linux/drivers/regulator/core.c
<<
>>
Prefs
   1/*
   2 * core.c  --  Voltage/Current Regulator framework.
   3 *
   4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
   5 * Copyright 2008 SlimLogic Ltd.
   6 *
   7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
   8 *
   9 *  This program is free software; you can redistribute  it and/or modify it
  10 *  under  the terms of  the GNU General  Public License as published by the
  11 *  Free Software Foundation;  either version 2 of the  License, or (at your
  12 *  option) any later version.
  13 *
  14 */
  15
  16#define pr_fmt(fmt) "%s: " fmt, __func__
  17
  18#include <linux/kernel.h>
  19#include <linux/init.h>
  20#include <linux/debugfs.h>
  21#include <linux/device.h>
  22#include <linux/slab.h>
  23#include <linux/async.h>
  24#include <linux/err.h>
  25#include <linux/mutex.h>
  26#include <linux/suspend.h>
  27#include <linux/delay.h>
  28#include <linux/of.h>
  29#include <linux/regulator/of_regulator.h>
  30#include <linux/regulator/consumer.h>
  31#include <linux/regulator/driver.h>
  32#include <linux/regulator/machine.h>
  33#include <linux/module.h>
  34
  35#define CREATE_TRACE_POINTS
  36#include <trace/events/regulator.h>
  37
  38#include "dummy.h"
  39
  40#define rdev_crit(rdev, fmt, ...)                                       \
  41        pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  42#define rdev_err(rdev, fmt, ...)                                        \
  43        pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  44#define rdev_warn(rdev, fmt, ...)                                       \
  45        pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  46#define rdev_info(rdev, fmt, ...)                                       \
  47        pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  48#define rdev_dbg(rdev, fmt, ...)                                        \
  49        pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  50
  51static DEFINE_MUTEX(regulator_list_mutex);
  52static LIST_HEAD(regulator_list);
  53static LIST_HEAD(regulator_map_list);
  54static bool has_full_constraints;
  55static bool board_wants_dummy_regulator;
  56
  57#ifdef CONFIG_DEBUG_FS
  58static struct dentry *debugfs_root;
  59#endif
  60
  61/*
  62 * struct regulator_map
  63 *
  64 * Used to provide symbolic supply names to devices.
  65 */
  66struct regulator_map {
  67        struct list_head list;
  68        const char *dev_name;   /* The dev_name() for the consumer */
  69        const char *supply;
  70        struct regulator_dev *regulator;
  71};
  72
  73/*
  74 * struct regulator
  75 *
  76 * One for each consumer device.
  77 */
  78struct regulator {
  79        struct device *dev;
  80        struct list_head list;
  81        int uA_load;
  82        int min_uV;
  83        int max_uV;
  84        char *supply_name;
  85        struct device_attribute dev_attr;
  86        struct regulator_dev *rdev;
  87#ifdef CONFIG_DEBUG_FS
  88        struct dentry *debugfs;
  89#endif
  90};
  91
  92static int _regulator_is_enabled(struct regulator_dev *rdev);
  93static int _regulator_disable(struct regulator_dev *rdev);
  94static int _regulator_get_voltage(struct regulator_dev *rdev);
  95static int _regulator_get_current_limit(struct regulator_dev *rdev);
  96static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
  97static void _notifier_call_chain(struct regulator_dev *rdev,
  98                                  unsigned long event, void *data);
  99static int _regulator_do_set_voltage(struct regulator_dev *rdev,
 100                                     int min_uV, int max_uV);
 101static struct regulator *create_regulator(struct regulator_dev *rdev,
 102                                          struct device *dev,
 103                                          const char *supply_name);
 104
 105static const char *rdev_get_name(struct regulator_dev *rdev)
 106{
 107        if (rdev->constraints && rdev->constraints->name)
 108                return rdev->constraints->name;
 109        else if (rdev->desc->name)
 110                return rdev->desc->name;
 111        else
 112                return "";
 113}
 114
 115/* gets the regulator for a given consumer device */
 116static struct regulator *get_device_regulator(struct device *dev)
 117{
 118        struct regulator *regulator = NULL;
 119        struct regulator_dev *rdev;
 120
 121        mutex_lock(&regulator_list_mutex);
 122        list_for_each_entry(rdev, &regulator_list, list) {
 123                mutex_lock(&rdev->mutex);
 124                list_for_each_entry(regulator, &rdev->consumer_list, list) {
 125                        if (regulator->dev == dev) {
 126                                mutex_unlock(&rdev->mutex);
 127                                mutex_unlock(&regulator_list_mutex);
 128                                return regulator;
 129                        }
 130                }
 131                mutex_unlock(&rdev->mutex);
 132        }
 133        mutex_unlock(&regulator_list_mutex);
 134        return NULL;
 135}
 136
 137/**
 138 * of_get_regulator - get a regulator device node based on supply name
 139 * @dev: Device pointer for the consumer (of regulator) device
 140 * @supply: regulator supply name
 141 *
 142 * Extract the regulator device node corresponding to the supply name.
 143 * retruns the device node corresponding to the regulator if found, else
 144 * returns NULL.
 145 */
 146static struct device_node *of_get_regulator(struct device *dev, const char *supply)
 147{
 148        struct device_node *regnode = NULL;
 149        char prop_name[32]; /* 32 is max size of property name */
 150
 151        dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
 152
 153        snprintf(prop_name, 32, "%s-supply", supply);
 154        regnode = of_parse_phandle(dev->of_node, prop_name, 0);
 155
 156        if (!regnode) {
 157                dev_warn(dev, "%s property in node %s references invalid phandle",
 158                                prop_name, dev->of_node->full_name);
 159                return NULL;
 160        }
 161        return regnode;
 162}
 163
 164/* Platform voltage constraint check */
 165static int regulator_check_voltage(struct regulator_dev *rdev,
 166                                   int *min_uV, int *max_uV)
 167{
 168        BUG_ON(*min_uV > *max_uV);
 169
 170        if (!rdev->constraints) {
 171                rdev_err(rdev, "no constraints\n");
 172                return -ENODEV;
 173        }
 174        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
 175                rdev_err(rdev, "operation not allowed\n");
 176                return -EPERM;
 177        }
 178
 179        if (*max_uV > rdev->constraints->max_uV)
 180                *max_uV = rdev->constraints->max_uV;
 181        if (*min_uV < rdev->constraints->min_uV)
 182                *min_uV = rdev->constraints->min_uV;
 183
 184        if (*min_uV > *max_uV) {
 185                rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 186                         *min_uV, *max_uV);
 187                return -EINVAL;
 188        }
 189
 190        return 0;
 191}
 192
 193/* Make sure we select a voltage that suits the needs of all
 194 * regulator consumers
 195 */
 196static int regulator_check_consumers(struct regulator_dev *rdev,
 197                                     int *min_uV, int *max_uV)
 198{
 199        struct regulator *regulator;
 200
 201        list_for_each_entry(regulator, &rdev->consumer_list, list) {
 202                /*
 203                 * Assume consumers that didn't say anything are OK
 204                 * with anything in the constraint range.
 205                 */
 206                if (!regulator->min_uV && !regulator->max_uV)
 207                        continue;
 208
 209                if (*max_uV > regulator->max_uV)
 210                        *max_uV = regulator->max_uV;
 211                if (*min_uV < regulator->min_uV)
 212                        *min_uV = regulator->min_uV;
 213        }
 214
 215        if (*min_uV > *max_uV)
 216                return -EINVAL;
 217
 218        return 0;
 219}
 220
 221/* current constraint check */
 222static int regulator_check_current_limit(struct regulator_dev *rdev,
 223                                        int *min_uA, int *max_uA)
 224{
 225        BUG_ON(*min_uA > *max_uA);
 226
 227        if (!rdev->constraints) {
 228                rdev_err(rdev, "no constraints\n");
 229                return -ENODEV;
 230        }
 231        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
 232                rdev_err(rdev, "operation not allowed\n");
 233                return -EPERM;
 234        }
 235
 236        if (*max_uA > rdev->constraints->max_uA)
 237                *max_uA = rdev->constraints->max_uA;
 238        if (*min_uA < rdev->constraints->min_uA)
 239                *min_uA = rdev->constraints->min_uA;
 240
 241        if (*min_uA > *max_uA) {
 242                rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 243                         *min_uA, *max_uA);
 244                return -EINVAL;
 245        }
 246
 247        return 0;
 248}
 249
 250/* operating mode constraint check */
 251static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
 252{
 253        switch (*mode) {
 254        case REGULATOR_MODE_FAST:
 255        case REGULATOR_MODE_NORMAL:
 256        case REGULATOR_MODE_IDLE:
 257        case REGULATOR_MODE_STANDBY:
 258                break;
 259        default:
 260                rdev_err(rdev, "invalid mode %x specified\n", *mode);
 261                return -EINVAL;
 262        }
 263
 264        if (!rdev->constraints) {
 265                rdev_err(rdev, "no constraints\n");
 266                return -ENODEV;
 267        }
 268        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
 269                rdev_err(rdev, "operation not allowed\n");
 270                return -EPERM;
 271        }
 272
 273        /* The modes are bitmasks, the most power hungry modes having
 274         * the lowest values. If the requested mode isn't supported
 275         * try higher modes. */
 276        while (*mode) {
 277                if (rdev->constraints->valid_modes_mask & *mode)
 278                        return 0;
 279                *mode /= 2;
 280        }
 281
 282        return -EINVAL;
 283}
 284
 285/* dynamic regulator mode switching constraint check */
 286static int regulator_check_drms(struct regulator_dev *rdev)
 287{
 288        if (!rdev->constraints) {
 289                rdev_err(rdev, "no constraints\n");
 290                return -ENODEV;
 291        }
 292        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
 293                rdev_err(rdev, "operation not allowed\n");
 294                return -EPERM;
 295        }
 296        return 0;
 297}
 298
 299static ssize_t device_requested_uA_show(struct device *dev,
 300                             struct device_attribute *attr, char *buf)
 301{
 302        struct regulator *regulator;
 303
 304        regulator = get_device_regulator(dev);
 305        if (regulator == NULL)
 306                return 0;
 307
 308        return sprintf(buf, "%d\n", regulator->uA_load);
 309}
 310
 311static ssize_t regulator_uV_show(struct device *dev,
 312                                struct device_attribute *attr, char *buf)
 313{
 314        struct regulator_dev *rdev = dev_get_drvdata(dev);
 315        ssize_t ret;
 316
 317        mutex_lock(&rdev->mutex);
 318        ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
 319        mutex_unlock(&rdev->mutex);
 320
 321        return ret;
 322}
 323static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
 324
 325static ssize_t regulator_uA_show(struct device *dev,
 326                                struct device_attribute *attr, char *buf)
 327{
 328        struct regulator_dev *rdev = dev_get_drvdata(dev);
 329
 330        return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 331}
 332static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
 333
 334static ssize_t regulator_name_show(struct device *dev,
 335                             struct device_attribute *attr, char *buf)
 336{
 337        struct regulator_dev *rdev = dev_get_drvdata(dev);
 338
 339        return sprintf(buf, "%s\n", rdev_get_name(rdev));
 340}
 341
 342static ssize_t regulator_print_opmode(char *buf, int mode)
 343{
 344        switch (mode) {
 345        case REGULATOR_MODE_FAST:
 346                return sprintf(buf, "fast\n");
 347        case REGULATOR_MODE_NORMAL:
 348                return sprintf(buf, "normal\n");
 349        case REGULATOR_MODE_IDLE:
 350                return sprintf(buf, "idle\n");
 351        case REGULATOR_MODE_STANDBY:
 352                return sprintf(buf, "standby\n");
 353        }
 354        return sprintf(buf, "unknown\n");
 355}
 356
 357static ssize_t regulator_opmode_show(struct device *dev,
 358                                    struct device_attribute *attr, char *buf)
 359{
 360        struct regulator_dev *rdev = dev_get_drvdata(dev);
 361
 362        return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 363}
 364static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
 365
 366static ssize_t regulator_print_state(char *buf, int state)
 367{
 368        if (state > 0)
 369                return sprintf(buf, "enabled\n");
 370        else if (state == 0)
 371                return sprintf(buf, "disabled\n");
 372        else
 373                return sprintf(buf, "unknown\n");
 374}
 375
 376static ssize_t regulator_state_show(struct device *dev,
 377                                   struct device_attribute *attr, char *buf)
 378{
 379        struct regulator_dev *rdev = dev_get_drvdata(dev);
 380        ssize_t ret;
 381
 382        mutex_lock(&rdev->mutex);
 383        ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 384        mutex_unlock(&rdev->mutex);
 385
 386        return ret;
 387}
 388static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
 389
 390static ssize_t regulator_status_show(struct device *dev,
 391                                   struct device_attribute *attr, char *buf)
 392{
 393        struct regulator_dev *rdev = dev_get_drvdata(dev);
 394        int status;
 395        char *label;
 396
 397        status = rdev->desc->ops->get_status(rdev);
 398        if (status < 0)
 399                return status;
 400
 401        switch (status) {
 402        case REGULATOR_STATUS_OFF:
 403                label = "off";
 404                break;
 405        case REGULATOR_STATUS_ON:
 406                label = "on";
 407                break;
 408        case REGULATOR_STATUS_ERROR:
 409                label = "error";
 410                break;
 411        case REGULATOR_STATUS_FAST:
 412                label = "fast";
 413                break;
 414        case REGULATOR_STATUS_NORMAL:
 415                label = "normal";
 416                break;
 417        case REGULATOR_STATUS_IDLE:
 418                label = "idle";
 419                break;
 420        case REGULATOR_STATUS_STANDBY:
 421                label = "standby";
 422                break;
 423        default:
 424                return -ERANGE;
 425        }
 426
 427        return sprintf(buf, "%s\n", label);
 428}
 429static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
 430
 431static ssize_t regulator_min_uA_show(struct device *dev,
 432                                    struct device_attribute *attr, char *buf)
 433{
 434        struct regulator_dev *rdev = dev_get_drvdata(dev);
 435
 436        if (!rdev->constraints)
 437                return sprintf(buf, "constraint not defined\n");
 438
 439        return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 440}
 441static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
 442
 443static ssize_t regulator_max_uA_show(struct device *dev,
 444                                    struct device_attribute *attr, char *buf)
 445{
 446        struct regulator_dev *rdev = dev_get_drvdata(dev);
 447
 448        if (!rdev->constraints)
 449                return sprintf(buf, "constraint not defined\n");
 450
 451        return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 452}
 453static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
 454
 455static ssize_t regulator_min_uV_show(struct device *dev,
 456                                    struct device_attribute *attr, char *buf)
 457{
 458        struct regulator_dev *rdev = dev_get_drvdata(dev);
 459
 460        if (!rdev->constraints)
 461                return sprintf(buf, "constraint not defined\n");
 462
 463        return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 464}
 465static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
 466
 467static ssize_t regulator_max_uV_show(struct device *dev,
 468                                    struct device_attribute *attr, char *buf)
 469{
 470        struct regulator_dev *rdev = dev_get_drvdata(dev);
 471
 472        if (!rdev->constraints)
 473                return sprintf(buf, "constraint not defined\n");
 474
 475        return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 476}
 477static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
 478
 479static ssize_t regulator_total_uA_show(struct device *dev,
 480                                      struct device_attribute *attr, char *buf)
 481{
 482        struct regulator_dev *rdev = dev_get_drvdata(dev);
 483        struct regulator *regulator;
 484        int uA = 0;
 485
 486        mutex_lock(&rdev->mutex);
 487        list_for_each_entry(regulator, &rdev->consumer_list, list)
 488                uA += regulator->uA_load;
 489        mutex_unlock(&rdev->mutex);
 490        return sprintf(buf, "%d\n", uA);
 491}
 492static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
 493
 494static ssize_t regulator_num_users_show(struct device *dev,
 495                                      struct device_attribute *attr, char *buf)
 496{
 497        struct regulator_dev *rdev = dev_get_drvdata(dev);
 498        return sprintf(buf, "%d\n", rdev->use_count);
 499}
 500
 501static ssize_t regulator_type_show(struct device *dev,
 502                                  struct device_attribute *attr, char *buf)
 503{
 504        struct regulator_dev *rdev = dev_get_drvdata(dev);
 505
 506        switch (rdev->desc->type) {
 507        case REGULATOR_VOLTAGE:
 508                return sprintf(buf, "voltage\n");
 509        case REGULATOR_CURRENT:
 510                return sprintf(buf, "current\n");
 511        }
 512        return sprintf(buf, "unknown\n");
 513}
 514
 515static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
 516                                struct device_attribute *attr, char *buf)
 517{
 518        struct regulator_dev *rdev = dev_get_drvdata(dev);
 519
 520        return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 521}
 522static DEVICE_ATTR(suspend_mem_microvolts, 0444,
 523                regulator_suspend_mem_uV_show, NULL);
 524
 525static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
 526                                struct device_attribute *attr, char *buf)
 527{
 528        struct regulator_dev *rdev = dev_get_drvdata(dev);
 529
 530        return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 531}
 532static DEVICE_ATTR(suspend_disk_microvolts, 0444,
 533                regulator_suspend_disk_uV_show, NULL);
 534
 535static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
 536                                struct device_attribute *attr, char *buf)
 537{
 538        struct regulator_dev *rdev = dev_get_drvdata(dev);
 539
 540        return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 541}
 542static DEVICE_ATTR(suspend_standby_microvolts, 0444,
 543                regulator_suspend_standby_uV_show, NULL);
 544
 545static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
 546                                struct device_attribute *attr, char *buf)
 547{
 548        struct regulator_dev *rdev = dev_get_drvdata(dev);
 549
 550        return regulator_print_opmode(buf,
 551                rdev->constraints->state_mem.mode);
 552}
 553static DEVICE_ATTR(suspend_mem_mode, 0444,
 554                regulator_suspend_mem_mode_show, NULL);
 555
 556static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
 557                                struct device_attribute *attr, char *buf)
 558{
 559        struct regulator_dev *rdev = dev_get_drvdata(dev);
 560
 561        return regulator_print_opmode(buf,
 562                rdev->constraints->state_disk.mode);
 563}
 564static DEVICE_ATTR(suspend_disk_mode, 0444,
 565                regulator_suspend_disk_mode_show, NULL);
 566
 567static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
 568                                struct device_attribute *attr, char *buf)
 569{
 570        struct regulator_dev *rdev = dev_get_drvdata(dev);
 571
 572        return regulator_print_opmode(buf,
 573                rdev->constraints->state_standby.mode);
 574}
 575static DEVICE_ATTR(suspend_standby_mode, 0444,
 576                regulator_suspend_standby_mode_show, NULL);
 577
 578static ssize_t regulator_suspend_mem_state_show(struct device *dev,
 579                                   struct device_attribute *attr, char *buf)
 580{
 581        struct regulator_dev *rdev = dev_get_drvdata(dev);
 582
 583        return regulator_print_state(buf,
 584                        rdev->constraints->state_mem.enabled);
 585}
 586static DEVICE_ATTR(suspend_mem_state, 0444,
 587                regulator_suspend_mem_state_show, NULL);
 588
 589static ssize_t regulator_suspend_disk_state_show(struct device *dev,
 590                                   struct device_attribute *attr, char *buf)
 591{
 592        struct regulator_dev *rdev = dev_get_drvdata(dev);
 593
 594        return regulator_print_state(buf,
 595                        rdev->constraints->state_disk.enabled);
 596}
 597static DEVICE_ATTR(suspend_disk_state, 0444,
 598                regulator_suspend_disk_state_show, NULL);
 599
 600static ssize_t regulator_suspend_standby_state_show(struct device *dev,
 601                                   struct device_attribute *attr, char *buf)
 602{
 603        struct regulator_dev *rdev = dev_get_drvdata(dev);
 604
 605        return regulator_print_state(buf,
 606                        rdev->constraints->state_standby.enabled);
 607}
 608static DEVICE_ATTR(suspend_standby_state, 0444,
 609                regulator_suspend_standby_state_show, NULL);
 610
 611
 612/*
 613 * These are the only attributes are present for all regulators.
 614 * Other attributes are a function of regulator functionality.
 615 */
 616static struct device_attribute regulator_dev_attrs[] = {
 617        __ATTR(name, 0444, regulator_name_show, NULL),
 618        __ATTR(num_users, 0444, regulator_num_users_show, NULL),
 619        __ATTR(type, 0444, regulator_type_show, NULL),
 620        __ATTR_NULL,
 621};
 622
 623static void regulator_dev_release(struct device *dev)
 624{
 625        struct regulator_dev *rdev = dev_get_drvdata(dev);
 626        kfree(rdev);
 627}
 628
 629static struct class regulator_class = {
 630        .name = "regulator",
 631        .dev_release = regulator_dev_release,
 632        .dev_attrs = regulator_dev_attrs,
 633};
 634
 635/* Calculate the new optimum regulator operating mode based on the new total
 636 * consumer load. All locks held by caller */
 637static void drms_uA_update(struct regulator_dev *rdev)
 638{
 639        struct regulator *sibling;
 640        int current_uA = 0, output_uV, input_uV, err;
 641        unsigned int mode;
 642
 643        err = regulator_check_drms(rdev);
 644        if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
 645            (!rdev->desc->ops->get_voltage &&
 646             !rdev->desc->ops->get_voltage_sel) ||
 647            !rdev->desc->ops->set_mode)
 648                return;
 649
 650        /* get output voltage */
 651        output_uV = _regulator_get_voltage(rdev);
 652        if (output_uV <= 0)
 653                return;
 654
 655        /* get input voltage */
 656        input_uV = 0;
 657        if (rdev->supply)
 658                input_uV = _regulator_get_voltage(rdev);
 659        if (input_uV <= 0)
 660                input_uV = rdev->constraints->input_uV;
 661        if (input_uV <= 0)
 662                return;
 663
 664        /* calc total requested load */
 665        list_for_each_entry(sibling, &rdev->consumer_list, list)
 666                current_uA += sibling->uA_load;
 667
 668        /* now get the optimum mode for our new total regulator load */
 669        mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
 670                                                  output_uV, current_uA);
 671
 672        /* check the new mode is allowed */
 673        err = regulator_mode_constrain(rdev, &mode);
 674        if (err == 0)
 675                rdev->desc->ops->set_mode(rdev, mode);
 676}
 677
 678static int suspend_set_state(struct regulator_dev *rdev,
 679        struct regulator_state *rstate)
 680{
 681        int ret = 0;
 682        bool can_set_state;
 683
 684        can_set_state = rdev->desc->ops->set_suspend_enable &&
 685                rdev->desc->ops->set_suspend_disable;
 686
 687        /* If we have no suspend mode configration don't set anything;
 688         * only warn if the driver actually makes the suspend mode
 689         * configurable.
 690         */
 691        if (!rstate->enabled && !rstate->disabled) {
 692                if (can_set_state)
 693                        rdev_warn(rdev, "No configuration\n");
 694                return 0;
 695        }
 696
 697        if (rstate->enabled && rstate->disabled) {
 698                rdev_err(rdev, "invalid configuration\n");
 699                return -EINVAL;
 700        }
 701
 702        if (!can_set_state) {
 703                rdev_err(rdev, "no way to set suspend state\n");
 704                return -EINVAL;
 705        }
 706
 707        if (rstate->enabled)
 708                ret = rdev->desc->ops->set_suspend_enable(rdev);
 709        else
 710                ret = rdev->desc->ops->set_suspend_disable(rdev);
 711        if (ret < 0) {
 712                rdev_err(rdev, "failed to enabled/disable\n");
 713                return ret;
 714        }
 715
 716        if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
 717                ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
 718                if (ret < 0) {
 719                        rdev_err(rdev, "failed to set voltage\n");
 720                        return ret;
 721                }
 722        }
 723
 724        if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
 725                ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
 726                if (ret < 0) {
 727                        rdev_err(rdev, "failed to set mode\n");
 728                        return ret;
 729                }
 730        }
 731        return ret;
 732}
 733
 734/* locks held by caller */
 735static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
 736{
 737        if (!rdev->constraints)
 738                return -EINVAL;
 739
 740        switch (state) {
 741        case PM_SUSPEND_STANDBY:
 742                return suspend_set_state(rdev,
 743                        &rdev->constraints->state_standby);
 744        case PM_SUSPEND_MEM:
 745                return suspend_set_state(rdev,
 746                        &rdev->constraints->state_mem);
 747        case PM_SUSPEND_MAX:
 748                return suspend_set_state(rdev,
 749                        &rdev->constraints->state_disk);
 750        default:
 751                return -EINVAL;
 752        }
 753}
 754
 755static void print_constraints(struct regulator_dev *rdev)
 756{
 757        struct regulation_constraints *constraints = rdev->constraints;
 758        char buf[80] = "";
 759        int count = 0;
 760        int ret;
 761
 762        if (constraints->min_uV && constraints->max_uV) {
 763                if (constraints->min_uV == constraints->max_uV)
 764                        count += sprintf(buf + count, "%d mV ",
 765                                         constraints->min_uV / 1000);
 766                else
 767                        count += sprintf(buf + count, "%d <--> %d mV ",
 768                                         constraints->min_uV / 1000,
 769                                         constraints->max_uV / 1000);
 770        }
 771
 772        if (!constraints->min_uV ||
 773            constraints->min_uV != constraints->max_uV) {
 774                ret = _regulator_get_voltage(rdev);
 775                if (ret > 0)
 776                        count += sprintf(buf + count, "at %d mV ", ret / 1000);
 777        }
 778
 779        if (constraints->uV_offset)
 780                count += sprintf(buf, "%dmV offset ",
 781                                 constraints->uV_offset / 1000);
 782
 783        if (constraints->min_uA && constraints->max_uA) {
 784                if (constraints->min_uA == constraints->max_uA)
 785                        count += sprintf(buf + count, "%d mA ",
 786                                         constraints->min_uA / 1000);
 787                else
 788                        count += sprintf(buf + count, "%d <--> %d mA ",
 789                                         constraints->min_uA / 1000,
 790                                         constraints->max_uA / 1000);
 791        }
 792
 793        if (!constraints->min_uA ||
 794            constraints->min_uA != constraints->max_uA) {
 795                ret = _regulator_get_current_limit(rdev);
 796                if (ret > 0)
 797                        count += sprintf(buf + count, "at %d mA ", ret / 1000);
 798        }
 799
 800        if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
 801                count += sprintf(buf + count, "fast ");
 802        if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
 803                count += sprintf(buf + count, "normal ");
 804        if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
 805                count += sprintf(buf + count, "idle ");
 806        if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
 807                count += sprintf(buf + count, "standby");
 808
 809        rdev_info(rdev, "%s\n", buf);
 810}
 811
 812static int machine_constraints_voltage(struct regulator_dev *rdev,
 813        struct regulation_constraints *constraints)
 814{
 815        struct regulator_ops *ops = rdev->desc->ops;
 816        int ret;
 817
 818        /* do we need to apply the constraint voltage */
 819        if (rdev->constraints->apply_uV &&
 820            rdev->constraints->min_uV == rdev->constraints->max_uV) {
 821                ret = _regulator_do_set_voltage(rdev,
 822                                                rdev->constraints->min_uV,
 823                                                rdev->constraints->max_uV);
 824                if (ret < 0) {
 825                        rdev_err(rdev, "failed to apply %duV constraint\n",
 826                                 rdev->constraints->min_uV);
 827                        return ret;
 828                }
 829        }
 830
 831        /* constrain machine-level voltage specs to fit
 832         * the actual range supported by this regulator.
 833         */
 834        if (ops->list_voltage && rdev->desc->n_voltages) {
 835                int     count = rdev->desc->n_voltages;
 836                int     i;
 837                int     min_uV = INT_MAX;
 838                int     max_uV = INT_MIN;
 839                int     cmin = constraints->min_uV;
 840                int     cmax = constraints->max_uV;
 841
 842                /* it's safe to autoconfigure fixed-voltage supplies
 843                   and the constraints are used by list_voltage. */
 844                if (count == 1 && !cmin) {
 845                        cmin = 1;
 846                        cmax = INT_MAX;
 847                        constraints->min_uV = cmin;
 848                        constraints->max_uV = cmax;
 849                }
 850
 851                /* voltage constraints are optional */
 852                if ((cmin == 0) && (cmax == 0))
 853                        return 0;
 854
 855                /* else require explicit machine-level constraints */
 856                if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
 857                        rdev_err(rdev, "invalid voltage constraints\n");
 858                        return -EINVAL;
 859                }
 860
 861                /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
 862                for (i = 0; i < count; i++) {
 863                        int     value;
 864
 865                        value = ops->list_voltage(rdev, i);
 866                        if (value <= 0)
 867                                continue;
 868
 869                        /* maybe adjust [min_uV..max_uV] */
 870                        if (value >= cmin && value < min_uV)
 871                                min_uV = value;
 872                        if (value <= cmax && value > max_uV)
 873                                max_uV = value;
 874                }
 875
 876                /* final: [min_uV..max_uV] valid iff constraints valid */
 877                if (max_uV < min_uV) {
 878                        rdev_err(rdev, "unsupportable voltage constraints\n");
 879                        return -EINVAL;
 880                }
 881
 882                /* use regulator's subset of machine constraints */
 883                if (constraints->min_uV < min_uV) {
 884                        rdev_dbg(rdev, "override min_uV, %d -> %d\n",
 885                                 constraints->min_uV, min_uV);
 886                        constraints->min_uV = min_uV;
 887                }
 888                if (constraints->max_uV > max_uV) {
 889                        rdev_dbg(rdev, "override max_uV, %d -> %d\n",
 890                                 constraints->max_uV, max_uV);
 891                        constraints->max_uV = max_uV;
 892                }
 893        }
 894
 895        return 0;
 896}
 897
 898/**
 899 * set_machine_constraints - sets regulator constraints
 900 * @rdev: regulator source
 901 * @constraints: constraints to apply
 902 *
 903 * Allows platform initialisation code to define and constrain
 904 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 905 * Constraints *must* be set by platform code in order for some
 906 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 907 * set_mode.
 908 */
 909static int set_machine_constraints(struct regulator_dev *rdev,
 910        const struct regulation_constraints *constraints)
 911{
 912        int ret = 0;
 913        struct regulator_ops *ops = rdev->desc->ops;
 914
 915        if (constraints)
 916                rdev->constraints = kmemdup(constraints, sizeof(*constraints),
 917                                            GFP_KERNEL);
 918        else
 919                rdev->constraints = kzalloc(sizeof(*constraints),
 920                                            GFP_KERNEL);
 921        if (!rdev->constraints)
 922                return -ENOMEM;
 923
 924        ret = machine_constraints_voltage(rdev, rdev->constraints);
 925        if (ret != 0)
 926                goto out;
 927
 928        /* do we need to setup our suspend state */
 929        if (rdev->constraints->initial_state) {
 930                ret = suspend_prepare(rdev, rdev->constraints->initial_state);
 931                if (ret < 0) {
 932                        rdev_err(rdev, "failed to set suspend state\n");
 933                        goto out;
 934                }
 935        }
 936
 937        if (rdev->constraints->initial_mode) {
 938                if (!ops->set_mode) {
 939                        rdev_err(rdev, "no set_mode operation\n");
 940                        ret = -EINVAL;
 941                        goto out;
 942                }
 943
 944                ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
 945                if (ret < 0) {
 946                        rdev_err(rdev, "failed to set initial mode: %d\n", ret);
 947                        goto out;
 948                }
 949        }
 950
 951        /* If the constraints say the regulator should be on at this point
 952         * and we have control then make sure it is enabled.
 953         */
 954        if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
 955            ops->enable) {
 956                ret = ops->enable(rdev);
 957                if (ret < 0) {
 958                        rdev_err(rdev, "failed to enable\n");
 959                        goto out;
 960                }
 961        }
 962
 963        print_constraints(rdev);
 964        return 0;
 965out:
 966        kfree(rdev->constraints);
 967        rdev->constraints = NULL;
 968        return ret;
 969}
 970
 971/**
 972 * set_supply - set regulator supply regulator
 973 * @rdev: regulator name
 974 * @supply_rdev: supply regulator name
 975 *
 976 * Called by platform initialisation code to set the supply regulator for this
 977 * regulator. This ensures that a regulators supply will also be enabled by the
 978 * core if it's child is enabled.
 979 */
 980static int set_supply(struct regulator_dev *rdev,
 981                      struct regulator_dev *supply_rdev)
 982{
 983        int err;
 984
 985        rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
 986
 987        rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
 988        if (rdev->supply == NULL) {
 989                err = -ENOMEM;
 990                return err;
 991        }
 992
 993        return 0;
 994}
 995
 996/**
 997 * set_consumer_device_supply - Bind a regulator to a symbolic supply
 998 * @rdev:         regulator source
 999 * @consumer_dev: device the supply applies to
1000 * @consumer_dev_name: dev_name() string for device supply applies to
1001 * @supply:       symbolic name for supply
1002 *
1003 * Allows platform initialisation code to map physical regulator
1004 * sources to symbolic names for supplies for use by devices.  Devices
1005 * should use these symbolic names to request regulators, avoiding the
1006 * need to provide board-specific regulator names as platform data.
1007 *
1008 * Only one of consumer_dev and consumer_dev_name may be specified.
1009 */
1010static int set_consumer_device_supply(struct regulator_dev *rdev,
1011        struct device *consumer_dev, const char *consumer_dev_name,
1012        const char *supply)
1013{
1014        struct regulator_map *node;
1015        int has_dev;
1016
1017        if (consumer_dev && consumer_dev_name)
1018                return -EINVAL;
1019
1020        if (!consumer_dev_name && consumer_dev)
1021                consumer_dev_name = dev_name(consumer_dev);
1022
1023        if (supply == NULL)
1024                return -EINVAL;
1025
1026        if (consumer_dev_name != NULL)
1027                has_dev = 1;
1028        else
1029                has_dev = 0;
1030
1031        list_for_each_entry(node, &regulator_map_list, list) {
1032                if (node->dev_name && consumer_dev_name) {
1033                        if (strcmp(node->dev_name, consumer_dev_name) != 0)
1034                                continue;
1035                } else if (node->dev_name || consumer_dev_name) {
1036                        continue;
1037                }
1038
1039                if (strcmp(node->supply, supply) != 0)
1040                        continue;
1041
1042                dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
1043                        dev_name(&node->regulator->dev),
1044                        node->regulator->desc->name,
1045                        supply,
1046                        dev_name(&rdev->dev), rdev_get_name(rdev));
1047                return -EBUSY;
1048        }
1049
1050        node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1051        if (node == NULL)
1052                return -ENOMEM;
1053
1054        node->regulator = rdev;
1055        node->supply = supply;
1056
1057        if (has_dev) {
1058                node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1059                if (node->dev_name == NULL) {
1060                        kfree(node);
1061                        return -ENOMEM;
1062                }
1063        }
1064
1065        list_add(&node->list, &regulator_map_list);
1066        return 0;
1067}
1068
1069static void unset_regulator_supplies(struct regulator_dev *rdev)
1070{
1071        struct regulator_map *node, *n;
1072
1073        list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1074                if (rdev == node->regulator) {
1075                        list_del(&node->list);
1076                        kfree(node->dev_name);
1077                        kfree(node);
1078                }
1079        }
1080}
1081
1082#define REG_STR_SIZE    64
1083
1084static struct regulator *create_regulator(struct regulator_dev *rdev,
1085                                          struct device *dev,
1086                                          const char *supply_name)
1087{
1088        struct regulator *regulator;
1089        char buf[REG_STR_SIZE];
1090        int err, size;
1091
1092        regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1093        if (regulator == NULL)
1094                return NULL;
1095
1096        mutex_lock(&rdev->mutex);
1097        regulator->rdev = rdev;
1098        list_add(&regulator->list, &rdev->consumer_list);
1099
1100        if (dev) {
1101                /* create a 'requested_microamps_name' sysfs entry */
1102                size = scnprintf(buf, REG_STR_SIZE,
1103                                 "microamps_requested_%s-%s",
1104                                 dev_name(dev), supply_name);
1105                if (size >= REG_STR_SIZE)
1106                        goto overflow_err;
1107
1108                regulator->dev = dev;
1109                sysfs_attr_init(&regulator->dev_attr.attr);
1110                regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1111                if (regulator->dev_attr.attr.name == NULL)
1112                        goto attr_name_err;
1113
1114                regulator->dev_attr.attr.mode = 0444;
1115                regulator->dev_attr.show = device_requested_uA_show;
1116                err = device_create_file(dev, &regulator->dev_attr);
1117                if (err < 0) {
1118                        rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1119                        goto attr_name_err;
1120                }
1121
1122                /* also add a link to the device sysfs entry */
1123                size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1124                                 dev->kobj.name, supply_name);
1125                if (size >= REG_STR_SIZE)
1126                        goto attr_err;
1127
1128                regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1129                if (regulator->supply_name == NULL)
1130                        goto attr_err;
1131
1132                err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1133                                        buf);
1134                if (err) {
1135                        rdev_warn(rdev, "could not add device link %s err %d\n",
1136                                  dev->kobj.name, err);
1137                        goto link_name_err;
1138                }
1139        } else {
1140                regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1141                if (regulator->supply_name == NULL)
1142                        goto attr_err;
1143        }
1144
1145#ifdef CONFIG_DEBUG_FS
1146        regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1147                                                rdev->debugfs);
1148        if (IS_ERR_OR_NULL(regulator->debugfs)) {
1149                rdev_warn(rdev, "Failed to create debugfs directory\n");
1150                regulator->debugfs = NULL;
1151        } else {
1152                debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1153                                   &regulator->uA_load);
1154                debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1155                                   &regulator->min_uV);
1156                debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1157                                   &regulator->max_uV);
1158        }
1159#endif
1160
1161        mutex_unlock(&rdev->mutex);
1162        return regulator;
1163link_name_err:
1164        kfree(regulator->supply_name);
1165attr_err:
1166        device_remove_file(regulator->dev, &regulator->dev_attr);
1167attr_name_err:
1168        kfree(regulator->dev_attr.attr.name);
1169overflow_err:
1170        list_del(&regulator->list);
1171        kfree(regulator);
1172        mutex_unlock(&rdev->mutex);
1173        return NULL;
1174}
1175
1176static int _regulator_get_enable_time(struct regulator_dev *rdev)
1177{
1178        if (!rdev->desc->ops->enable_time)
1179                return 0;
1180        return rdev->desc->ops->enable_time(rdev);
1181}
1182
1183static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1184                                                         const char *supply)
1185{
1186        struct regulator_dev *r;
1187        struct device_node *node;
1188
1189        /* first do a dt based lookup */
1190        if (dev && dev->of_node) {
1191                node = of_get_regulator(dev, supply);
1192                if (node)
1193                        list_for_each_entry(r, &regulator_list, list)
1194                                if (r->dev.parent &&
1195                                        node == r->dev.of_node)
1196                                        return r;
1197        }
1198
1199        /* if not found, try doing it non-dt way */
1200        list_for_each_entry(r, &regulator_list, list)
1201                if (strcmp(rdev_get_name(r), supply) == 0)
1202                        return r;
1203
1204        return NULL;
1205}
1206
1207/* Internal regulator request function */
1208static struct regulator *_regulator_get(struct device *dev, const char *id,
1209                                        int exclusive)
1210{
1211        struct regulator_dev *rdev;
1212        struct regulator_map *map;
1213        struct regulator *regulator = ERR_PTR(-ENODEV);
1214        const char *devname = NULL;
1215        int ret;
1216
1217        if (id == NULL) {
1218                pr_err("get() with no identifier\n");
1219                return regulator;
1220        }
1221
1222        if (dev)
1223                devname = dev_name(dev);
1224
1225        mutex_lock(&regulator_list_mutex);
1226
1227        rdev = regulator_dev_lookup(dev, id);
1228        if (rdev)
1229                goto found;
1230
1231        list_for_each_entry(map, &regulator_map_list, list) {
1232                /* If the mapping has a device set up it must match */
1233                if (map->dev_name &&
1234                    (!devname || strcmp(map->dev_name, devname)))
1235                        continue;
1236
1237                if (strcmp(map->supply, id) == 0) {
1238                        rdev = map->regulator;
1239                        goto found;
1240                }
1241        }
1242
1243        if (board_wants_dummy_regulator) {
1244                rdev = dummy_regulator_rdev;
1245                goto found;
1246        }
1247
1248#ifdef CONFIG_REGULATOR_DUMMY
1249        if (!devname)
1250                devname = "deviceless";
1251
1252        /* If the board didn't flag that it was fully constrained then
1253         * substitute in a dummy regulator so consumers can continue.
1254         */
1255        if (!has_full_constraints) {
1256                pr_warn("%s supply %s not found, using dummy regulator\n",
1257                        devname, id);
1258                rdev = dummy_regulator_rdev;
1259                goto found;
1260        }
1261#endif
1262
1263        mutex_unlock(&regulator_list_mutex);
1264        return regulator;
1265
1266found:
1267        if (rdev->exclusive) {
1268                regulator = ERR_PTR(-EPERM);
1269                goto out;
1270        }
1271
1272        if (exclusive && rdev->open_count) {
1273                regulator = ERR_PTR(-EBUSY);
1274                goto out;
1275        }
1276
1277        if (!try_module_get(rdev->owner))
1278                goto out;
1279
1280        regulator = create_regulator(rdev, dev, id);
1281        if (regulator == NULL) {
1282                regulator = ERR_PTR(-ENOMEM);
1283                module_put(rdev->owner);
1284                goto out;
1285        }
1286
1287        rdev->open_count++;
1288        if (exclusive) {
1289                rdev->exclusive = 1;
1290
1291                ret = _regulator_is_enabled(rdev);
1292                if (ret > 0)
1293                        rdev->use_count = 1;
1294                else
1295                        rdev->use_count = 0;
1296        }
1297
1298out:
1299        mutex_unlock(&regulator_list_mutex);
1300
1301        return regulator;
1302}
1303
1304/**
1305 * regulator_get - lookup and obtain a reference to a regulator.
1306 * @dev: device for regulator "consumer"
1307 * @id: Supply name or regulator ID.
1308 *
1309 * Returns a struct regulator corresponding to the regulator producer,
1310 * or IS_ERR() condition containing errno.
1311 *
1312 * Use of supply names configured via regulator_set_device_supply() is
1313 * strongly encouraged.  It is recommended that the supply name used
1314 * should match the name used for the supply and/or the relevant
1315 * device pins in the datasheet.
1316 */
1317struct regulator *regulator_get(struct device *dev, const char *id)
1318{
1319        return _regulator_get(dev, id, 0);
1320}
1321EXPORT_SYMBOL_GPL(regulator_get);
1322
1323/**
1324 * regulator_get_exclusive - obtain exclusive access to a regulator.
1325 * @dev: device for regulator "consumer"
1326 * @id: Supply name or regulator ID.
1327 *
1328 * Returns a struct regulator corresponding to the regulator producer,
1329 * or IS_ERR() condition containing errno.  Other consumers will be
1330 * unable to obtain this reference is held and the use count for the
1331 * regulator will be initialised to reflect the current state of the
1332 * regulator.
1333 *
1334 * This is intended for use by consumers which cannot tolerate shared
1335 * use of the regulator such as those which need to force the
1336 * regulator off for correct operation of the hardware they are
1337 * controlling.
1338 *
1339 * Use of supply names configured via regulator_set_device_supply() is
1340 * strongly encouraged.  It is recommended that the supply name used
1341 * should match the name used for the supply and/or the relevant
1342 * device pins in the datasheet.
1343 */
1344struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1345{
1346        return _regulator_get(dev, id, 1);
1347}
1348EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1349
1350/**
1351 * regulator_put - "free" the regulator source
1352 * @regulator: regulator source
1353 *
1354 * Note: drivers must ensure that all regulator_enable calls made on this
1355 * regulator source are balanced by regulator_disable calls prior to calling
1356 * this function.
1357 */
1358void regulator_put(struct regulator *regulator)
1359{
1360        struct regulator_dev *rdev;
1361
1362        if (regulator == NULL || IS_ERR(regulator))
1363                return;
1364
1365        mutex_lock(&regulator_list_mutex);
1366        rdev = regulator->rdev;
1367
1368#ifdef CONFIG_DEBUG_FS
1369        debugfs_remove_recursive(regulator->debugfs);
1370#endif
1371
1372        /* remove any sysfs entries */
1373        if (regulator->dev) {
1374                sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1375                device_remove_file(regulator->dev, &regulator->dev_attr);
1376                kfree(regulator->dev_attr.attr.name);
1377        }
1378        kfree(regulator->supply_name);
1379        list_del(&regulator->list);
1380        kfree(regulator);
1381
1382        rdev->open_count--;
1383        rdev->exclusive = 0;
1384
1385        module_put(rdev->owner);
1386        mutex_unlock(&regulator_list_mutex);
1387}
1388EXPORT_SYMBOL_GPL(regulator_put);
1389
1390static int _regulator_can_change_status(struct regulator_dev *rdev)
1391{
1392        if (!rdev->constraints)
1393                return 0;
1394
1395        if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1396                return 1;
1397        else
1398                return 0;
1399}
1400
1401/* locks held by regulator_enable() */
1402static int _regulator_enable(struct regulator_dev *rdev)
1403{
1404        int ret, delay;
1405
1406        /* check voltage and requested load before enabling */
1407        if (rdev->constraints &&
1408            (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1409                drms_uA_update(rdev);
1410
1411        if (rdev->use_count == 0) {
1412                /* The regulator may on if it's not switchable or left on */
1413                ret = _regulator_is_enabled(rdev);
1414                if (ret == -EINVAL || ret == 0) {
1415                        if (!_regulator_can_change_status(rdev))
1416                                return -EPERM;
1417
1418                        if (!rdev->desc->ops->enable)
1419                                return -EINVAL;
1420
1421                        /* Query before enabling in case configuration
1422                         * dependent.  */
1423                        ret = _regulator_get_enable_time(rdev);
1424                        if (ret >= 0) {
1425                                delay = ret;
1426                        } else {
1427                                rdev_warn(rdev, "enable_time() failed: %d\n",
1428                                           ret);
1429                                delay = 0;
1430                        }
1431
1432                        trace_regulator_enable(rdev_get_name(rdev));
1433
1434                        /* Allow the regulator to ramp; it would be useful
1435                         * to extend this for bulk operations so that the
1436                         * regulators can ramp together.  */
1437                        ret = rdev->desc->ops->enable(rdev);
1438                        if (ret < 0)
1439                                return ret;
1440
1441                        trace_regulator_enable_delay(rdev_get_name(rdev));
1442
1443                        if (delay >= 1000) {
1444                                mdelay(delay / 1000);
1445                                udelay(delay % 1000);
1446                        } else if (delay) {
1447                                udelay(delay);
1448                        }
1449
1450                        trace_regulator_enable_complete(rdev_get_name(rdev));
1451
1452                } else if (ret < 0) {
1453                        rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1454                        return ret;
1455                }
1456                /* Fallthrough on positive return values - already enabled */
1457        }
1458
1459        rdev->use_count++;
1460
1461        return 0;
1462}
1463
1464/**
1465 * regulator_enable - enable regulator output
1466 * @regulator: regulator source
1467 *
1468 * Request that the regulator be enabled with the regulator output at
1469 * the predefined voltage or current value.  Calls to regulator_enable()
1470 * must be balanced with calls to regulator_disable().
1471 *
1472 * NOTE: the output value can be set by other drivers, boot loader or may be
1473 * hardwired in the regulator.
1474 */
1475int regulator_enable(struct regulator *regulator)
1476{
1477        struct regulator_dev *rdev = regulator->rdev;
1478        int ret = 0;
1479
1480        if (rdev->supply) {
1481                ret = regulator_enable(rdev->supply);
1482                if (ret != 0)
1483                        return ret;
1484        }
1485
1486        mutex_lock(&rdev->mutex);
1487        ret = _regulator_enable(rdev);
1488        mutex_unlock(&rdev->mutex);
1489
1490        if (ret != 0 && rdev->supply)
1491                regulator_disable(rdev->supply);
1492
1493        return ret;
1494}
1495EXPORT_SYMBOL_GPL(regulator_enable);
1496
1497/* locks held by regulator_disable() */
1498static int _regulator_disable(struct regulator_dev *rdev)
1499{
1500        int ret = 0;
1501
1502        if (WARN(rdev->use_count <= 0,
1503                 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1504                return -EIO;
1505
1506        /* are we the last user and permitted to disable ? */
1507        if (rdev->use_count == 1 &&
1508            (rdev->constraints && !rdev->constraints->always_on)) {
1509
1510                /* we are last user */
1511                if (_regulator_can_change_status(rdev) &&
1512                    rdev->desc->ops->disable) {
1513                        trace_regulator_disable(rdev_get_name(rdev));
1514
1515                        ret = rdev->desc->ops->disable(rdev);
1516                        if (ret < 0) {
1517                                rdev_err(rdev, "failed to disable\n");
1518                                return ret;
1519                        }
1520
1521                        trace_regulator_disable_complete(rdev_get_name(rdev));
1522
1523                        _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1524                                             NULL);
1525                }
1526
1527                rdev->use_count = 0;
1528        } else if (rdev->use_count > 1) {
1529
1530                if (rdev->constraints &&
1531                        (rdev->constraints->valid_ops_mask &
1532                        REGULATOR_CHANGE_DRMS))
1533                        drms_uA_update(rdev);
1534
1535                rdev->use_count--;
1536        }
1537
1538        return ret;
1539}
1540
1541/**
1542 * regulator_disable - disable regulator output
1543 * @regulator: regulator source
1544 *
1545 * Disable the regulator output voltage or current.  Calls to
1546 * regulator_enable() must be balanced with calls to
1547 * regulator_disable().
1548 *
1549 * NOTE: this will only disable the regulator output if no other consumer
1550 * devices have it enabled, the regulator device supports disabling and
1551 * machine constraints permit this operation.
1552 */
1553int regulator_disable(struct regulator *regulator)
1554{
1555        struct regulator_dev *rdev = regulator->rdev;
1556        int ret = 0;
1557
1558        mutex_lock(&rdev->mutex);
1559        ret = _regulator_disable(rdev);
1560        mutex_unlock(&rdev->mutex);
1561
1562        if (ret == 0 && rdev->supply)
1563                regulator_disable(rdev->supply);
1564
1565        return ret;
1566}
1567EXPORT_SYMBOL_GPL(regulator_disable);
1568
1569/* locks held by regulator_force_disable() */
1570static int _regulator_force_disable(struct regulator_dev *rdev)
1571{
1572        int ret = 0;
1573
1574        /* force disable */
1575        if (rdev->desc->ops->disable) {
1576                /* ah well, who wants to live forever... */
1577                ret = rdev->desc->ops->disable(rdev);
1578                if (ret < 0) {
1579                        rdev_err(rdev, "failed to force disable\n");
1580                        return ret;
1581                }
1582                /* notify other consumers that power has been forced off */
1583                _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1584                        REGULATOR_EVENT_DISABLE, NULL);
1585        }
1586
1587        return ret;
1588}
1589
1590/**
1591 * regulator_force_disable - force disable regulator output
1592 * @regulator: regulator source
1593 *
1594 * Forcibly disable the regulator output voltage or current.
1595 * NOTE: this *will* disable the regulator output even if other consumer
1596 * devices have it enabled. This should be used for situations when device
1597 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1598 */
1599int regulator_force_disable(struct regulator *regulator)
1600{
1601        struct regulator_dev *rdev = regulator->rdev;
1602        int ret;
1603
1604        mutex_lock(&rdev->mutex);
1605        regulator->uA_load = 0;
1606        ret = _regulator_force_disable(regulator->rdev);
1607        mutex_unlock(&rdev->mutex);
1608
1609        if (rdev->supply)
1610                while (rdev->open_count--)
1611                        regulator_disable(rdev->supply);
1612
1613        return ret;
1614}
1615EXPORT_SYMBOL_GPL(regulator_force_disable);
1616
1617static void regulator_disable_work(struct work_struct *work)
1618{
1619        struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1620                                                  disable_work.work);
1621        int count, i, ret;
1622
1623        mutex_lock(&rdev->mutex);
1624
1625        BUG_ON(!rdev->deferred_disables);
1626
1627        count = rdev->deferred_disables;
1628        rdev->deferred_disables = 0;
1629
1630        for (i = 0; i < count; i++) {
1631                ret = _regulator_disable(rdev);
1632                if (ret != 0)
1633                        rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1634        }
1635
1636        mutex_unlock(&rdev->mutex);
1637
1638        if (rdev->supply) {
1639                for (i = 0; i < count; i++) {
1640                        ret = regulator_disable(rdev->supply);
1641                        if (ret != 0) {
1642                                rdev_err(rdev,
1643                                         "Supply disable failed: %d\n", ret);
1644                        }
1645                }
1646        }
1647}
1648
1649/**
1650 * regulator_disable_deferred - disable regulator output with delay
1651 * @regulator: regulator source
1652 * @ms: miliseconds until the regulator is disabled
1653 *
1654 * Execute regulator_disable() on the regulator after a delay.  This
1655 * is intended for use with devices that require some time to quiesce.
1656 *
1657 * NOTE: this will only disable the regulator output if no other consumer
1658 * devices have it enabled, the regulator device supports disabling and
1659 * machine constraints permit this operation.
1660 */
1661int regulator_disable_deferred(struct regulator *regulator, int ms)
1662{
1663        struct regulator_dev *rdev = regulator->rdev;
1664        int ret;
1665
1666        mutex_lock(&rdev->mutex);
1667        rdev->deferred_disables++;
1668        mutex_unlock(&rdev->mutex);
1669
1670        ret = schedule_delayed_work(&rdev->disable_work,
1671                                    msecs_to_jiffies(ms));
1672        if (ret < 0)
1673                return ret;
1674        else
1675                return 0;
1676}
1677EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1678
1679static int _regulator_is_enabled(struct regulator_dev *rdev)
1680{
1681        /* If we don't know then assume that the regulator is always on */
1682        if (!rdev->desc->ops->is_enabled)
1683                return 1;
1684
1685        return rdev->desc->ops->is_enabled(rdev);
1686}
1687
1688/**
1689 * regulator_is_enabled - is the regulator output enabled
1690 * @regulator: regulator source
1691 *
1692 * Returns positive if the regulator driver backing the source/client
1693 * has requested that the device be enabled, zero if it hasn't, else a
1694 * negative errno code.
1695 *
1696 * Note that the device backing this regulator handle can have multiple
1697 * users, so it might be enabled even if regulator_enable() was never
1698 * called for this particular source.
1699 */
1700int regulator_is_enabled(struct regulator *regulator)
1701{
1702        int ret;
1703
1704        mutex_lock(&regulator->rdev->mutex);
1705        ret = _regulator_is_enabled(regulator->rdev);
1706        mutex_unlock(&regulator->rdev->mutex);
1707
1708        return ret;
1709}
1710EXPORT_SYMBOL_GPL(regulator_is_enabled);
1711
1712/**
1713 * regulator_count_voltages - count regulator_list_voltage() selectors
1714 * @regulator: regulator source
1715 *
1716 * Returns number of selectors, or negative errno.  Selectors are
1717 * numbered starting at zero, and typically correspond to bitfields
1718 * in hardware registers.
1719 */
1720int regulator_count_voltages(struct regulator *regulator)
1721{
1722        struct regulator_dev    *rdev = regulator->rdev;
1723
1724        return rdev->desc->n_voltages ? : -EINVAL;
1725}
1726EXPORT_SYMBOL_GPL(regulator_count_voltages);
1727
1728/**
1729 * regulator_list_voltage - enumerate supported voltages
1730 * @regulator: regulator source
1731 * @selector: identify voltage to list
1732 * Context: can sleep
1733 *
1734 * Returns a voltage that can be passed to @regulator_set_voltage(),
1735 * zero if this selector code can't be used on this system, or a
1736 * negative errno.
1737 */
1738int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1739{
1740        struct regulator_dev    *rdev = regulator->rdev;
1741        struct regulator_ops    *ops = rdev->desc->ops;
1742        int                     ret;
1743
1744        if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1745                return -EINVAL;
1746
1747        mutex_lock(&rdev->mutex);
1748        ret = ops->list_voltage(rdev, selector);
1749        mutex_unlock(&rdev->mutex);
1750
1751        if (ret > 0) {
1752                if (ret < rdev->constraints->min_uV)
1753                        ret = 0;
1754                else if (ret > rdev->constraints->max_uV)
1755                        ret = 0;
1756        }
1757
1758        return ret;
1759}
1760EXPORT_SYMBOL_GPL(regulator_list_voltage);
1761
1762/**
1763 * regulator_is_supported_voltage - check if a voltage range can be supported
1764 *
1765 * @regulator: Regulator to check.
1766 * @min_uV: Minimum required voltage in uV.
1767 * @max_uV: Maximum required voltage in uV.
1768 *
1769 * Returns a boolean or a negative error code.
1770 */
1771int regulator_is_supported_voltage(struct regulator *regulator,
1772                                   int min_uV, int max_uV)
1773{
1774        int i, voltages, ret;
1775
1776        ret = regulator_count_voltages(regulator);
1777        if (ret < 0)
1778                return ret;
1779        voltages = ret;
1780
1781        for (i = 0; i < voltages; i++) {
1782                ret = regulator_list_voltage(regulator, i);
1783
1784                if (ret >= min_uV && ret <= max_uV)
1785                        return 1;
1786        }
1787
1788        return 0;
1789}
1790EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1791
1792static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1793                                     int min_uV, int max_uV)
1794{
1795        int ret;
1796        int delay = 0;
1797        unsigned int selector;
1798
1799        trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1800
1801        min_uV += rdev->constraints->uV_offset;
1802        max_uV += rdev->constraints->uV_offset;
1803
1804        if (rdev->desc->ops->set_voltage) {
1805                ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1806                                                   &selector);
1807
1808                if (rdev->desc->ops->list_voltage)
1809                        selector = rdev->desc->ops->list_voltage(rdev,
1810                                                                 selector);
1811                else
1812                        selector = -1;
1813        } else if (rdev->desc->ops->set_voltage_sel) {
1814                int best_val = INT_MAX;
1815                int i;
1816
1817                selector = 0;
1818
1819                /* Find the smallest voltage that falls within the specified
1820                 * range.
1821                 */
1822                for (i = 0; i < rdev->desc->n_voltages; i++) {
1823                        ret = rdev->desc->ops->list_voltage(rdev, i);
1824                        if (ret < 0)
1825                                continue;
1826
1827                        if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1828                                best_val = ret;
1829                                selector = i;
1830                        }
1831                }
1832
1833                /*
1834                 * If we can't obtain the old selector there is not enough
1835                 * info to call set_voltage_time_sel().
1836                 */
1837                if (rdev->desc->ops->set_voltage_time_sel &&
1838                    rdev->desc->ops->get_voltage_sel) {
1839                        unsigned int old_selector = 0;
1840
1841                        ret = rdev->desc->ops->get_voltage_sel(rdev);
1842                        if (ret < 0)
1843                                return ret;
1844                        old_selector = ret;
1845                        delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1846                                                old_selector, selector);
1847                }
1848
1849                if (best_val != INT_MAX) {
1850                        ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1851                        selector = best_val;
1852                } else {
1853                        ret = -EINVAL;
1854                }
1855        } else {
1856                ret = -EINVAL;
1857        }
1858
1859        /* Insert any necessary delays */
1860        if (delay >= 1000) {
1861                mdelay(delay / 1000);
1862                udelay(delay % 1000);
1863        } else if (delay) {
1864                udelay(delay);
1865        }
1866
1867        if (ret == 0)
1868                _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1869                                     NULL);
1870
1871        trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1872
1873        return ret;
1874}
1875
1876/**
1877 * regulator_set_voltage - set regulator output voltage
1878 * @regulator: regulator source
1879 * @min_uV: Minimum required voltage in uV
1880 * @max_uV: Maximum acceptable voltage in uV
1881 *
1882 * Sets a voltage regulator to the desired output voltage. This can be set
1883 * during any regulator state. IOW, regulator can be disabled or enabled.
1884 *
1885 * If the regulator is enabled then the voltage will change to the new value
1886 * immediately otherwise if the regulator is disabled the regulator will
1887 * output at the new voltage when enabled.
1888 *
1889 * NOTE: If the regulator is shared between several devices then the lowest
1890 * request voltage that meets the system constraints will be used.
1891 * Regulator system constraints must be set for this regulator before
1892 * calling this function otherwise this call will fail.
1893 */
1894int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1895{
1896        struct regulator_dev *rdev = regulator->rdev;
1897        int ret = 0;
1898
1899        mutex_lock(&rdev->mutex);
1900
1901        /* If we're setting the same range as last time the change
1902         * should be a noop (some cpufreq implementations use the same
1903         * voltage for multiple frequencies, for example).
1904         */
1905        if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1906                goto out;
1907
1908        /* sanity check */
1909        if (!rdev->desc->ops->set_voltage &&
1910            !rdev->desc->ops->set_voltage_sel) {
1911                ret = -EINVAL;
1912                goto out;
1913        }
1914
1915        /* constraints check */
1916        ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1917        if (ret < 0)
1918                goto out;
1919        regulator->min_uV = min_uV;
1920        regulator->max_uV = max_uV;
1921
1922        ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1923        if (ret < 0)
1924                goto out;
1925
1926        ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1927
1928out:
1929        mutex_unlock(&rdev->mutex);
1930        return ret;
1931}
1932EXPORT_SYMBOL_GPL(regulator_set_voltage);
1933
1934/**
1935 * regulator_set_voltage_time - get raise/fall time
1936 * @regulator: regulator source
1937 * @old_uV: starting voltage in microvolts
1938 * @new_uV: target voltage in microvolts
1939 *
1940 * Provided with the starting and ending voltage, this function attempts to
1941 * calculate the time in microseconds required to rise or fall to this new
1942 * voltage.
1943 */
1944int regulator_set_voltage_time(struct regulator *regulator,
1945                               int old_uV, int new_uV)
1946{
1947        struct regulator_dev    *rdev = regulator->rdev;
1948        struct regulator_ops    *ops = rdev->desc->ops;
1949        int old_sel = -1;
1950        int new_sel = -1;
1951        int voltage;
1952        int i;
1953
1954        /* Currently requires operations to do this */
1955        if (!ops->list_voltage || !ops->set_voltage_time_sel
1956            || !rdev->desc->n_voltages)
1957                return -EINVAL;
1958
1959        for (i = 0; i < rdev->desc->n_voltages; i++) {
1960                /* We only look for exact voltage matches here */
1961                voltage = regulator_list_voltage(regulator, i);
1962                if (voltage < 0)
1963                        return -EINVAL;
1964                if (voltage == 0)
1965                        continue;
1966                if (voltage == old_uV)
1967                        old_sel = i;
1968                if (voltage == new_uV)
1969                        new_sel = i;
1970        }
1971
1972        if (old_sel < 0 || new_sel < 0)
1973                return -EINVAL;
1974
1975        return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1976}
1977EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1978
1979/**
1980 * regulator_sync_voltage - re-apply last regulator output voltage
1981 * @regulator: regulator source
1982 *
1983 * Re-apply the last configured voltage.  This is intended to be used
1984 * where some external control source the consumer is cooperating with
1985 * has caused the configured voltage to change.
1986 */
1987int regulator_sync_voltage(struct regulator *regulator)
1988{
1989        struct regulator_dev *rdev = regulator->rdev;
1990        int ret, min_uV, max_uV;
1991
1992        mutex_lock(&rdev->mutex);
1993
1994        if (!rdev->desc->ops->set_voltage &&
1995            !rdev->desc->ops->set_voltage_sel) {
1996                ret = -EINVAL;
1997                goto out;
1998        }
1999
2000        /* This is only going to work if we've had a voltage configured. */
2001        if (!regulator->min_uV && !regulator->max_uV) {
2002                ret = -EINVAL;
2003                goto out;
2004        }
2005
2006        min_uV = regulator->min_uV;
2007        max_uV = regulator->max_uV;
2008
2009        /* This should be a paranoia check... */
2010        ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2011        if (ret < 0)
2012                goto out;
2013
2014        ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2015        if (ret < 0)
2016                goto out;
2017
2018        ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2019
2020out:
2021        mutex_unlock(&rdev->mutex);
2022        return ret;
2023}
2024EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2025
2026static int _regulator_get_voltage(struct regulator_dev *rdev)
2027{
2028        int sel, ret;
2029
2030        if (rdev->desc->ops->get_voltage_sel) {
2031                sel = rdev->desc->ops->get_voltage_sel(rdev);
2032                if (sel < 0)
2033                        return sel;
2034                ret = rdev->desc->ops->list_voltage(rdev, sel);
2035        } else if (rdev->desc->ops->get_voltage) {
2036                ret = rdev->desc->ops->get_voltage(rdev);
2037        } else {
2038                return -EINVAL;
2039        }
2040
2041        if (ret < 0)
2042                return ret;
2043        return ret - rdev->constraints->uV_offset;
2044}
2045
2046/**
2047 * regulator_get_voltage - get regulator output voltage
2048 * @regulator: regulator source
2049 *
2050 * This returns the current regulator voltage in uV.
2051 *
2052 * NOTE: If the regulator is disabled it will return the voltage value. This
2053 * function should not be used to determine regulator state.
2054 */
2055int regulator_get_voltage(struct regulator *regulator)
2056{
2057        int ret;
2058
2059        mutex_lock(&regulator->rdev->mutex);
2060
2061        ret = _regulator_get_voltage(regulator->rdev);
2062
2063        mutex_unlock(&regulator->rdev->mutex);
2064
2065        return ret;
2066}
2067EXPORT_SYMBOL_GPL(regulator_get_voltage);
2068
2069/**
2070 * regulator_set_current_limit - set regulator output current limit
2071 * @regulator: regulator source
2072 * @min_uA: Minimuum supported current in uA
2073 * @max_uA: Maximum supported current in uA
2074 *
2075 * Sets current sink to the desired output current. This can be set during
2076 * any regulator state. IOW, regulator can be disabled or enabled.
2077 *
2078 * If the regulator is enabled then the current will change to the new value
2079 * immediately otherwise if the regulator is disabled the regulator will
2080 * output at the new current when enabled.
2081 *
2082 * NOTE: Regulator system constraints must be set for this regulator before
2083 * calling this function otherwise this call will fail.
2084 */
2085int regulator_set_current_limit(struct regulator *regulator,
2086                               int min_uA, int max_uA)
2087{
2088        struct regulator_dev *rdev = regulator->rdev;
2089        int ret;
2090
2091        mutex_lock(&rdev->mutex);
2092
2093        /* sanity check */
2094        if (!rdev->desc->ops->set_current_limit) {
2095                ret = -EINVAL;
2096                goto out;
2097        }
2098
2099        /* constraints check */
2100        ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2101        if (ret < 0)
2102                goto out;
2103
2104        ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2105out:
2106        mutex_unlock(&rdev->mutex);
2107        return ret;
2108}
2109EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2110
2111static int _regulator_get_current_limit(struct regulator_dev *rdev)
2112{
2113        int ret;
2114
2115        mutex_lock(&rdev->mutex);
2116
2117        /* sanity check */
2118        if (!rdev->desc->ops->get_current_limit) {
2119                ret = -EINVAL;
2120                goto out;
2121        }
2122
2123        ret = rdev->desc->ops->get_current_limit(rdev);
2124out:
2125        mutex_unlock(&rdev->mutex);
2126        return ret;
2127}
2128
2129/**
2130 * regulator_get_current_limit - get regulator output current
2131 * @regulator: regulator source
2132 *
2133 * This returns the current supplied by the specified current sink in uA.
2134 *
2135 * NOTE: If the regulator is disabled it will return the current value. This
2136 * function should not be used to determine regulator state.
2137 */
2138int regulator_get_current_limit(struct regulator *regulator)
2139{
2140        return _regulator_get_current_limit(regulator->rdev);
2141}
2142EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2143
2144/**
2145 * regulator_set_mode - set regulator operating mode
2146 * @regulator: regulator source
2147 * @mode: operating mode - one of the REGULATOR_MODE constants
2148 *
2149 * Set regulator operating mode to increase regulator efficiency or improve
2150 * regulation performance.
2151 *
2152 * NOTE: Regulator system constraints must be set for this regulator before
2153 * calling this function otherwise this call will fail.
2154 */
2155int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2156{
2157        struct regulator_dev *rdev = regulator->rdev;
2158        int ret;
2159        int regulator_curr_mode;
2160
2161        mutex_lock(&rdev->mutex);
2162
2163        /* sanity check */
2164        if (!rdev->desc->ops->set_mode) {
2165                ret = -EINVAL;
2166                goto out;
2167        }
2168
2169        /* return if the same mode is requested */
2170        if (rdev->desc->ops->get_mode) {
2171                regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2172                if (regulator_curr_mode == mode) {
2173                        ret = 0;
2174                        goto out;
2175                }
2176        }
2177
2178        /* constraints check */
2179        ret = regulator_mode_constrain(rdev, &mode);
2180        if (ret < 0)
2181                goto out;
2182
2183        ret = rdev->desc->ops->set_mode(rdev, mode);
2184out:
2185        mutex_unlock(&rdev->mutex);
2186        return ret;
2187}
2188EXPORT_SYMBOL_GPL(regulator_set_mode);
2189
2190static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2191{
2192        int ret;
2193
2194        mutex_lock(&rdev->mutex);
2195
2196        /* sanity check */
2197        if (!rdev->desc->ops->get_mode) {
2198                ret = -EINVAL;
2199                goto out;
2200        }
2201
2202        ret = rdev->desc->ops->get_mode(rdev);
2203out:
2204        mutex_unlock(&rdev->mutex);
2205        return ret;
2206}
2207
2208/**
2209 * regulator_get_mode - get regulator operating mode
2210 * @regulator: regulator source
2211 *
2212 * Get the current regulator operating mode.
2213 */
2214unsigned int regulator_get_mode(struct regulator *regulator)
2215{
2216        return _regulator_get_mode(regulator->rdev);
2217}
2218EXPORT_SYMBOL_GPL(regulator_get_mode);
2219
2220/**
2221 * regulator_set_optimum_mode - set regulator optimum operating mode
2222 * @regulator: regulator source
2223 * @uA_load: load current
2224 *
2225 * Notifies the regulator core of a new device load. This is then used by
2226 * DRMS (if enabled by constraints) to set the most efficient regulator
2227 * operating mode for the new regulator loading.
2228 *
2229 * Consumer devices notify their supply regulator of the maximum power
2230 * they will require (can be taken from device datasheet in the power
2231 * consumption tables) when they change operational status and hence power
2232 * state. Examples of operational state changes that can affect power
2233 * consumption are :-
2234 *
2235 *    o Device is opened / closed.
2236 *    o Device I/O is about to begin or has just finished.
2237 *    o Device is idling in between work.
2238 *
2239 * This information is also exported via sysfs to userspace.
2240 *
2241 * DRMS will sum the total requested load on the regulator and change
2242 * to the most efficient operating mode if platform constraints allow.
2243 *
2244 * Returns the new regulator mode or error.
2245 */
2246int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2247{
2248        struct regulator_dev *rdev = regulator->rdev;
2249        struct regulator *consumer;
2250        int ret, output_uV, input_uV, total_uA_load = 0;
2251        unsigned int mode;
2252
2253        mutex_lock(&rdev->mutex);
2254
2255        /*
2256         * first check to see if we can set modes at all, otherwise just
2257         * tell the consumer everything is OK.
2258         */
2259        regulator->uA_load = uA_load;
2260        ret = regulator_check_drms(rdev);
2261        if (ret < 0) {
2262                ret = 0;
2263                goto out;
2264        }
2265
2266        if (!rdev->desc->ops->get_optimum_mode)
2267                goto out;
2268
2269        /*
2270         * we can actually do this so any errors are indicators of
2271         * potential real failure.
2272         */
2273        ret = -EINVAL;
2274
2275        /* get output voltage */
2276        output_uV = _regulator_get_voltage(rdev);
2277        if (output_uV <= 0) {
2278                rdev_err(rdev, "invalid output voltage found\n");
2279                goto out;
2280        }
2281
2282        /* get input voltage */
2283        input_uV = 0;
2284        if (rdev->supply)
2285                input_uV = regulator_get_voltage(rdev->supply);
2286        if (input_uV <= 0)
2287                input_uV = rdev->constraints->input_uV;
2288        if (input_uV <= 0) {
2289                rdev_err(rdev, "invalid input voltage found\n");
2290                goto out;
2291        }
2292
2293        /* calc total requested load for this regulator */
2294        list_for_each_entry(consumer, &rdev->consumer_list, list)
2295                total_uA_load += consumer->uA_load;
2296
2297        mode = rdev->desc->ops->get_optimum_mode(rdev,
2298                                                 input_uV, output_uV,
2299                                                 total_uA_load);
2300        ret = regulator_mode_constrain(rdev, &mode);
2301        if (ret < 0) {
2302                rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2303                         total_uA_load, input_uV, output_uV);
2304                goto out;
2305        }
2306
2307        ret = rdev->desc->ops->set_mode(rdev, mode);
2308        if (ret < 0) {
2309                rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2310                goto out;
2311        }
2312        ret = mode;
2313out:
2314        mutex_unlock(&rdev->mutex);
2315        return ret;
2316}
2317EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2318
2319/**
2320 * regulator_register_notifier - register regulator event notifier
2321 * @regulator: regulator source
2322 * @nb: notifier block
2323 *
2324 * Register notifier block to receive regulator events.
2325 */
2326int regulator_register_notifier(struct regulator *regulator,
2327                              struct notifier_block *nb)
2328{
2329        return blocking_notifier_chain_register(&regulator->rdev->notifier,
2330                                                nb);
2331}
2332EXPORT_SYMBOL_GPL(regulator_register_notifier);
2333
2334/**
2335 * regulator_unregister_notifier - unregister regulator event notifier
2336 * @regulator: regulator source
2337 * @nb: notifier block
2338 *
2339 * Unregister regulator event notifier block.
2340 */
2341int regulator_unregister_notifier(struct regulator *regulator,
2342                                struct notifier_block *nb)
2343{
2344        return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2345                                                  nb);
2346}
2347EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2348
2349/* notify regulator consumers and downstream regulator consumers.
2350 * Note mutex must be held by caller.
2351 */
2352static void _notifier_call_chain(struct regulator_dev *rdev,
2353                                  unsigned long event, void *data)
2354{
2355        /* call rdev chain first */
2356        blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2357}
2358
2359/**
2360 * regulator_bulk_get - get multiple regulator consumers
2361 *
2362 * @dev:           Device to supply
2363 * @num_consumers: Number of consumers to register
2364 * @consumers:     Configuration of consumers; clients are stored here.
2365 *
2366 * @return 0 on success, an errno on failure.
2367 *
2368 * This helper function allows drivers to get several regulator
2369 * consumers in one operation.  If any of the regulators cannot be
2370 * acquired then any regulators that were allocated will be freed
2371 * before returning to the caller.
2372 */
2373int regulator_bulk_get(struct device *dev, int num_consumers,
2374                       struct regulator_bulk_data *consumers)
2375{
2376        int i;
2377        int ret;
2378
2379        for (i = 0; i < num_consumers; i++)
2380                consumers[i].consumer = NULL;
2381
2382        for (i = 0; i < num_consumers; i++) {
2383                consumers[i].consumer = regulator_get(dev,
2384                                                      consumers[i].supply);
2385                if (IS_ERR(consumers[i].consumer)) {
2386                        ret = PTR_ERR(consumers[i].consumer);
2387                        dev_err(dev, "Failed to get supply '%s': %d\n",
2388                                consumers[i].supply, ret);
2389                        consumers[i].consumer = NULL;
2390                        goto err;
2391                }
2392        }
2393
2394        return 0;
2395
2396err:
2397        for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2398                regulator_put(consumers[i].consumer);
2399
2400        return ret;
2401}
2402EXPORT_SYMBOL_GPL(regulator_bulk_get);
2403
2404static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2405{
2406        struct regulator_bulk_data *bulk = data;
2407
2408        bulk->ret = regulator_enable(bulk->consumer);
2409}
2410
2411/**
2412 * regulator_bulk_enable - enable multiple regulator consumers
2413 *
2414 * @num_consumers: Number of consumers
2415 * @consumers:     Consumer data; clients are stored here.
2416 * @return         0 on success, an errno on failure
2417 *
2418 * This convenience API allows consumers to enable multiple regulator
2419 * clients in a single API call.  If any consumers cannot be enabled
2420 * then any others that were enabled will be disabled again prior to
2421 * return.
2422 */
2423int regulator_bulk_enable(int num_consumers,
2424                          struct regulator_bulk_data *consumers)
2425{
2426        LIST_HEAD(async_domain);
2427        int i;
2428        int ret = 0;
2429
2430        for (i = 0; i < num_consumers; i++)
2431                async_schedule_domain(regulator_bulk_enable_async,
2432                                      &consumers[i], &async_domain);
2433
2434        async_synchronize_full_domain(&async_domain);
2435
2436        /* If any consumer failed we need to unwind any that succeeded */
2437        for (i = 0; i < num_consumers; i++) {
2438                if (consumers[i].ret != 0) {
2439                        ret = consumers[i].ret;
2440                        goto err;
2441                }
2442        }
2443
2444        return 0;
2445
2446err:
2447        for (i = 0; i < num_consumers; i++)
2448                if (consumers[i].ret == 0)
2449                        regulator_disable(consumers[i].consumer);
2450                else
2451                        pr_err("Failed to enable %s: %d\n",
2452                               consumers[i].supply, consumers[i].ret);
2453
2454        return ret;
2455}
2456EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2457
2458/**
2459 * regulator_bulk_disable - disable multiple regulator consumers
2460 *
2461 * @num_consumers: Number of consumers
2462 * @consumers:     Consumer data; clients are stored here.
2463 * @return         0 on success, an errno on failure
2464 *
2465 * This convenience API allows consumers to disable multiple regulator
2466 * clients in a single API call.  If any consumers cannot be enabled
2467 * then any others that were disabled will be disabled again prior to
2468 * return.
2469 */
2470int regulator_bulk_disable(int num_consumers,
2471                           struct regulator_bulk_data *consumers)
2472{
2473        int i;
2474        int ret;
2475
2476        for (i = 0; i < num_consumers; i++) {
2477                ret = regulator_disable(consumers[i].consumer);
2478                if (ret != 0)
2479                        goto err;
2480        }
2481
2482        return 0;
2483
2484err:
2485        pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2486        for (--i; i >= 0; --i)
2487                regulator_enable(consumers[i].consumer);
2488
2489        return ret;
2490}
2491EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2492
2493/**
2494 * regulator_bulk_force_disable - force disable multiple regulator consumers
2495 *
2496 * @num_consumers: Number of consumers
2497 * @consumers:     Consumer data; clients are stored here.
2498 * @return         0 on success, an errno on failure
2499 *
2500 * This convenience API allows consumers to forcibly disable multiple regulator
2501 * clients in a single API call.
2502 * NOTE: This should be used for situations when device damage will
2503 * likely occur if the regulators are not disabled (e.g. over temp).
2504 * Although regulator_force_disable function call for some consumers can
2505 * return error numbers, the function is called for all consumers.
2506 */
2507int regulator_bulk_force_disable(int num_consumers,
2508                           struct regulator_bulk_data *consumers)
2509{
2510        int i;
2511        int ret;
2512
2513        for (i = 0; i < num_consumers; i++)
2514                consumers[i].ret =
2515                            regulator_force_disable(consumers[i].consumer);
2516
2517        for (i = 0; i < num_consumers; i++) {
2518                if (consumers[i].ret != 0) {
2519                        ret = consumers[i].ret;
2520                        goto out;
2521                }
2522        }
2523
2524        return 0;
2525out:
2526        return ret;
2527}
2528EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
2529
2530/**
2531 * regulator_bulk_free - free multiple regulator consumers
2532 *
2533 * @num_consumers: Number of consumers
2534 * @consumers:     Consumer data; clients are stored here.
2535 *
2536 * This convenience API allows consumers to free multiple regulator
2537 * clients in a single API call.
2538 */
2539void regulator_bulk_free(int num_consumers,
2540                         struct regulator_bulk_data *consumers)
2541{
2542        int i;
2543
2544        for (i = 0; i < num_consumers; i++) {
2545                regulator_put(consumers[i].consumer);
2546                consumers[i].consumer = NULL;
2547        }
2548}
2549EXPORT_SYMBOL_GPL(regulator_bulk_free);
2550
2551/**
2552 * regulator_notifier_call_chain - call regulator event notifier
2553 * @rdev: regulator source
2554 * @event: notifier block
2555 * @data: callback-specific data.
2556 *
2557 * Called by regulator drivers to notify clients a regulator event has
2558 * occurred. We also notify regulator clients downstream.
2559 * Note lock must be held by caller.
2560 */
2561int regulator_notifier_call_chain(struct regulator_dev *rdev,
2562                                  unsigned long event, void *data)
2563{
2564        _notifier_call_chain(rdev, event, data);
2565        return NOTIFY_DONE;
2566
2567}
2568EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2569
2570/**
2571 * regulator_mode_to_status - convert a regulator mode into a status
2572 *
2573 * @mode: Mode to convert
2574 *
2575 * Convert a regulator mode into a status.
2576 */
2577int regulator_mode_to_status(unsigned int mode)
2578{
2579        switch (mode) {
2580        case REGULATOR_MODE_FAST:
2581                return REGULATOR_STATUS_FAST;
2582        case REGULATOR_MODE_NORMAL:
2583                return REGULATOR_STATUS_NORMAL;
2584        case REGULATOR_MODE_IDLE:
2585                return REGULATOR_STATUS_IDLE;
2586        case REGULATOR_STATUS_STANDBY:
2587                return REGULATOR_STATUS_STANDBY;
2588        default:
2589                return 0;
2590        }
2591}
2592EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2593
2594/*
2595 * To avoid cluttering sysfs (and memory) with useless state, only
2596 * create attributes that can be meaningfully displayed.
2597 */
2598static int add_regulator_attributes(struct regulator_dev *rdev)
2599{
2600        struct device           *dev = &rdev->dev;
2601        struct regulator_ops    *ops = rdev->desc->ops;
2602        int                     status = 0;
2603
2604        /* some attributes need specific methods to be displayed */
2605        if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
2606            (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
2607                status = device_create_file(dev, &dev_attr_microvolts);
2608                if (status < 0)
2609                        return status;
2610        }
2611        if (ops->get_current_limit) {
2612                status = device_create_file(dev, &dev_attr_microamps);
2613                if (status < 0)
2614                        return status;
2615        }
2616        if (ops->get_mode) {
2617                status = device_create_file(dev, &dev_attr_opmode);
2618                if (status < 0)
2619                        return status;
2620        }
2621        if (ops->is_enabled) {
2622                status = device_create_file(dev, &dev_attr_state);
2623                if (status < 0)
2624                        return status;
2625        }
2626        if (ops->get_status) {
2627                status = device_create_file(dev, &dev_attr_status);
2628                if (status < 0)
2629                        return status;
2630        }
2631
2632        /* some attributes are type-specific */
2633        if (rdev->desc->type == REGULATOR_CURRENT) {
2634                status = device_create_file(dev, &dev_attr_requested_microamps);
2635                if (status < 0)
2636                        return status;
2637        }
2638
2639        /* all the other attributes exist to support constraints;
2640         * don't show them if there are no constraints, or if the
2641         * relevant supporting methods are missing.
2642         */
2643        if (!rdev->constraints)
2644                return status;
2645
2646        /* constraints need specific supporting methods */
2647        if (ops->set_voltage || ops->set_voltage_sel) {
2648                status = device_create_file(dev, &dev_attr_min_microvolts);
2649                if (status < 0)
2650                        return status;
2651                status = device_create_file(dev, &dev_attr_max_microvolts);
2652                if (status < 0)
2653                        return status;
2654        }
2655        if (ops->set_current_limit) {
2656                status = device_create_file(dev, &dev_attr_min_microamps);
2657                if (status < 0)
2658                        return status;
2659                status = device_create_file(dev, &dev_attr_max_microamps);
2660                if (status < 0)
2661                        return status;
2662        }
2663
2664        /* suspend mode constraints need multiple supporting methods */
2665        if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2666                return status;
2667
2668        status = device_create_file(dev, &dev_attr_suspend_standby_state);
2669        if (status < 0)
2670                return status;
2671        status = device_create_file(dev, &dev_attr_suspend_mem_state);
2672        if (status < 0)
2673                return status;
2674        status = device_create_file(dev, &dev_attr_suspend_disk_state);
2675        if (status < 0)
2676                return status;
2677
2678        if (ops->set_suspend_voltage) {
2679                status = device_create_file(dev,
2680                                &dev_attr_suspend_standby_microvolts);
2681                if (status < 0)
2682                        return status;
2683                status = device_create_file(dev,
2684                                &dev_attr_suspend_mem_microvolts);
2685                if (status < 0)
2686                        return status;
2687                status = device_create_file(dev,
2688                                &dev_attr_suspend_disk_microvolts);
2689                if (status < 0)
2690                        return status;
2691        }
2692
2693        if (ops->set_suspend_mode) {
2694                status = device_create_file(dev,
2695                                &dev_attr_suspend_standby_mode);
2696                if (status < 0)
2697                        return status;
2698                status = device_create_file(dev,
2699                                &dev_attr_suspend_mem_mode);
2700                if (status < 0)
2701                        return status;
2702                status = device_create_file(dev,
2703                                &dev_attr_suspend_disk_mode);
2704                if (status < 0)
2705                        return status;
2706        }
2707
2708        return status;
2709}
2710
2711static void rdev_init_debugfs(struct regulator_dev *rdev)
2712{
2713#ifdef CONFIG_DEBUG_FS
2714        rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2715        if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2716                rdev_warn(rdev, "Failed to create debugfs directory\n");
2717                rdev->debugfs = NULL;
2718                return;
2719        }
2720
2721        debugfs_create_u32("use_count", 0444, rdev->debugfs,
2722                           &rdev->use_count);
2723        debugfs_create_u32("open_count", 0444, rdev->debugfs,
2724                           &rdev->open_count);
2725#endif
2726}
2727
2728/**
2729 * regulator_register - register regulator
2730 * @regulator_desc: regulator to register
2731 * @dev: struct device for the regulator
2732 * @init_data: platform provided init data, passed through by driver
2733 * @driver_data: private regulator data
2734 * @of_node: OpenFirmware node to parse for device tree bindings (may be
2735 *           NULL).
2736 *
2737 * Called by regulator drivers to register a regulator.
2738 * Returns 0 on success.
2739 */
2740struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2741        struct device *dev, const struct regulator_init_data *init_data,
2742        void *driver_data, struct device_node *of_node)
2743{
2744        const struct regulation_constraints *constraints = NULL;
2745        static atomic_t regulator_no = ATOMIC_INIT(0);
2746        struct regulator_dev *rdev;
2747        int ret, i;
2748        const char *supply = NULL;
2749
2750        if (regulator_desc == NULL)
2751                return ERR_PTR(-EINVAL);
2752
2753        if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2754                return ERR_PTR(-EINVAL);
2755
2756        if (regulator_desc->type != REGULATOR_VOLTAGE &&
2757            regulator_desc->type != REGULATOR_CURRENT)
2758                return ERR_PTR(-EINVAL);
2759
2760        /* Only one of each should be implemented */
2761        WARN_ON(regulator_desc->ops->get_voltage &&
2762                regulator_desc->ops->get_voltage_sel);
2763        WARN_ON(regulator_desc->ops->set_voltage &&
2764                regulator_desc->ops->set_voltage_sel);
2765
2766        /* If we're using selectors we must implement list_voltage. */
2767        if (regulator_desc->ops->get_voltage_sel &&
2768            !regulator_desc->ops->list_voltage) {
2769                return ERR_PTR(-EINVAL);
2770        }
2771        if (regulator_desc->ops->set_voltage_sel &&
2772            !regulator_desc->ops->list_voltage) {
2773                return ERR_PTR(-EINVAL);
2774        }
2775
2776        rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2777        if (rdev == NULL)
2778                return ERR_PTR(-ENOMEM);
2779
2780        mutex_lock(&regulator_list_mutex);
2781
2782        mutex_init(&rdev->mutex);
2783        rdev->reg_data = driver_data;
2784        rdev->owner = regulator_desc->owner;
2785        rdev->desc = regulator_desc;
2786        INIT_LIST_HEAD(&rdev->consumer_list);
2787        INIT_LIST_HEAD(&rdev->list);
2788        BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2789        INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
2790
2791        /* preform any regulator specific init */
2792        if (init_data && init_data->regulator_init) {
2793                ret = init_data->regulator_init(rdev->reg_data);
2794                if (ret < 0)
2795                        goto clean;
2796        }
2797
2798        /* register with sysfs */
2799        rdev->dev.class = &regulator_class;
2800        rdev->dev.of_node = of_node;
2801        rdev->dev.parent = dev;
2802        dev_set_name(&rdev->dev, "regulator.%d",
2803                     atomic_inc_return(&regulator_no) - 1);
2804        ret = device_register(&rdev->dev);
2805        if (ret != 0) {
2806                put_device(&rdev->dev);
2807                goto clean;
2808        }
2809
2810        dev_set_drvdata(&rdev->dev, rdev);
2811
2812        /* set regulator constraints */
2813        if (init_data)
2814                constraints = &init_data->constraints;
2815
2816        ret = set_machine_constraints(rdev, constraints);
2817        if (ret < 0)
2818                goto scrub;
2819
2820        /* add attributes supported by this regulator */
2821        ret = add_regulator_attributes(rdev);
2822        if (ret < 0)
2823                goto scrub;
2824
2825        if (init_data && init_data->supply_regulator)
2826                supply = init_data->supply_regulator;
2827        else if (regulator_desc->supply_name)
2828                supply = regulator_desc->supply_name;
2829
2830        if (supply) {
2831                struct regulator_dev *r;
2832
2833                r = regulator_dev_lookup(dev, supply);
2834
2835                if (!r) {
2836                        dev_err(dev, "Failed to find supply %s\n", supply);
2837                        ret = -ENODEV;
2838                        goto scrub;
2839                }
2840
2841                ret = set_supply(rdev, r);
2842                if (ret < 0)
2843                        goto scrub;
2844
2845                /* Enable supply if rail is enabled */
2846                if (rdev->desc->ops->is_enabled &&
2847                                rdev->desc->ops->is_enabled(rdev)) {
2848                        ret = regulator_enable(rdev->supply);
2849                        if (ret < 0)
2850                                goto scrub;
2851                }
2852        }
2853
2854        /* add consumers devices */
2855        if (init_data) {
2856                for (i = 0; i < init_data->num_consumer_supplies; i++) {
2857                        ret = set_consumer_device_supply(rdev,
2858                                init_data->consumer_supplies[i].dev,
2859                                init_data->consumer_supplies[i].dev_name,
2860                                init_data->consumer_supplies[i].supply);
2861                        if (ret < 0) {
2862                                dev_err(dev, "Failed to set supply %s\n",
2863                                        init_data->consumer_supplies[i].supply);
2864                                goto unset_supplies;
2865                        }
2866                }
2867        }
2868
2869        list_add(&rdev->list, &regulator_list);
2870
2871        rdev_init_debugfs(rdev);
2872out:
2873        mutex_unlock(&regulator_list_mutex);
2874        return rdev;
2875
2876unset_supplies:
2877        unset_regulator_supplies(rdev);
2878
2879scrub:
2880        kfree(rdev->constraints);
2881        device_unregister(&rdev->dev);
2882        /* device core frees rdev */
2883        rdev = ERR_PTR(ret);
2884        goto out;
2885
2886clean:
2887        kfree(rdev);
2888        rdev = ERR_PTR(ret);
2889        goto out;
2890}
2891EXPORT_SYMBOL_GPL(regulator_register);
2892
2893/**
2894 * regulator_unregister - unregister regulator
2895 * @rdev: regulator to unregister
2896 *
2897 * Called by regulator drivers to unregister a regulator.
2898 */
2899void regulator_unregister(struct regulator_dev *rdev)
2900{
2901        if (rdev == NULL)
2902                return;
2903
2904        mutex_lock(&regulator_list_mutex);
2905#ifdef CONFIG_DEBUG_FS
2906        debugfs_remove_recursive(rdev->debugfs);
2907#endif
2908        flush_work_sync(&rdev->disable_work.work);
2909        WARN_ON(rdev->open_count);
2910        unset_regulator_supplies(rdev);
2911        list_del(&rdev->list);
2912        if (rdev->supply)
2913                regulator_put(rdev->supply);
2914        kfree(rdev->constraints);
2915        device_unregister(&rdev->dev);
2916        mutex_unlock(&regulator_list_mutex);
2917}
2918EXPORT_SYMBOL_GPL(regulator_unregister);
2919
2920/**
2921 * regulator_suspend_prepare - prepare regulators for system wide suspend
2922 * @state: system suspend state
2923 *
2924 * Configure each regulator with it's suspend operating parameters for state.
2925 * This will usually be called by machine suspend code prior to supending.
2926 */
2927int regulator_suspend_prepare(suspend_state_t state)
2928{
2929        struct regulator_dev *rdev;
2930        int ret = 0;
2931
2932        /* ON is handled by regulator active state */
2933        if (state == PM_SUSPEND_ON)
2934                return -EINVAL;
2935
2936        mutex_lock(&regulator_list_mutex);
2937        list_for_each_entry(rdev, &regulator_list, list) {
2938
2939                mutex_lock(&rdev->mutex);
2940                ret = suspend_prepare(rdev, state);
2941                mutex_unlock(&rdev->mutex);
2942
2943                if (ret < 0) {
2944                        rdev_err(rdev, "failed to prepare\n");
2945                        goto out;
2946                }
2947        }
2948out:
2949        mutex_unlock(&regulator_list_mutex);
2950        return ret;
2951}
2952EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2953
2954/**
2955 * regulator_suspend_finish - resume regulators from system wide suspend
2956 *
2957 * Turn on regulators that might be turned off by regulator_suspend_prepare
2958 * and that should be turned on according to the regulators properties.
2959 */
2960int regulator_suspend_finish(void)
2961{
2962        struct regulator_dev *rdev;
2963        int ret = 0, error;
2964
2965        mutex_lock(&regulator_list_mutex);
2966        list_for_each_entry(rdev, &regulator_list, list) {
2967                struct regulator_ops *ops = rdev->desc->ops;
2968
2969                mutex_lock(&rdev->mutex);
2970                if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
2971                                ops->enable) {
2972                        error = ops->enable(rdev);
2973                        if (error)
2974                                ret = error;
2975                } else {
2976                        if (!has_full_constraints)
2977                                goto unlock;
2978                        if (!ops->disable)
2979                                goto unlock;
2980                        if (ops->is_enabled && !ops->is_enabled(rdev))
2981                                goto unlock;
2982
2983                        error = ops->disable(rdev);
2984                        if (error)
2985                                ret = error;
2986                }
2987unlock:
2988                mutex_unlock(&rdev->mutex);
2989        }
2990        mutex_unlock(&regulator_list_mutex);
2991        return ret;
2992}
2993EXPORT_SYMBOL_GPL(regulator_suspend_finish);
2994
2995/**
2996 * regulator_has_full_constraints - the system has fully specified constraints
2997 *
2998 * Calling this function will cause the regulator API to disable all
2999 * regulators which have a zero use count and don't have an always_on
3000 * constraint in a late_initcall.
3001 *
3002 * The intention is that this will become the default behaviour in a
3003 * future kernel release so users are encouraged to use this facility
3004 * now.
3005 */
3006void regulator_has_full_constraints(void)
3007{
3008        has_full_constraints = 1;
3009}
3010EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3011
3012/**
3013 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3014 *
3015 * Calling this function will cause the regulator API to provide a
3016 * dummy regulator to consumers if no physical regulator is found,
3017 * allowing most consumers to proceed as though a regulator were
3018 * configured.  This allows systems such as those with software
3019 * controllable regulators for the CPU core only to be brought up more
3020 * readily.
3021 */
3022void regulator_use_dummy_regulator(void)
3023{
3024        board_wants_dummy_regulator = true;
3025}
3026EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3027
3028/**
3029 * rdev_get_drvdata - get rdev regulator driver data
3030 * @rdev: regulator
3031 *
3032 * Get rdev regulator driver private data. This call can be used in the
3033 * regulator driver context.
3034 */
3035void *rdev_get_drvdata(struct regulator_dev *rdev)
3036{
3037        return rdev->reg_data;
3038}
3039EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3040
3041/**
3042 * regulator_get_drvdata - get regulator driver data
3043 * @regulator: regulator
3044 *
3045 * Get regulator driver private data. This call can be used in the consumer
3046 * driver context when non API regulator specific functions need to be called.
3047 */
3048void *regulator_get_drvdata(struct regulator *regulator)
3049{
3050        return regulator->rdev->reg_data;
3051}
3052EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3053
3054/**
3055 * regulator_set_drvdata - set regulator driver data
3056 * @regulator: regulator
3057 * @data: data
3058 */
3059void regulator_set_drvdata(struct regulator *regulator, void *data)
3060{
3061        regulator->rdev->reg_data = data;
3062}
3063EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3064
3065/**
3066 * regulator_get_id - get regulator ID
3067 * @rdev: regulator
3068 */
3069int rdev_get_id(struct regulator_dev *rdev)
3070{
3071        return rdev->desc->id;
3072}
3073EXPORT_SYMBOL_GPL(rdev_get_id);
3074
3075struct device *rdev_get_dev(struct regulator_dev *rdev)
3076{
3077        return &rdev->dev;
3078}
3079EXPORT_SYMBOL_GPL(rdev_get_dev);
3080
3081void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3082{
3083        return reg_init_data->driver_data;
3084}
3085EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3086
3087#ifdef CONFIG_DEBUG_FS
3088static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3089                                    size_t count, loff_t *ppos)
3090{
3091        char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3092        ssize_t len, ret = 0;
3093        struct regulator_map *map;
3094
3095        if (!buf)
3096                return -ENOMEM;
3097
3098        list_for_each_entry(map, &regulator_map_list, list) {
3099                len = snprintf(buf + ret, PAGE_SIZE - ret,
3100                               "%s -> %s.%s\n",
3101                               rdev_get_name(map->regulator), map->dev_name,
3102                               map->supply);
3103                if (len >= 0)
3104                        ret += len;
3105                if (ret > PAGE_SIZE) {
3106                        ret = PAGE_SIZE;
3107                        break;
3108                }
3109        }
3110
3111        ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3112
3113        kfree(buf);
3114
3115        return ret;
3116}
3117
3118static const struct file_operations supply_map_fops = {
3119        .read = supply_map_read_file,
3120        .llseek = default_llseek,
3121};
3122#endif
3123
3124static int __init regulator_init(void)
3125{
3126        int ret;
3127
3128        ret = class_register(&regulator_class);
3129
3130#ifdef CONFIG_DEBUG_FS
3131        debugfs_root = debugfs_create_dir("regulator", NULL);
3132        if (IS_ERR(debugfs_root) || !debugfs_root) {
3133                pr_warn("regulator: Failed to create debugfs directory\n");
3134                debugfs_root = NULL;
3135        }
3136
3137        if (IS_ERR(debugfs_create_file("supply_map", 0444, debugfs_root,
3138                                       NULL, &supply_map_fops)))
3139                pr_warn("regulator: Failed to create supplies debugfs\n");
3140#endif
3141
3142        regulator_dummy_init();
3143
3144        return ret;
3145}
3146
3147/* init early to allow our consumers to complete system booting */
3148core_initcall(regulator_init);
3149
3150static int __init regulator_init_complete(void)
3151{
3152        struct regulator_dev *rdev;
3153        struct regulator_ops *ops;
3154        struct regulation_constraints *c;
3155        int enabled, ret;
3156
3157        mutex_lock(&regulator_list_mutex);
3158
3159        /* If we have a full configuration then disable any regulators
3160         * which are not in use or always_on.  This will become the
3161         * default behaviour in the future.
3162         */
3163        list_for_each_entry(rdev, &regulator_list, list) {
3164                ops = rdev->desc->ops;
3165                c = rdev->constraints;
3166
3167                if (!ops->disable || (c && c->always_on))
3168                        continue;
3169
3170                mutex_lock(&rdev->mutex);
3171
3172                if (rdev->use_count)
3173                        goto unlock;
3174
3175                /* If we can't read the status assume it's on. */
3176                if (ops->is_enabled)
3177                        enabled = ops->is_enabled(rdev);
3178                else
3179                        enabled = 1;
3180
3181                if (!enabled)
3182                        goto unlock;
3183
3184                if (has_full_constraints) {
3185                        /* We log since this may kill the system if it
3186                         * goes wrong. */
3187                        rdev_info(rdev, "disabling\n");
3188                        ret = ops->disable(rdev);
3189                        if (ret != 0) {
3190                                rdev_err(rdev, "couldn't disable: %d\n", ret);
3191                        }
3192                } else {
3193                        /* The intention is that in future we will
3194                         * assume that full constraints are provided
3195                         * so warn even if we aren't going to do
3196                         * anything here.
3197                         */
3198                        rdev_warn(rdev, "incomplete constraints, leaving on\n");
3199                }
3200
3201unlock:
3202                mutex_unlock(&rdev->mutex);
3203        }
3204
3205        mutex_unlock(&regulator_list_mutex);
3206
3207        return 0;
3208}
3209late_initcall(regulator_init_complete);
3210