linux/drivers/macintosh/therm_pm72.c
<<
>>
Prefs
   1/*
   2 * Device driver for the thermostats & fan controller of  the
   3 * Apple G5 "PowerMac7,2" desktop machines.
   4 *
   5 * (c) Copyright IBM Corp. 2003-2004
   6 *
   7 * Maintained by: Benjamin Herrenschmidt
   8 *                <benh@kernel.crashing.org>
   9 * 
  10 *
  11 * The algorithm used is the PID control algorithm, used the same
  12 * way the published Darwin code does, using the same values that
  13 * are present in the Darwin 7.0 snapshot property lists.
  14 *
  15 * As far as the CPUs control loops are concerned, I use the
  16 * calibration & PID constants provided by the EEPROM,
  17 * I do _not_ embed any value from the property lists, as the ones
  18 * provided by Darwin 7.0 seem to always have an older version that
  19 * what I've seen on the actual computers.
  20 * It would be interesting to verify that though. Darwin has a
  21 * version code of 1.0.0d11 for all control loops it seems, while
  22 * so far, the machines EEPROMs contain a dataset versioned 1.0.0f
  23 *
  24 * Darwin doesn't provide source to all parts, some missing
  25 * bits like the AppleFCU driver or the actual scale of some
  26 * of the values returned by sensors had to be "guessed" some
  27 * way... or based on what Open Firmware does.
  28 *
  29 * I didn't yet figure out how to get the slots power consumption
  30 * out of the FCU, so that part has not been implemented yet and
  31 * the slots fan is set to a fixed 50% PWM, hoping this value is
  32 * safe enough ...
  33 *
  34 * Note: I have observed strange oscillations of the CPU control
  35 * loop on a dual G5 here. When idle, the CPU exhaust fan tend to
  36 * oscillates slowly (over several minutes) between the minimum
  37 * of 300RPMs and approx. 1000 RPMs. I don't know what is causing
  38 * this, it could be some incorrect constant or an error in the
  39 * way I ported the algorithm, or it could be just normal. I
  40 * don't have full understanding on the way Apple tweaked the PID
  41 * algorithm for the CPU control, it is definitely not a standard
  42 * implementation...
  43 *
  44 * TODO:  - Check MPU structure version/signature
  45 *        - Add things like /sbin/overtemp for non-critical
  46 *          overtemp conditions so userland can take some policy
  47 *          decisions, like slowing down CPUs
  48 *        - Deal with fan and i2c failures in a better way
  49 *        - Maybe do a generic PID based on params used for
  50 *          U3 and Drives ? Definitely need to factor code a bit
  51 *          better... also make sensor detection more robust using
  52 *          the device-tree to probe for them
  53 *        - Figure out how to get the slots consumption and set the
  54 *          slots fan accordingly
  55 *
  56 * History:
  57 *
  58 *  Nov. 13, 2003 : 0.5
  59 *      - First release
  60 *
  61 *  Nov. 14, 2003 : 0.6
  62 *      - Read fan speed from FCU, low level fan routines now deal
  63 *        with errors & check fan status, though higher level don't
  64 *        do much.
  65 *      - Move a bunch of definitions to .h file
  66 *
  67 *  Nov. 18, 2003 : 0.7
  68 *      - Fix build on ppc64 kernel
  69 *      - Move back statics definitions to .c file
  70 *      - Avoid calling schedule_timeout with a negative number
  71 *
  72 *  Dec. 18, 2003 : 0.8
  73 *      - Fix typo when reading back fan speed on 2 CPU machines
  74 *
  75 *  Mar. 11, 2004 : 0.9
  76 *      - Rework code accessing the ADC chips, make it more robust and
  77 *        closer to the chip spec. Also make sure it is configured properly,
  78 *        I've seen yet unexplained cases where on startup, I would have stale
  79 *        values in the configuration register
  80 *      - Switch back to use of target fan speed for PID, thus lowering
  81 *        pressure on i2c
  82 *
  83 *  Oct. 20, 2004 : 1.1
  84 *      - Add device-tree lookup for fan IDs, should detect liquid cooling
  85 *        pumps when present
  86 *      - Enable driver for PowerMac7,3 machines
  87 *      - Split the U3/Backside cooling on U3 & U3H versions as Darwin does
  88 *      - Add new CPU cooling algorithm for machines with liquid cooling
  89 *      - Workaround for some PowerMac7,3 with empty "fan" node in the devtree
  90 *      - Fix a signed/unsigned compare issue in some PID loops
  91 *
  92 *  Mar. 10, 2005 : 1.2
  93 *      - Add basic support for Xserve G5
  94 *      - Retrieve pumps min/max from EEPROM image in device-tree (broken)
  95 *      - Use min/max macros here or there
  96 *      - Latest darwin updated U3H min fan speed to 20% PWM
  97 *
  98 *  July. 06, 2006 : 1.3
  99 *      - Fix setting of RPM fans on Xserve G5 (they were going too fast)
 100 *      - Add missing slots fan control loop for Xserve G5
 101 *      - Lower fixed slots fan speed from 50% to 40% on desktop G5s. We
 102 *        still can't properly implement the control loop for these, so let's
 103 *        reduce the noise a little bit, it appears that 40% still gives us
 104 *        a pretty good air flow
 105 *      - Add code to "tickle" the FCU regulary so it doesn't think that
 106 *        we are gone while in fact, the machine just didn't need any fan
 107 *        speed change lately
 108 *
 109 */
 110
 111#include <linux/types.h>
 112#include <linux/module.h>
 113#include <linux/errno.h>
 114#include <linux/kernel.h>
 115#include <linux/delay.h>
 116#include <linux/sched.h>
 117#include <linux/init.h>
 118#include <linux/spinlock.h>
 119#include <linux/wait.h>
 120#include <linux/reboot.h>
 121#include <linux/kmod.h>
 122#include <linux/i2c.h>
 123#include <linux/kthread.h>
 124#include <linux/mutex.h>
 125#include <linux/of_device.h>
 126#include <linux/of_platform.h>
 127#include <asm/prom.h>
 128#include <asm/machdep.h>
 129#include <asm/io.h>
 130#include <asm/system.h>
 131#include <asm/sections.h>
 132#include <asm/macio.h>
 133
 134#include "therm_pm72.h"
 135
 136#define VERSION "1.3"
 137
 138#undef DEBUG
 139
 140#ifdef DEBUG
 141#define DBG(args...)    printk(args)
 142#else
 143#define DBG(args...)    do { } while(0)
 144#endif
 145
 146
 147/*
 148 * Driver statics
 149 */
 150
 151static struct platform_device *         of_dev;
 152static struct i2c_adapter *             u3_0;
 153static struct i2c_adapter *             u3_1;
 154static struct i2c_adapter *             k2;
 155static struct i2c_client *              fcu;
 156static struct cpu_pid_state             processor_state[2];
 157static struct basckside_pid_params      backside_params;
 158static struct backside_pid_state        backside_state;
 159static struct drives_pid_state          drives_state;
 160static struct dimm_pid_state            dimms_state;
 161static struct slots_pid_state           slots_state;
 162static int                              state;
 163static int                              cpu_count;
 164static int                              cpu_pid_type;
 165static struct task_struct               *ctrl_task;
 166static struct completion                ctrl_complete;
 167static int                              critical_state;
 168static int                              rackmac;
 169static s32                              dimm_output_clamp;
 170static int                              fcu_rpm_shift;
 171static int                              fcu_tickle_ticks;
 172static DEFINE_MUTEX(driver_lock);
 173
 174/*
 175 * We have 3 types of CPU PID control. One is "split" old style control
 176 * for intake & exhaust fans, the other is "combined" control for both
 177 * CPUs that also deals with the pumps when present. To be "compatible"
 178 * with OS X at this point, we only use "COMBINED" on the machines that
 179 * are identified as having the pumps (though that identification is at
 180 * least dodgy). Ultimately, we could probably switch completely to this
 181 * algorithm provided we hack it to deal with the UP case
 182 */
 183#define CPU_PID_TYPE_SPLIT      0
 184#define CPU_PID_TYPE_COMBINED   1
 185#define CPU_PID_TYPE_RACKMAC    2
 186
 187/*
 188 * This table describes all fans in the FCU. The "id" and "type" values
 189 * are defaults valid for all earlier machines. Newer machines will
 190 * eventually override the table content based on the device-tree
 191 */
 192struct fcu_fan_table
 193{
 194        char*   loc;    /* location code */
 195        int     type;   /* 0 = rpm, 1 = pwm, 2 = pump */
 196        int     id;     /* id or -1 */
 197};
 198
 199#define FCU_FAN_RPM             0
 200#define FCU_FAN_PWM             1
 201
 202#define FCU_FAN_ABSENT_ID       -1
 203
 204#define FCU_FAN_COUNT           ARRAY_SIZE(fcu_fans)
 205
 206struct fcu_fan_table    fcu_fans[] = {
 207        [BACKSIDE_FAN_PWM_INDEX] = {
 208                .loc    = "BACKSIDE,SYS CTRLR FAN",
 209                .type   = FCU_FAN_PWM,
 210                .id     = BACKSIDE_FAN_PWM_DEFAULT_ID,
 211        },
 212        [DRIVES_FAN_RPM_INDEX] = {
 213                .loc    = "DRIVE BAY",
 214                .type   = FCU_FAN_RPM,
 215                .id     = DRIVES_FAN_RPM_DEFAULT_ID,
 216        },
 217        [SLOTS_FAN_PWM_INDEX] = {
 218                .loc    = "SLOT,PCI FAN",
 219                .type   = FCU_FAN_PWM,
 220                .id     = SLOTS_FAN_PWM_DEFAULT_ID,
 221        },
 222        [CPUA_INTAKE_FAN_RPM_INDEX] = {
 223                .loc    = "CPU A INTAKE",
 224                .type   = FCU_FAN_RPM,
 225                .id     = CPUA_INTAKE_FAN_RPM_DEFAULT_ID,
 226        },
 227        [CPUA_EXHAUST_FAN_RPM_INDEX] = {
 228                .loc    = "CPU A EXHAUST",
 229                .type   = FCU_FAN_RPM,
 230                .id     = CPUA_EXHAUST_FAN_RPM_DEFAULT_ID,
 231        },
 232        [CPUB_INTAKE_FAN_RPM_INDEX] = {
 233                .loc    = "CPU B INTAKE",
 234                .type   = FCU_FAN_RPM,
 235                .id     = CPUB_INTAKE_FAN_RPM_DEFAULT_ID,
 236        },
 237        [CPUB_EXHAUST_FAN_RPM_INDEX] = {
 238                .loc    = "CPU B EXHAUST",
 239                .type   = FCU_FAN_RPM,
 240                .id     = CPUB_EXHAUST_FAN_RPM_DEFAULT_ID,
 241        },
 242        /* pumps aren't present by default, have to be looked up in the
 243         * device-tree
 244         */
 245        [CPUA_PUMP_RPM_INDEX] = {
 246                .loc    = "CPU A PUMP",
 247                .type   = FCU_FAN_RPM,          
 248                .id     = FCU_FAN_ABSENT_ID,
 249        },
 250        [CPUB_PUMP_RPM_INDEX] = {
 251                .loc    = "CPU B PUMP",
 252                .type   = FCU_FAN_RPM,
 253                .id     = FCU_FAN_ABSENT_ID,
 254        },
 255        /* Xserve fans */
 256        [CPU_A1_FAN_RPM_INDEX] = {
 257                .loc    = "CPU A 1",
 258                .type   = FCU_FAN_RPM,
 259                .id     = FCU_FAN_ABSENT_ID,
 260        },
 261        [CPU_A2_FAN_RPM_INDEX] = {
 262                .loc    = "CPU A 2",
 263                .type   = FCU_FAN_RPM,
 264                .id     = FCU_FAN_ABSENT_ID,
 265        },
 266        [CPU_A3_FAN_RPM_INDEX] = {
 267                .loc    = "CPU A 3",
 268                .type   = FCU_FAN_RPM,
 269                .id     = FCU_FAN_ABSENT_ID,
 270        },
 271        [CPU_B1_FAN_RPM_INDEX] = {
 272                .loc    = "CPU B 1",
 273                .type   = FCU_FAN_RPM,
 274                .id     = FCU_FAN_ABSENT_ID,
 275        },
 276        [CPU_B2_FAN_RPM_INDEX] = {
 277                .loc    = "CPU B 2",
 278                .type   = FCU_FAN_RPM,
 279                .id     = FCU_FAN_ABSENT_ID,
 280        },
 281        [CPU_B3_FAN_RPM_INDEX] = {
 282                .loc    = "CPU B 3",
 283                .type   = FCU_FAN_RPM,
 284                .id     = FCU_FAN_ABSENT_ID,
 285        },
 286};
 287
 288static struct i2c_driver therm_pm72_driver;
 289
 290/*
 291 * Utility function to create an i2c_client structure and
 292 * attach it to one of u3 adapters
 293 */
 294static struct i2c_client *attach_i2c_chip(int id, const char *name)
 295{
 296        struct i2c_client *clt;
 297        struct i2c_adapter *adap;
 298        struct i2c_board_info info;
 299
 300        if (id & 0x200)
 301                adap = k2;
 302        else if (id & 0x100)
 303                adap = u3_1;
 304        else
 305                adap = u3_0;
 306        if (adap == NULL)
 307                return NULL;
 308
 309        memset(&info, 0, sizeof(struct i2c_board_info));
 310        info.addr = (id >> 1) & 0x7f;
 311        strlcpy(info.type, "therm_pm72", I2C_NAME_SIZE);
 312        clt = i2c_new_device(adap, &info);
 313        if (!clt) {
 314                printk(KERN_ERR "therm_pm72: Failed to attach to i2c ID 0x%x\n", id);
 315                return NULL;
 316        }
 317
 318        /*
 319         * Let i2c-core delete that device on driver removal.
 320         * This is safe because i2c-core holds the core_lock mutex for us.
 321         */
 322        list_add_tail(&clt->detected, &therm_pm72_driver.clients);
 323        return clt;
 324}
 325
 326/*
 327 * Here are the i2c chip access wrappers
 328 */
 329
 330static void initialize_adc(struct cpu_pid_state *state)
 331{
 332        int rc;
 333        u8 buf[2];
 334
 335        /* Read ADC the configuration register and cache it. We
 336         * also make sure Config2 contains proper values, I've seen
 337         * cases where we got stale grabage in there, thus preventing
 338         * proper reading of conv. values
 339         */
 340
 341        /* Clear Config2 */
 342        buf[0] = 5;
 343        buf[1] = 0;
 344        i2c_master_send(state->monitor, buf, 2);
 345
 346        /* Read & cache Config1 */
 347        buf[0] = 1;
 348        rc = i2c_master_send(state->monitor, buf, 1);
 349        if (rc > 0) {
 350                rc = i2c_master_recv(state->monitor, buf, 1);
 351                if (rc > 0) {
 352                        state->adc_config = buf[0];
 353                        DBG("ADC config reg: %02x\n", state->adc_config);
 354                        /* Disable shutdown mode */
 355                        state->adc_config &= 0xfe;
 356                        buf[0] = 1;
 357                        buf[1] = state->adc_config;
 358                        rc = i2c_master_send(state->monitor, buf, 2);
 359                }
 360        }
 361        if (rc <= 0)
 362                printk(KERN_ERR "therm_pm72: Error reading ADC config"
 363                       " register !\n");
 364}
 365
 366static int read_smon_adc(struct cpu_pid_state *state, int chan)
 367{
 368        int rc, data, tries = 0;
 369        u8 buf[2];
 370
 371        for (;;) {
 372                /* Set channel */
 373                buf[0] = 1;
 374                buf[1] = (state->adc_config & 0x1f) | (chan << 5);
 375                rc = i2c_master_send(state->monitor, buf, 2);
 376                if (rc <= 0)
 377                        goto error;
 378                /* Wait for conversion */
 379                msleep(1);
 380                /* Switch to data register */
 381                buf[0] = 4;
 382                rc = i2c_master_send(state->monitor, buf, 1);
 383                if (rc <= 0)
 384                        goto error;
 385                /* Read result */
 386                rc = i2c_master_recv(state->monitor, buf, 2);
 387                if (rc < 0)
 388                        goto error;
 389                data = ((u16)buf[0]) << 8 | (u16)buf[1];
 390                return data >> 6;
 391        error:
 392                DBG("Error reading ADC, retrying...\n");
 393                if (++tries > 10) {
 394                        printk(KERN_ERR "therm_pm72: Error reading ADC !\n");
 395                        return -1;
 396                }
 397                msleep(10);
 398        }
 399}
 400
 401static int read_lm87_reg(struct i2c_client * chip, int reg)
 402{
 403        int rc, tries = 0;
 404        u8 buf;
 405
 406        for (;;) {
 407                /* Set address */
 408                buf = (u8)reg;
 409                rc = i2c_master_send(chip, &buf, 1);
 410                if (rc <= 0)
 411                        goto error;
 412                rc = i2c_master_recv(chip, &buf, 1);
 413                if (rc <= 0)
 414                        goto error;
 415                return (int)buf;
 416        error:
 417                DBG("Error reading LM87, retrying...\n");
 418                if (++tries > 10) {
 419                        printk(KERN_ERR "therm_pm72: Error reading LM87 !\n");
 420                        return -1;
 421                }
 422                msleep(10);
 423        }
 424}
 425
 426static int fan_read_reg(int reg, unsigned char *buf, int nb)
 427{
 428        int tries, nr, nw;
 429
 430        buf[0] = reg;
 431        tries = 0;
 432        for (;;) {
 433                nw = i2c_master_send(fcu, buf, 1);
 434                if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
 435                        break;
 436                msleep(10);
 437                ++tries;
 438        }
 439        if (nw <= 0) {
 440                printk(KERN_ERR "Failure writing address to FCU: %d", nw);
 441                return -EIO;
 442        }
 443        tries = 0;
 444        for (;;) {
 445                nr = i2c_master_recv(fcu, buf, nb);
 446                if (nr > 0 || (nr < 0 && nr != -ENODEV) || tries >= 100)
 447                        break;
 448                msleep(10);
 449                ++tries;
 450        }
 451        if (nr <= 0)
 452                printk(KERN_ERR "Failure reading data from FCU: %d", nw);
 453        return nr;
 454}
 455
 456static int fan_write_reg(int reg, const unsigned char *ptr, int nb)
 457{
 458        int tries, nw;
 459        unsigned char buf[16];
 460
 461        buf[0] = reg;
 462        memcpy(buf+1, ptr, nb);
 463        ++nb;
 464        tries = 0;
 465        for (;;) {
 466                nw = i2c_master_send(fcu, buf, nb);
 467                if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
 468                        break;
 469                msleep(10);
 470                ++tries;
 471        }
 472        if (nw < 0)
 473                printk(KERN_ERR "Failure writing to FCU: %d", nw);
 474        return nw;
 475}
 476
 477static int start_fcu(void)
 478{
 479        unsigned char buf = 0xff;
 480        int rc;
 481
 482        rc = fan_write_reg(0xe, &buf, 1);
 483        if (rc < 0)
 484                return -EIO;
 485        rc = fan_write_reg(0x2e, &buf, 1);
 486        if (rc < 0)
 487                return -EIO;
 488        rc = fan_read_reg(0, &buf, 1);
 489        if (rc < 0)
 490                return -EIO;
 491        fcu_rpm_shift = (buf == 1) ? 2 : 3;
 492        printk(KERN_DEBUG "FCU Initialized, RPM fan shift is %d\n",
 493               fcu_rpm_shift);
 494
 495        return 0;
 496}
 497
 498static int set_rpm_fan(int fan_index, int rpm)
 499{
 500        unsigned char buf[2];
 501        int rc, id, min, max;
 502
 503        if (fcu_fans[fan_index].type != FCU_FAN_RPM)
 504                return -EINVAL;
 505        id = fcu_fans[fan_index].id; 
 506        if (id == FCU_FAN_ABSENT_ID)
 507                return -EINVAL;
 508
 509        min = 2400 >> fcu_rpm_shift;
 510        max = 56000 >> fcu_rpm_shift;
 511
 512        if (rpm < min)
 513                rpm = min;
 514        else if (rpm > max)
 515                rpm = max;
 516        buf[0] = rpm >> (8 - fcu_rpm_shift);
 517        buf[1] = rpm << fcu_rpm_shift;
 518        rc = fan_write_reg(0x10 + (id * 2), buf, 2);
 519        if (rc < 0)
 520                return -EIO;
 521        return 0;
 522}
 523
 524static int get_rpm_fan(int fan_index, int programmed)
 525{
 526        unsigned char failure;
 527        unsigned char active;
 528        unsigned char buf[2];
 529        int rc, id, reg_base;
 530
 531        if (fcu_fans[fan_index].type != FCU_FAN_RPM)
 532                return -EINVAL;
 533        id = fcu_fans[fan_index].id; 
 534        if (id == FCU_FAN_ABSENT_ID)
 535                return -EINVAL;
 536
 537        rc = fan_read_reg(0xb, &failure, 1);
 538        if (rc != 1)
 539                return -EIO;
 540        if ((failure & (1 << id)) != 0)
 541                return -EFAULT;
 542        rc = fan_read_reg(0xd, &active, 1);
 543        if (rc != 1)
 544                return -EIO;
 545        if ((active & (1 << id)) == 0)
 546                return -ENXIO;
 547
 548        /* Programmed value or real current speed */
 549        reg_base = programmed ? 0x10 : 0x11;
 550        rc = fan_read_reg(reg_base + (id * 2), buf, 2);
 551        if (rc != 2)
 552                return -EIO;
 553
 554        return (buf[0] << (8 - fcu_rpm_shift)) | buf[1] >> fcu_rpm_shift;
 555}
 556
 557static int set_pwm_fan(int fan_index, int pwm)
 558{
 559        unsigned char buf[2];
 560        int rc, id;
 561
 562        if (fcu_fans[fan_index].type != FCU_FAN_PWM)
 563                return -EINVAL;
 564        id = fcu_fans[fan_index].id; 
 565        if (id == FCU_FAN_ABSENT_ID)
 566                return -EINVAL;
 567
 568        if (pwm < 10)
 569                pwm = 10;
 570        else if (pwm > 100)
 571                pwm = 100;
 572        pwm = (pwm * 2559) / 1000;
 573        buf[0] = pwm;
 574        rc = fan_write_reg(0x30 + (id * 2), buf, 1);
 575        if (rc < 0)
 576                return rc;
 577        return 0;
 578}
 579
 580static int get_pwm_fan(int fan_index)
 581{
 582        unsigned char failure;
 583        unsigned char active;
 584        unsigned char buf[2];
 585        int rc, id;
 586
 587        if (fcu_fans[fan_index].type != FCU_FAN_PWM)
 588                return -EINVAL;
 589        id = fcu_fans[fan_index].id; 
 590        if (id == FCU_FAN_ABSENT_ID)
 591                return -EINVAL;
 592
 593        rc = fan_read_reg(0x2b, &failure, 1);
 594        if (rc != 1)
 595                return -EIO;
 596        if ((failure & (1 << id)) != 0)
 597                return -EFAULT;
 598        rc = fan_read_reg(0x2d, &active, 1);
 599        if (rc != 1)
 600                return -EIO;
 601        if ((active & (1 << id)) == 0)
 602                return -ENXIO;
 603
 604        /* Programmed value or real current speed */
 605        rc = fan_read_reg(0x30 + (id * 2), buf, 1);
 606        if (rc != 1)
 607                return -EIO;
 608
 609        return (buf[0] * 1000) / 2559;
 610}
 611
 612static void tickle_fcu(void)
 613{
 614        int pwm;
 615
 616        pwm = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
 617
 618        DBG("FCU Tickle, slots fan is: %d\n", pwm);
 619        if (pwm < 0)
 620                pwm = 100;
 621
 622        if (!rackmac) {
 623                pwm = SLOTS_FAN_DEFAULT_PWM;
 624        } else if (pwm < SLOTS_PID_OUTPUT_MIN)
 625                pwm = SLOTS_PID_OUTPUT_MIN;
 626
 627        /* That is hopefully enough to make the FCU happy */
 628        set_pwm_fan(SLOTS_FAN_PWM_INDEX, pwm);
 629}
 630
 631
 632/*
 633 * Utility routine to read the CPU calibration EEPROM data
 634 * from the device-tree
 635 */
 636static int read_eeprom(int cpu, struct mpu_data *out)
 637{
 638        struct device_node *np;
 639        char nodename[64];
 640        const u8 *data;
 641        int len;
 642
 643        /* prom.c routine for finding a node by path is a bit brain dead
 644         * and requires exact @xxx unit numbers. This is a bit ugly but
 645         * will work for these machines
 646         */
 647        sprintf(nodename, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu ? 2 : 0);
 648        np = of_find_node_by_path(nodename);
 649        if (np == NULL) {
 650                printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid node from device-tree\n");
 651                return -ENODEV;
 652        }
 653        data = of_get_property(np, "cpuid", &len);
 654        if (data == NULL) {
 655                printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid property from device-tree\n");
 656                of_node_put(np);
 657                return -ENODEV;
 658        }
 659        memcpy(out, data, sizeof(struct mpu_data));
 660        of_node_put(np);
 661        
 662        return 0;
 663}
 664
 665static void fetch_cpu_pumps_minmax(void)
 666{
 667        struct cpu_pid_state *state0 = &processor_state[0];
 668        struct cpu_pid_state *state1 = &processor_state[1];
 669        u16 pump_min = 0, pump_max = 0xffff;
 670        u16 tmp[4];
 671
 672        /* Try to fetch pumps min/max infos from eeprom */
 673
 674        memcpy(&tmp, &state0->mpu.processor_part_num, 8);
 675        if (tmp[0] != 0xffff && tmp[1] != 0xffff) {
 676                pump_min = max(pump_min, tmp[0]);
 677                pump_max = min(pump_max, tmp[1]);
 678        }
 679        if (tmp[2] != 0xffff && tmp[3] != 0xffff) {
 680                pump_min = max(pump_min, tmp[2]);
 681                pump_max = min(pump_max, tmp[3]);
 682        }
 683
 684        /* Double check the values, this _IS_ needed as the EEPROM on
 685         * some dual 2.5Ghz G5s seem, at least, to have both min & max
 686         * same to the same value ... (grrrr)
 687         */
 688        if (pump_min == pump_max || pump_min == 0 || pump_max == 0xffff) {
 689                pump_min = CPU_PUMP_OUTPUT_MIN;
 690                pump_max = CPU_PUMP_OUTPUT_MAX;
 691        }
 692
 693        state0->pump_min = state1->pump_min = pump_min;
 694        state0->pump_max = state1->pump_max = pump_max;
 695}
 696
 697/* 
 698 * Now, unfortunately, sysfs doesn't give us a nice void * we could
 699 * pass around to the attribute functions, so we don't really have
 700 * choice but implement a bunch of them...
 701 *
 702 * That sucks a bit, we take the lock because FIX32TOPRINT evaluates
 703 * the input twice... I accept patches :)
 704 */
 705#define BUILD_SHOW_FUNC_FIX(name, data)                         \
 706static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf)        \
 707{                                                               \
 708        ssize_t r;                                              \
 709        mutex_lock(&driver_lock);                                       \
 710        r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data));        \
 711        mutex_unlock(&driver_lock);                                     \
 712        return r;                                               \
 713}
 714#define BUILD_SHOW_FUNC_INT(name, data)                         \
 715static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf)        \
 716{                                                               \
 717        return sprintf(buf, "%d", data);                        \
 718}
 719
 720BUILD_SHOW_FUNC_FIX(cpu0_temperature, processor_state[0].last_temp)
 721BUILD_SHOW_FUNC_FIX(cpu0_voltage, processor_state[0].voltage)
 722BUILD_SHOW_FUNC_FIX(cpu0_current, processor_state[0].current_a)
 723BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm, processor_state[0].rpm)
 724BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm, processor_state[0].intake_rpm)
 725
 726BUILD_SHOW_FUNC_FIX(cpu1_temperature, processor_state[1].last_temp)
 727BUILD_SHOW_FUNC_FIX(cpu1_voltage, processor_state[1].voltage)
 728BUILD_SHOW_FUNC_FIX(cpu1_current, processor_state[1].current_a)
 729BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm, processor_state[1].rpm)
 730BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm, processor_state[1].intake_rpm)
 731
 732BUILD_SHOW_FUNC_FIX(backside_temperature, backside_state.last_temp)
 733BUILD_SHOW_FUNC_INT(backside_fan_pwm, backside_state.pwm)
 734
 735BUILD_SHOW_FUNC_FIX(drives_temperature, drives_state.last_temp)
 736BUILD_SHOW_FUNC_INT(drives_fan_rpm, drives_state.rpm)
 737
 738BUILD_SHOW_FUNC_FIX(slots_temperature, slots_state.last_temp)
 739BUILD_SHOW_FUNC_INT(slots_fan_pwm, slots_state.pwm)
 740
 741BUILD_SHOW_FUNC_FIX(dimms_temperature, dimms_state.last_temp)
 742
 743static DEVICE_ATTR(cpu0_temperature,S_IRUGO,show_cpu0_temperature,NULL);
 744static DEVICE_ATTR(cpu0_voltage,S_IRUGO,show_cpu0_voltage,NULL);
 745static DEVICE_ATTR(cpu0_current,S_IRUGO,show_cpu0_current,NULL);
 746static DEVICE_ATTR(cpu0_exhaust_fan_rpm,S_IRUGO,show_cpu0_exhaust_fan_rpm,NULL);
 747static DEVICE_ATTR(cpu0_intake_fan_rpm,S_IRUGO,show_cpu0_intake_fan_rpm,NULL);
 748
 749static DEVICE_ATTR(cpu1_temperature,S_IRUGO,show_cpu1_temperature,NULL);
 750static DEVICE_ATTR(cpu1_voltage,S_IRUGO,show_cpu1_voltage,NULL);
 751static DEVICE_ATTR(cpu1_current,S_IRUGO,show_cpu1_current,NULL);
 752static DEVICE_ATTR(cpu1_exhaust_fan_rpm,S_IRUGO,show_cpu1_exhaust_fan_rpm,NULL);
 753static DEVICE_ATTR(cpu1_intake_fan_rpm,S_IRUGO,show_cpu1_intake_fan_rpm,NULL);
 754
 755static DEVICE_ATTR(backside_temperature,S_IRUGO,show_backside_temperature,NULL);
 756static DEVICE_ATTR(backside_fan_pwm,S_IRUGO,show_backside_fan_pwm,NULL);
 757
 758static DEVICE_ATTR(drives_temperature,S_IRUGO,show_drives_temperature,NULL);
 759static DEVICE_ATTR(drives_fan_rpm,S_IRUGO,show_drives_fan_rpm,NULL);
 760
 761static DEVICE_ATTR(slots_temperature,S_IRUGO,show_slots_temperature,NULL);
 762static DEVICE_ATTR(slots_fan_pwm,S_IRUGO,show_slots_fan_pwm,NULL);
 763
 764static DEVICE_ATTR(dimms_temperature,S_IRUGO,show_dimms_temperature,NULL);
 765
 766/*
 767 * CPUs fans control loop
 768 */
 769
 770static int do_read_one_cpu_values(struct cpu_pid_state *state, s32 *temp, s32 *power)
 771{
 772        s32 ltemp, volts, amps;
 773        int index, rc = 0;
 774
 775        /* Default (in case of error) */
 776        *temp = state->cur_temp;
 777        *power = state->cur_power;
 778
 779        if (cpu_pid_type == CPU_PID_TYPE_RACKMAC)
 780                index = (state->index == 0) ?
 781                        CPU_A1_FAN_RPM_INDEX : CPU_B1_FAN_RPM_INDEX;
 782        else
 783                index = (state->index == 0) ?
 784                        CPUA_EXHAUST_FAN_RPM_INDEX : CPUB_EXHAUST_FAN_RPM_INDEX;
 785
 786        /* Read current fan status */
 787        rc = get_rpm_fan(index, !RPM_PID_USE_ACTUAL_SPEED);
 788        if (rc < 0) {
 789                /* XXX What do we do now ? Nothing for now, keep old value, but
 790                 * return error upstream
 791                 */
 792                DBG("  cpu %d, fan reading error !\n", state->index);
 793        } else {
 794                state->rpm = rc;
 795                DBG("  cpu %d, exhaust RPM: %d\n", state->index, state->rpm);
 796        }
 797
 798        /* Get some sensor readings and scale it */
 799        ltemp = read_smon_adc(state, 1);
 800        if (ltemp == -1) {
 801                /* XXX What do we do now ? */
 802                state->overtemp++;
 803                if (rc == 0)
 804                        rc = -EIO;
 805                DBG("  cpu %d, temp reading error !\n", state->index);
 806        } else {
 807                /* Fixup temperature according to diode calibration
 808                 */
 809                DBG("  cpu %d, temp raw: %04x, m_diode: %04x, b_diode: %04x\n",
 810                    state->index,
 811                    ltemp, state->mpu.mdiode, state->mpu.bdiode);
 812                *temp = ((s32)ltemp * (s32)state->mpu.mdiode + ((s32)state->mpu.bdiode << 12)) >> 2;
 813                state->last_temp = *temp;
 814                DBG("  temp: %d.%03d\n", FIX32TOPRINT((*temp)));
 815        }
 816
 817        /*
 818         * Read voltage & current and calculate power
 819         */
 820        volts = read_smon_adc(state, 3);
 821        amps = read_smon_adc(state, 4);
 822
 823        /* Scale voltage and current raw sensor values according to fixed scales
 824         * obtained in Darwin and calculate power from I and V
 825         */
 826        volts *= ADC_CPU_VOLTAGE_SCALE;
 827        amps *= ADC_CPU_CURRENT_SCALE;
 828        *power = (((u64)volts) * ((u64)amps)) >> 16;
 829        state->voltage = volts;
 830        state->current_a = amps;
 831        state->last_power = *power;
 832
 833        DBG("  cpu %d, current: %d.%03d, voltage: %d.%03d, power: %d.%03d W\n",
 834            state->index, FIX32TOPRINT(state->current_a),
 835            FIX32TOPRINT(state->voltage), FIX32TOPRINT(*power));
 836
 837        return 0;
 838}
 839
 840static void do_cpu_pid(struct cpu_pid_state *state, s32 temp, s32 power)
 841{
 842        s32 power_target, integral, derivative, proportional, adj_in_target, sval;
 843        s64 integ_p, deriv_p, prop_p, sum; 
 844        int i;
 845
 846        /* Calculate power target value (could be done once for all)
 847         * and convert to a 16.16 fp number
 848         */
 849        power_target = ((u32)(state->mpu.pmaxh - state->mpu.padjmax)) << 16;
 850        DBG("  power target: %d.%03d, error: %d.%03d\n",
 851            FIX32TOPRINT(power_target), FIX32TOPRINT(power_target - power));
 852
 853        /* Store temperature and power in history array */
 854        state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
 855        state->temp_history[state->cur_temp] = temp;
 856        state->cur_power = (state->cur_power + 1) % state->count_power;
 857        state->power_history[state->cur_power] = power;
 858        state->error_history[state->cur_power] = power_target - power;
 859        
 860        /* If first loop, fill the history table */
 861        if (state->first) {
 862                for (i = 0; i < (state->count_power - 1); i++) {
 863                        state->cur_power = (state->cur_power + 1) % state->count_power;
 864                        state->power_history[state->cur_power] = power;
 865                        state->error_history[state->cur_power] = power_target - power;
 866                }
 867                for (i = 0; i < (CPU_TEMP_HISTORY_SIZE - 1); i++) {
 868                        state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
 869                        state->temp_history[state->cur_temp] = temp;                    
 870                }
 871                state->first = 0;
 872        }
 873
 874        /* Calculate the integral term normally based on the "power" values */
 875        sum = 0;
 876        integral = 0;
 877        for (i = 0; i < state->count_power; i++)
 878                integral += state->error_history[i];
 879        integral *= CPU_PID_INTERVAL;
 880        DBG("  integral: %08x\n", integral);
 881
 882        /* Calculate the adjusted input (sense value).
 883         *   G_r is 12.20
 884         *   integ is 16.16
 885         *   so the result is 28.36
 886         *
 887         * input target is mpu.ttarget, input max is mpu.tmax
 888         */
 889        integ_p = ((s64)state->mpu.pid_gr) * (s64)integral;
 890        DBG("   integ_p: %d\n", (int)(integ_p >> 36));
 891        sval = (state->mpu.tmax << 16) - ((integ_p >> 20) & 0xffffffff);
 892        adj_in_target = (state->mpu.ttarget << 16);
 893        if (adj_in_target > sval)
 894                adj_in_target = sval;
 895        DBG("   adj_in_target: %d.%03d, ttarget: %d\n", FIX32TOPRINT(adj_in_target),
 896            state->mpu.ttarget);
 897
 898        /* Calculate the derivative term */
 899        derivative = state->temp_history[state->cur_temp] -
 900                state->temp_history[(state->cur_temp + CPU_TEMP_HISTORY_SIZE - 1)
 901                                    % CPU_TEMP_HISTORY_SIZE];
 902        derivative /= CPU_PID_INTERVAL;
 903        deriv_p = ((s64)state->mpu.pid_gd) * (s64)derivative;
 904        DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
 905        sum += deriv_p;
 906
 907        /* Calculate the proportional term */
 908        proportional = temp - adj_in_target;
 909        prop_p = ((s64)state->mpu.pid_gp) * (s64)proportional;
 910        DBG("   prop_p: %d\n", (int)(prop_p >> 36));
 911        sum += prop_p;
 912
 913        /* Scale sum */
 914        sum >>= 36;
 915
 916        DBG("   sum: %d\n", (int)sum);
 917        state->rpm += (s32)sum;
 918}
 919
 920static void do_monitor_cpu_combined(void)
 921{
 922        struct cpu_pid_state *state0 = &processor_state[0];
 923        struct cpu_pid_state *state1 = &processor_state[1];
 924        s32 temp0, power0, temp1, power1;
 925        s32 temp_combi, power_combi;
 926        int rc, intake, pump;
 927
 928        rc = do_read_one_cpu_values(state0, &temp0, &power0);
 929        if (rc < 0) {
 930                /* XXX What do we do now ? */
 931        }
 932        state1->overtemp = 0;
 933        rc = do_read_one_cpu_values(state1, &temp1, &power1);
 934        if (rc < 0) {
 935                /* XXX What do we do now ? */
 936        }
 937        if (state1->overtemp)
 938                state0->overtemp++;
 939
 940        temp_combi = max(temp0, temp1);
 941        power_combi = max(power0, power1);
 942
 943        /* Check tmax, increment overtemp if we are there. At tmax+8, we go
 944         * full blown immediately and try to trigger a shutdown
 945         */
 946        if (temp_combi >= ((state0->mpu.tmax + 8) << 16)) {
 947                printk(KERN_WARNING "Warning ! Temperature way above maximum (%d) !\n",
 948                       temp_combi >> 16);
 949                state0->overtemp += CPU_MAX_OVERTEMP / 4;
 950        } else if (temp_combi > (state0->mpu.tmax << 16)) {
 951                state0->overtemp++;
 952                printk(KERN_WARNING "Temperature %d above max %d. overtemp %d\n",
 953                       temp_combi >> 16, state0->mpu.tmax, state0->overtemp);
 954        } else {
 955                if (state0->overtemp)
 956                        printk(KERN_WARNING "Temperature back down to %d\n",
 957                               temp_combi >> 16);
 958                state0->overtemp = 0;
 959        }
 960        if (state0->overtemp >= CPU_MAX_OVERTEMP)
 961                critical_state = 1;
 962        if (state0->overtemp > 0) {
 963                state0->rpm = state0->mpu.rmaxn_exhaust_fan;
 964                state0->intake_rpm = intake = state0->mpu.rmaxn_intake_fan;
 965                pump = state0->pump_max;
 966                goto do_set_fans;
 967        }
 968
 969        /* Do the PID */
 970        do_cpu_pid(state0, temp_combi, power_combi);
 971
 972        /* Range check */
 973        state0->rpm = max(state0->rpm, (int)state0->mpu.rminn_exhaust_fan);
 974        state0->rpm = min(state0->rpm, (int)state0->mpu.rmaxn_exhaust_fan);
 975
 976        /* Calculate intake fan speed */
 977        intake = (state0->rpm * CPU_INTAKE_SCALE) >> 16;
 978        intake = max(intake, (int)state0->mpu.rminn_intake_fan);
 979        intake = min(intake, (int)state0->mpu.rmaxn_intake_fan);
 980        state0->intake_rpm = intake;
 981
 982        /* Calculate pump speed */
 983        pump = (state0->rpm * state0->pump_max) /
 984                state0->mpu.rmaxn_exhaust_fan;
 985        pump = min(pump, state0->pump_max);
 986        pump = max(pump, state0->pump_min);
 987        
 988 do_set_fans:
 989        /* We copy values from state 0 to state 1 for /sysfs */
 990        state1->rpm = state0->rpm;
 991        state1->intake_rpm = state0->intake_rpm;
 992
 993        DBG("** CPU %d RPM: %d Ex, %d, Pump: %d, In, overtemp: %d\n",
 994            state1->index, (int)state1->rpm, intake, pump, state1->overtemp);
 995
 996        /* We should check for errors, shouldn't we ? But then, what
 997         * do we do once the error occurs ? For FCU notified fan
 998         * failures (-EFAULT) we probably want to notify userland
 999         * some way...
1000         */
1001        set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
1002        set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state0->rpm);
1003        set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
1004        set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state0->rpm);
1005
1006        if (fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
1007                set_rpm_fan(CPUA_PUMP_RPM_INDEX, pump);
1008        if (fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
1009                set_rpm_fan(CPUB_PUMP_RPM_INDEX, pump);
1010}
1011
1012static void do_monitor_cpu_split(struct cpu_pid_state *state)
1013{
1014        s32 temp, power;
1015        int rc, intake;
1016
1017        /* Read current fan status */
1018        rc = do_read_one_cpu_values(state, &temp, &power);
1019        if (rc < 0) {
1020                /* XXX What do we do now ? */
1021        }
1022
1023        /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1024         * full blown immediately and try to trigger a shutdown
1025         */
1026        if (temp >= ((state->mpu.tmax + 8) << 16)) {
1027                printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
1028                       " (%d) !\n",
1029                       state->index, temp >> 16);
1030                state->overtemp += CPU_MAX_OVERTEMP / 4;
1031        } else if (temp > (state->mpu.tmax << 16)) {
1032                state->overtemp++;
1033                printk(KERN_WARNING "CPU %d temperature %d above max %d. overtemp %d\n",
1034                       state->index, temp >> 16, state->mpu.tmax, state->overtemp);
1035        } else {
1036                if (state->overtemp)
1037                        printk(KERN_WARNING "CPU %d temperature back down to %d\n",
1038                               state->index, temp >> 16);
1039                state->overtemp = 0;
1040        }
1041        if (state->overtemp >= CPU_MAX_OVERTEMP)
1042                critical_state = 1;
1043        if (state->overtemp > 0) {
1044                state->rpm = state->mpu.rmaxn_exhaust_fan;
1045                state->intake_rpm = intake = state->mpu.rmaxn_intake_fan;
1046                goto do_set_fans;
1047        }
1048
1049        /* Do the PID */
1050        do_cpu_pid(state, temp, power);
1051
1052        /* Range check */
1053        state->rpm = max(state->rpm, (int)state->mpu.rminn_exhaust_fan);
1054        state->rpm = min(state->rpm, (int)state->mpu.rmaxn_exhaust_fan);
1055
1056        /* Calculate intake fan */
1057        intake = (state->rpm * CPU_INTAKE_SCALE) >> 16;
1058        intake = max(intake, (int)state->mpu.rminn_intake_fan);
1059        intake = min(intake, (int)state->mpu.rmaxn_intake_fan);
1060        state->intake_rpm = intake;
1061
1062 do_set_fans:
1063        DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n",
1064            state->index, (int)state->rpm, intake, state->overtemp);
1065
1066        /* We should check for errors, shouldn't we ? But then, what
1067         * do we do once the error occurs ? For FCU notified fan
1068         * failures (-EFAULT) we probably want to notify userland
1069         * some way...
1070         */
1071        if (state->index == 0) {
1072                set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
1073                set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state->rpm);
1074        } else {
1075                set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
1076                set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state->rpm);
1077        }
1078}
1079
1080static void do_monitor_cpu_rack(struct cpu_pid_state *state)
1081{
1082        s32 temp, power, fan_min;
1083        int rc;
1084
1085        /* Read current fan status */
1086        rc = do_read_one_cpu_values(state, &temp, &power);
1087        if (rc < 0) {
1088                /* XXX What do we do now ? */
1089        }
1090
1091        /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1092         * full blown immediately and try to trigger a shutdown
1093         */
1094        if (temp >= ((state->mpu.tmax + 8) << 16)) {
1095                printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
1096                       " (%d) !\n",
1097                       state->index, temp >> 16);
1098                state->overtemp = CPU_MAX_OVERTEMP / 4;
1099        } else if (temp > (state->mpu.tmax << 16)) {
1100                state->overtemp++;
1101                printk(KERN_WARNING "CPU %d temperature %d above max %d. overtemp %d\n",
1102                       state->index, temp >> 16, state->mpu.tmax, state->overtemp);
1103        } else {
1104                if (state->overtemp)
1105                        printk(KERN_WARNING "CPU %d temperature back down to %d\n",
1106                               state->index, temp >> 16);
1107                state->overtemp = 0;
1108        }
1109        if (state->overtemp >= CPU_MAX_OVERTEMP)
1110                critical_state = 1;
1111        if (state->overtemp > 0) {
1112                state->rpm = state->intake_rpm = state->mpu.rmaxn_intake_fan;
1113                goto do_set_fans;
1114        }
1115
1116        /* Do the PID */
1117        do_cpu_pid(state, temp, power);
1118
1119        /* Check clamp from dimms */
1120        fan_min = dimm_output_clamp;
1121        fan_min = max(fan_min, (int)state->mpu.rminn_intake_fan);
1122
1123        DBG(" CPU min mpu = %d, min dimm = %d\n",
1124            state->mpu.rminn_intake_fan, dimm_output_clamp);
1125
1126        state->rpm = max(state->rpm, (int)fan_min);
1127        state->rpm = min(state->rpm, (int)state->mpu.rmaxn_intake_fan);
1128        state->intake_rpm = state->rpm;
1129
1130 do_set_fans:
1131        DBG("** CPU %d RPM: %d overtemp: %d\n",
1132            state->index, (int)state->rpm, state->overtemp);
1133
1134        /* We should check for errors, shouldn't we ? But then, what
1135         * do we do once the error occurs ? For FCU notified fan
1136         * failures (-EFAULT) we probably want to notify userland
1137         * some way...
1138         */
1139        if (state->index == 0) {
1140                set_rpm_fan(CPU_A1_FAN_RPM_INDEX, state->rpm);
1141                set_rpm_fan(CPU_A2_FAN_RPM_INDEX, state->rpm);
1142                set_rpm_fan(CPU_A3_FAN_RPM_INDEX, state->rpm);
1143        } else {
1144                set_rpm_fan(CPU_B1_FAN_RPM_INDEX, state->rpm);
1145                set_rpm_fan(CPU_B2_FAN_RPM_INDEX, state->rpm);
1146                set_rpm_fan(CPU_B3_FAN_RPM_INDEX, state->rpm);
1147        }
1148}
1149
1150/*
1151 * Initialize the state structure for one CPU control loop
1152 */
1153static int init_processor_state(struct cpu_pid_state *state, int index)
1154{
1155        int err;
1156
1157        state->index = index;
1158        state->first = 1;
1159        state->rpm = (cpu_pid_type == CPU_PID_TYPE_RACKMAC) ? 4000 : 1000;
1160        state->overtemp = 0;
1161        state->adc_config = 0x00;
1162
1163
1164        if (index == 0)
1165                state->monitor = attach_i2c_chip(SUPPLY_MONITOR_ID, "CPU0_monitor");
1166        else if (index == 1)
1167                state->monitor = attach_i2c_chip(SUPPLY_MONITORB_ID, "CPU1_monitor");
1168        if (state->monitor == NULL)
1169                goto fail;
1170
1171        if (read_eeprom(index, &state->mpu))
1172                goto fail;
1173
1174        state->count_power = state->mpu.tguardband;
1175        if (state->count_power > CPU_POWER_HISTORY_SIZE) {
1176                printk(KERN_WARNING "Warning ! too many power history slots\n");
1177                state->count_power = CPU_POWER_HISTORY_SIZE;
1178        }
1179        DBG("CPU %d Using %d power history entries\n", index, state->count_power);
1180
1181        if (index == 0) {
1182                err = device_create_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1183                err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1184                err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_current);
1185                err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1186                err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1187        } else {
1188                err = device_create_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1189                err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1190                err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_current);
1191                err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1192                err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1193        }
1194        if (err)
1195                printk(KERN_WARNING "Failed to create some of the attribute"
1196                        "files for CPU %d\n", index);
1197
1198        return 0;
1199 fail:
1200        state->monitor = NULL;
1201        
1202        return -ENODEV;
1203}
1204
1205/*
1206 * Dispose of the state data for one CPU control loop
1207 */
1208static void dispose_processor_state(struct cpu_pid_state *state)
1209{
1210        if (state->monitor == NULL)
1211                return;
1212
1213        if (state->index == 0) {
1214                device_remove_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1215                device_remove_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1216                device_remove_file(&of_dev->dev, &dev_attr_cpu0_current);
1217                device_remove_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1218                device_remove_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1219        } else {
1220                device_remove_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1221                device_remove_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1222                device_remove_file(&of_dev->dev, &dev_attr_cpu1_current);
1223                device_remove_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1224                device_remove_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1225        }
1226
1227        state->monitor = NULL;
1228}
1229
1230/*
1231 * Motherboard backside & U3 heatsink fan control loop
1232 */
1233static void do_monitor_backside(struct backside_pid_state *state)
1234{
1235        s32 temp, integral, derivative, fan_min;
1236        s64 integ_p, deriv_p, prop_p, sum; 
1237        int i, rc;
1238
1239        if (--state->ticks != 0)
1240                return;
1241        state->ticks = backside_params.interval;
1242
1243        DBG("backside:\n");
1244
1245        /* Check fan status */
1246        rc = get_pwm_fan(BACKSIDE_FAN_PWM_INDEX);
1247        if (rc < 0) {
1248                printk(KERN_WARNING "Error %d reading backside fan !\n", rc);
1249                /* XXX What do we do now ? */
1250        } else
1251                state->pwm = rc;
1252        DBG("  current pwm: %d\n", state->pwm);
1253
1254        /* Get some sensor readings */
1255        temp = i2c_smbus_read_byte_data(state->monitor, MAX6690_EXT_TEMP) << 16;
1256        state->last_temp = temp;
1257        DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1258            FIX32TOPRINT(backside_params.input_target));
1259
1260        /* Store temperature and error in history array */
1261        state->cur_sample = (state->cur_sample + 1) % BACKSIDE_PID_HISTORY_SIZE;
1262        state->sample_history[state->cur_sample] = temp;
1263        state->error_history[state->cur_sample] = temp - backside_params.input_target;
1264        
1265        /* If first loop, fill the history table */
1266        if (state->first) {
1267                for (i = 0; i < (BACKSIDE_PID_HISTORY_SIZE - 1); i++) {
1268                        state->cur_sample = (state->cur_sample + 1) %
1269                                BACKSIDE_PID_HISTORY_SIZE;
1270                        state->sample_history[state->cur_sample] = temp;
1271                        state->error_history[state->cur_sample] =
1272                                temp - backside_params.input_target;
1273                }
1274                state->first = 0;
1275        }
1276
1277        /* Calculate the integral term */
1278        sum = 0;
1279        integral = 0;
1280        for (i = 0; i < BACKSIDE_PID_HISTORY_SIZE; i++)
1281                integral += state->error_history[i];
1282        integral *= backside_params.interval;
1283        DBG("  integral: %08x\n", integral);
1284        integ_p = ((s64)backside_params.G_r) * (s64)integral;
1285        DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1286        sum += integ_p;
1287
1288        /* Calculate the derivative term */
1289        derivative = state->error_history[state->cur_sample] -
1290                state->error_history[(state->cur_sample + BACKSIDE_PID_HISTORY_SIZE - 1)
1291                                    % BACKSIDE_PID_HISTORY_SIZE];
1292        derivative /= backside_params.interval;
1293        deriv_p = ((s64)backside_params.G_d) * (s64)derivative;
1294        DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1295        sum += deriv_p;
1296
1297        /* Calculate the proportional term */
1298        prop_p = ((s64)backside_params.G_p) * (s64)(state->error_history[state->cur_sample]);
1299        DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1300        sum += prop_p;
1301
1302        /* Scale sum */
1303        sum >>= 36;
1304
1305        DBG("   sum: %d\n", (int)sum);
1306        if (backside_params.additive)
1307                state->pwm += (s32)sum;
1308        else
1309                state->pwm = sum;
1310
1311        /* Check for clamp */
1312        fan_min = (dimm_output_clamp * 100) / 14000;
1313        fan_min = max(fan_min, backside_params.output_min);
1314
1315        state->pwm = max(state->pwm, fan_min);
1316        state->pwm = min(state->pwm, backside_params.output_max);
1317
1318        DBG("** BACKSIDE PWM: %d\n", (int)state->pwm);
1319        set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, state->pwm);
1320}
1321
1322/*
1323 * Initialize the state structure for the backside fan control loop
1324 */
1325static int init_backside_state(struct backside_pid_state *state)
1326{
1327        struct device_node *u3;
1328        int u3h = 1; /* conservative by default */
1329        int err;
1330
1331        /*
1332         * There are different PID params for machines with U3 and machines
1333         * with U3H, pick the right ones now
1334         */
1335        u3 = of_find_node_by_path("/u3@0,f8000000");
1336        if (u3 != NULL) {
1337                const u32 *vers = of_get_property(u3, "device-rev", NULL);
1338                if (vers)
1339                        if (((*vers) & 0x3f) < 0x34)
1340                                u3h = 0;
1341                of_node_put(u3);
1342        }
1343
1344        if (rackmac) {
1345                backside_params.G_d = BACKSIDE_PID_RACK_G_d;
1346                backside_params.input_target = BACKSIDE_PID_RACK_INPUT_TARGET;
1347                backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1348                backside_params.interval = BACKSIDE_PID_RACK_INTERVAL;
1349                backside_params.G_p = BACKSIDE_PID_RACK_G_p;
1350                backside_params.G_r = BACKSIDE_PID_G_r;
1351                backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1352                backside_params.additive = 0;
1353        } else if (u3h) {
1354                backside_params.G_d = BACKSIDE_PID_U3H_G_d;
1355                backside_params.input_target = BACKSIDE_PID_U3H_INPUT_TARGET;
1356                backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1357                backside_params.interval = BACKSIDE_PID_INTERVAL;
1358                backside_params.G_p = BACKSIDE_PID_G_p;
1359                backside_params.G_r = BACKSIDE_PID_G_r;
1360                backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1361                backside_params.additive = 1;
1362        } else {
1363                backside_params.G_d = BACKSIDE_PID_U3_G_d;
1364                backside_params.input_target = BACKSIDE_PID_U3_INPUT_TARGET;
1365                backside_params.output_min = BACKSIDE_PID_U3_OUTPUT_MIN;
1366                backside_params.interval = BACKSIDE_PID_INTERVAL;
1367                backside_params.G_p = BACKSIDE_PID_G_p;
1368                backside_params.G_r = BACKSIDE_PID_G_r;
1369                backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1370                backside_params.additive = 1;
1371        }
1372
1373        state->ticks = 1;
1374        state->first = 1;
1375        state->pwm = 50;
1376
1377        state->monitor = attach_i2c_chip(BACKSIDE_MAX_ID, "backside_temp");
1378        if (state->monitor == NULL)
1379                return -ENODEV;
1380
1381        err = device_create_file(&of_dev->dev, &dev_attr_backside_temperature);
1382        err |= device_create_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1383        if (err)
1384                printk(KERN_WARNING "Failed to create attribute file(s)"
1385                        " for backside fan\n");
1386
1387        return 0;
1388}
1389
1390/*
1391 * Dispose of the state data for the backside control loop
1392 */
1393static void dispose_backside_state(struct backside_pid_state *state)
1394{
1395        if (state->monitor == NULL)
1396                return;
1397
1398        device_remove_file(&of_dev->dev, &dev_attr_backside_temperature);
1399        device_remove_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1400
1401        state->monitor = NULL;
1402}
1403 
1404/*
1405 * Drives bay fan control loop
1406 */
1407static void do_monitor_drives(struct drives_pid_state *state)
1408{
1409        s32 temp, integral, derivative;
1410        s64 integ_p, deriv_p, prop_p, sum; 
1411        int i, rc;
1412
1413        if (--state->ticks != 0)
1414                return;
1415        state->ticks = DRIVES_PID_INTERVAL;
1416
1417        DBG("drives:\n");
1418
1419        /* Check fan status */
1420        rc = get_rpm_fan(DRIVES_FAN_RPM_INDEX, !RPM_PID_USE_ACTUAL_SPEED);
1421        if (rc < 0) {
1422                printk(KERN_WARNING "Error %d reading drives fan !\n", rc);
1423                /* XXX What do we do now ? */
1424        } else
1425                state->rpm = rc;
1426        DBG("  current rpm: %d\n", state->rpm);
1427
1428        /* Get some sensor readings */
1429        temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
1430                                                    DS1775_TEMP)) << 8;
1431        state->last_temp = temp;
1432        DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1433            FIX32TOPRINT(DRIVES_PID_INPUT_TARGET));
1434
1435        /* Store temperature and error in history array */
1436        state->cur_sample = (state->cur_sample + 1) % DRIVES_PID_HISTORY_SIZE;
1437        state->sample_history[state->cur_sample] = temp;
1438        state->error_history[state->cur_sample] = temp - DRIVES_PID_INPUT_TARGET;
1439        
1440        /* If first loop, fill the history table */
1441        if (state->first) {
1442                for (i = 0; i < (DRIVES_PID_HISTORY_SIZE - 1); i++) {
1443                        state->cur_sample = (state->cur_sample + 1) %
1444                                DRIVES_PID_HISTORY_SIZE;
1445                        state->sample_history[state->cur_sample] = temp;
1446                        state->error_history[state->cur_sample] =
1447                                temp - DRIVES_PID_INPUT_TARGET;
1448                }
1449                state->first = 0;
1450        }
1451
1452        /* Calculate the integral term */
1453        sum = 0;
1454        integral = 0;
1455        for (i = 0; i < DRIVES_PID_HISTORY_SIZE; i++)
1456                integral += state->error_history[i];
1457        integral *= DRIVES_PID_INTERVAL;
1458        DBG("  integral: %08x\n", integral);
1459        integ_p = ((s64)DRIVES_PID_G_r) * (s64)integral;
1460        DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1461        sum += integ_p;
1462
1463        /* Calculate the derivative term */
1464        derivative = state->error_history[state->cur_sample] -
1465                state->error_history[(state->cur_sample + DRIVES_PID_HISTORY_SIZE - 1)
1466                                    % DRIVES_PID_HISTORY_SIZE];
1467        derivative /= DRIVES_PID_INTERVAL;
1468        deriv_p = ((s64)DRIVES_PID_G_d) * (s64)derivative;
1469        DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1470        sum += deriv_p;
1471
1472        /* Calculate the proportional term */
1473        prop_p = ((s64)DRIVES_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1474        DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1475        sum += prop_p;
1476
1477        /* Scale sum */
1478        sum >>= 36;
1479
1480        DBG("   sum: %d\n", (int)sum);
1481        state->rpm += (s32)sum;
1482
1483        state->rpm = max(state->rpm, DRIVES_PID_OUTPUT_MIN);
1484        state->rpm = min(state->rpm, DRIVES_PID_OUTPUT_MAX);
1485
1486        DBG("** DRIVES RPM: %d\n", (int)state->rpm);
1487        set_rpm_fan(DRIVES_FAN_RPM_INDEX, state->rpm);
1488}
1489
1490/*
1491 * Initialize the state structure for the drives bay fan control loop
1492 */
1493static int init_drives_state(struct drives_pid_state *state)
1494{
1495        int err;
1496
1497        state->ticks = 1;
1498        state->first = 1;
1499        state->rpm = 1000;
1500
1501        state->monitor = attach_i2c_chip(DRIVES_DALLAS_ID, "drives_temp");
1502        if (state->monitor == NULL)
1503                return -ENODEV;
1504
1505        err = device_create_file(&of_dev->dev, &dev_attr_drives_temperature);
1506        err |= device_create_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1507        if (err)
1508                printk(KERN_WARNING "Failed to create attribute file(s)"
1509                        " for drives bay fan\n");
1510
1511        return 0;
1512}
1513
1514/*
1515 * Dispose of the state data for the drives control loop
1516 */
1517static void dispose_drives_state(struct drives_pid_state *state)
1518{
1519        if (state->monitor == NULL)
1520                return;
1521
1522        device_remove_file(&of_dev->dev, &dev_attr_drives_temperature);
1523        device_remove_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1524
1525        state->monitor = NULL;
1526}
1527
1528/*
1529 * DIMMs temp control loop
1530 */
1531static void do_monitor_dimms(struct dimm_pid_state *state)
1532{
1533        s32 temp, integral, derivative, fan_min;
1534        s64 integ_p, deriv_p, prop_p, sum;
1535        int i;
1536
1537        if (--state->ticks != 0)
1538                return;
1539        state->ticks = DIMM_PID_INTERVAL;
1540
1541        DBG("DIMM:\n");
1542
1543        DBG("  current value: %d\n", state->output);
1544
1545        temp = read_lm87_reg(state->monitor, LM87_INT_TEMP);
1546        if (temp < 0)
1547                return;
1548        temp <<= 16;
1549        state->last_temp = temp;
1550        DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1551            FIX32TOPRINT(DIMM_PID_INPUT_TARGET));
1552
1553        /* Store temperature and error in history array */
1554        state->cur_sample = (state->cur_sample + 1) % DIMM_PID_HISTORY_SIZE;
1555        state->sample_history[state->cur_sample] = temp;
1556        state->error_history[state->cur_sample] = temp - DIMM_PID_INPUT_TARGET;
1557
1558        /* If first loop, fill the history table */
1559        if (state->first) {
1560                for (i = 0; i < (DIMM_PID_HISTORY_SIZE - 1); i++) {
1561                        state->cur_sample = (state->cur_sample + 1) %
1562                                DIMM_PID_HISTORY_SIZE;
1563                        state->sample_history[state->cur_sample] = temp;
1564                        state->error_history[state->cur_sample] =
1565                                temp - DIMM_PID_INPUT_TARGET;
1566                }
1567                state->first = 0;
1568        }
1569
1570        /* Calculate the integral term */
1571        sum = 0;
1572        integral = 0;
1573        for (i = 0; i < DIMM_PID_HISTORY_SIZE; i++)
1574                integral += state->error_history[i];
1575        integral *= DIMM_PID_INTERVAL;
1576        DBG("  integral: %08x\n", integral);
1577        integ_p = ((s64)DIMM_PID_G_r) * (s64)integral;
1578        DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1579        sum += integ_p;
1580
1581        /* Calculate the derivative term */
1582        derivative = state->error_history[state->cur_sample] -
1583                state->error_history[(state->cur_sample + DIMM_PID_HISTORY_SIZE - 1)
1584                                    % DIMM_PID_HISTORY_SIZE];
1585        derivative /= DIMM_PID_INTERVAL;
1586        deriv_p = ((s64)DIMM_PID_G_d) * (s64)derivative;
1587        DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1588        sum += deriv_p;
1589
1590        /* Calculate the proportional term */
1591        prop_p = ((s64)DIMM_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1592        DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1593        sum += prop_p;
1594
1595        /* Scale sum */
1596        sum >>= 36;
1597
1598        DBG("   sum: %d\n", (int)sum);
1599        state->output = (s32)sum;
1600        state->output = max(state->output, DIMM_PID_OUTPUT_MIN);
1601        state->output = min(state->output, DIMM_PID_OUTPUT_MAX);
1602        dimm_output_clamp = state->output;
1603
1604        DBG("** DIMM clamp value: %d\n", (int)state->output);
1605
1606        /* Backside PID is only every 5 seconds, force backside fan clamping now */
1607        fan_min = (dimm_output_clamp * 100) / 14000;
1608        fan_min = max(fan_min, backside_params.output_min);
1609        if (backside_state.pwm < fan_min) {
1610                backside_state.pwm = fan_min;
1611                DBG(" -> applying clamp to backside fan now: %d  !\n", fan_min);
1612                set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, fan_min);
1613        }
1614}
1615
1616/*
1617 * Initialize the state structure for the DIMM temp control loop
1618 */
1619static int init_dimms_state(struct dimm_pid_state *state)
1620{
1621        state->ticks = 1;
1622        state->first = 1;
1623        state->output = 4000;
1624
1625        state->monitor = attach_i2c_chip(XSERVE_DIMMS_LM87, "dimms_temp");
1626        if (state->monitor == NULL)
1627                return -ENODEV;
1628
1629        if (device_create_file(&of_dev->dev, &dev_attr_dimms_temperature))
1630                printk(KERN_WARNING "Failed to create attribute file"
1631                        " for DIMM temperature\n");
1632
1633        return 0;
1634}
1635
1636/*
1637 * Dispose of the state data for the DIMM control loop
1638 */
1639static void dispose_dimms_state(struct dimm_pid_state *state)
1640{
1641        if (state->monitor == NULL)
1642                return;
1643
1644        device_remove_file(&of_dev->dev, &dev_attr_dimms_temperature);
1645
1646        state->monitor = NULL;
1647}
1648
1649/*
1650 * Slots fan control loop
1651 */
1652static void do_monitor_slots(struct slots_pid_state *state)
1653{
1654        s32 temp, integral, derivative;
1655        s64 integ_p, deriv_p, prop_p, sum;
1656        int i, rc;
1657
1658        if (--state->ticks != 0)
1659                return;
1660        state->ticks = SLOTS_PID_INTERVAL;
1661
1662        DBG("slots:\n");
1663
1664        /* Check fan status */
1665        rc = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
1666        if (rc < 0) {
1667                printk(KERN_WARNING "Error %d reading slots fan !\n", rc);
1668                /* XXX What do we do now ? */
1669        } else
1670                state->pwm = rc;
1671        DBG("  current pwm: %d\n", state->pwm);
1672
1673        /* Get some sensor readings */
1674        temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
1675                                                    DS1775_TEMP)) << 8;
1676        state->last_temp = temp;
1677        DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1678            FIX32TOPRINT(SLOTS_PID_INPUT_TARGET));
1679
1680        /* Store temperature and error in history array */
1681        state->cur_sample = (state->cur_sample + 1) % SLOTS_PID_HISTORY_SIZE;
1682        state->sample_history[state->cur_sample] = temp;
1683        state->error_history[state->cur_sample] = temp - SLOTS_PID_INPUT_TARGET;
1684
1685        /* If first loop, fill the history table */
1686        if (state->first) {
1687                for (i = 0; i < (SLOTS_PID_HISTORY_SIZE - 1); i++) {
1688                        state->cur_sample = (state->cur_sample + 1) %
1689                                SLOTS_PID_HISTORY_SIZE;
1690                        state->sample_history[state->cur_sample] = temp;
1691                        state->error_history[state->cur_sample] =
1692                                temp - SLOTS_PID_INPUT_TARGET;
1693                }
1694                state->first = 0;
1695        }
1696
1697        /* Calculate the integral term */
1698        sum = 0;
1699        integral = 0;
1700        for (i = 0; i < SLOTS_PID_HISTORY_SIZE; i++)
1701                integral += state->error_history[i];
1702        integral *= SLOTS_PID_INTERVAL;
1703        DBG("  integral: %08x\n", integral);
1704        integ_p = ((s64)SLOTS_PID_G_r) * (s64)integral;
1705        DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1706        sum += integ_p;
1707
1708        /* Calculate the derivative term */
1709        derivative = state->error_history[state->cur_sample] -
1710                state->error_history[(state->cur_sample + SLOTS_PID_HISTORY_SIZE - 1)
1711                                    % SLOTS_PID_HISTORY_SIZE];
1712        derivative /= SLOTS_PID_INTERVAL;
1713        deriv_p = ((s64)SLOTS_PID_G_d) * (s64)derivative;
1714        DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1715        sum += deriv_p;
1716
1717        /* Calculate the proportional term */
1718        prop_p = ((s64)SLOTS_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1719        DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1720        sum += prop_p;
1721
1722        /* Scale sum */
1723        sum >>= 36;
1724
1725        DBG("   sum: %d\n", (int)sum);
1726        state->pwm = (s32)sum;
1727
1728        state->pwm = max(state->pwm, SLOTS_PID_OUTPUT_MIN);
1729        state->pwm = min(state->pwm, SLOTS_PID_OUTPUT_MAX);
1730
1731        DBG("** DRIVES PWM: %d\n", (int)state->pwm);
1732        set_pwm_fan(SLOTS_FAN_PWM_INDEX, state->pwm);
1733}
1734
1735/*
1736 * Initialize the state structure for the slots bay fan control loop
1737 */
1738static int init_slots_state(struct slots_pid_state *state)
1739{
1740        int err;
1741
1742        state->ticks = 1;
1743        state->first = 1;
1744        state->pwm = 50;
1745
1746        state->monitor = attach_i2c_chip(XSERVE_SLOTS_LM75, "slots_temp");
1747        if (state->monitor == NULL)
1748                return -ENODEV;
1749
1750        err = device_create_file(&of_dev->dev, &dev_attr_slots_temperature);
1751        err |= device_create_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
1752        if (err)
1753                printk(KERN_WARNING "Failed to create attribute file(s)"
1754                        " for slots bay fan\n");
1755
1756        return 0;
1757}
1758
1759/*
1760 * Dispose of the state data for the slots control loop
1761 */
1762static void dispose_slots_state(struct slots_pid_state *state)
1763{
1764        if (state->monitor == NULL)
1765                return;
1766
1767        device_remove_file(&of_dev->dev, &dev_attr_slots_temperature);
1768        device_remove_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
1769
1770        state->monitor = NULL;
1771}
1772
1773
1774static int call_critical_overtemp(void)
1775{
1776        char *argv[] = { critical_overtemp_path, NULL };
1777        static char *envp[] = { "HOME=/",
1778                                "TERM=linux",
1779                                "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
1780                                NULL };
1781
1782        return call_usermodehelper(critical_overtemp_path,
1783                                   argv, envp, UMH_WAIT_EXEC);
1784}
1785
1786
1787/*
1788 * Here's the kernel thread that calls the various control loops
1789 */
1790static int main_control_loop(void *x)
1791{
1792        DBG("main_control_loop started\n");
1793
1794        mutex_lock(&driver_lock);
1795
1796        if (start_fcu() < 0) {
1797                printk(KERN_ERR "kfand: failed to start FCU\n");
1798                mutex_unlock(&driver_lock);
1799                goto out;
1800        }
1801
1802        /* Set the PCI fan once for now on non-RackMac */
1803        if (!rackmac)
1804                set_pwm_fan(SLOTS_FAN_PWM_INDEX, SLOTS_FAN_DEFAULT_PWM);
1805
1806        /* Initialize ADCs */
1807        initialize_adc(&processor_state[0]);
1808        if (processor_state[1].monitor != NULL)
1809                initialize_adc(&processor_state[1]);
1810
1811        fcu_tickle_ticks = FCU_TICKLE_TICKS;
1812
1813        mutex_unlock(&driver_lock);
1814
1815        while (state == state_attached) {
1816                unsigned long elapsed, start;
1817
1818                start = jiffies;
1819
1820                mutex_lock(&driver_lock);
1821
1822                /* Tickle the FCU just in case */
1823                if (--fcu_tickle_ticks < 0) {
1824                        fcu_tickle_ticks = FCU_TICKLE_TICKS;
1825                        tickle_fcu();
1826                }
1827
1828                /* First, we always calculate the new DIMMs state on an Xserve */
1829                if (rackmac)
1830                        do_monitor_dimms(&dimms_state);
1831
1832                /* Then, the CPUs */
1833                if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1834                        do_monitor_cpu_combined();
1835                else if (cpu_pid_type == CPU_PID_TYPE_RACKMAC) {
1836                        do_monitor_cpu_rack(&processor_state[0]);
1837                        if (processor_state[1].monitor != NULL)
1838                                do_monitor_cpu_rack(&processor_state[1]);
1839                        // better deal with UP
1840                } else {
1841                        do_monitor_cpu_split(&processor_state[0]);
1842                        if (processor_state[1].monitor != NULL)
1843                                do_monitor_cpu_split(&processor_state[1]);
1844                        // better deal with UP
1845                }
1846                /* Then, the rest */
1847                do_monitor_backside(&backside_state);
1848                if (rackmac)
1849                        do_monitor_slots(&slots_state);
1850                else
1851                        do_monitor_drives(&drives_state);
1852                mutex_unlock(&driver_lock);
1853
1854                if (critical_state == 1) {
1855                        printk(KERN_WARNING "Temperature control detected a critical condition\n");
1856                        printk(KERN_WARNING "Attempting to shut down...\n");
1857                        if (call_critical_overtemp()) {
1858                                printk(KERN_WARNING "Can't call %s, power off now!\n",
1859                                       critical_overtemp_path);
1860                                machine_power_off();
1861                        }
1862                }
1863                if (critical_state > 0)
1864                        critical_state++;
1865                if (critical_state > MAX_CRITICAL_STATE) {
1866                        printk(KERN_WARNING "Shutdown timed out, power off now !\n");
1867                        machine_power_off();
1868                }
1869
1870                // FIXME: Deal with signals
1871                elapsed = jiffies - start;
1872                if (elapsed < HZ)
1873                        schedule_timeout_interruptible(HZ - elapsed);
1874        }
1875
1876 out:
1877        DBG("main_control_loop ended\n");
1878
1879        ctrl_task = 0;
1880        complete_and_exit(&ctrl_complete, 0);
1881}
1882
1883/*
1884 * Dispose the control loops when tearing down
1885 */
1886static void dispose_control_loops(void)
1887{
1888        dispose_processor_state(&processor_state[0]);
1889        dispose_processor_state(&processor_state[1]);
1890        dispose_backside_state(&backside_state);
1891        dispose_drives_state(&drives_state);
1892        dispose_slots_state(&slots_state);
1893        dispose_dimms_state(&dimms_state);
1894}
1895
1896/*
1897 * Create the control loops. U3-0 i2c bus is up, so we can now
1898 * get to the various sensors
1899 */
1900static int create_control_loops(void)
1901{
1902        struct device_node *np;
1903
1904        /* Count CPUs from the device-tree, we don't care how many are
1905         * actually used by Linux
1906         */
1907        cpu_count = 0;
1908        for (np = NULL; NULL != (np = of_find_node_by_type(np, "cpu"));)
1909                cpu_count++;
1910
1911        DBG("counted %d CPUs in the device-tree\n", cpu_count);
1912
1913        /* Decide the type of PID algorithm to use based on the presence of
1914         * the pumps, though that may not be the best way, that is good enough
1915         * for now
1916         */
1917        if (rackmac)
1918                cpu_pid_type = CPU_PID_TYPE_RACKMAC;
1919        else if (of_machine_is_compatible("PowerMac7,3")
1920            && (cpu_count > 1)
1921            && fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID
1922            && fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) {
1923                printk(KERN_INFO "Liquid cooling pumps detected, using new algorithm !\n");
1924                cpu_pid_type = CPU_PID_TYPE_COMBINED;
1925        } else
1926                cpu_pid_type = CPU_PID_TYPE_SPLIT;
1927
1928        /* Create control loops for everything. If any fail, everything
1929         * fails
1930         */
1931        if (init_processor_state(&processor_state[0], 0))
1932                goto fail;
1933        if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1934                fetch_cpu_pumps_minmax();
1935
1936        if (cpu_count > 1 && init_processor_state(&processor_state[1], 1))
1937                goto fail;
1938        if (init_backside_state(&backside_state))
1939                goto fail;
1940        if (rackmac && init_dimms_state(&dimms_state))
1941                goto fail;
1942        if (rackmac && init_slots_state(&slots_state))
1943                goto fail;
1944        if (!rackmac && init_drives_state(&drives_state))
1945                goto fail;
1946
1947        DBG("all control loops up !\n");
1948
1949        return 0;
1950        
1951 fail:
1952        DBG("failure creating control loops, disposing\n");
1953
1954        dispose_control_loops();
1955
1956        return -ENODEV;
1957}
1958
1959/*
1960 * Start the control loops after everything is up, that is create
1961 * the thread that will make them run
1962 */
1963static void start_control_loops(void)
1964{
1965        init_completion(&ctrl_complete);
1966
1967        ctrl_task = kthread_run(main_control_loop, NULL, "kfand");
1968}
1969
1970/*
1971 * Stop the control loops when tearing down
1972 */
1973static void stop_control_loops(void)
1974{
1975        if (ctrl_task)
1976                wait_for_completion(&ctrl_complete);
1977}
1978
1979/*
1980 * Attach to the i2c FCU after detecting U3-1 bus
1981 */
1982static int attach_fcu(void)
1983{
1984        fcu = attach_i2c_chip(FAN_CTRLER_ID, "fcu");
1985        if (fcu == NULL)
1986                return -ENODEV;
1987
1988        DBG("FCU attached\n");
1989
1990        return 0;
1991}
1992
1993/*
1994 * Detach from the i2c FCU when tearing down
1995 */
1996static void detach_fcu(void)
1997{
1998        fcu = NULL;
1999}
2000
2001/*
2002 * Attach to the i2c controller. We probe the various chips based
2003 * on the device-tree nodes and build everything for the driver to
2004 * run, we then kick the driver monitoring thread
2005 */
2006static int therm_pm72_attach(struct i2c_adapter *adapter)
2007{
2008        mutex_lock(&driver_lock);
2009
2010        /* Check state */
2011        if (state == state_detached)
2012                state = state_attaching;
2013        if (state != state_attaching) {
2014                mutex_unlock(&driver_lock);
2015                return 0;
2016        }
2017
2018        /* Check if we are looking for one of these */
2019        if (u3_0 == NULL && !strcmp(adapter->name, "u3 0")) {
2020                u3_0 = adapter;
2021                DBG("found U3-0\n");
2022                if (k2 || !rackmac)
2023                        if (create_control_loops())
2024                                u3_0 = NULL;
2025        } else if (u3_1 == NULL && !strcmp(adapter->name, "u3 1")) {
2026                u3_1 = adapter;
2027                DBG("found U3-1, attaching FCU\n");
2028                if (attach_fcu())
2029                        u3_1 = NULL;
2030        } else if (k2 == NULL && !strcmp(adapter->name, "mac-io 0")) {
2031                k2 = adapter;
2032                DBG("Found K2\n");
2033                if (u3_0 && rackmac)
2034                        if (create_control_loops())
2035                                k2 = NULL;
2036        }
2037        /* We got all we need, start control loops */
2038        if (u3_0 != NULL && u3_1 != NULL && (k2 || !rackmac)) {
2039                DBG("everything up, starting control loops\n");
2040                state = state_attached;
2041                start_control_loops();
2042        }
2043        mutex_unlock(&driver_lock);
2044
2045        return 0;
2046}
2047
2048static int therm_pm72_probe(struct i2c_client *client,
2049                            const struct i2c_device_id *id)
2050{
2051        /* Always succeed, the real work was done in therm_pm72_attach() */
2052        return 0;
2053}
2054
2055/*
2056 * Called when any of the devices which participates into thermal management
2057 * is going away.
2058 */
2059static int therm_pm72_remove(struct i2c_client *client)
2060{
2061        struct i2c_adapter *adapter = client->adapter;
2062
2063        mutex_lock(&driver_lock);
2064
2065        if (state != state_detached)
2066                state = state_detaching;
2067
2068        /* Stop control loops if any */
2069        DBG("stopping control loops\n");
2070        mutex_unlock(&driver_lock);
2071        stop_control_loops();
2072        mutex_lock(&driver_lock);
2073
2074        if (u3_0 != NULL && !strcmp(adapter->name, "u3 0")) {
2075                DBG("lost U3-0, disposing control loops\n");
2076                dispose_control_loops();
2077                u3_0 = NULL;
2078        }
2079        
2080        if (u3_1 != NULL && !strcmp(adapter->name, "u3 1")) {
2081                DBG("lost U3-1, detaching FCU\n");
2082                detach_fcu();
2083                u3_1 = NULL;
2084        }
2085        if (u3_0 == NULL && u3_1 == NULL)
2086                state = state_detached;
2087
2088        mutex_unlock(&driver_lock);
2089
2090        return 0;
2091}
2092
2093/*
2094 * i2c_driver structure to attach to the host i2c controller
2095 */
2096
2097static const struct i2c_device_id therm_pm72_id[] = {
2098        /*
2099         * Fake device name, thermal management is done by several
2100         * chips but we don't need to differentiate between them at
2101         * this point.
2102         */
2103        { "therm_pm72", 0 },
2104        { }
2105};
2106
2107static struct i2c_driver therm_pm72_driver = {
2108        .driver = {
2109                .name   = "therm_pm72",
2110        },
2111        .attach_adapter = therm_pm72_attach,
2112        .probe          = therm_pm72_probe,
2113        .remove         = therm_pm72_remove,
2114        .id_table       = therm_pm72_id,
2115};
2116
2117static int fan_check_loc_match(const char *loc, int fan)
2118{
2119        char    tmp[64];
2120        char    *c, *e;
2121
2122        strlcpy(tmp, fcu_fans[fan].loc, 64);
2123
2124        c = tmp;
2125        for (;;) {
2126                e = strchr(c, ',');
2127                if (e)
2128                        *e = 0;
2129                if (strcmp(loc, c) == 0)
2130                        return 1;
2131                if (e == NULL)
2132                        break;
2133                c = e + 1;
2134        }
2135        return 0;
2136}
2137
2138static void fcu_lookup_fans(struct device_node *fcu_node)
2139{
2140        struct device_node *np = NULL;
2141        int i;
2142
2143        /* The table is filled by default with values that are suitable
2144         * for the old machines without device-tree informations. We scan
2145         * the device-tree and override those values with whatever is
2146         * there
2147         */
2148
2149        DBG("Looking up FCU controls in device-tree...\n");
2150
2151        while ((np = of_get_next_child(fcu_node, np)) != NULL) {
2152                int type = -1;
2153                const char *loc;
2154                const u32 *reg;
2155
2156                DBG(" control: %s, type: %s\n", np->name, np->type);
2157
2158                /* Detect control type */
2159                if (!strcmp(np->type, "fan-rpm-control") ||
2160                    !strcmp(np->type, "fan-rpm"))
2161                        type = FCU_FAN_RPM;
2162                if (!strcmp(np->type, "fan-pwm-control") ||
2163                    !strcmp(np->type, "fan-pwm"))
2164                        type = FCU_FAN_PWM;
2165                /* Only care about fans for now */
2166                if (type == -1)
2167                        continue;
2168
2169                /* Lookup for a matching location */
2170                loc = of_get_property(np, "location", NULL);
2171                reg = of_get_property(np, "reg", NULL);
2172                if (loc == NULL || reg == NULL)
2173                        continue;
2174                DBG(" matching location: %s, reg: 0x%08x\n", loc, *reg);
2175
2176                for (i = 0; i < FCU_FAN_COUNT; i++) {
2177                        int fan_id;
2178
2179                        if (!fan_check_loc_match(loc, i))
2180                                continue;
2181                        DBG(" location match, index: %d\n", i);
2182                        fcu_fans[i].id = FCU_FAN_ABSENT_ID;
2183                        if (type != fcu_fans[i].type) {
2184                                printk(KERN_WARNING "therm_pm72: Fan type mismatch "
2185                                       "in device-tree for %s\n", np->full_name);
2186                                break;
2187                        }
2188                        if (type == FCU_FAN_RPM)
2189                                fan_id = ((*reg) - 0x10) / 2;
2190                        else
2191                                fan_id = ((*reg) - 0x30) / 2;
2192                        if (fan_id > 7) {
2193                                printk(KERN_WARNING "therm_pm72: Can't parse "
2194                                       "fan ID in device-tree for %s\n", np->full_name);
2195                                break;
2196                        }
2197                        DBG(" fan id -> %d, type -> %d\n", fan_id, type);
2198                        fcu_fans[i].id = fan_id;
2199                }
2200        }
2201
2202        /* Now dump the array */
2203        printk(KERN_INFO "Detected fan controls:\n");
2204        for (i = 0; i < FCU_FAN_COUNT; i++) {
2205                if (fcu_fans[i].id == FCU_FAN_ABSENT_ID)
2206                        continue;
2207                printk(KERN_INFO "  %d: %s fan, id %d, location: %s\n", i,
2208                       fcu_fans[i].type == FCU_FAN_RPM ? "RPM" : "PWM",
2209                       fcu_fans[i].id, fcu_fans[i].loc);
2210        }
2211}
2212
2213static int fcu_of_probe(struct platform_device* dev)
2214{
2215        state = state_detached;
2216        of_dev = dev;
2217
2218        dev_info(&dev->dev, "PowerMac G5 Thermal control driver %s\n", VERSION);
2219
2220        /* Lookup the fans in the device tree */
2221        fcu_lookup_fans(dev->dev.of_node);
2222
2223        /* Add the driver */
2224        return i2c_add_driver(&therm_pm72_driver);
2225}
2226
2227static int fcu_of_remove(struct platform_device* dev)
2228{
2229        i2c_del_driver(&therm_pm72_driver);
2230
2231        return 0;
2232}
2233
2234static const struct of_device_id fcu_match[] = 
2235{
2236        {
2237        .type           = "fcu",
2238        },
2239        {},
2240};
2241MODULE_DEVICE_TABLE(of, fcu_match);
2242
2243static struct platform_driver fcu_of_platform_driver = 
2244{
2245        .driver = {
2246                .name = "temperature",
2247                .owner = THIS_MODULE,
2248                .of_match_table = fcu_match,
2249        },
2250        .probe          = fcu_of_probe,
2251        .remove         = fcu_of_remove
2252};
2253
2254/*
2255 * Check machine type, attach to i2c controller
2256 */
2257static int __init therm_pm72_init(void)
2258{
2259        rackmac = of_machine_is_compatible("RackMac3,1");
2260
2261        if (!of_machine_is_compatible("PowerMac7,2") &&
2262            !of_machine_is_compatible("PowerMac7,3") &&
2263            !rackmac)
2264                return -ENODEV;
2265
2266        return platform_driver_register(&fcu_of_platform_driver);
2267}
2268
2269static void __exit therm_pm72_exit(void)
2270{
2271        platform_driver_unregister(&fcu_of_platform_driver);
2272}
2273
2274module_init(therm_pm72_init);
2275module_exit(therm_pm72_exit);
2276
2277MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
2278MODULE_DESCRIPTION("Driver for Apple's PowerMac G5 thermal control");
2279MODULE_LICENSE("GPL");
2280
2281