linux/arch/powerpc/mm/numa.c
<<
>>
Prefs
   1/*
   2 * pSeries NUMA support
   3 *
   4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11#include <linux/threads.h>
  12#include <linux/bootmem.h>
  13#include <linux/init.h>
  14#include <linux/mm.h>
  15#include <linux/mmzone.h>
  16#include <linux/export.h>
  17#include <linux/nodemask.h>
  18#include <linux/cpu.h>
  19#include <linux/notifier.h>
  20#include <linux/memblock.h>
  21#include <linux/of.h>
  22#include <linux/pfn.h>
  23#include <linux/cpuset.h>
  24#include <linux/node.h>
  25#include <asm/sparsemem.h>
  26#include <asm/prom.h>
  27#include <asm/system.h>
  28#include <asm/smp.h>
  29#include <asm/firmware.h>
  30#include <asm/paca.h>
  31#include <asm/hvcall.h>
  32
  33static int numa_enabled = 1;
  34
  35static char *cmdline __initdata;
  36
  37static int numa_debug;
  38#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
  39
  40int numa_cpu_lookup_table[NR_CPUS];
  41cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
  42struct pglist_data *node_data[MAX_NUMNODES];
  43
  44EXPORT_SYMBOL(numa_cpu_lookup_table);
  45EXPORT_SYMBOL(node_to_cpumask_map);
  46EXPORT_SYMBOL(node_data);
  47
  48static int min_common_depth;
  49static int n_mem_addr_cells, n_mem_size_cells;
  50static int form1_affinity;
  51
  52#define MAX_DISTANCE_REF_POINTS 4
  53static int distance_ref_points_depth;
  54static const unsigned int *distance_ref_points;
  55static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
  56
  57/*
  58 * Allocate node_to_cpumask_map based on number of available nodes
  59 * Requires node_possible_map to be valid.
  60 *
  61 * Note: cpumask_of_node() is not valid until after this is done.
  62 */
  63static void __init setup_node_to_cpumask_map(void)
  64{
  65        unsigned int node, num = 0;
  66
  67        /* setup nr_node_ids if not done yet */
  68        if (nr_node_ids == MAX_NUMNODES) {
  69                for_each_node_mask(node, node_possible_map)
  70                        num = node;
  71                nr_node_ids = num + 1;
  72        }
  73
  74        /* allocate the map */
  75        for (node = 0; node < nr_node_ids; node++)
  76                alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
  77
  78        /* cpumask_of_node() will now work */
  79        dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
  80}
  81
  82static int __cpuinit fake_numa_create_new_node(unsigned long end_pfn,
  83                                                unsigned int *nid)
  84{
  85        unsigned long long mem;
  86        char *p = cmdline;
  87        static unsigned int fake_nid;
  88        static unsigned long long curr_boundary;
  89
  90        /*
  91         * Modify node id, iff we started creating NUMA nodes
  92         * We want to continue from where we left of the last time
  93         */
  94        if (fake_nid)
  95                *nid = fake_nid;
  96        /*
  97         * In case there are no more arguments to parse, the
  98         * node_id should be the same as the last fake node id
  99         * (we've handled this above).
 100         */
 101        if (!p)
 102                return 0;
 103
 104        mem = memparse(p, &p);
 105        if (!mem)
 106                return 0;
 107
 108        if (mem < curr_boundary)
 109                return 0;
 110
 111        curr_boundary = mem;
 112
 113        if ((end_pfn << PAGE_SHIFT) > mem) {
 114                /*
 115                 * Skip commas and spaces
 116                 */
 117                while (*p == ',' || *p == ' ' || *p == '\t')
 118                        p++;
 119
 120                cmdline = p;
 121                fake_nid++;
 122                *nid = fake_nid;
 123                dbg("created new fake_node with id %d\n", fake_nid);
 124                return 1;
 125        }
 126        return 0;
 127}
 128
 129/*
 130 * get_node_active_region - Return active region containing pfn
 131 * Active range returned is empty if none found.
 132 * @pfn: The page to return the region for
 133 * @node_ar: Returned set to the active region containing @pfn
 134 */
 135static void __init get_node_active_region(unsigned long pfn,
 136                                          struct node_active_region *node_ar)
 137{
 138        unsigned long start_pfn, end_pfn;
 139        int i, nid;
 140
 141        for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
 142                if (pfn >= start_pfn && pfn < end_pfn) {
 143                        node_ar->nid = nid;
 144                        node_ar->start_pfn = start_pfn;
 145                        node_ar->end_pfn = end_pfn;
 146                        break;
 147                }
 148        }
 149}
 150
 151static void map_cpu_to_node(int cpu, int node)
 152{
 153        numa_cpu_lookup_table[cpu] = node;
 154
 155        dbg("adding cpu %d to node %d\n", cpu, node);
 156
 157        if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
 158                cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
 159}
 160
 161#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
 162static void unmap_cpu_from_node(unsigned long cpu)
 163{
 164        int node = numa_cpu_lookup_table[cpu];
 165
 166        dbg("removing cpu %lu from node %d\n", cpu, node);
 167
 168        if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
 169                cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
 170        } else {
 171                printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
 172                       cpu, node);
 173        }
 174}
 175#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
 176
 177/* must hold reference to node during call */
 178static const int *of_get_associativity(struct device_node *dev)
 179{
 180        return of_get_property(dev, "ibm,associativity", NULL);
 181}
 182
 183/*
 184 * Returns the property linux,drconf-usable-memory if
 185 * it exists (the property exists only in kexec/kdump kernels,
 186 * added by kexec-tools)
 187 */
 188static const u32 *of_get_usable_memory(struct device_node *memory)
 189{
 190        const u32 *prop;
 191        u32 len;
 192        prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
 193        if (!prop || len < sizeof(unsigned int))
 194                return 0;
 195        return prop;
 196}
 197
 198int __node_distance(int a, int b)
 199{
 200        int i;
 201        int distance = LOCAL_DISTANCE;
 202
 203        if (!form1_affinity)
 204                return distance;
 205
 206        for (i = 0; i < distance_ref_points_depth; i++) {
 207                if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
 208                        break;
 209
 210                /* Double the distance for each NUMA level */
 211                distance *= 2;
 212        }
 213
 214        return distance;
 215}
 216
 217static void initialize_distance_lookup_table(int nid,
 218                const unsigned int *associativity)
 219{
 220        int i;
 221
 222        if (!form1_affinity)
 223                return;
 224
 225        for (i = 0; i < distance_ref_points_depth; i++) {
 226                distance_lookup_table[nid][i] =
 227                        associativity[distance_ref_points[i]];
 228        }
 229}
 230
 231/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
 232 * info is found.
 233 */
 234static int associativity_to_nid(const unsigned int *associativity)
 235{
 236        int nid = -1;
 237
 238        if (min_common_depth == -1)
 239                goto out;
 240
 241        if (associativity[0] >= min_common_depth)
 242                nid = associativity[min_common_depth];
 243
 244        /* POWER4 LPAR uses 0xffff as invalid node */
 245        if (nid == 0xffff || nid >= MAX_NUMNODES)
 246                nid = -1;
 247
 248        if (nid > 0 && associativity[0] >= distance_ref_points_depth)
 249                initialize_distance_lookup_table(nid, associativity);
 250
 251out:
 252        return nid;
 253}
 254
 255/* Returns the nid associated with the given device tree node,
 256 * or -1 if not found.
 257 */
 258static int of_node_to_nid_single(struct device_node *device)
 259{
 260        int nid = -1;
 261        const unsigned int *tmp;
 262
 263        tmp = of_get_associativity(device);
 264        if (tmp)
 265                nid = associativity_to_nid(tmp);
 266        return nid;
 267}
 268
 269/* Walk the device tree upwards, looking for an associativity id */
 270int of_node_to_nid(struct device_node *device)
 271{
 272        struct device_node *tmp;
 273        int nid = -1;
 274
 275        of_node_get(device);
 276        while (device) {
 277                nid = of_node_to_nid_single(device);
 278                if (nid != -1)
 279                        break;
 280
 281                tmp = device;
 282                device = of_get_parent(tmp);
 283                of_node_put(tmp);
 284        }
 285        of_node_put(device);
 286
 287        return nid;
 288}
 289EXPORT_SYMBOL_GPL(of_node_to_nid);
 290
 291static int __init find_min_common_depth(void)
 292{
 293        int depth;
 294        struct device_node *chosen;
 295        struct device_node *root;
 296        const char *vec5;
 297
 298        if (firmware_has_feature(FW_FEATURE_OPAL))
 299                root = of_find_node_by_path("/ibm,opal");
 300        else
 301                root = of_find_node_by_path("/rtas");
 302        if (!root)
 303                root = of_find_node_by_path("/");
 304
 305        /*
 306         * This property is a set of 32-bit integers, each representing
 307         * an index into the ibm,associativity nodes.
 308         *
 309         * With form 0 affinity the first integer is for an SMP configuration
 310         * (should be all 0's) and the second is for a normal NUMA
 311         * configuration. We have only one level of NUMA.
 312         *
 313         * With form 1 affinity the first integer is the most significant
 314         * NUMA boundary and the following are progressively less significant
 315         * boundaries. There can be more than one level of NUMA.
 316         */
 317        distance_ref_points = of_get_property(root,
 318                                        "ibm,associativity-reference-points",
 319                                        &distance_ref_points_depth);
 320
 321        if (!distance_ref_points) {
 322                dbg("NUMA: ibm,associativity-reference-points not found.\n");
 323                goto err;
 324        }
 325
 326        distance_ref_points_depth /= sizeof(int);
 327
 328#define VEC5_AFFINITY_BYTE      5
 329#define VEC5_AFFINITY           0x80
 330
 331        if (firmware_has_feature(FW_FEATURE_OPAL))
 332                form1_affinity = 1;
 333        else {
 334                chosen = of_find_node_by_path("/chosen");
 335                if (chosen) {
 336                        vec5 = of_get_property(chosen,
 337                                               "ibm,architecture-vec-5", NULL);
 338                        if (vec5 && (vec5[VEC5_AFFINITY_BYTE] &
 339                                                        VEC5_AFFINITY)) {
 340                                dbg("Using form 1 affinity\n");
 341                                form1_affinity = 1;
 342                        }
 343                }
 344        }
 345
 346        if (form1_affinity) {
 347                depth = distance_ref_points[0];
 348        } else {
 349                if (distance_ref_points_depth < 2) {
 350                        printk(KERN_WARNING "NUMA: "
 351                                "short ibm,associativity-reference-points\n");
 352                        goto err;
 353                }
 354
 355                depth = distance_ref_points[1];
 356        }
 357
 358        /*
 359         * Warn and cap if the hardware supports more than
 360         * MAX_DISTANCE_REF_POINTS domains.
 361         */
 362        if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
 363                printk(KERN_WARNING "NUMA: distance array capped at "
 364                        "%d entries\n", MAX_DISTANCE_REF_POINTS);
 365                distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
 366        }
 367
 368        of_node_put(root);
 369        return depth;
 370
 371err:
 372        of_node_put(root);
 373        return -1;
 374}
 375
 376static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
 377{
 378        struct device_node *memory = NULL;
 379
 380        memory = of_find_node_by_type(memory, "memory");
 381        if (!memory)
 382                panic("numa.c: No memory nodes found!");
 383
 384        *n_addr_cells = of_n_addr_cells(memory);
 385        *n_size_cells = of_n_size_cells(memory);
 386        of_node_put(memory);
 387}
 388
 389static unsigned long read_n_cells(int n, const unsigned int **buf)
 390{
 391        unsigned long result = 0;
 392
 393        while (n--) {
 394                result = (result << 32) | **buf;
 395                (*buf)++;
 396        }
 397        return result;
 398}
 399
 400struct of_drconf_cell {
 401        u64     base_addr;
 402        u32     drc_index;
 403        u32     reserved;
 404        u32     aa_index;
 405        u32     flags;
 406};
 407
 408#define DRCONF_MEM_ASSIGNED     0x00000008
 409#define DRCONF_MEM_AI_INVALID   0x00000040
 410#define DRCONF_MEM_RESERVED     0x00000080
 411
 412/*
 413 * Read the next memblock list entry from the ibm,dynamic-memory property
 414 * and return the information in the provided of_drconf_cell structure.
 415 */
 416static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp)
 417{
 418        const u32 *cp;
 419
 420        drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
 421
 422        cp = *cellp;
 423        drmem->drc_index = cp[0];
 424        drmem->reserved = cp[1];
 425        drmem->aa_index = cp[2];
 426        drmem->flags = cp[3];
 427
 428        *cellp = cp + 4;
 429}
 430
 431/*
 432 * Retrieve and validate the ibm,dynamic-memory property of the device tree.
 433 *
 434 * The layout of the ibm,dynamic-memory property is a number N of memblock
 435 * list entries followed by N memblock list entries.  Each memblock list entry
 436 * contains information as laid out in the of_drconf_cell struct above.
 437 */
 438static int of_get_drconf_memory(struct device_node *memory, const u32 **dm)
 439{
 440        const u32 *prop;
 441        u32 len, entries;
 442
 443        prop = of_get_property(memory, "ibm,dynamic-memory", &len);
 444        if (!prop || len < sizeof(unsigned int))
 445                return 0;
 446
 447        entries = *prop++;
 448
 449        /* Now that we know the number of entries, revalidate the size
 450         * of the property read in to ensure we have everything
 451         */
 452        if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
 453                return 0;
 454
 455        *dm = prop;
 456        return entries;
 457}
 458
 459/*
 460 * Retrieve and validate the ibm,lmb-size property for drconf memory
 461 * from the device tree.
 462 */
 463static u64 of_get_lmb_size(struct device_node *memory)
 464{
 465        const u32 *prop;
 466        u32 len;
 467
 468        prop = of_get_property(memory, "ibm,lmb-size", &len);
 469        if (!prop || len < sizeof(unsigned int))
 470                return 0;
 471
 472        return read_n_cells(n_mem_size_cells, &prop);
 473}
 474
 475struct assoc_arrays {
 476        u32     n_arrays;
 477        u32     array_sz;
 478        const u32 *arrays;
 479};
 480
 481/*
 482 * Retrieve and validate the list of associativity arrays for drconf
 483 * memory from the ibm,associativity-lookup-arrays property of the
 484 * device tree..
 485 *
 486 * The layout of the ibm,associativity-lookup-arrays property is a number N
 487 * indicating the number of associativity arrays, followed by a number M
 488 * indicating the size of each associativity array, followed by a list
 489 * of N associativity arrays.
 490 */
 491static int of_get_assoc_arrays(struct device_node *memory,
 492                               struct assoc_arrays *aa)
 493{
 494        const u32 *prop;
 495        u32 len;
 496
 497        prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
 498        if (!prop || len < 2 * sizeof(unsigned int))
 499                return -1;
 500
 501        aa->n_arrays = *prop++;
 502        aa->array_sz = *prop++;
 503
 504        /* Now that we know the number of arrays and size of each array,
 505         * revalidate the size of the property read in.
 506         */
 507        if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
 508                return -1;
 509
 510        aa->arrays = prop;
 511        return 0;
 512}
 513
 514/*
 515 * This is like of_node_to_nid_single() for memory represented in the
 516 * ibm,dynamic-reconfiguration-memory node.
 517 */
 518static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
 519                                   struct assoc_arrays *aa)
 520{
 521        int default_nid = 0;
 522        int nid = default_nid;
 523        int index;
 524
 525        if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
 526            !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
 527            drmem->aa_index < aa->n_arrays) {
 528                index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
 529                nid = aa->arrays[index];
 530
 531                if (nid == 0xffff || nid >= MAX_NUMNODES)
 532                        nid = default_nid;
 533        }
 534
 535        return nid;
 536}
 537
 538/*
 539 * Figure out to which domain a cpu belongs and stick it there.
 540 * Return the id of the domain used.
 541 */
 542static int __cpuinit numa_setup_cpu(unsigned long lcpu)
 543{
 544        int nid = 0;
 545        struct device_node *cpu = of_get_cpu_node(lcpu, NULL);
 546
 547        if (!cpu) {
 548                WARN_ON(1);
 549                goto out;
 550        }
 551
 552        nid = of_node_to_nid_single(cpu);
 553
 554        if (nid < 0 || !node_online(nid))
 555                nid = first_online_node;
 556out:
 557        map_cpu_to_node(lcpu, nid);
 558
 559        of_node_put(cpu);
 560
 561        return nid;
 562}
 563
 564static int __cpuinit cpu_numa_callback(struct notifier_block *nfb,
 565                             unsigned long action,
 566                             void *hcpu)
 567{
 568        unsigned long lcpu = (unsigned long)hcpu;
 569        int ret = NOTIFY_DONE;
 570
 571        switch (action) {
 572        case CPU_UP_PREPARE:
 573        case CPU_UP_PREPARE_FROZEN:
 574                numa_setup_cpu(lcpu);
 575                ret = NOTIFY_OK;
 576                break;
 577#ifdef CONFIG_HOTPLUG_CPU
 578        case CPU_DEAD:
 579        case CPU_DEAD_FROZEN:
 580        case CPU_UP_CANCELED:
 581        case CPU_UP_CANCELED_FROZEN:
 582                unmap_cpu_from_node(lcpu);
 583                break;
 584                ret = NOTIFY_OK;
 585#endif
 586        }
 587        return ret;
 588}
 589
 590/*
 591 * Check and possibly modify a memory region to enforce the memory limit.
 592 *
 593 * Returns the size the region should have to enforce the memory limit.
 594 * This will either be the original value of size, a truncated value,
 595 * or zero. If the returned value of size is 0 the region should be
 596 * discarded as it lies wholly above the memory limit.
 597 */
 598static unsigned long __init numa_enforce_memory_limit(unsigned long start,
 599                                                      unsigned long size)
 600{
 601        /*
 602         * We use memblock_end_of_DRAM() in here instead of memory_limit because
 603         * we've already adjusted it for the limit and it takes care of
 604         * having memory holes below the limit.  Also, in the case of
 605         * iommu_is_off, memory_limit is not set but is implicitly enforced.
 606         */
 607
 608        if (start + size <= memblock_end_of_DRAM())
 609                return size;
 610
 611        if (start >= memblock_end_of_DRAM())
 612                return 0;
 613
 614        return memblock_end_of_DRAM() - start;
 615}
 616
 617/*
 618 * Reads the counter for a given entry in
 619 * linux,drconf-usable-memory property
 620 */
 621static inline int __init read_usm_ranges(const u32 **usm)
 622{
 623        /*
 624         * For each lmb in ibm,dynamic-memory a corresponding
 625         * entry in linux,drconf-usable-memory property contains
 626         * a counter followed by that many (base, size) duple.
 627         * read the counter from linux,drconf-usable-memory
 628         */
 629        return read_n_cells(n_mem_size_cells, usm);
 630}
 631
 632/*
 633 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
 634 * node.  This assumes n_mem_{addr,size}_cells have been set.
 635 */
 636static void __init parse_drconf_memory(struct device_node *memory)
 637{
 638        const u32 *dm, *usm;
 639        unsigned int n, rc, ranges, is_kexec_kdump = 0;
 640        unsigned long lmb_size, base, size, sz;
 641        int nid;
 642        struct assoc_arrays aa;
 643
 644        n = of_get_drconf_memory(memory, &dm);
 645        if (!n)
 646                return;
 647
 648        lmb_size = of_get_lmb_size(memory);
 649        if (!lmb_size)
 650                return;
 651
 652        rc = of_get_assoc_arrays(memory, &aa);
 653        if (rc)
 654                return;
 655
 656        /* check if this is a kexec/kdump kernel */
 657        usm = of_get_usable_memory(memory);
 658        if (usm != NULL)
 659                is_kexec_kdump = 1;
 660
 661        for (; n != 0; --n) {
 662                struct of_drconf_cell drmem;
 663
 664                read_drconf_cell(&drmem, &dm);
 665
 666                /* skip this block if the reserved bit is set in flags (0x80)
 667                   or if the block is not assigned to this partition (0x8) */
 668                if ((drmem.flags & DRCONF_MEM_RESERVED)
 669                    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
 670                        continue;
 671
 672                base = drmem.base_addr;
 673                size = lmb_size;
 674                ranges = 1;
 675
 676                if (is_kexec_kdump) {
 677                        ranges = read_usm_ranges(&usm);
 678                        if (!ranges) /* there are no (base, size) duple */
 679                                continue;
 680                }
 681                do {
 682                        if (is_kexec_kdump) {
 683                                base = read_n_cells(n_mem_addr_cells, &usm);
 684                                size = read_n_cells(n_mem_size_cells, &usm);
 685                        }
 686                        nid = of_drconf_to_nid_single(&drmem, &aa);
 687                        fake_numa_create_new_node(
 688                                ((base + size) >> PAGE_SHIFT),
 689                                           &nid);
 690                        node_set_online(nid);
 691                        sz = numa_enforce_memory_limit(base, size);
 692                        if (sz)
 693                                memblock_set_node(base, sz, nid);
 694                } while (--ranges);
 695        }
 696}
 697
 698static int __init parse_numa_properties(void)
 699{
 700        struct device_node *memory;
 701        int default_nid = 0;
 702        unsigned long i;
 703
 704        if (numa_enabled == 0) {
 705                printk(KERN_WARNING "NUMA disabled by user\n");
 706                return -1;
 707        }
 708
 709        min_common_depth = find_min_common_depth();
 710
 711        if (min_common_depth < 0)
 712                return min_common_depth;
 713
 714        dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
 715
 716        /*
 717         * Even though we connect cpus to numa domains later in SMP
 718         * init, we need to know the node ids now. This is because
 719         * each node to be onlined must have NODE_DATA etc backing it.
 720         */
 721        for_each_present_cpu(i) {
 722                struct device_node *cpu;
 723                int nid;
 724
 725                cpu = of_get_cpu_node(i, NULL);
 726                BUG_ON(!cpu);
 727                nid = of_node_to_nid_single(cpu);
 728                of_node_put(cpu);
 729
 730                /*
 731                 * Don't fall back to default_nid yet -- we will plug
 732                 * cpus into nodes once the memory scan has discovered
 733                 * the topology.
 734                 */
 735                if (nid < 0)
 736                        continue;
 737                node_set_online(nid);
 738        }
 739
 740        get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
 741
 742        for_each_node_by_type(memory, "memory") {
 743                unsigned long start;
 744                unsigned long size;
 745                int nid;
 746                int ranges;
 747                const unsigned int *memcell_buf;
 748                unsigned int len;
 749
 750                memcell_buf = of_get_property(memory,
 751                        "linux,usable-memory", &len);
 752                if (!memcell_buf || len <= 0)
 753                        memcell_buf = of_get_property(memory, "reg", &len);
 754                if (!memcell_buf || len <= 0)
 755                        continue;
 756
 757                /* ranges in cell */
 758                ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
 759new_range:
 760                /* these are order-sensitive, and modify the buffer pointer */
 761                start = read_n_cells(n_mem_addr_cells, &memcell_buf);
 762                size = read_n_cells(n_mem_size_cells, &memcell_buf);
 763
 764                /*
 765                 * Assumption: either all memory nodes or none will
 766                 * have associativity properties.  If none, then
 767                 * everything goes to default_nid.
 768                 */
 769                nid = of_node_to_nid_single(memory);
 770                if (nid < 0)
 771                        nid = default_nid;
 772
 773                fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
 774                node_set_online(nid);
 775
 776                if (!(size = numa_enforce_memory_limit(start, size))) {
 777                        if (--ranges)
 778                                goto new_range;
 779                        else
 780                                continue;
 781                }
 782
 783                memblock_set_node(start, size, nid);
 784
 785                if (--ranges)
 786                        goto new_range;
 787        }
 788
 789        /*
 790         * Now do the same thing for each MEMBLOCK listed in the
 791         * ibm,dynamic-memory property in the
 792         * ibm,dynamic-reconfiguration-memory node.
 793         */
 794        memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
 795        if (memory)
 796                parse_drconf_memory(memory);
 797
 798        return 0;
 799}
 800
 801static void __init setup_nonnuma(void)
 802{
 803        unsigned long top_of_ram = memblock_end_of_DRAM();
 804        unsigned long total_ram = memblock_phys_mem_size();
 805        unsigned long start_pfn, end_pfn;
 806        unsigned int nid = 0;
 807        struct memblock_region *reg;
 808
 809        printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
 810               top_of_ram, total_ram);
 811        printk(KERN_DEBUG "Memory hole size: %ldMB\n",
 812               (top_of_ram - total_ram) >> 20);
 813
 814        for_each_memblock(memory, reg) {
 815                start_pfn = memblock_region_memory_base_pfn(reg);
 816                end_pfn = memblock_region_memory_end_pfn(reg);
 817
 818                fake_numa_create_new_node(end_pfn, &nid);
 819                memblock_set_node(PFN_PHYS(start_pfn),
 820                                  PFN_PHYS(end_pfn - start_pfn), nid);
 821                node_set_online(nid);
 822        }
 823}
 824
 825void __init dump_numa_cpu_topology(void)
 826{
 827        unsigned int node;
 828        unsigned int cpu, count;
 829
 830        if (min_common_depth == -1 || !numa_enabled)
 831                return;
 832
 833        for_each_online_node(node) {
 834                printk(KERN_DEBUG "Node %d CPUs:", node);
 835
 836                count = 0;
 837                /*
 838                 * If we used a CPU iterator here we would miss printing
 839                 * the holes in the cpumap.
 840                 */
 841                for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
 842                        if (cpumask_test_cpu(cpu,
 843                                        node_to_cpumask_map[node])) {
 844                                if (count == 0)
 845                                        printk(" %u", cpu);
 846                                ++count;
 847                        } else {
 848                                if (count > 1)
 849                                        printk("-%u", cpu - 1);
 850                                count = 0;
 851                        }
 852                }
 853
 854                if (count > 1)
 855                        printk("-%u", nr_cpu_ids - 1);
 856                printk("\n");
 857        }
 858}
 859
 860static void __init dump_numa_memory_topology(void)
 861{
 862        unsigned int node;
 863        unsigned int count;
 864
 865        if (min_common_depth == -1 || !numa_enabled)
 866                return;
 867
 868        for_each_online_node(node) {
 869                unsigned long i;
 870
 871                printk(KERN_DEBUG "Node %d Memory:", node);
 872
 873                count = 0;
 874
 875                for (i = 0; i < memblock_end_of_DRAM();
 876                     i += (1 << SECTION_SIZE_BITS)) {
 877                        if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
 878                                if (count == 0)
 879                                        printk(" 0x%lx", i);
 880                                ++count;
 881                        } else {
 882                                if (count > 0)
 883                                        printk("-0x%lx", i);
 884                                count = 0;
 885                        }
 886                }
 887
 888                if (count > 0)
 889                        printk("-0x%lx", i);
 890                printk("\n");
 891        }
 892}
 893
 894/*
 895 * Allocate some memory, satisfying the memblock or bootmem allocator where
 896 * required. nid is the preferred node and end is the physical address of
 897 * the highest address in the node.
 898 *
 899 * Returns the virtual address of the memory.
 900 */
 901static void __init *careful_zallocation(int nid, unsigned long size,
 902                                       unsigned long align,
 903                                       unsigned long end_pfn)
 904{
 905        void *ret;
 906        int new_nid;
 907        unsigned long ret_paddr;
 908
 909        ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT);
 910
 911        /* retry over all memory */
 912        if (!ret_paddr)
 913                ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM());
 914
 915        if (!ret_paddr)
 916                panic("numa.c: cannot allocate %lu bytes for node %d",
 917                      size, nid);
 918
 919        ret = __va(ret_paddr);
 920
 921        /*
 922         * We initialize the nodes in numeric order: 0, 1, 2...
 923         * and hand over control from the MEMBLOCK allocator to the
 924         * bootmem allocator.  If this function is called for
 925         * node 5, then we know that all nodes <5 are using the
 926         * bootmem allocator instead of the MEMBLOCK allocator.
 927         *
 928         * So, check the nid from which this allocation came
 929         * and double check to see if we need to use bootmem
 930         * instead of the MEMBLOCK.  We don't free the MEMBLOCK memory
 931         * since it would be useless.
 932         */
 933        new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
 934        if (new_nid < nid) {
 935                ret = __alloc_bootmem_node(NODE_DATA(new_nid),
 936                                size, align, 0);
 937
 938                dbg("alloc_bootmem %p %lx\n", ret, size);
 939        }
 940
 941        memset(ret, 0, size);
 942        return ret;
 943}
 944
 945static struct notifier_block __cpuinitdata ppc64_numa_nb = {
 946        .notifier_call = cpu_numa_callback,
 947        .priority = 1 /* Must run before sched domains notifier. */
 948};
 949
 950static void __init mark_reserved_regions_for_nid(int nid)
 951{
 952        struct pglist_data *node = NODE_DATA(nid);
 953        struct memblock_region *reg;
 954
 955        for_each_memblock(reserved, reg) {
 956                unsigned long physbase = reg->base;
 957                unsigned long size = reg->size;
 958                unsigned long start_pfn = physbase >> PAGE_SHIFT;
 959                unsigned long end_pfn = PFN_UP(physbase + size);
 960                struct node_active_region node_ar;
 961                unsigned long node_end_pfn = node->node_start_pfn +
 962                                             node->node_spanned_pages;
 963
 964                /*
 965                 * Check to make sure that this memblock.reserved area is
 966                 * within the bounds of the node that we care about.
 967                 * Checking the nid of the start and end points is not
 968                 * sufficient because the reserved area could span the
 969                 * entire node.
 970                 */
 971                if (end_pfn <= node->node_start_pfn ||
 972                    start_pfn >= node_end_pfn)
 973                        continue;
 974
 975                get_node_active_region(start_pfn, &node_ar);
 976                while (start_pfn < end_pfn &&
 977                        node_ar.start_pfn < node_ar.end_pfn) {
 978                        unsigned long reserve_size = size;
 979                        /*
 980                         * if reserved region extends past active region
 981                         * then trim size to active region
 982                         */
 983                        if (end_pfn > node_ar.end_pfn)
 984                                reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
 985                                        - physbase;
 986                        /*
 987                         * Only worry about *this* node, others may not
 988                         * yet have valid NODE_DATA().
 989                         */
 990                        if (node_ar.nid == nid) {
 991                                dbg("reserve_bootmem %lx %lx nid=%d\n",
 992                                        physbase, reserve_size, node_ar.nid);
 993                                reserve_bootmem_node(NODE_DATA(node_ar.nid),
 994                                                physbase, reserve_size,
 995                                                BOOTMEM_DEFAULT);
 996                        }
 997                        /*
 998                         * if reserved region is contained in the active region
 999                         * then done.
1000                         */
1001                        if (end_pfn <= node_ar.end_pfn)
1002                                break;
1003
1004                        /*
1005                         * reserved region extends past the active region
1006                         *   get next active region that contains this
1007                         *   reserved region
1008                         */
1009                        start_pfn = node_ar.end_pfn;
1010                        physbase = start_pfn << PAGE_SHIFT;
1011                        size = size - reserve_size;
1012                        get_node_active_region(start_pfn, &node_ar);
1013                }
1014        }
1015}
1016
1017
1018void __init do_init_bootmem(void)
1019{
1020        int nid;
1021
1022        min_low_pfn = 0;
1023        max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1024        max_pfn = max_low_pfn;
1025
1026        if (parse_numa_properties())
1027                setup_nonnuma();
1028        else
1029                dump_numa_memory_topology();
1030
1031        for_each_online_node(nid) {
1032                unsigned long start_pfn, end_pfn;
1033                void *bootmem_vaddr;
1034                unsigned long bootmap_pages;
1035
1036                get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1037
1038                /*
1039                 * Allocate the node structure node local if possible
1040                 *
1041                 * Be careful moving this around, as it relies on all
1042                 * previous nodes' bootmem to be initialized and have
1043                 * all reserved areas marked.
1044                 */
1045                NODE_DATA(nid) = careful_zallocation(nid,
1046                                        sizeof(struct pglist_data),
1047                                        SMP_CACHE_BYTES, end_pfn);
1048
1049                dbg("node %d\n", nid);
1050                dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
1051
1052                NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
1053                NODE_DATA(nid)->node_start_pfn = start_pfn;
1054                NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
1055
1056                if (NODE_DATA(nid)->node_spanned_pages == 0)
1057                        continue;
1058
1059                dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
1060                dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
1061
1062                bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
1063                bootmem_vaddr = careful_zallocation(nid,
1064                                        bootmap_pages << PAGE_SHIFT,
1065                                        PAGE_SIZE, end_pfn);
1066
1067                dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
1068
1069                init_bootmem_node(NODE_DATA(nid),
1070                                  __pa(bootmem_vaddr) >> PAGE_SHIFT,
1071                                  start_pfn, end_pfn);
1072
1073                free_bootmem_with_active_regions(nid, end_pfn);
1074                /*
1075                 * Be very careful about moving this around.  Future
1076                 * calls to careful_zallocation() depend on this getting
1077                 * done correctly.
1078                 */
1079                mark_reserved_regions_for_nid(nid);
1080                sparse_memory_present_with_active_regions(nid);
1081        }
1082
1083        init_bootmem_done = 1;
1084
1085        /*
1086         * Now bootmem is initialised we can create the node to cpumask
1087         * lookup tables and setup the cpu callback to populate them.
1088         */
1089        setup_node_to_cpumask_map();
1090
1091        register_cpu_notifier(&ppc64_numa_nb);
1092        cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
1093                          (void *)(unsigned long)boot_cpuid);
1094}
1095
1096void __init paging_init(void)
1097{
1098        unsigned long max_zone_pfns[MAX_NR_ZONES];
1099        memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1100        max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT;
1101        free_area_init_nodes(max_zone_pfns);
1102}
1103
1104static int __init early_numa(char *p)
1105{
1106        if (!p)
1107                return 0;
1108
1109        if (strstr(p, "off"))
1110                numa_enabled = 0;
1111
1112        if (strstr(p, "debug"))
1113                numa_debug = 1;
1114
1115        p = strstr(p, "fake=");
1116        if (p)
1117                cmdline = p + strlen("fake=");
1118
1119        return 0;
1120}
1121early_param("numa", early_numa);
1122
1123#ifdef CONFIG_MEMORY_HOTPLUG
1124/*
1125 * Find the node associated with a hot added memory section for
1126 * memory represented in the device tree by the property
1127 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1128 */
1129static int hot_add_drconf_scn_to_nid(struct device_node *memory,
1130                                     unsigned long scn_addr)
1131{
1132        const u32 *dm;
1133        unsigned int drconf_cell_cnt, rc;
1134        unsigned long lmb_size;
1135        struct assoc_arrays aa;
1136        int nid = -1;
1137
1138        drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1139        if (!drconf_cell_cnt)
1140                return -1;
1141
1142        lmb_size = of_get_lmb_size(memory);
1143        if (!lmb_size)
1144                return -1;
1145
1146        rc = of_get_assoc_arrays(memory, &aa);
1147        if (rc)
1148                return -1;
1149
1150        for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1151                struct of_drconf_cell drmem;
1152
1153                read_drconf_cell(&drmem, &dm);
1154
1155                /* skip this block if it is reserved or not assigned to
1156                 * this partition */
1157                if ((drmem.flags & DRCONF_MEM_RESERVED)
1158                    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1159                        continue;
1160
1161                if ((scn_addr < drmem.base_addr)
1162                    || (scn_addr >= (drmem.base_addr + lmb_size)))
1163                        continue;
1164
1165                nid = of_drconf_to_nid_single(&drmem, &aa);
1166                break;
1167        }
1168
1169        return nid;
1170}
1171
1172/*
1173 * Find the node associated with a hot added memory section for memory
1174 * represented in the device tree as a node (i.e. memory@XXXX) for
1175 * each memblock.
1176 */
1177int hot_add_node_scn_to_nid(unsigned long scn_addr)
1178{
1179        struct device_node *memory;
1180        int nid = -1;
1181
1182        for_each_node_by_type(memory, "memory") {
1183                unsigned long start, size;
1184                int ranges;
1185                const unsigned int *memcell_buf;
1186                unsigned int len;
1187
1188                memcell_buf = of_get_property(memory, "reg", &len);
1189                if (!memcell_buf || len <= 0)
1190                        continue;
1191
1192                /* ranges in cell */
1193                ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1194
1195                while (ranges--) {
1196                        start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1197                        size = read_n_cells(n_mem_size_cells, &memcell_buf);
1198
1199                        if ((scn_addr < start) || (scn_addr >= (start + size)))
1200                                continue;
1201
1202                        nid = of_node_to_nid_single(memory);
1203                        break;
1204                }
1205
1206                if (nid >= 0)
1207                        break;
1208        }
1209
1210        of_node_put(memory);
1211
1212        return nid;
1213}
1214
1215/*
1216 * Find the node associated with a hot added memory section.  Section
1217 * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
1218 * sections are fully contained within a single MEMBLOCK.
1219 */
1220int hot_add_scn_to_nid(unsigned long scn_addr)
1221{
1222        struct device_node *memory = NULL;
1223        int nid, found = 0;
1224
1225        if (!numa_enabled || (min_common_depth < 0))
1226                return first_online_node;
1227
1228        memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1229        if (memory) {
1230                nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1231                of_node_put(memory);
1232        } else {
1233                nid = hot_add_node_scn_to_nid(scn_addr);
1234        }
1235
1236        if (nid < 0 || !node_online(nid))
1237                nid = first_online_node;
1238
1239        if (NODE_DATA(nid)->node_spanned_pages)
1240                return nid;
1241
1242        for_each_online_node(nid) {
1243                if (NODE_DATA(nid)->node_spanned_pages) {
1244                        found = 1;
1245                        break;
1246                }
1247        }
1248
1249        BUG_ON(!found);
1250        return nid;
1251}
1252
1253static u64 hot_add_drconf_memory_max(void)
1254{
1255        struct device_node *memory = NULL;
1256        unsigned int drconf_cell_cnt = 0;
1257        u64 lmb_size = 0;
1258        const u32 *dm = 0;
1259
1260        memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1261        if (memory) {
1262                drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1263                lmb_size = of_get_lmb_size(memory);
1264                of_node_put(memory);
1265        }
1266        return lmb_size * drconf_cell_cnt;
1267}
1268
1269/*
1270 * memory_hotplug_max - return max address of memory that may be added
1271 *
1272 * This is currently only used on systems that support drconfig memory
1273 * hotplug.
1274 */
1275u64 memory_hotplug_max(void)
1276{
1277        return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1278}
1279#endif /* CONFIG_MEMORY_HOTPLUG */
1280
1281/* Virtual Processor Home Node (VPHN) support */
1282#ifdef CONFIG_PPC_SPLPAR
1283static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1284static cpumask_t cpu_associativity_changes_mask;
1285static int vphn_enabled;
1286static void set_topology_timer(void);
1287
1288/*
1289 * Store the current values of the associativity change counters in the
1290 * hypervisor.
1291 */
1292static void setup_cpu_associativity_change_counters(void)
1293{
1294        int cpu;
1295
1296        /* The VPHN feature supports a maximum of 8 reference points */
1297        BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1298
1299        for_each_possible_cpu(cpu) {
1300                int i;
1301                u8 *counts = vphn_cpu_change_counts[cpu];
1302                volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1303
1304                for (i = 0; i < distance_ref_points_depth; i++)
1305                        counts[i] = hypervisor_counts[i];
1306        }
1307}
1308
1309/*
1310 * The hypervisor maintains a set of 8 associativity change counters in
1311 * the VPA of each cpu that correspond to the associativity levels in the
1312 * ibm,associativity-reference-points property. When an associativity
1313 * level changes, the corresponding counter is incremented.
1314 *
1315 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1316 * node associativity levels have changed.
1317 *
1318 * Returns the number of cpus with unhandled associativity changes.
1319 */
1320static int update_cpu_associativity_changes_mask(void)
1321{
1322        int cpu, nr_cpus = 0;
1323        cpumask_t *changes = &cpu_associativity_changes_mask;
1324
1325        cpumask_clear(changes);
1326
1327        for_each_possible_cpu(cpu) {
1328                int i, changed = 0;
1329                u8 *counts = vphn_cpu_change_counts[cpu];
1330                volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1331
1332                for (i = 0; i < distance_ref_points_depth; i++) {
1333                        if (hypervisor_counts[i] != counts[i]) {
1334                                counts[i] = hypervisor_counts[i];
1335                                changed = 1;
1336                        }
1337                }
1338                if (changed) {
1339                        cpumask_set_cpu(cpu, changes);
1340                        nr_cpus++;
1341                }
1342        }
1343
1344        return nr_cpus;
1345}
1346
1347/*
1348 * 6 64-bit registers unpacked into 12 32-bit associativity values. To form
1349 * the complete property we have to add the length in the first cell.
1350 */
1351#define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1)
1352
1353/*
1354 * Convert the associativity domain numbers returned from the hypervisor
1355 * to the sequence they would appear in the ibm,associativity property.
1356 */
1357static int vphn_unpack_associativity(const long *packed, unsigned int *unpacked)
1358{
1359        int i, nr_assoc_doms = 0;
1360        const u16 *field = (const u16*) packed;
1361
1362#define VPHN_FIELD_UNUSED       (0xffff)
1363#define VPHN_FIELD_MSB          (0x8000)
1364#define VPHN_FIELD_MASK         (~VPHN_FIELD_MSB)
1365
1366        for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) {
1367                if (*field == VPHN_FIELD_UNUSED) {
1368                        /* All significant fields processed, and remaining
1369                         * fields contain the reserved value of all 1's.
1370                         * Just store them.
1371                         */
1372                        unpacked[i] = *((u32*)field);
1373                        field += 2;
1374                } else if (*field & VPHN_FIELD_MSB) {
1375                        /* Data is in the lower 15 bits of this field */
1376                        unpacked[i] = *field & VPHN_FIELD_MASK;
1377                        field++;
1378                        nr_assoc_doms++;
1379                } else {
1380                        /* Data is in the lower 15 bits of this field
1381                         * concatenated with the next 16 bit field
1382                         */
1383                        unpacked[i] = *((u32*)field);
1384                        field += 2;
1385                        nr_assoc_doms++;
1386                }
1387        }
1388
1389        /* The first cell contains the length of the property */
1390        unpacked[0] = nr_assoc_doms;
1391
1392        return nr_assoc_doms;
1393}
1394
1395/*
1396 * Retrieve the new associativity information for a virtual processor's
1397 * home node.
1398 */
1399static long hcall_vphn(unsigned long cpu, unsigned int *associativity)
1400{
1401        long rc;
1402        long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1403        u64 flags = 1;
1404        int hwcpu = get_hard_smp_processor_id(cpu);
1405
1406        rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1407        vphn_unpack_associativity(retbuf, associativity);
1408
1409        return rc;
1410}
1411
1412static long vphn_get_associativity(unsigned long cpu,
1413                                        unsigned int *associativity)
1414{
1415        long rc;
1416
1417        rc = hcall_vphn(cpu, associativity);
1418
1419        switch (rc) {
1420        case H_FUNCTION:
1421                printk(KERN_INFO
1422                        "VPHN is not supported. Disabling polling...\n");
1423                stop_topology_update();
1424                break;
1425        case H_HARDWARE:
1426                printk(KERN_ERR
1427                        "hcall_vphn() experienced a hardware fault "
1428                        "preventing VPHN. Disabling polling...\n");
1429                stop_topology_update();
1430        }
1431
1432        return rc;
1433}
1434
1435/*
1436 * Update the node maps and sysfs entries for each cpu whose home node
1437 * has changed.
1438 */
1439int arch_update_cpu_topology(void)
1440{
1441        int cpu, nid, old_nid;
1442        unsigned int associativity[VPHN_ASSOC_BUFSIZE] = {0};
1443        struct device *dev;
1444
1445        for_each_cpu(cpu,&cpu_associativity_changes_mask) {
1446                vphn_get_associativity(cpu, associativity);
1447                nid = associativity_to_nid(associativity);
1448
1449                if (nid < 0 || !node_online(nid))
1450                        nid = first_online_node;
1451
1452                old_nid = numa_cpu_lookup_table[cpu];
1453
1454                /* Disable hotplug while we update the cpu
1455                 * masks and sysfs.
1456                 */
1457                get_online_cpus();
1458                unregister_cpu_under_node(cpu, old_nid);
1459                unmap_cpu_from_node(cpu);
1460                map_cpu_to_node(cpu, nid);
1461                register_cpu_under_node(cpu, nid);
1462                put_online_cpus();
1463
1464                dev = get_cpu_device(cpu);
1465                if (dev)
1466                        kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1467        }
1468
1469        return 1;
1470}
1471
1472static void topology_work_fn(struct work_struct *work)
1473{
1474        rebuild_sched_domains();
1475}
1476static DECLARE_WORK(topology_work, topology_work_fn);
1477
1478void topology_schedule_update(void)
1479{
1480        schedule_work(&topology_work);
1481}
1482
1483static void topology_timer_fn(unsigned long ignored)
1484{
1485        if (!vphn_enabled)
1486                return;
1487        if (update_cpu_associativity_changes_mask() > 0)
1488                topology_schedule_update();
1489        set_topology_timer();
1490}
1491static struct timer_list topology_timer =
1492        TIMER_INITIALIZER(topology_timer_fn, 0, 0);
1493
1494static void set_topology_timer(void)
1495{
1496        topology_timer.data = 0;
1497        topology_timer.expires = jiffies + 60 * HZ;
1498        add_timer(&topology_timer);
1499}
1500
1501/*
1502 * Start polling for VPHN associativity changes.
1503 */
1504int start_topology_update(void)
1505{
1506        int rc = 0;
1507
1508        /* Disabled until races with load balancing are fixed */
1509        if (0 && firmware_has_feature(FW_FEATURE_VPHN) &&
1510            get_lppaca()->shared_proc) {
1511                vphn_enabled = 1;
1512                setup_cpu_associativity_change_counters();
1513                init_timer_deferrable(&topology_timer);
1514                set_topology_timer();
1515                rc = 1;
1516        }
1517
1518        return rc;
1519}
1520__initcall(start_topology_update);
1521
1522/*
1523 * Disable polling for VPHN associativity changes.
1524 */
1525int stop_topology_update(void)
1526{
1527        vphn_enabled = 0;
1528        return del_timer_sync(&topology_timer);
1529}
1530#endif /* CONFIG_PPC_SPLPAR */
1531