linux/arch/powerpc/platforms/iseries/setup.c
<<
>>
Prefs
   1/*
   2 *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
   3 *    Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
   4 *
   5 *    Description:
   6 *      Architecture- / platform-specific boot-time initialization code for
   7 *      the IBM iSeries LPAR.  Adapted from original code by Grant Erickson and
   8 *      code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
   9 *      <dan@net4x.com>.
  10 *
  11 *      This program is free software; you can redistribute it and/or
  12 *      modify it under the terms of the GNU General Public License
  13 *      as published by the Free Software Foundation; either version
  14 *      2 of the License, or (at your option) any later version.
  15 */
  16
  17#undef DEBUG
  18
  19#include <linux/init.h>
  20#include <linux/threads.h>
  21#include <linux/smp.h>
  22#include <linux/param.h>
  23#include <linux/string.h>
  24#include <linux/export.h>
  25#include <linux/seq_file.h>
  26#include <linux/kdev_t.h>
  27#include <linux/kexec.h>
  28#include <linux/major.h>
  29#include <linux/root_dev.h>
  30#include <linux/kernel.h>
  31#include <linux/hrtimer.h>
  32#include <linux/tick.h>
  33
  34#include <asm/processor.h>
  35#include <asm/machdep.h>
  36#include <asm/page.h>
  37#include <asm/mmu.h>
  38#include <asm/pgtable.h>
  39#include <asm/mmu_context.h>
  40#include <asm/cputable.h>
  41#include <asm/sections.h>
  42#include <asm/iommu.h>
  43#include <asm/firmware.h>
  44#include <asm/system.h>
  45#include <asm/time.h>
  46#include <asm/paca.h>
  47#include <asm/cache.h>
  48#include <asm/abs_addr.h>
  49#include <asm/iseries/hv_lp_config.h>
  50#include <asm/iseries/hv_call_event.h>
  51#include <asm/iseries/hv_call_xm.h>
  52#include <asm/iseries/it_lp_queue.h>
  53#include <asm/iseries/mf.h>
  54#include <asm/iseries/hv_lp_event.h>
  55#include <asm/iseries/lpar_map.h>
  56#include <asm/udbg.h>
  57#include <asm/irq.h>
  58
  59#include "naca.h"
  60#include "setup.h"
  61#include "irq.h"
  62#include "vpd_areas.h"
  63#include "processor_vpd.h"
  64#include "it_lp_naca.h"
  65#include "main_store.h"
  66#include "call_sm.h"
  67#include "call_hpt.h"
  68#include "pci.h"
  69
  70#ifdef DEBUG
  71#define DBG(fmt...) udbg_printf(fmt)
  72#else
  73#define DBG(fmt...)
  74#endif
  75
  76/* Function Prototypes */
  77static unsigned long build_iSeries_Memory_Map(void);
  78static void iseries_shared_idle(void);
  79static void iseries_dedicated_idle(void);
  80
  81
  82struct MemoryBlock {
  83        unsigned long absStart;
  84        unsigned long absEnd;
  85        unsigned long logicalStart;
  86        unsigned long logicalEnd;
  87};
  88
  89/*
  90 * Process the main store vpd to determine where the holes in memory are
  91 * and return the number of physical blocks and fill in the array of
  92 * block data.
  93 */
  94static unsigned long iSeries_process_Condor_mainstore_vpd(
  95                struct MemoryBlock *mb_array, unsigned long max_entries)
  96{
  97        unsigned long holeFirstChunk, holeSizeChunks;
  98        unsigned long numMemoryBlocks = 1;
  99        struct IoHriMainStoreSegment4 *msVpd =
 100                (struct IoHriMainStoreSegment4 *)xMsVpd;
 101        unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr;
 102        unsigned long holeEnd = msVpd->nonInterleavedBlocksEndAdr;
 103        unsigned long holeSize = holeEnd - holeStart;
 104
 105        printk("Mainstore_VPD: Condor\n");
 106        /*
 107         * Determine if absolute memory has any
 108         * holes so that we can interpret the
 109         * access map we get back from the hypervisor
 110         * correctly.
 111         */
 112        mb_array[0].logicalStart = 0;
 113        mb_array[0].logicalEnd = 0x100000000UL;
 114        mb_array[0].absStart = 0;
 115        mb_array[0].absEnd = 0x100000000UL;
 116
 117        if (holeSize) {
 118                numMemoryBlocks = 2;
 119                holeStart = holeStart & 0x000fffffffffffffUL;
 120                holeStart = addr_to_chunk(holeStart);
 121                holeFirstChunk = holeStart;
 122                holeSize = addr_to_chunk(holeSize);
 123                holeSizeChunks = holeSize;
 124                printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
 125                                holeFirstChunk, holeSizeChunks );
 126                mb_array[0].logicalEnd = holeFirstChunk;
 127                mb_array[0].absEnd = holeFirstChunk;
 128                mb_array[1].logicalStart = holeFirstChunk;
 129                mb_array[1].logicalEnd = 0x100000000UL - holeSizeChunks;
 130                mb_array[1].absStart = holeFirstChunk + holeSizeChunks;
 131                mb_array[1].absEnd = 0x100000000UL;
 132        }
 133        return numMemoryBlocks;
 134}
 135
 136#define MaxSegmentAreas                 32
 137#define MaxSegmentAdrRangeBlocks        128
 138#define MaxAreaRangeBlocks              4
 139
 140static unsigned long iSeries_process_Regatta_mainstore_vpd(
 141                struct MemoryBlock *mb_array, unsigned long max_entries)
 142{
 143        struct IoHriMainStoreSegment5 *msVpdP =
 144                (struct IoHriMainStoreSegment5 *)xMsVpd;
 145        unsigned long numSegmentBlocks = 0;
 146        u32 existsBits = msVpdP->msAreaExists;
 147        unsigned long area_num;
 148
 149        printk("Mainstore_VPD: Regatta\n");
 150
 151        for (area_num = 0; area_num < MaxSegmentAreas; ++area_num ) {
 152                unsigned long numAreaBlocks;
 153                struct IoHriMainStoreArea4 *currentArea;
 154
 155                if (existsBits & 0x80000000) {
 156                        unsigned long block_num;
 157
 158                        currentArea = &msVpdP->msAreaArray[area_num];
 159                        numAreaBlocks = currentArea->numAdrRangeBlocks;
 160                        printk("ms_vpd: processing area %2ld  blocks=%ld",
 161                                        area_num, numAreaBlocks);
 162                        for (block_num = 0; block_num < numAreaBlocks;
 163                                        ++block_num ) {
 164                                /* Process an address range block */
 165                                struct MemoryBlock tempBlock;
 166                                unsigned long i;
 167
 168                                tempBlock.absStart =
 169                                        (unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart;
 170                                tempBlock.absEnd =
 171                                        (unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd;
 172                                tempBlock.logicalStart = 0;
 173                                tempBlock.logicalEnd   = 0;
 174                                printk("\n          block %ld absStart=%016lx absEnd=%016lx",
 175                                                block_num, tempBlock.absStart,
 176                                                tempBlock.absEnd);
 177
 178                                for (i = 0; i < numSegmentBlocks; ++i) {
 179                                        if (mb_array[i].absStart ==
 180                                                        tempBlock.absStart)
 181                                                break;
 182                                }
 183                                if (i == numSegmentBlocks) {
 184                                        if (numSegmentBlocks == max_entries)
 185                                                panic("iSeries_process_mainstore_vpd: too many memory blocks");
 186                                        mb_array[numSegmentBlocks] = tempBlock;
 187                                        ++numSegmentBlocks;
 188                                } else
 189                                        printk(" (duplicate)");
 190                        }
 191                        printk("\n");
 192                }
 193                existsBits <<= 1;
 194        }
 195        /* Now sort the blocks found into ascending sequence */
 196        if (numSegmentBlocks > 1) {
 197                unsigned long m, n;
 198
 199                for (m = 0; m < numSegmentBlocks - 1; ++m) {
 200                        for (n = numSegmentBlocks - 1; m < n; --n) {
 201                                if (mb_array[n].absStart <
 202                                                mb_array[n-1].absStart) {
 203                                        struct MemoryBlock tempBlock;
 204
 205                                        tempBlock = mb_array[n];
 206                                        mb_array[n] = mb_array[n-1];
 207                                        mb_array[n-1] = tempBlock;
 208                                }
 209                        }
 210                }
 211        }
 212        /*
 213         * Assign "logical" addresses to each block.  These
 214         * addresses correspond to the hypervisor "bitmap" space.
 215         * Convert all addresses into units of 256K chunks.
 216         */
 217        {
 218        unsigned long i, nextBitmapAddress;
 219
 220        printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks);
 221        nextBitmapAddress = 0;
 222        for (i = 0; i < numSegmentBlocks; ++i) {
 223                unsigned long length = mb_array[i].absEnd -
 224                        mb_array[i].absStart;
 225
 226                mb_array[i].logicalStart = nextBitmapAddress;
 227                mb_array[i].logicalEnd = nextBitmapAddress + length;
 228                nextBitmapAddress += length;
 229                printk("          Bitmap range: %016lx - %016lx\n"
 230                                "        Absolute range: %016lx - %016lx\n",
 231                                mb_array[i].logicalStart,
 232                                mb_array[i].logicalEnd,
 233                                mb_array[i].absStart, mb_array[i].absEnd);
 234                mb_array[i].absStart = addr_to_chunk(mb_array[i].absStart &
 235                                0x000fffffffffffffUL);
 236                mb_array[i].absEnd = addr_to_chunk(mb_array[i].absEnd &
 237                                0x000fffffffffffffUL);
 238                mb_array[i].logicalStart =
 239                        addr_to_chunk(mb_array[i].logicalStart);
 240                mb_array[i].logicalEnd = addr_to_chunk(mb_array[i].logicalEnd);
 241        }
 242        }
 243
 244        return numSegmentBlocks;
 245}
 246
 247static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock *mb_array,
 248                unsigned long max_entries)
 249{
 250        unsigned long i;
 251        unsigned long mem_blocks = 0;
 252
 253        if (mmu_has_feature(MMU_FTR_SLB))
 254                mem_blocks = iSeries_process_Regatta_mainstore_vpd(mb_array,
 255                                max_entries);
 256        else
 257                mem_blocks = iSeries_process_Condor_mainstore_vpd(mb_array,
 258                                max_entries);
 259
 260        printk("Mainstore_VPD: numMemoryBlocks = %ld\n", mem_blocks);
 261        for (i = 0; i < mem_blocks; ++i) {
 262                printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
 263                       "                             abs chunks %016lx - %016lx\n",
 264                        i, mb_array[i].logicalStart, mb_array[i].logicalEnd,
 265                        mb_array[i].absStart, mb_array[i].absEnd);
 266        }
 267        return mem_blocks;
 268}
 269
 270static void __init iSeries_get_cmdline(void)
 271{
 272        char *p, *q;
 273
 274        /* copy the command line parameter from the primary VSP  */
 275        HvCallEvent_dmaToSp(cmd_line, 2 * 64* 1024, 256,
 276                        HvLpDma_Direction_RemoteToLocal);
 277
 278        p = cmd_line;
 279        q = cmd_line + 255;
 280        while(p < q) {
 281                if (!*p || *p == '\n')
 282                        break;
 283                ++p;
 284        }
 285        *p = 0;
 286}
 287
 288static void __init iSeries_init_early(void)
 289{
 290        DBG(" -> iSeries_init_early()\n");
 291
 292        /* Snapshot the timebase, for use in later recalibration */
 293        iSeries_time_init_early();
 294
 295        /*
 296         * Initialize the DMA/TCE management
 297         */
 298        iommu_init_early_iSeries();
 299
 300        /* Initialize machine-dependency vectors */
 301#ifdef CONFIG_SMP
 302        smp_init_iSeries();
 303#endif
 304
 305        /* Associate Lp Event Queue 0 with processor 0 */
 306        HvCallEvent_setLpEventQueueInterruptProc(0, 0);
 307
 308        mf_init();
 309
 310        DBG(" <- iSeries_init_early()\n");
 311}
 312
 313struct mschunks_map mschunks_map = {
 314        /* XXX We don't use these, but Piranha might need them. */
 315        .chunk_size  = MSCHUNKS_CHUNK_SIZE,
 316        .chunk_shift = MSCHUNKS_CHUNK_SHIFT,
 317        .chunk_mask  = MSCHUNKS_OFFSET_MASK,
 318};
 319EXPORT_SYMBOL(mschunks_map);
 320
 321static void mschunks_alloc(unsigned long num_chunks)
 322{
 323        klimit = _ALIGN(klimit, sizeof(u32));
 324        mschunks_map.mapping = (u32 *)klimit;
 325        klimit += num_chunks * sizeof(u32);
 326        mschunks_map.num_chunks = num_chunks;
 327}
 328
 329/*
 330 * The iSeries may have very large memories ( > 128 GB ) and a partition
 331 * may get memory in "chunks" that may be anywhere in the 2**52 real
 332 * address space.  The chunks are 256K in size.  To map this to the
 333 * memory model Linux expects, the AS/400 specific code builds a
 334 * translation table to translate what Linux thinks are "physical"
 335 * addresses to the actual real addresses.  This allows us to make
 336 * it appear to Linux that we have contiguous memory starting at
 337 * physical address zero while in fact this could be far from the truth.
 338 * To avoid confusion, I'll let the words physical and/or real address
 339 * apply to the Linux addresses while I'll use "absolute address" to
 340 * refer to the actual hardware real address.
 341 *
 342 * build_iSeries_Memory_Map gets information from the Hypervisor and
 343 * looks at the Main Store VPD to determine the absolute addresses
 344 * of the memory that has been assigned to our partition and builds
 345 * a table used to translate Linux's physical addresses to these
 346 * absolute addresses.  Absolute addresses are needed when
 347 * communicating with the hypervisor (e.g. to build HPT entries)
 348 *
 349 * Returns the physical memory size
 350 */
 351
 352static unsigned long __init build_iSeries_Memory_Map(void)
 353{
 354        u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize;
 355        u32 nextPhysChunk;
 356        u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages;
 357        u32 totalChunks,moreChunks;
 358        u32 currChunk, thisChunk, absChunk;
 359        u32 currDword;
 360        u32 chunkBit;
 361        u64 map;
 362        struct MemoryBlock mb[32];
 363        unsigned long numMemoryBlocks, curBlock;
 364
 365        /* Chunk size on iSeries is 256K bytes */
 366        totalChunks = (u32)HvLpConfig_getMsChunks();
 367        mschunks_alloc(totalChunks);
 368
 369        /*
 370         * Get absolute address of our load area
 371         * and map it to physical address 0
 372         * This guarantees that the loadarea ends up at physical 0
 373         * otherwise, it might not be returned by PLIC as the first
 374         * chunks
 375         */
 376
 377        loadAreaFirstChunk = (u32)addr_to_chunk(itLpNaca.xLoadAreaAddr);
 378        loadAreaSize =  itLpNaca.xLoadAreaChunks;
 379
 380        /*
 381         * Only add the pages already mapped here.
 382         * Otherwise we might add the hpt pages
 383         * The rest of the pages of the load area
 384         * aren't in the HPT yet and can still
 385         * be assigned an arbitrary physical address
 386         */
 387        if ((loadAreaSize * 64) > HvPagesToMap)
 388                loadAreaSize = HvPagesToMap / 64;
 389
 390        loadAreaLastChunk = loadAreaFirstChunk + loadAreaSize - 1;
 391
 392        /*
 393         * TODO Do we need to do something if the HPT is in the 64MB load area?
 394         * This would be required if the itLpNaca.xLoadAreaChunks includes
 395         * the HPT size
 396         */
 397
 398        printk("Mapping load area - physical addr = 0000000000000000\n"
 399                "                    absolute addr = %016lx\n",
 400                chunk_to_addr(loadAreaFirstChunk));
 401        printk("Load area size %dK\n", loadAreaSize * 256);
 402
 403        for (nextPhysChunk = 0; nextPhysChunk < loadAreaSize; ++nextPhysChunk)
 404                mschunks_map.mapping[nextPhysChunk] =
 405                        loadAreaFirstChunk + nextPhysChunk;
 406
 407        /*
 408         * Get absolute address of our HPT and remember it so
 409         * we won't map it to any physical address
 410         */
 411        hptFirstChunk = (u32)addr_to_chunk(HvCallHpt_getHptAddress());
 412        hptSizePages = (u32)HvCallHpt_getHptPages();
 413        hptSizeChunks = hptSizePages >>
 414                (MSCHUNKS_CHUNK_SHIFT - HW_PAGE_SHIFT);
 415        hptLastChunk = hptFirstChunk + hptSizeChunks - 1;
 416
 417        printk("HPT absolute addr = %016lx, size = %dK\n",
 418                        chunk_to_addr(hptFirstChunk), hptSizeChunks * 256);
 419
 420        /*
 421         * Determine if absolute memory has any
 422         * holes so that we can interpret the
 423         * access map we get back from the hypervisor
 424         * correctly.
 425         */
 426        numMemoryBlocks = iSeries_process_mainstore_vpd(mb, 32);
 427
 428        /*
 429         * Process the main store access map from the hypervisor
 430         * to build up our physical -> absolute translation table
 431         */
 432        curBlock = 0;
 433        currChunk = 0;
 434        currDword = 0;
 435        moreChunks = totalChunks;
 436
 437        while (moreChunks) {
 438                map = HvCallSm_get64BitsOfAccessMap(itLpNaca.xLpIndex,
 439                                currDword);
 440                thisChunk = currChunk;
 441                while (map) {
 442                        chunkBit = map >> 63;
 443                        map <<= 1;
 444                        if (chunkBit) {
 445                                --moreChunks;
 446                                while (thisChunk >= mb[curBlock].logicalEnd) {
 447                                        ++curBlock;
 448                                        if (curBlock >= numMemoryBlocks)
 449                                                panic("out of memory blocks");
 450                                }
 451                                if (thisChunk < mb[curBlock].logicalStart)
 452                                        panic("memory block error");
 453
 454                                absChunk = mb[curBlock].absStart +
 455                                        (thisChunk - mb[curBlock].logicalStart);
 456                                if (((absChunk < hptFirstChunk) ||
 457                                     (absChunk > hptLastChunk)) &&
 458                                    ((absChunk < loadAreaFirstChunk) ||
 459                                     (absChunk > loadAreaLastChunk))) {
 460                                        mschunks_map.mapping[nextPhysChunk] =
 461                                                absChunk;
 462                                        ++nextPhysChunk;
 463                                }
 464                        }
 465                        ++thisChunk;
 466                }
 467                ++currDword;
 468                currChunk += 64;
 469        }
 470
 471        /*
 472         * main store size (in chunks) is
 473         *   totalChunks - hptSizeChunks
 474         * which should be equal to
 475         *   nextPhysChunk
 476         */
 477        return chunk_to_addr(nextPhysChunk);
 478}
 479
 480/*
 481 * Document me.
 482 */
 483static void __init iSeries_setup_arch(void)
 484{
 485        if (get_lppaca()->shared_proc) {
 486                ppc_md.idle_loop = iseries_shared_idle;
 487                printk(KERN_DEBUG "Using shared processor idle loop\n");
 488        } else {
 489                ppc_md.idle_loop = iseries_dedicated_idle;
 490                printk(KERN_DEBUG "Using dedicated idle loop\n");
 491        }
 492
 493        /* Setup the Lp Event Queue */
 494        setup_hvlpevent_queue();
 495
 496        printk("Max  logical processors = %d\n",
 497                        itVpdAreas.xSlicMaxLogicalProcs);
 498        printk("Max physical processors = %d\n",
 499                        itVpdAreas.xSlicMaxPhysicalProcs);
 500
 501        iSeries_pcibios_init();
 502}
 503
 504static void iSeries_show_cpuinfo(struct seq_file *m)
 505{
 506        seq_printf(m, "machine\t\t: 64-bit iSeries Logical Partition\n");
 507}
 508
 509static void __init iSeries_progress(char * st, unsigned short code)
 510{
 511        printk("Progress: [%04x] - %s\n", (unsigned)code, st);
 512        mf_display_progress(code);
 513}
 514
 515static void __init iSeries_fixup_klimit(void)
 516{
 517        /*
 518         * Change klimit to take into account any ram disk
 519         * that may be included
 520         */
 521        if (naca.xRamDisk)
 522                klimit = KERNELBASE + (u64)naca.xRamDisk +
 523                        (naca.xRamDiskSize * HW_PAGE_SIZE);
 524}
 525
 526static int __init iSeries_src_init(void)
 527{
 528        /* clear the progress line */
 529        if (firmware_has_feature(FW_FEATURE_ISERIES))
 530                ppc_md.progress(" ", 0xffff);
 531        return 0;
 532}
 533
 534late_initcall(iSeries_src_init);
 535
 536static inline void process_iSeries_events(void)
 537{
 538        asm volatile ("li 0,0x5555; sc" : : : "r0", "r3");
 539}
 540
 541static void yield_shared_processor(void)
 542{
 543        unsigned long tb;
 544
 545        HvCall_setEnabledInterrupts(HvCall_MaskIPI |
 546                                    HvCall_MaskLpEvent |
 547                                    HvCall_MaskLpProd |
 548                                    HvCall_MaskTimeout);
 549
 550        tb = get_tb();
 551        /* Compute future tb value when yield should expire */
 552        HvCall_yieldProcessor(HvCall_YieldTimed, tb+tb_ticks_per_jiffy);
 553
 554        /*
 555         * The decrementer stops during the yield.  Force a fake decrementer
 556         * here and let the timer_interrupt code sort out the actual time.
 557         */
 558        get_lppaca()->int_dword.fields.decr_int = 1;
 559        ppc64_runlatch_on();
 560        process_iSeries_events();
 561}
 562
 563static void iseries_shared_idle(void)
 564{
 565        while (1) {
 566                tick_nohz_idle_enter();
 567                rcu_idle_enter();
 568                while (!need_resched() && !hvlpevent_is_pending()) {
 569                        local_irq_disable();
 570                        ppc64_runlatch_off();
 571
 572                        /* Recheck with irqs off */
 573                        if (!need_resched() && !hvlpevent_is_pending())
 574                                yield_shared_processor();
 575
 576                        HMT_medium();
 577                        local_irq_enable();
 578                }
 579
 580                ppc64_runlatch_on();
 581                rcu_idle_exit();
 582                tick_nohz_idle_exit();
 583
 584                if (hvlpevent_is_pending())
 585                        process_iSeries_events();
 586
 587                preempt_enable_no_resched();
 588                schedule();
 589                preempt_disable();
 590        }
 591}
 592
 593static void iseries_dedicated_idle(void)
 594{
 595        set_thread_flag(TIF_POLLING_NRFLAG);
 596
 597        while (1) {
 598                tick_nohz_idle_enter();
 599                rcu_idle_enter();
 600                if (!need_resched()) {
 601                        while (!need_resched()) {
 602                                ppc64_runlatch_off();
 603                                HMT_low();
 604
 605                                if (hvlpevent_is_pending()) {
 606                                        HMT_medium();
 607                                        ppc64_runlatch_on();
 608                                        process_iSeries_events();
 609                                }
 610                        }
 611
 612                        HMT_medium();
 613                }
 614
 615                ppc64_runlatch_on();
 616                rcu_idle_exit();
 617                tick_nohz_idle_exit();
 618                preempt_enable_no_resched();
 619                schedule();
 620                preempt_disable();
 621        }
 622}
 623
 624static void __iomem *iseries_ioremap(phys_addr_t address, unsigned long size,
 625                                     unsigned long flags, void *caller)
 626{
 627        return (void __iomem *)address;
 628}
 629
 630static void iseries_iounmap(volatile void __iomem *token)
 631{
 632}
 633
 634static int __init iseries_probe(void)
 635{
 636        unsigned long root = of_get_flat_dt_root();
 637        if (!of_flat_dt_is_compatible(root, "IBM,iSeries"))
 638                return 0;
 639
 640        hpte_init_iSeries();
 641        /* iSeries does not support 16M pages */
 642        cur_cpu_spec->mmu_features &= ~MMU_FTR_16M_PAGE;
 643
 644        return 1;
 645}
 646
 647#ifdef CONFIG_KEXEC
 648static int iseries_kexec_prepare(struct kimage *image)
 649{
 650        return -ENOSYS;
 651}
 652#endif
 653
 654define_machine(iseries) {
 655        .name                   = "iSeries",
 656        .setup_arch             = iSeries_setup_arch,
 657        .show_cpuinfo           = iSeries_show_cpuinfo,
 658        .init_IRQ               = iSeries_init_IRQ,
 659        .get_irq                = iSeries_get_irq,
 660        .init_early             = iSeries_init_early,
 661        .pcibios_fixup          = iSeries_pci_final_fixup,
 662        .pcibios_fixup_resources= iSeries_pcibios_fixup_resources,
 663        .restart                = mf_reboot,
 664        .power_off              = mf_power_off,
 665        .halt                   = mf_power_off,
 666        .get_boot_time          = iSeries_get_boot_time,
 667        .set_rtc_time           = iSeries_set_rtc_time,
 668        .get_rtc_time           = iSeries_get_rtc_time,
 669        .calibrate_decr         = generic_calibrate_decr,
 670        .progress               = iSeries_progress,
 671        .probe                  = iseries_probe,
 672        .ioremap                = iseries_ioremap,
 673        .iounmap                = iseries_iounmap,
 674#ifdef CONFIG_KEXEC
 675        .machine_kexec_prepare  = iseries_kexec_prepare,
 676#endif
 677        /* XXX Implement enable_pmcs for iSeries */
 678};
 679
 680void * __init iSeries_early_setup(void)
 681{
 682        unsigned long phys_mem_size;
 683
 684        /* Identify CPU type. This is done again by the common code later
 685         * on but calling this function multiple times is fine.
 686         */
 687        identify_cpu(0, mfspr(SPRN_PVR));
 688        initialise_paca(&boot_paca, 0);
 689
 690        powerpc_firmware_features |= FW_FEATURE_ISERIES;
 691        powerpc_firmware_features |= FW_FEATURE_LPAR;
 692
 693#ifdef CONFIG_SMP
 694        /* On iSeries we know we can never have more than 64 cpus */
 695        nr_cpu_ids = max(nr_cpu_ids, 64);
 696#endif
 697
 698        iSeries_fixup_klimit();
 699
 700        /*
 701         * Initialize the table which translate Linux physical addresses to
 702         * AS/400 absolute addresses
 703         */
 704        phys_mem_size = build_iSeries_Memory_Map();
 705
 706        iSeries_get_cmdline();
 707
 708        return (void *) __pa(build_flat_dt(phys_mem_size));
 709}
 710
 711static void hvputc(char c)
 712{
 713        if (c == '\n')
 714                hvputc('\r');
 715
 716        HvCall_writeLogBuffer(&c, 1);
 717}
 718
 719void __init udbg_init_iseries(void)
 720{
 721        udbg_putc = hvputc;
 722}
 723