736
 737        case CFQ_RQ2_WRAP:
 738                return rq1;
 739        case CFQ_RQ1_WRAP:
 740                return rq2;
 741        case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
 742        default:
 743                /*
 744                 * Since both rqs are wrapped,
 745                 * start with the one that's further behind head
 746                 * (--> only *one* back seek required),
 747                 * since back seek takes more time than forward.
 748                 */
 749                if (s1 <= s2)
 750                        return rq1;
 751                else
 752                        return rq2;
 753        }
 754}
 755
 756/*
 757 * The below is leftmost cache rbtree addon
 758 */
 759static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
 760{
 761        /* Service tree is empty */
 762        if (!root->count)
 763                return NULL;
 764
 765        if (!root->left)
 766                root->left = rb_first(&root->rb);
 767
 768        if (root->left)
 769                return rb_entry(root->left, struct cfq_queue, rb_node);
 770
 771        return NULL;
 772}
 773
 774static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
 775{
 776        if (!root->left)
 777                root->left = rb_first(&root->rb);
 778
 779        if (root->left)
 780                return rb_entry_cfqg(root->left);
 781
 782        return NULL;
 783}
 784
 785static void rb_erase_init(struct rb_node *n, struct rb_root *root)
 786{
 787        rb_erase(n, root);
 788        RB_CLEAR_NODE(n);
 789}
 790
 791static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
 792{
 793        if (root->left == n)
 794                root->left = NULL;
 795        rb_erase_init(n, &root->rb);
 796        --root->count;
 797}
 798
 799/*
 800 * would be nice to take fifo expire time into account as well
 801 */
 802static struct request *
 803cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
 804                  struct request *last)
 805{
 806        struct rb_node *rbnext = rb_next(&last->rb_node);
 807        struct rb_node *rbprev = rb_prev(&last->rb_node);
 808        struct request *next = NULL, *prev = NULL;
 809
 810        BUG_ON(RB_EMPTY_NODE(&last->rb_node));
 811
 812        if (rbprev)
 813                prev = rb_entry_rq(rbprev);
 814
 815        if (rbnext)
 816                next = rb_entry_rq(rbnext);
 817        else {
 818                rbnext = rb_first(&cfqq->sort_list);
 819                if (rbnext && rbnext != &last->rb_node)
 820                        next = rb_entry_rq(rbnext);
 821        }
 822
 823        return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
 824}
 825
 826static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
 827                                      struct cfq_queue *cfqq)
 828{
 829        /*
 830         * just an approximation, should be ok.
 831         */
 832        return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
 833                       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
 834}
 835
 836static inline s64
 837cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
 838{
 839        return cfqg->vdisktime - st->min_vdisktime;
 840}
 841
 842static void
 843__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
 844{
 845        struct rb_node **node = &st->rb.rb_node;
 846        struct rb_node *parent = NULL;
 847        struct cfq_group *__cfqg;
 848        s64 key = cfqg_key(st, cfqg);
 849        int left = 1;
 850
 851        while (*node != NULL) {
 852                parent = *node;
 853                __cfqg = rb_entry_cfqg(parent);
 854
 855                if (key < cfqg_key(st, __cfqg))
 856                        node = &parent->rb_left;
 857                else {
 858                        node = &parent->rb_right;
 859                        left = 0;
 860                }
 861        }
 862
 863        if (left)
 864                st->left = &cfqg->rb_node;
 865
 866        rb_link_node(&cfqg->rb_node, parent, node);
 867        rb_insert_color(&cfqg->rb_node, &st->rb);
 868}
 869
 870static void
 871cfq_update_group_weight(struct cfq_group *cfqg)
 872{
 873        BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
 874        if (cfqg->needs_update) {
 875                cfqg->weight = cfqg->new_weight;
 876                cfqg->needs_update = false;
 877        }
 878}
 879
 880static void
 881cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
 882{
 883        BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
 884
 885        cfq_update_group_weight(cfqg);
 886        __cfq_group_service_tree_add(st, cfqg);
 887        st->total_weight += cfqg->weight;
 888}
 889
 890static void
 891cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
 892{
 893        struct cfq_rb_root *st = &cfqd->grp_service_tree;
 894        struct cfq_group *__cfqg;
 895        struct rb_node *n;
 896
 897        cfqg->nr_cfqq++;
 898        if (!RB_EMPTY_NODE(&cfqg->rb_node))
 899                return;
 900
 901        /*
 902         * Currently put the group at the end. Later implement something
 903         * so that groups get lesser vtime based on their weights, so that
 904         * if group does not loose all if it was not continuously backlogged.
 905         */
 906        n = rb_last(&st->rb);
 907        if (n) {
 908                __cfqg = rb_entry_cfqg(n);
 909                cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
 910        } else
 911                cfqg->vdisktime = st->min_vdisktime;
 912        cfq_group_service_tree_add(st, cfqg);
 913}
 914
 915static void
 916cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
 917{
 918        st->total_weight -= cfqg->weight;
 919        if (!RB_EMPTY_NODE(&cfqg->rb_node))
 920                cfq_rb_erase(&cfqg->rb_node, st);
 921}
 922
 923static void
 924cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
 925{
 926        struct cfq_rb_root *st = &cfqd->grp_service_tree;
 927
 928        BUG_ON(cfqg->nr_cfqq < 1);
 929        cfqg->nr_cfqq--;
 930
 931        /* If there are other cfq queues under this group, don't delete it */
 932        if (cfqg->nr_cfqq)
 933                return;
 934
 935        cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
 936        cfq_group_service_tree_del(st, cfqg);
 937        cfqg->saved_workload_slice = 0;
 938        cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
 939}
 940
 941static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
 942                                                unsigned int *unaccounted_time)
 943{
 944        unsigned int slice_used;
 945
 946        /*
 947         * Queue got expired before even a single request completed or
 948         * got expired immediately after first request completion.
 949         */
 950        if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
 951                /*
 952                 * Also charge the seek time incurred to the group, otherwise
 953                 * if there are mutiple queues in the group, each can dispatch
 954                 * a single request on seeky media and cause lots of seek time
 955                 * and group will never know it.
 956                 */
 957                slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
 958                                        1);
 959        } else {
 960                slice_used = jiffies - cfqq->slice_start;
 961                if (slice_used > cfqq->allocated_slice) {
 962                        *unaccounted_time = slice_used - cfqq->allocated_slice;
 963                        slice_used = cfqq->allocated_slice;
 964                }
 965                if (time_after(cfqq->slice_start, cfqq->dispatch_start))
 966                        *unaccounted_time += cfqq->slice_start -
 967                                        cfqq->dispatch_start;
 968        }
 969
 970        return slice_used;
 971}
 972
 973static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
 974                                struct cfq_queue *cfqq)
 975{
 976        struct cfq_rb_root *st = &cfqd->grp_service_tree;
 977        unsigned int used_sl, charge, unaccounted_sl = 0;
 978        int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
 979                        - cfqg->service_tree_idle.count;
 980
 981        BUG_ON(nr_sync < 0);
 982        used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
 983
 984        if (iops_mode(cfqd))
 985                charge = cfqq->slice_dispatch;
 986        else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
 987                charge = cfqq->allocated_slice;
 988
 989        /* Can't update vdisktime while group is on service tree */
 990        cfq_group_service_tree_del(st, cfqg);
 991        cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
 992        /* If a new weight was requested, update now, off tree */
 993        cfq_group_service_tree_add(st, cfqg);
 994
 995        /* This group is being expired. Save the context */
 996        if (time_after(cfqd->workload_expires, jiffies)) {
 997                cfqg->saved_workload_slice = cfqd->workload_expires
 998                                                - jiffies;
 999                cfqg->saved_workload = cfqd->serving_type;
1000                cfqg->saved_serving_prio = cfqd->serving_prio;
1001        } else
1002                cfqg->saved_workload_slice = 0;
1003
1004        cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1005                                        st->min_vdisktime);
1006        cfq_log_cfqq(cfqq->cfqd, cfqq,
1007                     "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1008                     used_sl, cfqq->slice_dispatch, charge,
1009                     iops_mode(cfqd), cfqq->nr_sectors);
1010        cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
1011                                          unaccounted_sl);
1012        cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
1013}
1014
1015#ifdef CONFIG_CFQ_GROUP_IOSCHED
1016static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
1017{
1018        if (blkg)
1019                return container_of(blkg, struct cfq_group, blkg);
1020        return NULL;
1021}
1022
1023static void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
1024                                          unsigned int weight)
1025{
1026        struct cfq_group *cfqg = cfqg_of_blkg(blkg);
1027        cfqg->new_weight = weight;
1028        cfqg->needs_update = true;
1029}
1030
1031static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
1032                        struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
1033{
1034        struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1035        unsigned int major, minor;
1036
1037        /*
1038         * Add group onto cgroup list. It might happen that bdi->dev is
1039         * not initialized yet. Initialize this new group without major
1040         * and minor info and this info will be filled in once a new thread
1041         * comes for IO.
1042         */
1043        if (bdi->dev) {
1044                sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1045                cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1046                                        (void *)cfqd, MKDEV(major, minor));
1047        } else
1048                cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1049                                        (void *)cfqd, 0);
1050
1051        cfqd->nr_blkcg_linked_grps++;
1052        cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1053
1054        /* Add group on cfqd list */
1055        hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1056}
1057
1058/*
1059 * Should be called from sleepable context. No request queue lock as per
1060 * cpu stats are allocated dynamically and alloc_percpu needs to be called
1061 * from sleepable context.
1062 */
1063static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
1064{
1065        struct cfq_group *cfqg = NULL;
1066        int i, j, ret;
1067        struct cfq_rb_root *st;
1068
1069        cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1070        if (!cfqg)
1071                return NULL;
1072
1073        for_each_cfqg_st(cfqg, i, j, st)
1074                *st = CFQ_RB_ROOT;
1075        RB_CLEAR_NODE(&cfqg->rb_node);
1076
1077        cfqg->ttime.last_end_request = jiffies;
1078
1079        /*
1080         * Take the initial reference that will be released on destroy
1081         * This can be thought of a joint reference by cgroup and
1082         * elevator which will be dropped by either elevator exit
1083         * or cgroup deletion path depending on who is exiting first.
1084         */
1085        cfqg->ref = 1;
1086
1087        ret = blkio_alloc_blkg_stats(&cfqg->blkg);
1088        if (ret) {
1089                kfree(cfqg);
1090                return NULL;
1091        }
1092
1093        return cfqg;
1094}
1095
1096static struct cfq_group *
1097cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
1098{
1099        struct cfq_group *cfqg = NULL;
1100        void *key = cfqd;
1101        struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1102        unsigned int major, minor;
1103
1104        /*
1105         * This is the common case when there are no blkio cgroups.
1106         * Avoid lookup in this case
1107         */
1108        if (blkcg == &blkio_root_cgroup)
1109                cfqg = &cfqd->root_group;
1110        else
1111                cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
1112
1113        if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1114                sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1115                cfqg->blkg.dev = MKDEV(major, minor);
1116        }
1117
1118        return cfqg;
1119}
1120
1121/*
1122 * Search for the cfq group current task belongs to. request_queue lock must
1123 * be held.
1124 */
1125static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1126{
1127        struct blkio_cgroup *blkcg;
1128        struct cfq_group *cfqg = NULL, *__cfqg = NULL;
1129        struct request_queue *q = cfqd->queue;
1130
1131        rcu_read_lock();
1132        blkcg = task_blkio_cgroup(current);
1133        cfqg = cfq_find_cfqg(cfqd, blkcg);
1134        if (cfqg) {
1135                rcu_read_unlock();
1136                return cfqg;
1137        }
1138
1139        /*
1140         * Need to allocate a group. Allocation of group also needs allocation
1141         * of per cpu stats which in-turn takes a mutex() and can block. Hence
1142         * we need to drop rcu lock and queue_lock before we call alloc.
1143         *
1144         * Not taking any queue reference here and assuming that queue is
1145         * around by the time we return. CFQ queue allocation code does
1146         * the same. It might be racy though.
1147         */
1148
1149        rcu_read_unlock();
1150        spin_unlock_irq(q->queue_lock);
1151
1152        cfqg = cfq_alloc_cfqg(cfqd);
1153
1154        spin_lock_irq(q->queue_lock);
1155
1156        rcu_read_lock();
1157        blkcg = task_blkio_cgroup(current);
1158
1159        /*
1160         * If some other thread already allocated the group while we were
1161         * not holding queue lock, free up the group
1162         */
1163        __cfqg = cfq_find_cfqg(cfqd, blkcg);
1164
1165        if (__cfqg) {
1166                kfree(cfqg);
1167                rcu_read_unlock();
1168                return __cfqg;
1169        }
1170
1171        if (!cfqg)
1172                cfqg = &cfqd->root_group;
1173
1174        cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
1175        rcu_read_unlock();
1176        return cfqg;
1177}
1178
1179static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1180{
1181        cfqg->ref++;
1182        return cfqg;
1183}
1184
1185static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1186{
1187        /* Currently, all async queues are mapped to root group */
1188        if (!cfq_cfqq_sync(cfqq))
1189                cfqg = &cfqq->cfqd->root_group;
1190
1191        cfqq->cfqg = cfqg;
1192        /* cfqq reference on cfqg */
1193        cfqq->cfqg->ref++;
1194}
1195
1196static void cfq_put_cfqg(struct cfq_group *cfqg)
1197{
1198        struct cfq_rb_root *st;
1199        int i, j;
1200
1201        BUG_ON(cfqg->ref <= 0);
1202        cfqg->ref--;
1203        if (cfqg->ref)
1204                return;
1205        for_each_cfqg_st(cfqg, i, j, st)
1206                BUG_ON(!RB_EMPTY_ROOT(&st->rb));
1207        free_percpu(cfqg->blkg.stats_cpu);
1208        kfree(cfqg);
1209}
1210
1211static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1212{
1213        /* Something wrong if we are trying to remove same group twice */
1214        BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1215
1216        hlist_del_init(&cfqg->cfqd_node);
1217
1218        BUG_ON(cfqd->nr_blkcg_linked_grps <= 0);
1219        cfqd->nr_blkcg_linked_grps--;
1220
1221        /*
1222         * Put the reference taken at the time of creation so that when all
1223         * queues are gone, group can be destroyed.
1224         */
1225        cfq_put_cfqg(cfqg);
1226}
1227
1228static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1229{
1230        struct hlist_node *pos, *n;
1231        struct cfq_group *cfqg;
1232
1233        hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1234                /*
1235                 * If cgroup removal path got to blk_group first and removed
1236                 * it from cgroup list, then it will take care of destroying
1237                 * cfqg also.
1238                 */
1239                if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
1240                        cfq_destroy_cfqg(cfqd, cfqg);
1241        }
1242}
1243
1244/*
1245 * Blk cgroup controller notification saying that blkio_group object is being
1246 * delinked as associated cgroup object is going away. That also means that
1247 * no new IO will come in this group. So get rid of this group as soon as
1248 * any pending IO in the group is finished.
1249 *
1250 * This function is called under rcu_read_lock(). key is the rcu protected
1251 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1252 * read lock.
1253 *
1254 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1255 * it should not be NULL as even if elevator was exiting, cgroup deltion
1256 * path got to it first.
1257 */
1258static void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1259{
1260        unsigned long  flags;
1261        struct cfq_data *cfqd = key;
1262
1263        spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1264        cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1265        spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1266}
1267
1268#else /* GROUP_IOSCHED */
1269static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1270{
1271        return &cfqd->root_group;
1272}
1273
1274static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1275{
1276        return cfqg;
1277}
1278
1279static inline void
1280cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1281        cfqq->cfqg = cfqg;
1282}
1283
1284static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1285static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1286
1287#endif /* GROUP_IOSCHED */
1288
1289/*
1290 * The cfqd->service_trees holds all pending cfq_queue's that have
1291 * requests waiting to be processed. It is sorted in the order that
1292 * we will service the queues.
1293 */
1294static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1295                                 bool add_front)
1296{
1297        struct rb_node **p, *parent;
1298        struct cfq_queue *__cfqq;
1299        unsigned long rb_key;
1300        struct cfq_rb_root *service_tree;
1301        int left;
1302        int new_cfqq = 1;
1303
1304        service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1305                                                cfqq_type(cfqq));
1306        if (cfq_class_idle(cfqq)) {
1307                rb_key = CFQ_IDLE_DELAY;
1308                parent = rb_last(&service_tree->rb);
1309                if (parent && parent != &cfqq->rb_node) {
1310                        __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1311                        rb_key += __cfqq->rb_key;
1312                } else
1313                        rb_key += jiffies;
1314        } else if (!add_front) {
1315                /*
1316                 * Get our rb key offset. Subtract any residual slice
1317                 * value carried from last service. A negative resid
1318                 * count indicates slice overrun, and this should position
1319                 * the next service time further away in the tree.
1320                 */
1321                rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1322                rb_key -= cfqq->slice_resid;
1323                cfqq->slice_resid = 0;
1324        } else {
1325                rb_key = -HZ;
1326                __cfqq = cfq_rb_first(service_tree);
1327                rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1328        }
1329
1330        if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1331                new_cfqq = 0;
1332                /*
1333                 * same position, nothing more to do
1334                 */
1335                if (rb_key == cfqq->rb_key &&
1336                    cfqq->service_tree == service_tree)
1337                        return;
1338
1339                cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1340                cfqq->service_tree = NULL;
1341        }
1342
1343        left = 1;
1344        parent = NULL;
1345        cfqq->service_tree = service_tree;
1346        p = &service_tree->rb.rb_node;
1347        while (*p) {
1348                struct rb_node **n;
1349
1350                parent = *p;
1351                __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1352
1353                /*
1354                 * sort by key, that represents service time.
1355                 */
1356                if (time_before(rb_key, __cfqq->rb_key))
1357                        n = &(*p)->rb_left;
1358                else {
1359                        n = &(*p)->rb_right;
1360                        left = 0;
1361                }
1362
1363                p = n;
1364        }
1365
1366        if (left)
1367                service_tree->left = &cfqq->rb_node;
1368
1369        cfqq->rb_key = rb_key;
1370        rb_link_node(&cfqq->rb_node, parent, p);
1371        rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1372        service_tree->count++;
1373        if (add_front || !new_cfqq)
1374                return;
1375        cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1376}
1377
1378static struct cfq_queue *
1379cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1380                     sector_t sector, struct rb_node **ret_parent,
1381                     struct rb_node ***rb_link)
1382{
1383        struct rb_node **p, *parent;
1384        struct cfq_queue *cfqq = NULL;
1385
1386        parent = NULL;
1387        p = &root->rb_node;
1388        while (*p) {
1389                struct rb_node **n;
1390
1391                parent = *p;
1392                cfqq = rb_entry(parent, struct cfq_queue, p_node);
1393
1394                /*
1395                 * Sort strictly based on sector.  Smallest to the left,
1396                 * largest to the right.
1397                 */
1398                if (sector > blk_rq_pos(cfqq->next_rq))
1399                        n = &(*p)->rb_right;
1400                else if (sector < blk_rq_pos(cfqq->next_rq))
1401                        n = &(*p)->rb_left;
1402                else
1403                        break;
1404                p = n;
1405                cfqq = NULL;
1406        }
1407
1408        *ret_parent = parent;
1409        if (rb_link)
1410                *rb_link = p;
1411        return cfqq;
1412}
1413
1414static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1415{
1416        struct rb_node **p, *parent;
1417        struct cfq_queue *__cfqq;
1418
1419        if (cfqq->p_root) {
1420                rb_erase(&cfqq->p_node, cfqq->p_root);
1421                cfqq->p_root = NULL;
1422        }
1423
1424        if (cfq_class_idle(cfqq))
1425                return;
1426        if (!cfqq->next_rq)
1427                return;
1428
1429        cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1430        __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1431                                      blk_rq_pos(cfqq->next_rq), &parent, &p);
1432        if (!__cfqq) {
1433                rb_link_node(&cfqq->p_node, parent, p);
1434                rb_insert_color(&cfqq->p_node, cfqq->p_root);
1435        } else
1436                cfqq->p_root = NULL;
1437}
1438
1439/*
1440 * Update cfqq's position in the service tree.
1441 */
1442static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1443{
1444        /*
1445         * Resorting requires the cfqq to be on the RR list already.
1446         */
1447        if (cfq_cfqq_on_rr(cfqq)) {
1448                cfq_service_tree_add(cfqd, cfqq, 0);
1449                cfq_prio_tree_add(cfqd, cfqq);
1450        }
1451}
1452
1453/*
1454 * add to busy list of queues for service, trying to be fair in ordering
1455 * the pending list according to last request service
1456 */
1457static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1458{
1459        cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1460        BUG_ON(cfq_cfqq_on_rr(cfqq));
1461        cfq_mark_cfqq_on_rr(cfqq);
1462        cfqd->busy_queues++;
1463        if (cfq_cfqq_sync(cfqq))
1464                cfqd->busy_sync_queues++;
1465
1466        cfq_resort_rr_list(cfqd, cfqq);
1467}
1468
1469/*
1470 * Called when the cfqq no longer has requests pending, remove it from
1471 * the service tree.
1472 */
1473static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1474{
1475        cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1476        BUG_ON(!cfq_cfqq_on_rr(cfqq));
1477        cfq_clear_cfqq_on_rr(cfqq);
1478
1479        if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1480                cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1481                cfqq->service_tree = NULL;
1482        }
1483        if (cfqq->p_root) {
1484                rb_erase(&cfqq->p_node, cfqq->p_root);
1485                cfqq->p_root = NULL;
1486        }
1487
1488        cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1489        BUG_ON(!cfqd->busy_queues);
1490        cfqd->busy_queues--;
1491        if (cfq_cfqq_sync(cfqq))
1492                cfqd->busy_sync_queues--;
1493}
1494
1495/*
1496 * rb tree support functions
1497 */
1498static void cfq_del_rq_rb(struct request *rq)
1499{
1500        struct cfq_queue *cfqq = RQ_CFQQ(rq);
1501        const int sync = rq_is_sync(rq);
1502
1503        BUG_ON(!cfqq->queued[sync]);
1504        cfqq->queued[sync]--;
1505
1506        elv_rb_del(&cfqq->sort_list, rq);
1507
1508        if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1509                /*
1510                 * Queue will be deleted from service tree when we actually
1511                 * expire it later. Right now just remove it from prio tree
1512                 * as it is empty.
1513                 */
1514                if (cfqq->p_root) {
1515                        rb_erase(&cfqq->p_node, cfqq->p_root);
1516                        cfqq->p_root = NULL;
1517                }
1518        }
1519}
1520
1521static void cfq_add_rq_rb(struct request *rq)
1522{
1523        struct cfq_queue *cfqq = RQ_CFQQ(rq);
1524        struct cfq_data *cfqd = cfqq->cfqd;
1525        struct request *prev;
1526
1527        cfqq->queued[rq_is_sync(rq)]++;
1528
1529        elv_rb_add(&cfqq->sort_list, rq);
1530
1531        if (!cfq_cfqq_on_rr(cfqq))
1532                cfq_add_cfqq_rr(cfqd, cfqq);
1533
1534        /*
1535         * check if this request is a better next-serve candidate
1536         */
1537        prev = cfqq->next_rq;
1538        cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1539
1540        /*
1541         * adjust priority tree position, if ->next_rq changes
1542         */
1543        if (prev != cfqq->next_rq)
1544                cfq_prio_tree_add(cfqd, cfqq);
1545
1546        BUG_ON(!cfqq->next_rq);
1547}
1548
1549static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1550{
1551        elv_rb_del(&cfqq->sort_list, rq);
1552        cfqq->queued[rq_is_sync(rq)]--;
1553        cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1554                                        rq_data_dir(rq), rq_is_sync(rq));
1555        cfq_add_rq_rb(rq);
1556        cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1557                        &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1558                        rq_is_sync(rq));
1559}
1560
1561static struct request *
1562cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1563{
1564        struct task_struct *tsk = current;
1565        struct cfq_io_cq *cic;
1566        struct cfq_queue *cfqq;
1567
1568        cic = cfq_cic_lookup(cfqd, tsk->io_context);
1569        if (!cic)
1570                return NULL;
1571
1572        cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1573        if (cfqq) {
1574                sector_t sector = bio->bi_sector + bio_sectors(bio);
1575
1576                return elv_rb_find(&cfqq->sort_list, sector);
1577        }
1578
1579        return NULL;
1580}
1581
1582static void cfq_activate_request(struct request_queue *q, struct request *rq)
1583{
1584        struct cfq_data *cfqd = q->elevator->elevator_data;
1585
1586        cfqd->rq_in_driver++;
1587        cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1588                                                cfqd->rq_in_driver);
1589
1590        cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1591}
1592
1593static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1594{
1595        struct cfq_data *cfqd = q->elevator->elevator_data;
1596
1597        WARN_ON(!cfqd->rq_in_driver);
1598        cfqd->rq_in_driver--;
1599        cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1600                                                cfqd->rq_in_driver);
1601}
1602
1603static void cfq_remove_request(struct request *rq)
1604{
1605        struct cfq_queue *cfqq = RQ_CFQQ(rq);
1606
1607        if (cfqq->next_rq == rq)
1608                cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1609
1610        list_del_init(&rq->queuelist);
1611        cfq_del_rq_rb(rq);
1612
1613        cfqq->cfqd->rq_queued--;
1614        cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1615                                        rq_data_dir(rq), rq_is_sync(rq));
1616        if (rq->cmd_flags & REQ_PRIO) {
1617                WARN_ON(!cfqq->prio_pending);
1618                cfqq->prio_pending--;
1619        }
1620}
1621
1622static int cfq_merge(struct request_queue *q, struct request **req,
1623                     struct bio *bio)
1624{
1625        struct cfq_data *cfqd = q->elevator->elevator_data;
1626        struct request *__rq;
1627
1628        __rq = cfq_find_rq_fmerge(cfqd, bio);
1629        if (__rq && elv_rq_merge_ok(__rq, bio)) {
1630                *req = __rq;
1631                return ELEVATOR_FRONT_MERGE;
1632        }
1633
1634        return ELEVATOR_NO_MERGE;
1635}
1636
1637static void cfq_merged_request(struct request_queue *q, struct request *req,
1638                               int type)
1639{
1640        if (type == ELEVATOR_FRONT_MERGE) {
1641                struct cfq_queue *cfqq = RQ_CFQQ(req);
1642
1643                cfq_reposition_rq_rb(cfqq, req);
1644        }
1645}
1646
1647static void cfq_bio_merged(struct request_queue *q, struct request *req,
1648                                struct bio *bio)
1649{
1650        cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1651                                        bio_data_dir(bio), cfq_bio_sync(bio));
1652}
1653
1654static void
1655cfq_merged_requests(struct request_queue *q, struct request *rq,
1656                    struct request *next)
1657{
1658        struct cfq_queue *cfqq = RQ_CFQQ(rq);
1659        struct cfq_data *cfqd = q->elevator->elevator_data;
1660
1661        /*
1662         * reposition in fifo if next is older than rq
1663         */
1664        if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1665            time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1666                list_move(&rq->queuelist, &next->queuelist);
1667                rq_set_fifo_time(rq, rq_fifo_time(next));
1668        }
1669
1670        if (cfqq->next_rq == next)
1671                cfqq->next_rq = rq;
1672        cfq_remove_request(next);
1673        cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1674                                        rq_data_dir(next), rq_is_sync(next));
1675
1676        cfqq = RQ_CFQQ(next);
1677        /*
1678         * all requests of this queue are merged to other queues, delete it
1679         * from the service tree. If it's the active_queue,
1680         * cfq_dispatch_requests() will choose to expire it or do idle
1681         */
1682        if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
1683            cfqq != cfqd->active_queue)
1684                cfq_del_cfqq_rr(cfqd, cfqq);
1685}
1686
1687static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1688                           struct bio *bio)
1689{
1690        struct cfq_data *cfqd = q->elevator->elevator_data;
1691        struct cfq_io_cq *cic;
1692        struct cfq_queue *cfqq;
1693
1694        /*
1695         * Disallow merge of a sync bio into an async request.
1696         */
1697        if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1698                return false;
1699
1700        /*
1701         * Lookup the cfqq that this bio will be queued with and allow
1702         * merge only if rq is queued there.
1703         */
1704        cic = cfq_cic_lookup(cfqd, current->io_context);
1705        if (!cic)
1706                return false;
1707
1708        cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1709        return cfqq == RQ_CFQQ(rq);
1710}
1711
1712static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1713{
1714        del_timer(&cfqd->idle_slice_timer);
1715        cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1716}
1717
1718static void __cfq_set_active_queue(struct cfq_data *cfqd,
1719                                   struct cfq_queue *cfqq)
1720{
1721        if (cfqq) {
1722                cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1723                                cfqd->serving_prio, cfqd->serving_type);
1724                cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1725                cfqq->slice_start = 0;
1726                cfqq->dispatch_start = jiffies;
1727                cfqq->allocated_slice = 0;
1728                cfqq->slice_end = 0;
1729                cfqq->slice_dispatch = 0;
1730                cfqq->nr_sectors = 0;
1731
1732                cfq_clear_cfqq_wait_request(cfqq);
1733                cfq_clear_cfqq_must_dispatch(cfqq);
1734                cfq_clear_cfqq_must_alloc_slice(cfqq);
1735                cfq_clear_cfqq_fifo_expire(cfqq);
1736                cfq_mark_cfqq_slice_new(cfqq);
1737
1738                cfq_del_timer(cfqd, cfqq);
1739        }
1740
1741        cfqd->active_queue = cfqq;
1742}
1743
1744/*
1745 * current cfqq expired its slice (or was too idle), select new one
1746 */
1747static void
1748__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1749                    bool timed_out)
1750{
1751        cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1752
1753        if (cfq_cfqq_wait_request(cfqq))
1754                cfq_del_timer(cfqd, cfqq);
1755
1756        cfq_clear_cfqq_wait_request(cfqq);
1757        cfq_clear_cfqq_wait_busy(cfqq);
1758
1759        /*
1760         * If this cfqq is shared between multiple processes, check to
1761         * make sure that those processes are still issuing I/Os within
1762         * the mean seek distance.  If not, it may be time to break the
1763         * queues apart again.
1764         */
1765        if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1766                cfq_mark_cfqq_split_coop(cfqq);
1767
1768        /*
1769         * store what was left of this slice, if the queue idled/timed out
1770         */
1771        if (timed_out) {
1772                if (cfq_cfqq_slice_new(cfqq))
1773                        cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
1774                else
1775                        cfqq->slice_resid = cfqq->slice_end - jiffies;
1776                cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1777        }
1778
1779        cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1780
1781        if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1782                cfq_del_cfqq_rr(cfqd, cfqq);
1783
1784        cfq_resort_rr_list(cfqd, cfqq);
1785
1786        if (cfqq == cfqd->active_queue)
1787                cfqd->active_queue = NULL;
1788
1789        if (cfqd->active_cic) {
1790                put_io_context(cfqd->active_cic->icq.ioc);
1791                cfqd->active_cic = NULL;
1792        }
1793}
1794
1795static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1796{
1797        struct cfq_queue *cfqq = cfqd->active_queue;
1798
1799        if (cfqq)
1800                __cfq_slice_expired(cfqd, cfqq, timed_out);
1801}
1802
1803/*
1804 * Get next queue for service. Unless we have a queue preemption,
1805 * we'll simply select the first cfqq in the service tree.
1806 */
1807static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1808{
1809        struct cfq_rb_root *service_tree =
1810                service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1811                                        cfqd->serving_type);
1812
1813        if (!cfqd->rq_queued)
1814                return NULL;
1815
1816        /* There is nothing to dispatch */
1817        if (!service_tree)
1818                return NULL;
1819        if (RB_EMPTY_ROOT(&service_tree->rb))
1820                return NULL;
1821        return cfq_rb_first(service_tree);
1822}
1823
1824static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1825{
1826        struct cfq_group *cfqg;
1827        struct cfq_queue *cfqq;
1828        int i, j;
1829        struct cfq_rb_root *st;
1830
1831        if (!cfqd->rq_queued)
1832                return NULL;
1833
1834        cfqg = cfq_get_next_cfqg(cfqd);
1835        if (!cfqg)
1836                return NULL;
1837
1838        for_each_cfqg_st(cfqg, i, j, st)
1839                if ((cfqq = cfq_rb_first(st)) != NULL)
1840                        return cfqq;
1841        return NULL;
1842}
1843
1844/*
1845 * Get and set a new active queue for service.
1846 */
1847static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1848                                              struct cfq_queue *cfqq)
1849{
1850        if (!cfqq)
1851                cfqq = cfq_get_next_queue(cfqd);
1852
1853        __cfq_set_active_queue(cfqd, cfqq);
1854        return cfqq;
1855}
1856
1857static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1858                                          struct request *rq)
1859{
1860        if (blk_rq_pos(rq) >= cfqd->last_position)
1861                return blk_rq_pos(rq) - cfqd->last_position;
1862        else
1863                return cfqd->last_position - blk_rq_pos(rq);
1864}
1865
1866static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1867                               struct request *rq)
1868{
1869        return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1870}
1871
1872static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1873                                    struct cfq_queue *cur_cfqq)
1874{
1875        struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1876        struct rb_node *parent, *node;
1877        struct cfq_queue *__cfqq;
1878        sector_t sector = cfqd->last_position;
1879
1880        if (RB_EMPTY_ROOT(root))
1881                return NULL;
1882
1883        /*
1884         * First, if we find a request starting at the end of the last
1885         * request, choose it.
1886         */
1887        __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1888        if (__cfqq)
1889                return __cfqq;
1890
1891        /*
1892         * If the exact sector wasn't found, the parent of the NULL leaf
1893         * will contain the closest sector.
1894         */
1895        __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1896        if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1897                return __cfqq;
1898
1899        if (blk_rq_pos(__cfqq->next_rq) < sector)
1900                node = rb_next(&__cfqq->p_node);
1901        else
1902                node = rb_prev(&__cfqq->p_node);
1903        if (!node)
1904                return NULL;
1905
1906        __cfqq = rb_entry(node, struct cfq_queue, p_node);
1907        if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1908                return __cfqq;
1909
1910        return NULL;
1911}
1912
1913/*
1914 * cfqd - obvious
1915 * cur_cfqq - passed in so that we don't decide that the current queue is
1916 *            closely cooperating with itself.
1917 *
1918 * So, basically we're assuming that that cur_cfqq has dispatched at least
1919 * one request, and that cfqd->last_position reflects a position on the disk
1920 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1921 * assumption.
1922 */
1923static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1924                                              struct cfq_queue *cur_cfqq)
1925{
1926        struct cfq_queue *cfqq;
1927
1928        if (cfq_class_idle(cur_cfqq))
1929                return NULL;
1930        if (!cfq_cfqq_sync(cur_cfqq))
1931                return NULL;
1932        if (CFQQ_SEEKY(cur_cfqq))
1933                return NULL;
1934
1935        /*
1936         * Don't search priority tree if it's the only queue in the group.
1937         */
1938        if (cur_cfqq->cfqg->nr_cfqq == 1)
1939                return NULL;
1940
1941        /*
1942         * We should notice if some of the queues are cooperating, eg
1943         * working closely on the same area of the disk. In that case,
1944         * we can group them together and don't waste time idling.
1945         */
1946        cfqq = cfqq_close(cfqd, cur_cfqq);
1947        if (!cfqq)
1948                return NULL;
1949
1950        /* If new queue belongs to different cfq_group, don't choose it */
1951        if (cur_cfqq->cfqg != cfqq->cfqg)
1952                return NULL;
1953
1954        /*
1955         * It only makes sense to merge sync queues.
1956         */
1957        if (!cfq_cfqq_sync(cfqq))
1958                return NULL;
1959        if (CFQQ_SEEKY(cfqq))
1960                return NULL;
1961
1962        /*
1963         * Do not merge queues of different priority classes
1964         */
1965        if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1966                return NULL;
1967
1968        return cfqq;
1969}
1970
1971/*
1972 * Determine whether we should enforce idle window for this queue.
1973 */
1974
1975static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1976{
1977        enum wl_prio_t prio = cfqq_prio(cfqq);
1978        struct cfq_rb_root *service_tree = cfqq->service_tree;
1979
1980        BUG_ON(!service_tree);
1981        BUG_ON(!service_tree->count);
1982
1983        if (!cfqd->cfq_slice_idle)
1984                return false;
1985
1986        /* We never do for idle class queues. */
1987        if (prio == IDLE_WORKLOAD)
1988                return false;
1989
1990        /* We do for queues that were marked with idle window flag. */
1991        if (cfq_cfqq_idle_window(cfqq) &&
1992           !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1993                return true;
1994
1995        /*
1996         * Otherwise, we do only if they are the last ones
1997         * in their service tree.
1998         */
1999        if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
2000           !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
2001                return true;
2002        cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
2003                        service_tree->count);
2004        return false;
2005}
2006
2007static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2008{
2009        struct cfq_queue *cfqq = cfqd->active_queue;
2010        struct cfq_io_cq *cic;
2011        unsigned long sl, group_idle = 0;
2012
2013        /*
2014         * SSD device without seek penalty, disable idling. But only do so
2015         * for devices that support queuing, otherwise we still have a problem
2016         * with sync vs async workloads.
2017         */
2018        if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2019                return;
2020
2021        WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2022        WARN_ON(cfq_cfqq_slice_new(cfqq));
2023
2024        /*
2025         * idle is disabled, either manually or by past process history
2026         */
2027        if (!cfq_should_idle(cfqd, cfqq)) {
2028                /* no queue idling. Check for group idling */
2029                if (cfqd->cfq_group_idle)
2030                        group_idle = cfqd->cfq_group_idle;
2031                else
2032                        return;
2033        }
2034
2035        /*
2036         * still active requests from this queue, don't idle
2037         */
2038        if (cfqq->dispatched)
2039                return;
2040
2041        /*
2042         * task has exited, don't wait
2043         */
2044        cic = cfqd->active_cic;
2045        if (!cic || !atomic_read(&cic->icq.ioc->nr_tasks))
2046                return;
2047
2048        /*
2049         * If our average think time is larger than the remaining time
2050         * slice, then don't idle. This avoids overrunning the allotted
2051         * time slice.
2052         */
2053        if (sample_valid(cic->ttime.ttime_samples) &&
2054            (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2055                cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2056                             cic->ttime.ttime_mean);
2057                return;
2058        }
2059
2060        /* There are other queues in the group, don't do group idle */
2061        if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2062                return;
2063
2064        cfq_mark_cfqq_wait_request(cfqq);
2065
2066        if (group_idle)
2067                sl = cfqd->cfq_group_idle;
2068        else
2069                sl = cfqd->cfq_slice_idle;
2070
2071        mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2072        cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
2073        cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2074                        group_idle ? 1 : 0);
2075}
2076
2077/*
2078 * Move request from internal lists to the request queue dispatch list.
2079 */
2080static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2081{
2082        struct cfq_data *cfqd = q->elevator->elevator_data;
2083        struct cfq_queue *cfqq = RQ_CFQQ(rq);
2084
2085        cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2086
2087        cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2088        cfq_remove_request(rq);
2089        cfqq->dispatched++;
2090        (RQ_CFQG(rq))->dispatched++;
2091        elv_dispatch_sort(q, rq);
2092
2093        cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2094        cfqq->nr_sectors += blk_rq_sectors(rq);
2095        cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
2096                                        rq_data_dir(rq), rq_is_sync(rq));
2097}
2098
2099/*
2100 * return expired entry, or NULL to just start from scratch in rbtree
2101 */
2102static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2103{
2104        struct request *rq = NULL;
2105
2106        if (cfq_cfqq_fifo_expire(cfqq))
2107                return NULL;
2108
2109        cfq_mark_cfqq_fifo_expire(cfqq);
2110
2111        if (list_empty(&cfqq->fifo))
2112                return NULL;
2113
2114        rq = rq_entry_fifo(cfqq->fifo.next);
2115        if (time_before(jiffies, rq_fifo_time(rq)))
2116                rq = NULL;
2117
2118        cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2119        return rq;
2120}
2121
2122static inline int
2123cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2124{
2125        const int base_rq = cfqd->cfq_slice_async_rq;
2126
2127        WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2128
2129        return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2130}
2131
2132/*
2133 * Must be called with the queue_lock held.
2134 */
2135static int cfqq_process_refs(struct cfq_queue *cfqq)
2136{
2137        int process_refs, io_refs;
2138
2139        io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2140        process_refs = cfqq->ref - io_refs;
2141        BUG_ON(process_refs < 0);
2142        return process_refs;
2143}
2144
2145static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2146{
2147        int process_refs, new_process_refs;
2148        struct cfq_queue *__cfqq;
2149
2150        /*
2151         * If there are no process references on the new_cfqq, then it is
2152         * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2153         * chain may have dropped their last reference (not just their
2154         * last process reference).
2155         */
2156        if (!cfqq_process_refs(new_cfqq))
2157                return;
2158
2159        /* Avoid a circular list and skip interim queue merges */
2160        while ((__cfqq = new_cfqq->new_cfqq)) {
2161                if (__cfqq == cfqq)
2162                        return;
2163                new_cfqq = __cfqq;
2164        }
2165
2166        process_refs = cfqq_process_refs(cfqq);
2167        new_process_refs = cfqq_process_refs(new_cfqq);
2168        /*
2169         * If the process for the cfqq has gone away, there is no
2170         * sense in merging the queues.
2171         */
2172        if (process_refs == 0 || new_process_refs == 0)
2173                return;
2174
2175        /*
2176         * Merge in the direction of the lesser amount of work.
2177         */
2178        if (new_process_refs >= process_refs) {
2179                cfqq->new_cfqq = new_cfqq;
2180                new_cfqq->ref += process_refs;
2181        } else {
2182                new_cfqq->new_cfqq = cfqq;
2183                cfqq->ref += new_process_refs;
2184        }
2185}
2186
2187static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2188                                struct cfq_group *cfqg, enum wl_prio_t prio)
2189{
2190        struct cfq_queue *queue;
2191        int i;
2192        bool key_valid = false;
2193        unsigned long lowest_key = 0;
2194        enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2195
2196        for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2197                /* select the one with lowest rb_key */
2198                queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2199                if (queue &&
2200                    (!key_valid || time_before(queue->rb_key, lowest_key))) {
2201                        lowest_key = queue->rb_key;
2202                        cur_best = i;
2203                        key_valid = true;
2204                }
2205        }
2206
2207        return cur_best;
2208}
2209
2210static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2211{
2212        unsigned slice;
2213        unsigned count;
2214        struct cfq_rb_root *st;
2215        unsigned group_slice;
2216        enum wl_prio_t original_prio = cfqd->serving_prio;
2217
2218        /* Choose next priority. RT > BE > IDLE */
2219        if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2220                cfqd->serving_prio = RT_WORKLOAD;
2221        else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2222                cfqd->serving_prio = BE_WORKLOAD;
2223        else {
2224                cfqd->serving_prio = IDLE_WORKLOAD;
2225                cfqd->workload_expires = jiffies + 1;
2226                return;
2227        }
2228
2229        if (original_prio != cfqd->serving_prio)
2230                goto new_workload;
2231
2232        /*
2233         * For RT and BE, we have to choose also the type
2234         * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2235         * expiration time
2236         */
2237        st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2238        count = st->count;
2239
2240        /*
2241         * check workload expiration, and that we still have other queues ready
2242         */
2243        if (count && !time_after(jiffies, cfqd->workload_expires))
2244                return;
2245
2246new_workload:
2247        /* otherwise select new workload type */
2248        cfqd->serving_type =
2249                cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2250        st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2251        count = st->count;
2252
2253        /*
2254         * the workload slice is computed as a fraction of target latency
2255         * proportional to the number of queues in that workload, over
2256         * all the queues in the same priority class
2257         */
2258        group_slice = cfq_group_slice(cfqd, cfqg);
2259
2260        slice = group_slice * count /
2261                max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2262                      cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2263
2264        if (cfqd->serving_type == ASYNC_WORKLOAD) {
2265                unsigned int tmp;
2266
2267                /*
2268                 * Async queues are currently system wide. Just taking
2269                 * proportion of queues with-in same group will lead to higher
2270                 * async ratio system wide as generally root group is going
2271                 * to have higher weight. A more accurate thing would be to
2272                 * calculate system wide asnc/sync ratio.
2273                 */
2274                tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2275                tmp = tmp/cfqd->busy_queues;
2276                slice = min_t(unsigned, slice, tmp);
2277
2278                /* async workload slice is scaled down according to
2279                 * the sync/async slice ratio. */
2280                slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2281        } else
2282                /* sync workload slice is at least 2 * cfq_slice_idle */
2283                slice = max(slice, 2 * cfqd->cfq_slice_idle);
2284
2285        slice = max_t(unsigned, slice, CFQ_MIN_TT);
2286        cfq_log(cfqd, "workload slice:%d", slice);
2287        cfqd->workload_expires = jiffies + slice;
2288}
2289
2290static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2291{
2292        struct cfq_rb_root *st = &cfqd->grp_service_tree;
2293        struct cfq_group *cfqg;
2294
2295        if (RB_EMPTY_ROOT(&st->rb))
2296                return NULL;
2297        cfqg = cfq_rb_first_group(st);
2298        update_min_vdisktime(st);
2299        return cfqg;
2300}
2301
2302static void cfq_choose_cfqg(struct cfq_data *cfqd)
2303{
2304        struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2305
2306        cfqd->serving_group = cfqg;
2307
2308        /* Restore the workload type data */
2309        if (cfqg->saved_workload_slice) {
2310                cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2311                cfqd->serving_type = cfqg->saved_workload;
2312                cfqd->serving_prio = cfqg->saved_serving_prio;
2313        } else
2314                cfqd->workload_expires = jiffies - 1;
2315
2316        choose_service_tree(cfqd, cfqg);
2317}
2318
2319/*
2320 * Select a queue for service. If we have a current active queue,
2321 * check whether to continue servicing it, or retrieve and set a new one.
2322 */
2323static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2324{
2325        struct cfq_queue *cfqq, *new_cfqq = NULL;
2326
2327        cfqq = cfqd->active_queue;
2328        if (!cfqq)
2329                goto new_queue;
2330
2331        if (!cfqd->rq_queued)
2332                return NULL;
2333
2334        /*
2335         * We were waiting for group to get backlogged. Expire the queue
2336         */
2337        if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2338                goto expire;
2339
2340        /*
2341         * The active queue has run out of time, expire it and select new.
2342         */
2343        if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2344                /*
2345                 * If slice had not expired at the completion of last request
2346                 * we might not have turned on wait_busy flag. Don't expire
2347                 * the queue yet. Allow the group to get backlogged.
2348                 *
2349                 * The very fact that we have used the slice, that means we
2350                 * have been idling all along on this queue and it should be
2351                 * ok to wait for this request to complete.
2352                 */
2353                if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2354                    && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2355                        cfqq = NULL;
2356                        goto keep_queue;
2357                } else
2358                        goto check_group_idle;
2359        }
2360
2361        /*
2362         * The active queue has requests and isn't expired, allow it to
2363         * dispatch.
2364         */
2365        if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2366                goto keep_queue;
2367
2368        /*
2369         * If another queue has a request waiting within our mean seek
2370         * distance, let it run.  The expire code will check for close
2371         * cooperators and put the close queue at the front of the service
2372         * tree.  If possible, merge the expiring queue with the new cfqq.
2373         */
2374        new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2375        if (new_cfqq) {
2376                if (!cfqq->new_cfqq)
2377                        cfq_setup_merge(cfqq, new_cfqq);
2378                goto expire;
2379        }
2380
2381        /*
2382         * No requests pending. If the active queue still has requests in
2383         * flight or is idling for a new request, allow either of these
2384         * conditions to happen (or time out) before selecting a new queue.
2385         */
2386        if (timer_pending(&cfqd->idle_slice_timer)) {
2387                cfqq = NULL;
2388                goto keep_queue;
2389        }
2390
2391        /*
2392         * This is a deep seek queue, but the device is much faster than
2393         * the queue can deliver, don't idle
2394         **/
2395        if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2396            (cfq_cfqq_slice_new(cfqq) ||
2397            (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2398                cfq_clear_cfqq_deep(cfqq);
2399                cfq_clear_cfqq_idle_window(cfqq);
2400        }
2401
2402        if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2403                cfqq = NULL;
2404                goto keep_queue;
2405        }
2406
2407        /*
2408         * If group idle is enabled and there are requests dispatched from
2409         * this group, wait for requests to complete.
2410         */
2411check_group_idle:
2412        if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
2413            cfqq->cfqg->dispatched &&
2414            !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
2415                cfqq = NULL;
2416                goto keep_queue;
2417        }
2418
2419expire:
2420        cfq_slice_expired(cfqd, 0);
2421new_queue:
2422        /*
2423         * Current queue expired. Check if we have to switch to a new
2424         * service tree
2425         */
2426        if (!new_cfqq)
2427                cfq_choose_cfqg(cfqd);
2428
2429        cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2430keep_queue:
2431        return cfqq;
2432}
2433
2434static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2435{
2436        int dispatched = 0;
2437
2438        while (cfqq->next_rq) {
2439                cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2440                dispatched++;
2441        }
2442
2443        BUG_ON(!list_empty(&cfqq->fifo));
2444
2445        /* By default cfqq is not expired if it is empty. Do it explicitly */
2446        __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2447        return dispatched;
2448}
2449
2450/*
2451 * Drain our current requests. Used for barriers and when switching
2452 * io schedulers on-the-fly.
2453 */
2454static int cfq_forced_dispatch(struct cfq_data *cfqd)
2455{
2456        struct cfq_queue *cfqq;
2457        int dispatched = 0;
2458
2459        /* Expire the timeslice of the current active queue first */
2460        cfq_slice_expired(cfqd, 0);
2461        while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2462                __cfq_set_active_queue(cfqd, cfqq);
2463                dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2464        }
2465
2466        BUG_ON(cfqd->busy_queues);
2467
2468        cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2469        return dispatched;
2470}
2471
2472static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2473        struct cfq_queue *cfqq)
2474{
2475        /* the queue hasn't finished any request, can't estimate */
2476        if (cfq_cfqq_slice_new(cfqq))
2477                return true;
2478        if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2479                cfqq->slice_end))
2480                return true;
2481
2482        return false;
2483}
2484
2485static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2486{
2487        unsigned int max_dispatch;
2488
2489        /*
2490         * Drain async requests before we start sync IO
2491         */
2492        if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2493                return false;
2494
2495        /*
2496         * If this is an async queue and we have sync IO in flight, let it wait
2497         */
2498        if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2499                return false;
2500
2501        max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2502        if (cfq_class_idle(cfqq))
2503                max_dispatch = 1;
2504
2505        /*
2506         * Does this cfqq already have too much IO in flight?
2507         */
2508        if (cfqq->dispatched >= max_dispatch) {
2509                bool promote_sync = false;
2510                /*
2511                 * idle queue must always only have a single IO in flight
2512                 */
2513                if (cfq_class_idle(cfqq))
2514                        return false;
2515
2516                /*
2517                 * If there is only one sync queue
2518                 * we can ignore async queue here and give the sync
2519                 * queue no dispatch limit. The reason is a sync queue can
2520                 * preempt async queue, limiting the sync queue doesn't make
2521                 * sense. This is useful for aiostress test.
2522                 */
2523                if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2524                        promote_sync = true;
2525
2526                /*
2527                 * We have other queues, don't allow more IO from this one
2528                 */
2529                if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2530                                !promote_sync)
2531                        return false;
2532
2533                /*
2534                 * Sole queue user, no limit
2535                 */
2536                if (cfqd->busy_queues == 1 || promote_sync)
2537                        max_dispatch = -1;
2538                else
2539                        /*
2540                         * Normally we start throttling cfqq when cfq_quantum/2
2541                         * requests have been dispatched. But we can drive
2542                         * deeper queue depths at the beginning of slice
2543                         * subjected to upper limit of cfq_quantum.
2544                         * */
2545                        max_dispatch = cfqd->cfq_quantum;
2546        }
2547
2548        /*
2549         * Async queues must wait a bit before being allowed dispatch.
2550         * We also ramp up the dispatch depth gradually for async IO,
2551         * based on the last sync IO we serviced
2552         */
2553        if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2554                unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2555                unsigned int depth;
2556
2557                depth = last_sync / cfqd->cfq_slice[1];
2558                if (!depth && !cfqq->dispatched)
2559                        depth = 1;
2560                if (depth < max_dispatch)
2561                        max_dispatch = depth;
2562        }
2563
2564        /*
2565         * If we're below the current max, allow a dispatch
2566         */
2567        return cfqq->dispatched < max_dispatch;
2568}
2569
2570/*
2571 * Dispatch a request from cfqq, moving them to the request queue
2572 * dispatch list.
2573 */
2574static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2575{
2576        struct request *rq;
2577
2578        BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2579
2580        if (!cfq_may_dispatch(cfqd, cfqq))
2581                return false;
2582
2583        /*
2584         * follow expired path, else get first next available
2585         */
2586        rq = cfq_check_fifo(cfqq);
2587        if (!rq)
2588                rq = cfqq->next_rq;
2589
2590        /*
2591         * insert request into driver dispatch list
2592         */
2593        cfq_dispatch_insert(cfqd->queue, rq);
2594
2595        if (!cfqd->active_cic) {
2596                struct cfq_io_cq *cic = RQ_CIC(rq);
2597
2598                atomic_long_inc(&cic->icq.ioc->refcount);
2599                cfqd->active_cic = cic;
2600        }
2601
2602        return true;
2603}
2604
2605/*
2606 * Find the cfqq that we need to service and move a request from that to the
2607 * dispatch list
2608 */
2609static int cfq_dispatch_requests(struct request_queue *q, int force)
2610{
2611        struct cfq_data *cfqd = q->elevator->elevator_data;
2612        struct cfq_queue *cfqq;
2613
2614        if (!cfqd->busy_queues)
2615                return 0;
2616
2617        if (unlikely(force))
2618                return cfq_forced_dispatch(cfqd);
2619
2620        cfqq = cfq_select_queue(cfqd);
2621        if (!cfqq)
2622                return 0;
2623
2624        /*
2625         * Dispatch a request from this cfqq, if it is allowed
2626         */
2627        if (!cfq_dispatch_request(cfqd, cfqq))
2628                return 0;
2629
2630        cfqq->slice_dispatch++;
2631        cfq_clear_cfqq_must_dispatch(cfqq);
2632
2633        /*
2634         * expire an async queue immediately if it has used up its slice. idle
2635         * queue always expire after 1 dispatch round.
2636         */
2637        if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2638            cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2639            cfq_class_idle(cfqq))) {
2640                cfqq->slice_end = jiffies + 1;
2641                cfq_slice_expired(cfqd, 0);
2642        }
2643
2644        cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2645        return 1;
2646}
2647
2648/*
2649 * task holds one reference to the queue, dropped when task exits. each rq
2650 * in-flight on this queue also holds a reference, dropped when rq is freed.
2651 *
2652 * Each cfq queue took a reference on the parent group. Drop it now.
2653 * queue lock must be held here.
2654 */
2655static void cfq_put_queue(struct cfq_queue *cfqq)
2656{
2657        struct cfq_data *cfqd = cfqq->cfqd;
2658        struct cfq_group *cfqg;
2659
2660        BUG_ON(cfqq->ref <= 0);
2661
2662        cfqq->ref--;
2663        if (cfqq->ref)
2664                return;
2665
2666        cfq_log_cfqq(cfqd, cfqq, "put_queue");
2667        BUG_ON(rb_first(&cfqq->sort_list));
2668        BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2669        cfqg = cfqq->cfqg;
2670
2671        if (unlikely(cfqd->active_queue == cfqq)) {
2672                __cfq_slice_expired(cfqd, cfqq, 0);
2673                cfq_schedule_dispatch(cfqd);
2674        }
2675
2676        BUG_ON(cfq_cfqq_on_rr(cfqq));
2677        kmem_cache_free(cfq_pool, cfqq);
2678        cfq_put_cfqg(cfqg);
2679}
2680
2681static void cfq_put_cooperator(struct cfq_queue *cfqq)
2682{
2683        struct cfq_queue *__cfqq, *next;
2684
2685        /*
2686         * If this queue was scheduled to merge with another queue, be
2687         * sure to drop the reference taken on that queue (and others in
2688         * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
2689         */
2690        __cfqq = cfqq->new_cfqq;
2691        while (__cfqq) {
2692                if (__cfqq == cfqq) {
2693                        WARN(1, "cfqq->new_cfqq loop detected\n");
2694                        break;
2695                }
2696                next = __cfqq->new_cfqq;
2697                cfq_put_queue(__cfqq);
2698                __cfqq = next;
2699        }
2700}
2701
2702static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2703{
2704        if (unlikely(cfqq == cfqd->active_queue)) {
2705                __cfq_slice_expired(cfqd, cfqq, 0);
2706                cfq_schedule_dispatch(cfqd);
2707        }
2708
2709        cfq_put_cooperator(cfqq);
2710
2711        cfq_put_queue(cfqq);
2712}
2713
2714static void cfq_init_icq(struct io_cq *icq)
2715{
2716        struct cfq_io_cq *cic = icq_to_cic(icq);
2717
2718        cic->ttime.last_end_request = jiffies;
2719}
2720
2721static void cfq_exit_icq(struct io_cq *icq)
2722{
2723        struct cfq_io_cq *cic = icq_to_cic(icq);
2724        struct cfq_data *cfqd = cic_to_cfqd(cic);
2725
2726        if (cic->cfqq[BLK_RW_ASYNC]) {
2727                cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2728                cic->cfqq[BLK_RW_ASYNC] = NULL;
2729        }
2730
2731        if (cic->cfqq[BLK_RW_SYNC]) {
2732                cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2733                cic->cfqq[BLK_RW_SYNC] = NULL;
2734        }
2735}
2736
2737static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2738{
2739        struct task_struct *tsk = current;
2740        int ioprio_class;
2741
2742        if (!cfq_cfqq_prio_changed(cfqq))
2743                return;
2744
2745        ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2746        switch (ioprio_class) {
2747        default:
2748                printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2749        case IOPRIO_CLASS_NONE:
2750                /*
2751                 * no prio set, inherit CPU scheduling settings
2752                 */
2753                cfqq->ioprio = task_nice_ioprio(tsk);
2754                cfqq->ioprio_class = task_nice_ioclass(tsk);
2755                break;
2756        case IOPRIO_CLASS_RT:
2757                cfqq->ioprio = task_ioprio(ioc);
2758                cfqq->ioprio_class = IOPRIO_CLASS_RT;
2759                break;
2760        case IOPRIO_CLASS_BE:
2761                cfqq->ioprio = task_ioprio(ioc);
2762                cfqq->ioprio_class = IOPRIO_CLASS_BE;
2763                break;
2764        case IOPRIO_CLASS_IDLE:
2765                cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2766                cfqq->ioprio = 7;
2767                cfq_clear_cfqq_idle_window(cfqq);
2768                break;
2769        }
2770
2771        /*
2772         * keep track of original prio settings in case we have to temporarily
2773         * elevate the priority of this queue
2774         */
2775        cfqq->org_ioprio = cfqq->ioprio;
2776        cfq_clear_cfqq_prio_changed(cfqq);
2777}
2778
2779static void changed_ioprio(struct cfq_io_cq *cic)
2780{
2781        struct cfq_data *cfqd = cic_to_cfqd(cic);
2782        struct cfq_queue *cfqq;
2783
2784        if (unlikely(!cfqd))
2785                return;
2786
2787        cfqq = cic->cfqq[BLK_RW_ASYNC];
2788        if (cfqq) {
2789                struct cfq_queue *new_cfqq;
2790                new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->icq.ioc,
2791                                                GFP_ATOMIC);
2792                if (new_cfqq) {
2793                        cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2794                        cfq_put_queue(cfqq);
2795                }
2796        }
2797
2798        cfqq = cic->cfqq[BLK_RW_SYNC];
2799        if (cfqq)
2800                cfq_mark_cfqq_prio_changed(cfqq);
2801}
2802
2803static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2804                          pid_t pid, bool is_sync)
2805{
2806        RB_CLEAR_NODE(&cfqq->rb_node);
2807        RB_CLEAR_NODE(&cfqq->p_node);
2808        INIT_LIST_HEAD(&cfqq->fifo);
2809
2810        cfqq->ref = 0;
2811        cfqq->cfqd = cfqd;
2812
2813        cfq_mark_cfqq_prio_changed(cfqq);
2814
2815        if (is_sync) {
2816                if (!cfq_class_idle(cfqq))
2817                        cfq_mark_cfqq_idle_window(cfqq);
2818                cfq_mark_cfqq_sync(cfqq);
2819        }
2820        cfqq->pid = pid;
2821}
2822
2823#ifdef CONFIG_CFQ_GROUP_IOSCHED
2824static void changed_cgroup(struct cfq_io_cq *cic)
2825{
2826        struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2827        struct cfq_data *cfqd = cic_to_cfqd(cic);
2828        struct request_queue *q;
2829
2830        if (unlikely(!cfqd))
2831                return;
2832
2833        q = cfqd->queue;
2834
2835        if (sync_cfqq) {
2836                /*
2837                 * Drop reference to sync queue. A new sync queue will be
2838                 * assigned in new group upon arrival of a fresh request.
2839                 */
2840                cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2841                cic_set_cfqq(cic, NULL, 1);
2842                cfq_put_queue(sync_cfqq);
2843        }
2844}
2845#endif  /* CONFIG_CFQ_GROUP_IOSCHED */
2846
2847static struct cfq_queue *
2848cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2849                     struct io_context *ioc, gfp_t gfp_mask)
2850{
2851        struct cfq_queue *cfqq, *new_cfqq = NULL;
2852        struct cfq_io_cq *cic;
2853        struct cfq_group *cfqg;
2854
2855retry:
2856        cfqg = cfq_get_cfqg(cfqd);
2857        cic = cfq_cic_lookup(cfqd, ioc);
2858        /* cic always exists here */
2859        cfqq = cic_to_cfqq(cic, is_sync);
2860
2861        /*
2862         * Always try a new alloc if we fell back to the OOM cfqq
2863         * originally, since it should just be a temporary situation.
2864         */
2865        if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2866                cfqq = NULL;
2867                if (new_cfqq) {
2868                        cfqq = new_cfqq;
2869                        new_cfqq = NULL;
2870                } else if (gfp_mask & __GFP_WAIT) {
2871                        spin_unlock_irq(cfqd->queue->queue_lock);
2872                        new_cfqq = kmem_cache_alloc_node(cfq_pool,
2873                                        gfp_mask | __GFP_ZERO,
2874                                        cfqd->queue->node);
2875                        spin_lock_irq(cfqd->queue->queue_lock);
2876                        if (new_cfqq)
2877                                goto retry;
2878                } else {
2879                        cfqq = kmem_cache_alloc_node(cfq_pool,
2880                                        gfp_mask | __GFP_ZERO,
2881                                        cfqd->queue->node);
2882                }
2883
2884                if (cfqq) {
2885                        cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2886                        cfq_init_prio_data(cfqq, ioc);
2887                        cfq_link_cfqq_cfqg(cfqq, cfqg);
2888                        cfq_log_cfqq(cfqd, cfqq, "alloced");
2889                } else
2890                        cfqq = &cfqd->oom_cfqq;
2891        }
2892
2893        if (new_cfqq)
2894                kmem_cache_free(cfq_pool, new_cfqq);
2895
2896        return cfqq;
2897}
2898
2899static struct cfq_queue **
2900cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2901{
2902        switch (ioprio_class) {
2903        case IOPRIO_CLASS_RT:
2904                return &cfqd->async_cfqq[0][ioprio];
2905        case IOPRIO_CLASS_BE:
2906                return &cfqd->async_cfqq[1][ioprio];
2907        case IOPRIO_CLASS_IDLE:
2908                return &cfqd->async_idle_cfqq;
2909        default:
2910                BUG();
2911        }
2912}
2913
2914static struct cfq_queue *
2915cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2916              gfp_t gfp_mask)
2917{
2918        const int ioprio = task_ioprio(ioc);
2919        const int ioprio_class = task_ioprio_class(ioc);
2920        struct cfq_queue **async_cfqq = NULL;
2921        struct cfq_queue *cfqq = NULL;
2922
2923        if (!is_sync) {
2924                async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2925                cfqq = *async_cfqq;
2926        }
2927
2928        if (!cfqq)
2929                cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2930
2931        /*
2932         * pin the queue now that it's allocated, scheduler exit will prune it
2933         */
2934        if (!is_sync && !(*async_cfqq)) {
2935                cfqq->ref++;
2936                *async_cfqq = cfqq;
2937        }
2938
2939        cfqq->ref++;
2940        return cfqq;
2941}
2942
2943static void
2944__cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
2945{
2946        unsigned long elapsed = jiffies - ttime->last_end_request;
2947        elapsed = min(elapsed, 2UL * slice_idle);
2948
2949        ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
2950        ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
2951        ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
2952}
2953
2954static void
2955cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2956                        struct cfq_io_cq *cic)
2957{
2958        if (cfq_cfqq_sync(cfqq)) {
2959                __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
2960                __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
2961                        cfqd->cfq_slice_idle);
2962        }
2963#ifdef CONFIG_CFQ_GROUP_IOSCHED
2964        __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
2965#endif
2966}
2967
2968static void
2969cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2970                       struct request *rq)
2971{
2972        sector_t sdist = 0;
2973        sector_t n_sec = blk_rq_sectors(rq);
2974        if (cfqq->last_request_pos) {
2975                if (cfqq->last_request_pos < blk_rq_pos(rq))
2976                        sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2977                else
2978                        sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2979        }
2980
2981        cfqq->seek_history <<= 1;
2982        if (blk_queue_nonrot(cfqd->queue))
2983                cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
2984        else
2985                cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
2986}
2987
2988/*
2989 * Disable idle window if the process thinks too long or seeks so much that
2990 * it doesn't matter
2991 */
2992static void
2993cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2994                       struct cfq_io_cq *cic)
2995{
2996        int old_idle, enable_idle;
2997
2998        /*
2999         * Don't idle for async or idle io prio class
3000         */
3001        if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3002                return;
3003
3004        enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3005
3006        if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3007                cfq_mark_cfqq_deep(cfqq);
3008
3009        if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3010                enable_idle = 0;
3011        else if (!atomic_read(&cic->icq.ioc->nr_tasks) ||
3012                 !cfqd->cfq_slice_idle ||
3013                 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3014                enable_idle = 0;
3015        else if (sample_valid(cic->ttime.ttime_samples)) {
3016                if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3017                        enable_idle = 0;
3018                else
3019                        enable_idle = 1;
3020        }
3021
3022        if (old_idle != enable_idle) {
3023                cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3024                if (enable_idle)
3025                        cfq_mark_cfqq_idle_window(cfqq);
3026                else
3027                        cfq_clear_cfqq_idle_window(cfqq);
3028        }
3029}
3030
3031/*
3032 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3033 * no or if we aren't sure, a 1 will cause a preempt.
3034 */
3035static bool
3036cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3037                   struct request *rq)
3038{
3039        struct cfq_queue *cfqq;
3040
3041        cfqq = cfqd->active_queue;
3042        if (!cfqq)
3043                return false;
3044
3045        if (cfq_class_idle(new_cfqq))
3046                return false;
3047
3048        if (cfq_class_idle(cfqq))
3049                return true;
3050
3051        /*
3052         * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3053         */
3054        if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3055                return false;
3056
3057        /*
3058         * if the new request is sync, but the currently running queue is
3059         * not, let the sync request have priority.
3060         */
3061        if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3062                return true;
3063
3064        if (new_cfqq->cfqg != cfqq->cfqg)
3065                return false;
3066
3067        if (cfq_slice_used(cfqq))
3068                return true;
3069
3070        /* Allow preemption only if we are idling on sync-noidle tree */
3071        if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3072            cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3073            new_cfqq->service_tree->count == 2 &&
3074            RB_EMPTY_ROOT(&cfqq->sort_list))
3075                return true;
3076
3077        /*
3078         * So both queues are sync. Let the new request get disk time if
3079         * it's a metadata request and the current queue is doing regular IO.
3080         */
3081        if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3082                return true;
3083
3084        /*
3085         * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3086         */
3087        if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3088                return true;
3089
3090        /* An idle queue should not be idle now for some reason */
3091        if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3092                return true;
3093
3094        if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3095                return false;
3096
3097        /*
3098         * if this request is as-good as one we would expect from the
3099         * current cfqq, let it preempt
3100         */
3101        if (cfq_rq_close(cfqd, cfqq, rq))
3102                return true;
3103
3104        return false;
3105}
3106
3107/*
3108 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3109 * let it have half of its nominal slice.
3110 */
3111static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3112{
3113        enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
3114
3115        cfq_log_cfqq(cfqd, cfqq, "preempt");
3116        cfq_slice_expired(cfqd, 1);
3117
3118        /*
3119         * workload type is changed, don't save slice, otherwise preempt
3120         * doesn't happen
3121         */
3122        if (old_type != cfqq_type(cfqq))
3123                cfqq->cfqg->saved_workload_slice = 0;
3124
3125        /*
3126         * Put the new queue at the front of the of the current list,
3127         * so we know that it will be selected next.
3128         */
3129        BUG_ON(!cfq_cfqq_on_rr(cfqq));
3130
3131        cfq_service_tree_add(cfqd, cfqq, 1);
3132
3133        cfqq->slice_end = 0;
3134        cfq_mark_cfqq_slice_new(cfqq);
3135}
3136
3137/*
3138 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3139 * something we should do about it
3140 */
3141static void
3142cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3143                struct request *rq)
3144{
3145        struct cfq_io_cq *cic = RQ_CIC(rq);
3146
3147        cfqd->rq_queued++;
3148        if (rq->cmd_flags & REQ_PRIO)
3149                cfqq->prio_pending++;
3150
3151        cfq_update_io_thinktime(cfqd, cfqq, cic);
3152        cfq_update_io_seektime(cfqd, cfqq, rq);
3153        cfq_update_idle_window(cfqd, cfqq, cic);
3154
3155        cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3156
3157        if (cfqq == cfqd->active_queue) {
3158                /*
3159                 * Remember that we saw a request from this process, but
3160                 * don't start queuing just yet. Otherwise we risk seeing lots
3161                 * of tiny requests, because we disrupt the normal plugging
3162                 * and merging. If the request is already larger than a single
3163                 * page, let it rip immediately. For that case we assume that
3164                 * merging is already done. Ditto for a busy system that
3165                 * has other work pending, don't risk delaying until the
3166                 * idle timer unplug to continue working.
3167                 */
3168                if (cfq_cfqq_wait_request(cfqq)) {
3169                        if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3170                            cfqd->busy_queues > 1) {
3171                                cfq_del_timer(cfqd, cfqq);
3172                                cfq_clear_cfqq_wait_request(cfqq);
3173                                __blk_run_queue(cfqd->queue);
3174                        } else {
3175                                cfq_blkiocg_update_idle_time_stats(
3176                                                &cfqq->cfqg->blkg);
3177                                cfq_mark_cfqq_must_dispatch(cfqq);
3178                        }
3179                }
3180        } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3181                /*
3182                 * not the active queue - expire current slice if it is
3183                 * idle and has expired it's mean thinktime or this new queue
3184                 * has some old slice time left and is of higher priority or
3185                 * this new queue is RT and the current one is BE
3186                 */
3187                cfq_preempt_queue(cfqd, cfqq);
3188                __blk_run_queue(cfqd->queue);
3189        }
3190}
3191
3192static void cfq_insert_request(struct request_queue *q, struct request *rq)
3193{
3194        struct cfq_data *cfqd = q->elevator->elevator_data;
3195        struct cfq_queue *cfqq = RQ_CFQQ(rq);
3196
3197        cfq_log_cfqq(cfqd, cfqq, "insert_request");
3198        cfq_init_prio_data(cfqq, RQ_CIC(rq)->icq.ioc);
3199
3200        rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3201        list_add_tail(&rq->queuelist, &cfqq->fifo);
3202        cfq_add_rq_rb(rq);
3203        cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3204                        &cfqd->serving_group->blkg, rq_data_dir(rq),
3205                        rq_is_sync(rq));
3206        cfq_rq_enqueued(cfqd, cfqq, rq);
3207}
3208
3209/*
3210 * Update hw_tag based on peak queue depth over 50 samples under
3211 * sufficient load.
3212 */
3213static void cfq_update_hw_tag(struct cfq_data *cfqd)
3214{
3215        struct cfq_queue *cfqq = cfqd->active_queue;
3216
3217        if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3218                cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3219
3220        if (cfqd->hw_tag == 1)
3221                return;
3222
3223        if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3224            cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3225                return;
3226
3227        /*
3228         * If active queue hasn't enough requests and can idle, cfq might not
3229         * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3230         * case
3231         */
3232        if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3233            cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3234            CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3235                return;
3236
3237        if (cfqd->hw_tag_samples++ < 50)
3238                return;
3239
3240        if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3241                cfqd->hw_tag = 1;
3242        else
3243                cfqd->hw_tag = 0;
3244}
3245
3246static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3247{
3248        struct cfq_io_cq *cic = cfqd->active_cic;
3249
3250        /* If the queue already has requests, don't wait */
3251        if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3252                return false;
3253
3254        /* If there are other queues in the group, don't wait */
3255        if (cfqq->cfqg->nr_cfqq > 1)
3256                return false;
3257
3258        /* the only queue in the group, but think time is big */
3259        if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3260                return false;
3261
3262        if (cfq_slice_used(cfqq))
3263                return true;
3264
3265        /* if slice left is less than think time, wait busy */
3266        if (cic && sample_valid(cic->ttime.ttime_samples)
3267            && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
3268                return true;
3269
3270        /*
3271         * If think times is less than a jiffy than ttime_mean=0 and above
3272         * will not be true. It might happen that slice has not expired yet
3273         * but will expire soon (4-5 ns) during select_queue(). To cover the
3274         * case where think time is less than a jiffy, mark the queue wait
3275         * busy if only 1 jiffy is left in the slice.
3276         */
3277        if (cfqq->slice_end - jiffies == 1)
3278                return true;
3279
3280        return false;
3281}
3282
3283static void cfq_completed_request(struct request_queue *q, struct request *rq)
3284{
3285        struct cfq_queue *cfqq = RQ_CFQQ(rq);
3286        struct cfq_data *cfqd = cfqq->cfqd;
3287        const int sync = rq_is_sync(rq);
3288        unsigned long now;
3289
3290        now = jiffies;
3291        cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3292                     !!(rq->cmd_flags & REQ_NOIDLE));
3293
3294        cfq_update_hw_tag(cfqd);
3295
3296        WARN_ON(!cfqd->rq_in_driver);
3297        WARN_ON(!cfqq->dispatched);
3298        cfqd->rq_in_driver--;
3299        cfqq->dispatched--;
3300        (RQ_CFQG(rq))->dispatched--;
3301        cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3302                        rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3303                        rq_data_dir(rq), rq_is_sync(rq));
3304
3305        cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3306
3307        if (sync) {
3308                struct cfq_rb_root *service_tree;
3309
3310                RQ_CIC(rq)->ttime.last_end_request = now;
3311
3312                if (cfq_cfqq_on_rr(cfqq))
3313                        service_tree = cfqq->service_tree;
3314                else
3315                        service_tree = service_tree_for(cfqq->cfqg,
3316                                cfqq_prio(cfqq), cfqq_type(cfqq));
3317                service_tree->ttime.last_end_request = now;
3318                if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3319                        cfqd->last_delayed_sync = now;
3320        }
3321
3322#ifdef CONFIG_CFQ_GROUP_IOSCHED
3323        cfqq->cfqg->ttime.last_end_request = now;
3324#endif
3325
3326        /*
3327         * If this is the active queue, check if it needs to be expired,
3328         * or if we want to idle in case it has no pending requests.
3329         */
3330        if (cfqd->active_queue == cfqq) {
3331                const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3332
3333                if (cfq_cfqq_slice_new(cfqq)) {
3334                        cfq_set_prio_slice(cfqd, cfqq);
3335                        cfq_clear_cfqq_slice_new(cfqq);
3336                }
3337
3338                /*
3339                 * Should we wait for next request to come in before we expire
3340                 * the queue.
3341                 */
3342                if (cfq_should_wait_busy(cfqd, cfqq)) {
3343                        unsigned long extend_sl = cfqd->cfq_slice_idle;
3344                        if (!cfqd->cfq_slice_idle)
3345                                extend_sl = cfqd->cfq_group_idle;
3346                        cfqq->slice_end = jiffies + extend_sl;
3347                        cfq_mark_cfqq_wait_busy(cfqq);
3348                        cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3349                }
3350
3351                /*
3352                 * Idling is not enabled on:
3353                 * - expired queues
3354                 * - idle-priority queues
3355                 * - async queues
3356                 * - queues with still some requests queued
3357                 * - when there is a close cooperator
3358                 */
3359                if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3360                        cfq_slice_expired(cfqd, 1);
3361                else if (sync && cfqq_empty &&
3362                         !cfq_close_cooperator(cfqd, cfqq)) {
3363                        cfq_arm_slice_timer(cfqd);
3364                }
3365        }
3366
3367        if (!cfqd->rq_in_driver)
3368                cfq_schedule_dispatch(cfqd);
3369}
3370
3371static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3372{
3373        if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3374                cfq_mark_cfqq_must_alloc_slice(cfqq);
3375                return ELV_MQUEUE_MUST;
3376        }
3377
3378        return ELV_MQUEUE_MAY;
3379}
3380
3381static int cfq_may_queue(struct request_queue *q, int rw)
3382{
3383        struct cfq_data *cfqd = q->elevator->elevator_data;
3384        struct task_struct *tsk = current;
3385        struct cfq_io_cq *cic;
3386        struct cfq_queue *cfqq;
3387
3388        /*
3389         * don't force setup of a queue from here, as a call to may_queue
3390         * does not necessarily imply that a request actually will be queued.
3391         * so just lookup a possibly existing queue, or return 'may queue'
3392         * if that fails
3393         */
3394        cic = cfq_cic_lookup(cfqd, tsk->io_context);
3395        if (!cic)
3396                return ELV_MQUEUE_MAY;
3397
3398        cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3399        if (cfqq) {
3400                cfq_init_prio_data(cfqq, cic->icq.ioc);
3401
3402                return __cfq_may_queue(cfqq);
3403        }
3404
3405        return ELV_MQUEUE_MAY;
3406}
3407
3408/*
3409 * queue lock held here
3410 */
3411static void cfq_put_request(struct request *rq)
3412{
3413        struct cfq_queue *cfqq = RQ_CFQQ(rq);
3414
3415        if (cfqq) {
3416                const int rw = rq_data_dir(rq);
3417
3418                BUG_ON(!cfqq->allocated[rw]);
3419                cfqq->allocated[rw]--;
3420
3421                /* Put down rq reference on cfqg */
3422                cfq_put_cfqg(RQ_CFQG(rq));
3423                rq->elv.priv[0] = NULL;
3424                rq->elv.priv[1] = NULL;
3425
3426                cfq_put_queue(cfqq);
3427        }
3428}
3429
3430static struct cfq_queue *
3431cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
3432                struct cfq_queue *cfqq)
3433{
3434        cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3435        cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3436        cfq_mark_cfqq_coop(cfqq->new_cfqq);
3437        cfq_put_queue(cfqq);
3438        return cic_to_cfqq(cic, 1);
3439}
3440
3441/*
3442 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3443 * was the last process referring to said cfqq.
3444 */
3445static struct cfq_queue *
3446split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
3447{
3448        if (cfqq_process_refs(cfqq) == 1) {
3449                cfqq->pid = current->pid;
3450                cfq_clear_cfqq_coop(cfqq);
3451                cfq_clear_cfqq_split_coop(cfqq);
3452                return cfqq;
3453        }
3454
3455        cic_set_cfqq(cic, NULL, 1);
3456
3457        cfq_put_cooperator(cfqq);
3458
3459        cfq_put_queue(cfqq);
3460        return NULL;
3461}
3462/*
3463 * Allocate cfq data structures associated with this request.
3464 */
3465static int
3466cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3467{
3468        struct cfq_data *cfqd = q->elevator->elevator_data;
3469        struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
3470        const int rw = rq_data_dir(rq);
3471        const bool is_sync = rq_is_sync(rq);
3472        struct cfq_queue *cfqq;
3473        unsigned int changed;
3474
3475        might_sleep_if(gfp_mask & __GFP_WAIT);
3476
3477        spin_lock_irq(q->queue_lock);
3478
3479        /* handle changed notifications */
3480        changed = icq_get_changed(&cic->icq);
3481        if (unlikely(changed & ICQ_IOPRIO_CHANGED))
3482                changed_ioprio(cic);
3483#ifdef CONFIG_CFQ_GROUP_IOSCHED
3484        if (unlikely(changed & ICQ_CGROUP_CHANGED))
3485                changed_cgroup(cic);
3486#endif
3487
3488new_queue:
3489        cfqq = cic_to_cfqq(cic, is_sync);
3490        if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3491                cfqq = cfq_get_queue(cfqd, is_sync, cic->icq.ioc, gfp_mask);
3492                cic_set_cfqq(cic, cfqq, is_sync);
3493        } else {
3494                /*
3495                 * If the queue was seeky for too long, break it apart.
3496                 */
3497                if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3498                        cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3499                        cfqq = split_cfqq(cic, cfqq);
3500                        if (!cfqq)
3501                                goto new_queue;
3502                }
3503
3504                /*
3505                 * Check to see if this queue is scheduled to merge with
3506                 * another, closely cooperating queue.  The merging of
3507                 * queues happens here as it must be done in process context.
3508                 * The reference on new_cfqq was taken in merge_cfqqs.
3509                 */
3510                if (cfqq->new_cfqq)
3511                        cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3512        }
3513
3514        cfqq->allocated[rw]++;
3515
3516        cfqq->ref++;
3517        rq->elv.priv[0] = cfqq;
3518        rq->elv.priv[1] = cfq_ref_get_cfqg(cfqq->cfqg);
3519        spin_unlock_irq(q->queue_lock);
3520        return 0;
3521}
3522
3523static void cfq_kick_queue(struct work_struct *work)
3524{
3525        struct cfq_data *cfqd =
3526                container_of(work, struct cfq_data, unplug_work);
3527        struct request_queue *q = cfqd->queue;
3528
3529        spin_lock_irq(q->queue_lock);
3530        __blk_run_queue(cfqd->queue);
3531        spin_unlock_irq(q->queue_lock);
3532}
3533
3534/*
3535 * Timer running if the active_queue is currently idling inside its time slice
3536 */
3537static void cfq_idle_slice_timer(unsigned long data)
3538{
3539        struct cfq_data *cfqd = (struct cfq_data *) data;
3540        struct cfq_queue *cfqq;
3541        unsigned long flags;
3542        int timed_out = 1;
3543
3544        cfq_log(cfqd, "idle timer fired");
3545
3546        spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3547
3548        cfqq = cfqd->active_queue;
3549        if (cfqq) {
3550                timed_out = 0;
3551
3552                /*
3553                 * We saw a request before the queue expired, let it through
3554                 */
3555                if (cfq_cfqq_must_dispatch(cfqq))
3556                        goto out_kick;
3557
3558                /*
3559                 * expired
3560                 */
3561                if (cfq_slice_used(cfqq))
3562                        goto expire;
3563
3564                /*
3565                 * only expire and reinvoke request handler, if there are
3566                 * other queues with pending requests
3567                 */
3568                if (!cfqd->busy_queues)
3569                        goto out_cont;
3570
3571                /*
3572                 * not expired and it has a request pending, let it dispatch
3573                 */
3574                if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3575                        goto out_kick;
3576
3577                /*
3578                 * Queue depth flag is reset only when the idle didn't succeed
3579                 */
3580                cfq_clear_cfqq_deep(cfqq);
3581        }
3582expire:
3583        cfq_slice_expired(cfqd, timed_out);
3584out_kick:
3585        cfq_schedule_dispatch(cfqd);
3586out_cont:
3587        spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3588}
3589
3590static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3591{
3592        del_timer_sync(&cfqd->idle_slice_timer);
3593        cancel_work_sync(&cfqd->unplug_work);
3594}
3595
3596static void cfq_put_async_queues(struct cfq_data *cfqd)
3597{
3598        int i;
3599
3600        for (i = 0; i < IOPRIO_BE_NR; i++) {
3601                if (cfqd->async_cfqq[0][i])
3602                        cfq_put_queue(cfqd->async_cfqq[0][i]);
3603                if (cfqd->async_cfqq[1][i])
3604                        cfq_put_queue(cfqd->async_cfqq[1][i]);
3605        }
3606
3607        if (cfqd->async_idle_cfqq)
3608                cfq_put_queue(cfqd->async_idle_cfqq);
3609}
3610
3611static void cfq_exit_queue(struct elevator_queue *e)
3612{
3613        struct cfq_data *cfqd = e->elevator_data;
3614        struct request_queue *q = cfqd->queue;
3615        bool wait = false;
3616
3617        cfq_shutdown_timer_wq(cfqd);
3618
3619        spin_lock_irq(q->queue_lock);
3620
3621        if (cfqd->active_queue)
3622                __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3623
3624        cfq_put_async_queues(cfqd);
3625        cfq_release_cfq_groups(cfqd);
3626
3627        /*
3628         * If there are groups which we could not unlink from blkcg list,
3629         * wait for a rcu period for them to be freed.
3630         */
3631        if (cfqd->nr_blkcg_linked_grps)
3632                wait = true;
3633
3634        spin_unlock_irq(q->queue_lock);
3635
3636        cfq_shutdown_timer_wq(cfqd);
3637
3638        /*
3639         * Wait for cfqg->blkg->key accessors to exit their grace periods.
3640         * Do this wait only if there are other unlinked groups out
3641         * there. This can happen if cgroup deletion path claimed the
3642         * responsibility of cleaning up a group before queue cleanup code
3643         * get to the group.
3644         *
3645         * Do not call synchronize_rcu() unconditionally as there are drivers
3646         * which create/delete request queue hundreds of times during scan/boot
3647         * and synchronize_rcu() can take significant time and slow down boot.
3648         */
3649        if (wait)
3650                synchronize_rcu();
3651
3652#ifdef CONFIG_CFQ_GROUP_IOSCHED
3653        /* Free up per cpu stats for root group */
3654        free_percpu(cfqd->root_group.blkg.stats_cpu);
3655#endif
3656        kfree(cfqd);
3657}
3658
3659static void *cfq_init_queue(struct request_queue *q)
3660{
3661        struct cfq_data *cfqd;
3662        int i, j;
3663        struct cfq_group *cfqg;
3664        struct cfq_rb_root *st;
3665
3666        cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3667        if (!cfqd)
3668                return NULL;
3669
3670        /* Init root service tree */
3671        cfqd->grp_service_tree = CFQ_RB_ROOT;
3672
3673        /* Init root group */
3674        cfqg = &cfqd->root_group;
3675        for_each_cfqg_st(cfqg, i, j, st)
3676                *st = CFQ_RB_ROOT;
3677        RB_CLEAR_NODE(&cfqg->rb_node);
3678
3679        /* Give preference to root group over other groups */
3680        cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3681
3682#ifdef CONFIG_CFQ_GROUP_IOSCHED
3683        /*
3684         * Set root group reference to 2. One reference will be dropped when
3685         * all groups on cfqd->cfqg_list are being deleted during queue exit.
3686         * Other reference will remain there as we don't want to delete this
3687         * group as it is statically allocated and gets destroyed when
3688         * throtl_data goes away.
3689         */
3690        cfqg->ref = 2;
3691
3692        if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
3693                kfree(cfqg);
3694                kfree(cfqd);
3695                return NULL;
3696        }
3697
3698        rcu_read_lock();
3699
3700        cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
3701                                        (void *)cfqd, 0);
3702        rcu_read_unlock();
3703        cfqd->nr_blkcg_linked_grps++;
3704
3705        /* Add group on cfqd->cfqg_list */
3706        hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
3707#endif
3708        /*
3709         * Not strictly needed (since RB_ROOT just clears the node and we
3710         * zeroed cfqd on alloc), but better be safe in case someone decides
3711         * to add magic to the rb code
3712         */
3713        for (i = 0; i < CFQ_PRIO_LISTS; i++)
3714                cfqd->prio_trees[i] = RB_ROOT;
3715
3716        /*
3717         * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3718         * Grab a permanent reference to it, so that the normal code flow
3719         * will not attempt to free it.
3720         */
3721        cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3722        cfqd->oom_cfqq.ref++;
3723        cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3724
3725        cfqd->queue = q;
3726
3727        init_timer(&cfqd->idle_slice_timer);
3728        cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3729        cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3730
3731        INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3732
3733        cfqd->cfq_quantum = cfq_quantum;
3734        cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3735        cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3736        cfqd->cfq_back_max = cfq_back_max;
3737        cfqd->cfq_back_penalty = cfq_back_penalty;
3738        cfqd->cfq_slice[0] = cfq_slice_async;
3739        cfqd->cfq_slice[1] = cfq_slice_sync;
3740        cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3741        cfqd->cfq_slice_idle = cfq_slice_idle;
3742        cfqd->cfq_group_idle = cfq_group_idle;
3743        cfqd->cfq_latency = 1;
3744        cfqd->hw_tag = -1;
3745        /*
3746         * we optimistically start assuming sync ops weren't delayed in last
3747         * second, in order to have larger depth for async operations.
3748         */
3749        cfqd->last_delayed_sync = jiffies - HZ;
3750        return cfqd;
3751}
3752
3753/*
3754 * sysfs parts below -->
3755 */
3756static ssize_t
3757cfq_var_show(unsigned int var, char *page)
3758{
3759        return sprintf(page, "%d\n", var);
3760}
3761
3762static ssize_t
3763cfq_var_store(unsigned int *var, const char *page, size_t count)
3764{
3765        char *p = (char *) page;
3766
3767        *var = simple_strtoul(p, &p, 10);
3768        return count;
3769}
3770
3771#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
3772static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
3773{                                                                       \
3774        struct cfq_data *cfqd = e->elevator_data;                       \
3775        unsigned int __data = __VAR;                                    \
3776        if (__CONV)                                                     \
3777                __data = jiffies_to_msecs(__data);                      \
3778        return cfq_var_show(__data, (page));                            \
3779}
3780SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3781SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3782SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3783SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3784SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3785SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3786SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
3787SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3788SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3789SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3790SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3791#undef SHOW_FUNCTION
3792
3793#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
3794static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3795{                                                                       \
3796        struct cfq_data *cfqd = e->elevator_data;                       \
3797        unsigned int __data;                                            \
3798        int ret = cfq_var_store(&__data, (page), count);                \
3799        if (__data < (MIN))                                             \
3800                __data = (MIN);                                         \
3801        else if (__data > (MAX))                                        \
3802                __data = (MAX);                                         \
3803        if (__CONV)                                                     \
3804                *(__PTR) = msecs_to_jiffies(__data);                    \
3805        else                                                            \
3806                *(__PTR) = __data;                                      \
3807        return ret;                                                     \
3808}
3809STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3810STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3811                UINT_MAX, 1);
3812STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3813                UINT_MAX, 1);
3814STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3815STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3816                UINT_MAX, 0);
3817STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3818STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
3819STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3820STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3821STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3822                UINT_MAX, 0);
3823STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3824#undef STORE_FUNCTION
3825
3826#define CFQ_ATTR(name) \
3827        __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3828
3829static struct elv_fs_entry cfq_attrs[] = {
3830        CFQ_ATTR(quantum),
3831        CFQ_ATTR(fifo_expire_sync),
3832        CFQ_ATTR(fifo_expire_async),
3833        CFQ_ATTR(back_seek_max),
3834        CFQ_ATTR(back_seek_penalty),
3835        CFQ_ATTR(slice_sync),
3836        CFQ_ATTR(slice_async),
3837        CFQ_ATTR(slice_async_rq),
3838        CFQ_ATTR(slice_idle),
3839        CFQ_ATTR(group_idle),
3840        CFQ_ATTR(low_latency),
3841        __ATTR_NULL
3842};
3843
3844static struct elevator_type iosched_cfq = {
3845        .ops = {
3846                .elevator_merge_fn =            cfq_merge,
3847                .elevator_merged_fn =           cfq_merged_request,
3848                .elevator_merge_req_fn =        cfq_merged_requests,
3849                .elevator_allow_merge_fn =      cfq_allow_merge,
3850                .elevator_bio_merged_fn =       cfq_bio_merged,
3851                .elevator_dispatch_fn =         cfq_dispatch_requests,
3852                .elevator_add_req_fn =          cfq_insert_request,
3853                .elevator_activate_req_fn =     cfq_activate_request,
3854                .elevator_deactivate_req_fn =   cfq_deactivate_request,
3855                .elevator_completed_req_fn =    cfq_completed_request,
3856                .elevator_former_req_fn =       elv_rb_former_request,
3857                .elevator_latter_req_fn =       elv_rb_latter_request,
3858                .elevator_init_icq_fn =         cfq_init_icq,
3859                .elevator_exit_icq_fn =         cfq_exit_icq,
3860                .elevator_set_req_fn =          cfq_set_request,
3861                .elevator_put_req_fn =          cfq_put_request,
3862                .elevator_may_queue_fn =        cfq_may_queue,
3863                .elevator_init_fn =             cfq_init_queue,
3864                .elevator_exit_fn =             cfq_exit_queue,
3865        },
3866        .icq_size       =       sizeof(struct cfq_io_cq),
3867        .icq_align      =       __alignof__(struct cfq_io_cq),
3868        .elevator_attrs =       cfq_attrs,
3869        .elevator_name  =       "cfq",
3870        .elevator_owner =       THIS_MODULE,
3871};
3872
3873#ifdef CONFIG_CFQ_GROUP_IOSCHED
3874static struct blkio_policy_type blkio_policy_cfq = {
3875        .ops = {
3876                .blkio_unlink_group_fn =        cfq_unlink_blkio_group,
3877                .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3878        },
3879        .plid = BLKIO_POLICY_PROP,
3880};
3881#else
3882static struct blkio_policy_type blkio_policy_cfq;
3883#endif
3884
3885static int __init cfq_init(void)
3886{
3887        int ret;
3888
3889        /*
3890         * could be 0 on HZ < 1000 setups
3891         */
3892        if (!cfq_slice_async)
3893                cfq_slice_async = 1;
3894        if (!cfq_slice_idle)
3895                cfq_slice_idle = 1;
3896
3897#ifdef CONFIG_CFQ_GROUP_IOSCHED
3898        if (!cfq_group_idle)
3899                cfq_group_idle = 1;
3900#else
3901                cfq_group_idle = 0;
3902#endif
3903        cfq_pool = KMEM_CACHE(cfq_queue, 0);
3904        if (!cfq_pool)
3905                return -ENOMEM;
3906
3907        ret = elv_register(&iosched_cfq);
3908        if (ret) {
3909                kmem_cache_destroy(cfq_pool);
3910                return ret;
3911        }
3912
3913        blkio_policy_register(&blkio_policy_cfq);
3914
3915        return 0;
3916}
3917
3918static void __exit cfq_exit(void)
3919{
3920        blkio_policy_unregister(&blkio_policy_cfq);
3921        elv_unregister(&iosched_cfq);
3922        kmem_cache_destroy(cfq_pool);
3923}
3924
3925module_init(cfq_init);
3926module_exit(cfq_exit);
3927
3928MODULE_AUTHOR("Jens Axboe");
3929MODULE_LICENSE("GPL");
3930MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
3931