linux/net/openvswitch/flow.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2007-2011 Nicira Networks.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of version 2 of the GNU General Public
   6 * License as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful, but
   9 * WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public License
  14 * along with this program; if not, write to the Free Software
  15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  16 * 02110-1301, USA
  17 */
  18
  19#include "flow.h"
  20#include "datapath.h"
  21#include <linux/uaccess.h>
  22#include <linux/netdevice.h>
  23#include <linux/etherdevice.h>
  24#include <linux/if_ether.h>
  25#include <linux/if_vlan.h>
  26#include <net/llc_pdu.h>
  27#include <linux/kernel.h>
  28#include <linux/jhash.h>
  29#include <linux/jiffies.h>
  30#include <linux/llc.h>
  31#include <linux/module.h>
  32#include <linux/in.h>
  33#include <linux/rcupdate.h>
  34#include <linux/if_arp.h>
  35#include <linux/ip.h>
  36#include <linux/ipv6.h>
  37#include <linux/tcp.h>
  38#include <linux/udp.h>
  39#include <linux/icmp.h>
  40#include <linux/icmpv6.h>
  41#include <linux/rculist.h>
  42#include <net/ip.h>
  43#include <net/ipv6.h>
  44#include <net/ndisc.h>
  45
  46static struct kmem_cache *flow_cache;
  47
  48static int check_header(struct sk_buff *skb, int len)
  49{
  50        if (unlikely(skb->len < len))
  51                return -EINVAL;
  52        if (unlikely(!pskb_may_pull(skb, len)))
  53                return -ENOMEM;
  54        return 0;
  55}
  56
  57static bool arphdr_ok(struct sk_buff *skb)
  58{
  59        return pskb_may_pull(skb, skb_network_offset(skb) +
  60                                  sizeof(struct arp_eth_header));
  61}
  62
  63static int check_iphdr(struct sk_buff *skb)
  64{
  65        unsigned int nh_ofs = skb_network_offset(skb);
  66        unsigned int ip_len;
  67        int err;
  68
  69        err = check_header(skb, nh_ofs + sizeof(struct iphdr));
  70        if (unlikely(err))
  71                return err;
  72
  73        ip_len = ip_hdrlen(skb);
  74        if (unlikely(ip_len < sizeof(struct iphdr) ||
  75                     skb->len < nh_ofs + ip_len))
  76                return -EINVAL;
  77
  78        skb_set_transport_header(skb, nh_ofs + ip_len);
  79        return 0;
  80}
  81
  82static bool tcphdr_ok(struct sk_buff *skb)
  83{
  84        int th_ofs = skb_transport_offset(skb);
  85        int tcp_len;
  86
  87        if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
  88                return false;
  89
  90        tcp_len = tcp_hdrlen(skb);
  91        if (unlikely(tcp_len < sizeof(struct tcphdr) ||
  92                     skb->len < th_ofs + tcp_len))
  93                return false;
  94
  95        return true;
  96}
  97
  98static bool udphdr_ok(struct sk_buff *skb)
  99{
 100        return pskb_may_pull(skb, skb_transport_offset(skb) +
 101                                  sizeof(struct udphdr));
 102}
 103
 104static bool icmphdr_ok(struct sk_buff *skb)
 105{
 106        return pskb_may_pull(skb, skb_transport_offset(skb) +
 107                                  sizeof(struct icmphdr));
 108}
 109
 110u64 ovs_flow_used_time(unsigned long flow_jiffies)
 111{
 112        struct timespec cur_ts;
 113        u64 cur_ms, idle_ms;
 114
 115        ktime_get_ts(&cur_ts);
 116        idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
 117        cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
 118                 cur_ts.tv_nsec / NSEC_PER_MSEC;
 119
 120        return cur_ms - idle_ms;
 121}
 122
 123#define SW_FLOW_KEY_OFFSET(field)               \
 124        (offsetof(struct sw_flow_key, field) +  \
 125         FIELD_SIZEOF(struct sw_flow_key, field))
 126
 127static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key,
 128                         int *key_lenp)
 129{
 130        unsigned int nh_ofs = skb_network_offset(skb);
 131        unsigned int nh_len;
 132        int payload_ofs;
 133        struct ipv6hdr *nh;
 134        uint8_t nexthdr;
 135        __be16 frag_off;
 136        int err;
 137
 138        *key_lenp = SW_FLOW_KEY_OFFSET(ipv6.label);
 139
 140        err = check_header(skb, nh_ofs + sizeof(*nh));
 141        if (unlikely(err))
 142                return err;
 143
 144        nh = ipv6_hdr(skb);
 145        nexthdr = nh->nexthdr;
 146        payload_ofs = (u8 *)(nh + 1) - skb->data;
 147
 148        key->ip.proto = NEXTHDR_NONE;
 149        key->ip.tos = ipv6_get_dsfield(nh);
 150        key->ip.ttl = nh->hop_limit;
 151        key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
 152        key->ipv6.addr.src = nh->saddr;
 153        key->ipv6.addr.dst = nh->daddr;
 154
 155        payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
 156        if (unlikely(payload_ofs < 0))
 157                return -EINVAL;
 158
 159        if (frag_off) {
 160                if (frag_off & htons(~0x7))
 161                        key->ip.frag = OVS_FRAG_TYPE_LATER;
 162                else
 163                        key->ip.frag = OVS_FRAG_TYPE_FIRST;
 164        }
 165
 166        nh_len = payload_ofs - nh_ofs;
 167        skb_set_transport_header(skb, nh_ofs + nh_len);
 168        key->ip.proto = nexthdr;
 169        return nh_len;
 170}
 171
 172static bool icmp6hdr_ok(struct sk_buff *skb)
 173{
 174        return pskb_may_pull(skb, skb_transport_offset(skb) +
 175                                  sizeof(struct icmp6hdr));
 176}
 177
 178#define TCP_FLAGS_OFFSET 13
 179#define TCP_FLAG_MASK 0x3f
 180
 181void ovs_flow_used(struct sw_flow *flow, struct sk_buff *skb)
 182{
 183        u8 tcp_flags = 0;
 184
 185        if (flow->key.eth.type == htons(ETH_P_IP) &&
 186            flow->key.ip.proto == IPPROTO_TCP) {
 187                u8 *tcp = (u8 *)tcp_hdr(skb);
 188                tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK;
 189        }
 190
 191        spin_lock(&flow->lock);
 192        flow->used = jiffies;
 193        flow->packet_count++;
 194        flow->byte_count += skb->len;
 195        flow->tcp_flags |= tcp_flags;
 196        spin_unlock(&flow->lock);
 197}
 198
 199struct sw_flow_actions *ovs_flow_actions_alloc(const struct nlattr *actions)
 200{
 201        int actions_len = nla_len(actions);
 202        struct sw_flow_actions *sfa;
 203
 204        /* At least DP_MAX_PORTS actions are required to be able to flood a
 205         * packet to every port.  Factor of 2 allows for setting VLAN tags,
 206         * etc. */
 207        if (actions_len > 2 * DP_MAX_PORTS * nla_total_size(4))
 208                return ERR_PTR(-EINVAL);
 209
 210        sfa = kmalloc(sizeof(*sfa) + actions_len, GFP_KERNEL);
 211        if (!sfa)
 212                return ERR_PTR(-ENOMEM);
 213
 214        sfa->actions_len = actions_len;
 215        memcpy(sfa->actions, nla_data(actions), actions_len);
 216        return sfa;
 217}
 218
 219struct sw_flow *ovs_flow_alloc(void)
 220{
 221        struct sw_flow *flow;
 222
 223        flow = kmem_cache_alloc(flow_cache, GFP_KERNEL);
 224        if (!flow)
 225                return ERR_PTR(-ENOMEM);
 226
 227        spin_lock_init(&flow->lock);
 228        flow->sf_acts = NULL;
 229
 230        return flow;
 231}
 232
 233static struct hlist_head *find_bucket(struct flow_table *table, u32 hash)
 234{
 235        hash = jhash_1word(hash, table->hash_seed);
 236        return flex_array_get(table->buckets,
 237                                (hash & (table->n_buckets - 1)));
 238}
 239
 240static struct flex_array *alloc_buckets(unsigned int n_buckets)
 241{
 242        struct flex_array *buckets;
 243        int i, err;
 244
 245        buckets = flex_array_alloc(sizeof(struct hlist_head *),
 246                                   n_buckets, GFP_KERNEL);
 247        if (!buckets)
 248                return NULL;
 249
 250        err = flex_array_prealloc(buckets, 0, n_buckets, GFP_KERNEL);
 251        if (err) {
 252                flex_array_free(buckets);
 253                return NULL;
 254        }
 255
 256        for (i = 0; i < n_buckets; i++)
 257                INIT_HLIST_HEAD((struct hlist_head *)
 258                                        flex_array_get(buckets, i));
 259
 260        return buckets;
 261}
 262
 263static void free_buckets(struct flex_array *buckets)
 264{
 265        flex_array_free(buckets);
 266}
 267
 268struct flow_table *ovs_flow_tbl_alloc(int new_size)
 269{
 270        struct flow_table *table = kmalloc(sizeof(*table), GFP_KERNEL);
 271
 272        if (!table)
 273                return NULL;
 274
 275        table->buckets = alloc_buckets(new_size);
 276
 277        if (!table->buckets) {
 278                kfree(table);
 279                return NULL;
 280        }
 281        table->n_buckets = new_size;
 282        table->count = 0;
 283        table->node_ver = 0;
 284        table->keep_flows = false;
 285        get_random_bytes(&table->hash_seed, sizeof(u32));
 286
 287        return table;
 288}
 289
 290void ovs_flow_tbl_destroy(struct flow_table *table)
 291{
 292        int i;
 293
 294        if (!table)
 295                return;
 296
 297        if (table->keep_flows)
 298                goto skip_flows;
 299
 300        for (i = 0; i < table->n_buckets; i++) {
 301                struct sw_flow *flow;
 302                struct hlist_head *head = flex_array_get(table->buckets, i);
 303                struct hlist_node *node, *n;
 304                int ver = table->node_ver;
 305
 306                hlist_for_each_entry_safe(flow, node, n, head, hash_node[ver]) {
 307                        hlist_del_rcu(&flow->hash_node[ver]);
 308                        ovs_flow_free(flow);
 309                }
 310        }
 311
 312skip_flows:
 313        free_buckets(table->buckets);
 314        kfree(table);
 315}
 316
 317static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu)
 318{
 319        struct flow_table *table = container_of(rcu, struct flow_table, rcu);
 320
 321        ovs_flow_tbl_destroy(table);
 322}
 323
 324void ovs_flow_tbl_deferred_destroy(struct flow_table *table)
 325{
 326        if (!table)
 327                return;
 328
 329        call_rcu(&table->rcu, flow_tbl_destroy_rcu_cb);
 330}
 331
 332struct sw_flow *ovs_flow_tbl_next(struct flow_table *table, u32 *bucket, u32 *last)
 333{
 334        struct sw_flow *flow;
 335        struct hlist_head *head;
 336        struct hlist_node *n;
 337        int ver;
 338        int i;
 339
 340        ver = table->node_ver;
 341        while (*bucket < table->n_buckets) {
 342                i = 0;
 343                head = flex_array_get(table->buckets, *bucket);
 344                hlist_for_each_entry_rcu(flow, n, head, hash_node[ver]) {
 345                        if (i < *last) {
 346                                i++;
 347                                continue;
 348                        }
 349                        *last = i + 1;
 350                        return flow;
 351                }
 352                (*bucket)++;
 353                *last = 0;
 354        }
 355
 356        return NULL;
 357}
 358
 359static void flow_table_copy_flows(struct flow_table *old, struct flow_table *new)
 360{
 361        int old_ver;
 362        int i;
 363
 364        old_ver = old->node_ver;
 365        new->node_ver = !old_ver;
 366
 367        /* Insert in new table. */
 368        for (i = 0; i < old->n_buckets; i++) {
 369                struct sw_flow *flow;
 370                struct hlist_head *head;
 371                struct hlist_node *n;
 372
 373                head = flex_array_get(old->buckets, i);
 374
 375                hlist_for_each_entry(flow, n, head, hash_node[old_ver])
 376                        ovs_flow_tbl_insert(new, flow);
 377        }
 378        old->keep_flows = true;
 379}
 380
 381static struct flow_table *__flow_tbl_rehash(struct flow_table *table, int n_buckets)
 382{
 383        struct flow_table *new_table;
 384
 385        new_table = ovs_flow_tbl_alloc(n_buckets);
 386        if (!new_table)
 387                return ERR_PTR(-ENOMEM);
 388
 389        flow_table_copy_flows(table, new_table);
 390
 391        return new_table;
 392}
 393
 394struct flow_table *ovs_flow_tbl_rehash(struct flow_table *table)
 395{
 396        return __flow_tbl_rehash(table, table->n_buckets);
 397}
 398
 399struct flow_table *ovs_flow_tbl_expand(struct flow_table *table)
 400{
 401        return __flow_tbl_rehash(table, table->n_buckets * 2);
 402}
 403
 404void ovs_flow_free(struct sw_flow *flow)
 405{
 406        if (unlikely(!flow))
 407                return;
 408
 409        kfree((struct sf_flow_acts __force *)flow->sf_acts);
 410        kmem_cache_free(flow_cache, flow);
 411}
 412
 413/* RCU callback used by ovs_flow_deferred_free. */
 414static void rcu_free_flow_callback(struct rcu_head *rcu)
 415{
 416        struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu);
 417
 418        ovs_flow_free(flow);
 419}
 420
 421/* Schedules 'flow' to be freed after the next RCU grace period.
 422 * The caller must hold rcu_read_lock for this to be sensible. */
 423void ovs_flow_deferred_free(struct sw_flow *flow)
 424{
 425        call_rcu(&flow->rcu, rcu_free_flow_callback);
 426}
 427
 428/* RCU callback used by ovs_flow_deferred_free_acts. */
 429static void rcu_free_acts_callback(struct rcu_head *rcu)
 430{
 431        struct sw_flow_actions *sf_acts = container_of(rcu,
 432                        struct sw_flow_actions, rcu);
 433        kfree(sf_acts);
 434}
 435
 436/* Schedules 'sf_acts' to be freed after the next RCU grace period.
 437 * The caller must hold rcu_read_lock for this to be sensible. */
 438void ovs_flow_deferred_free_acts(struct sw_flow_actions *sf_acts)
 439{
 440        call_rcu(&sf_acts->rcu, rcu_free_acts_callback);
 441}
 442
 443static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
 444{
 445        struct qtag_prefix {
 446                __be16 eth_type; /* ETH_P_8021Q */
 447                __be16 tci;
 448        };
 449        struct qtag_prefix *qp;
 450
 451        if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16)))
 452                return 0;
 453
 454        if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) +
 455                                         sizeof(__be16))))
 456                return -ENOMEM;
 457
 458        qp = (struct qtag_prefix *) skb->data;
 459        key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT);
 460        __skb_pull(skb, sizeof(struct qtag_prefix));
 461
 462        return 0;
 463}
 464
 465static __be16 parse_ethertype(struct sk_buff *skb)
 466{
 467        struct llc_snap_hdr {
 468                u8  dsap;  /* Always 0xAA */
 469                u8  ssap;  /* Always 0xAA */
 470                u8  ctrl;
 471                u8  oui[3];
 472                __be16 ethertype;
 473        };
 474        struct llc_snap_hdr *llc;
 475        __be16 proto;
 476
 477        proto = *(__be16 *) skb->data;
 478        __skb_pull(skb, sizeof(__be16));
 479
 480        if (ntohs(proto) >= 1536)
 481                return proto;
 482
 483        if (skb->len < sizeof(struct llc_snap_hdr))
 484                return htons(ETH_P_802_2);
 485
 486        if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
 487                return htons(0);
 488
 489        llc = (struct llc_snap_hdr *) skb->data;
 490        if (llc->dsap != LLC_SAP_SNAP ||
 491            llc->ssap != LLC_SAP_SNAP ||
 492            (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
 493                return htons(ETH_P_802_2);
 494
 495        __skb_pull(skb, sizeof(struct llc_snap_hdr));
 496        return llc->ethertype;
 497}
 498
 499static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
 500                        int *key_lenp, int nh_len)
 501{
 502        struct icmp6hdr *icmp = icmp6_hdr(skb);
 503        int error = 0;
 504        int key_len;
 505
 506        /* The ICMPv6 type and code fields use the 16-bit transport port
 507         * fields, so we need to store them in 16-bit network byte order.
 508         */
 509        key->ipv6.tp.src = htons(icmp->icmp6_type);
 510        key->ipv6.tp.dst = htons(icmp->icmp6_code);
 511        key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
 512
 513        if (icmp->icmp6_code == 0 &&
 514            (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
 515             icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
 516                int icmp_len = skb->len - skb_transport_offset(skb);
 517                struct nd_msg *nd;
 518                int offset;
 519
 520                key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
 521
 522                /* In order to process neighbor discovery options, we need the
 523                 * entire packet.
 524                 */
 525                if (unlikely(icmp_len < sizeof(*nd)))
 526                        goto out;
 527                if (unlikely(skb_linearize(skb))) {
 528                        error = -ENOMEM;
 529                        goto out;
 530                }
 531
 532                nd = (struct nd_msg *)skb_transport_header(skb);
 533                key->ipv6.nd.target = nd->target;
 534                key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
 535
 536                icmp_len -= sizeof(*nd);
 537                offset = 0;
 538                while (icmp_len >= 8) {
 539                        struct nd_opt_hdr *nd_opt =
 540                                 (struct nd_opt_hdr *)(nd->opt + offset);
 541                        int opt_len = nd_opt->nd_opt_len * 8;
 542
 543                        if (unlikely(!opt_len || opt_len > icmp_len))
 544                                goto invalid;
 545
 546                        /* Store the link layer address if the appropriate
 547                         * option is provided.  It is considered an error if
 548                         * the same link layer option is specified twice.
 549                         */
 550                        if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
 551                            && opt_len == 8) {
 552                                if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
 553                                        goto invalid;
 554                                memcpy(key->ipv6.nd.sll,
 555                                    &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
 556                        } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
 557                                   && opt_len == 8) {
 558                                if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
 559                                        goto invalid;
 560                                memcpy(key->ipv6.nd.tll,
 561                                    &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
 562                        }
 563
 564                        icmp_len -= opt_len;
 565                        offset += opt_len;
 566                }
 567        }
 568
 569        goto out;
 570
 571invalid:
 572        memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
 573        memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
 574        memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
 575
 576out:
 577        *key_lenp = key_len;
 578        return error;
 579}
 580
 581/**
 582 * ovs_flow_extract - extracts a flow key from an Ethernet frame.
 583 * @skb: sk_buff that contains the frame, with skb->data pointing to the
 584 * Ethernet header
 585 * @in_port: port number on which @skb was received.
 586 * @key: output flow key
 587 * @key_lenp: length of output flow key
 588 *
 589 * The caller must ensure that skb->len >= ETH_HLEN.
 590 *
 591 * Returns 0 if successful, otherwise a negative errno value.
 592 *
 593 * Initializes @skb header pointers as follows:
 594 *
 595 *    - skb->mac_header: the Ethernet header.
 596 *
 597 *    - skb->network_header: just past the Ethernet header, or just past the
 598 *      VLAN header, to the first byte of the Ethernet payload.
 599 *
 600 *    - skb->transport_header: If key->dl_type is ETH_P_IP or ETH_P_IPV6
 601 *      on output, then just past the IP header, if one is present and
 602 *      of a correct length, otherwise the same as skb->network_header.
 603 *      For other key->dl_type values it is left untouched.
 604 */
 605int ovs_flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key,
 606                 int *key_lenp)
 607{
 608        int error = 0;
 609        int key_len = SW_FLOW_KEY_OFFSET(eth);
 610        struct ethhdr *eth;
 611
 612        memset(key, 0, sizeof(*key));
 613
 614        key->phy.priority = skb->priority;
 615        key->phy.in_port = in_port;
 616
 617        skb_reset_mac_header(skb);
 618
 619        /* Link layer.  We are guaranteed to have at least the 14 byte Ethernet
 620         * header in the linear data area.
 621         */
 622        eth = eth_hdr(skb);
 623        memcpy(key->eth.src, eth->h_source, ETH_ALEN);
 624        memcpy(key->eth.dst, eth->h_dest, ETH_ALEN);
 625
 626        __skb_pull(skb, 2 * ETH_ALEN);
 627
 628        if (vlan_tx_tag_present(skb))
 629                key->eth.tci = htons(skb->vlan_tci);
 630        else if (eth->h_proto == htons(ETH_P_8021Q))
 631                if (unlikely(parse_vlan(skb, key)))
 632                        return -ENOMEM;
 633
 634        key->eth.type = parse_ethertype(skb);
 635        if (unlikely(key->eth.type == htons(0)))
 636                return -ENOMEM;
 637
 638        skb_reset_network_header(skb);
 639        __skb_push(skb, skb->data - skb_mac_header(skb));
 640
 641        /* Network layer. */
 642        if (key->eth.type == htons(ETH_P_IP)) {
 643                struct iphdr *nh;
 644                __be16 offset;
 645
 646                key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);
 647
 648                error = check_iphdr(skb);
 649                if (unlikely(error)) {
 650                        if (error == -EINVAL) {
 651                                skb->transport_header = skb->network_header;
 652                                error = 0;
 653                        }
 654                        goto out;
 655                }
 656
 657                nh = ip_hdr(skb);
 658                key->ipv4.addr.src = nh->saddr;
 659                key->ipv4.addr.dst = nh->daddr;
 660
 661                key->ip.proto = nh->protocol;
 662                key->ip.tos = nh->tos;
 663                key->ip.ttl = nh->ttl;
 664
 665                offset = nh->frag_off & htons(IP_OFFSET);
 666                if (offset) {
 667                        key->ip.frag = OVS_FRAG_TYPE_LATER;
 668                        goto out;
 669                }
 670                if (nh->frag_off & htons(IP_MF) ||
 671                         skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
 672                        key->ip.frag = OVS_FRAG_TYPE_FIRST;
 673
 674                /* Transport layer. */
 675                if (key->ip.proto == IPPROTO_TCP) {
 676                        key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
 677                        if (tcphdr_ok(skb)) {
 678                                struct tcphdr *tcp = tcp_hdr(skb);
 679                                key->ipv4.tp.src = tcp->source;
 680                                key->ipv4.tp.dst = tcp->dest;
 681                        }
 682                } else if (key->ip.proto == IPPROTO_UDP) {
 683                        key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
 684                        if (udphdr_ok(skb)) {
 685                                struct udphdr *udp = udp_hdr(skb);
 686                                key->ipv4.tp.src = udp->source;
 687                                key->ipv4.tp.dst = udp->dest;
 688                        }
 689                } else if (key->ip.proto == IPPROTO_ICMP) {
 690                        key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
 691                        if (icmphdr_ok(skb)) {
 692                                struct icmphdr *icmp = icmp_hdr(skb);
 693                                /* The ICMP type and code fields use the 16-bit
 694                                 * transport port fields, so we need to store
 695                                 * them in 16-bit network byte order. */
 696                                key->ipv4.tp.src = htons(icmp->type);
 697                                key->ipv4.tp.dst = htons(icmp->code);
 698                        }
 699                }
 700
 701        } else if (key->eth.type == htons(ETH_P_ARP) && arphdr_ok(skb)) {
 702                struct arp_eth_header *arp;
 703
 704                arp = (struct arp_eth_header *)skb_network_header(skb);
 705
 706                if (arp->ar_hrd == htons(ARPHRD_ETHER)
 707                                && arp->ar_pro == htons(ETH_P_IP)
 708                                && arp->ar_hln == ETH_ALEN
 709                                && arp->ar_pln == 4) {
 710
 711                        /* We only match on the lower 8 bits of the opcode. */
 712                        if (ntohs(arp->ar_op) <= 0xff)
 713                                key->ip.proto = ntohs(arp->ar_op);
 714
 715                        if (key->ip.proto == ARPOP_REQUEST
 716                                        || key->ip.proto == ARPOP_REPLY) {
 717                                memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
 718                                memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
 719                                memcpy(key->ipv4.arp.sha, arp->ar_sha, ETH_ALEN);
 720                                memcpy(key->ipv4.arp.tha, arp->ar_tha, ETH_ALEN);
 721                                key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
 722                        }
 723                }
 724        } else if (key->eth.type == htons(ETH_P_IPV6)) {
 725                int nh_len;             /* IPv6 Header + Extensions */
 726
 727                nh_len = parse_ipv6hdr(skb, key, &key_len);
 728                if (unlikely(nh_len < 0)) {
 729                        if (nh_len == -EINVAL)
 730                                skb->transport_header = skb->network_header;
 731                        else
 732                                error = nh_len;
 733                        goto out;
 734                }
 735
 736                if (key->ip.frag == OVS_FRAG_TYPE_LATER)
 737                        goto out;
 738                if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
 739                        key->ip.frag = OVS_FRAG_TYPE_FIRST;
 740
 741                /* Transport layer. */
 742                if (key->ip.proto == NEXTHDR_TCP) {
 743                        key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
 744                        if (tcphdr_ok(skb)) {
 745                                struct tcphdr *tcp = tcp_hdr(skb);
 746                                key->ipv6.tp.src = tcp->source;
 747                                key->ipv6.tp.dst = tcp->dest;
 748                        }
 749                } else if (key->ip.proto == NEXTHDR_UDP) {
 750                        key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
 751                        if (udphdr_ok(skb)) {
 752                                struct udphdr *udp = udp_hdr(skb);
 753                                key->ipv6.tp.src = udp->source;
 754                                key->ipv6.tp.dst = udp->dest;
 755                        }
 756                } else if (key->ip.proto == NEXTHDR_ICMP) {
 757                        key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
 758                        if (icmp6hdr_ok(skb)) {
 759                                error = parse_icmpv6(skb, key, &key_len, nh_len);
 760                                if (error < 0)
 761                                        goto out;
 762                        }
 763                }
 764        }
 765
 766out:
 767        *key_lenp = key_len;
 768        return error;
 769}
 770
 771u32 ovs_flow_hash(const struct sw_flow_key *key, int key_len)
 772{
 773        return jhash2((u32 *)key, DIV_ROUND_UP(key_len, sizeof(u32)), 0);
 774}
 775
 776struct sw_flow *ovs_flow_tbl_lookup(struct flow_table *table,
 777                                struct sw_flow_key *key, int key_len)
 778{
 779        struct sw_flow *flow;
 780        struct hlist_node *n;
 781        struct hlist_head *head;
 782        u32 hash;
 783
 784        hash = ovs_flow_hash(key, key_len);
 785
 786        head = find_bucket(table, hash);
 787        hlist_for_each_entry_rcu(flow, n, head, hash_node[table->node_ver]) {
 788
 789                if (flow->hash == hash &&
 790                    !memcmp(&flow->key, key, key_len)) {
 791                        return flow;
 792                }
 793        }
 794        return NULL;
 795}
 796
 797void ovs_flow_tbl_insert(struct flow_table *table, struct sw_flow *flow)
 798{
 799        struct hlist_head *head;
 800
 801        head = find_bucket(table, flow->hash);
 802        hlist_add_head_rcu(&flow->hash_node[table->node_ver], head);
 803        table->count++;
 804}
 805
 806void ovs_flow_tbl_remove(struct flow_table *table, struct sw_flow *flow)
 807{
 808        hlist_del_rcu(&flow->hash_node[table->node_ver]);
 809        table->count--;
 810        BUG_ON(table->count < 0);
 811}
 812
 813/* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
 814const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
 815        [OVS_KEY_ATTR_ENCAP] = -1,
 816        [OVS_KEY_ATTR_PRIORITY] = sizeof(u32),
 817        [OVS_KEY_ATTR_IN_PORT] = sizeof(u32),
 818        [OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet),
 819        [OVS_KEY_ATTR_VLAN] = sizeof(__be16),
 820        [OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16),
 821        [OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4),
 822        [OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6),
 823        [OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp),
 824        [OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp),
 825        [OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp),
 826        [OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6),
 827        [OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp),
 828        [OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd),
 829};
 830
 831static int ipv4_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len,
 832                                  const struct nlattr *a[], u32 *attrs)
 833{
 834        const struct ovs_key_icmp *icmp_key;
 835        const struct ovs_key_tcp *tcp_key;
 836        const struct ovs_key_udp *udp_key;
 837
 838        switch (swkey->ip.proto) {
 839        case IPPROTO_TCP:
 840                if (!(*attrs & (1 << OVS_KEY_ATTR_TCP)))
 841                        return -EINVAL;
 842                *attrs &= ~(1 << OVS_KEY_ATTR_TCP);
 843
 844                *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
 845                tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
 846                swkey->ipv4.tp.src = tcp_key->tcp_src;
 847                swkey->ipv4.tp.dst = tcp_key->tcp_dst;
 848                break;
 849
 850        case IPPROTO_UDP:
 851                if (!(*attrs & (1 << OVS_KEY_ATTR_UDP)))
 852                        return -EINVAL;
 853                *attrs &= ~(1 << OVS_KEY_ATTR_UDP);
 854
 855                *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
 856                udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
 857                swkey->ipv4.tp.src = udp_key->udp_src;
 858                swkey->ipv4.tp.dst = udp_key->udp_dst;
 859                break;
 860
 861        case IPPROTO_ICMP:
 862                if (!(*attrs & (1 << OVS_KEY_ATTR_ICMP)))
 863                        return -EINVAL;
 864                *attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
 865
 866                *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
 867                icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
 868                swkey->ipv4.tp.src = htons(icmp_key->icmp_type);
 869                swkey->ipv4.tp.dst = htons(icmp_key->icmp_code);
 870                break;
 871        }
 872
 873        return 0;
 874}
 875
 876static int ipv6_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len,
 877                                  const struct nlattr *a[], u32 *attrs)
 878{
 879        const struct ovs_key_icmpv6 *icmpv6_key;
 880        const struct ovs_key_tcp *tcp_key;
 881        const struct ovs_key_udp *udp_key;
 882
 883        switch (swkey->ip.proto) {
 884        case IPPROTO_TCP:
 885                if (!(*attrs & (1 << OVS_KEY_ATTR_TCP)))
 886                        return -EINVAL;
 887                *attrs &= ~(1 << OVS_KEY_ATTR_TCP);
 888
 889                *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
 890                tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
 891                swkey->ipv6.tp.src = tcp_key->tcp_src;
 892                swkey->ipv6.tp.dst = tcp_key->tcp_dst;
 893                break;
 894
 895        case IPPROTO_UDP:
 896                if (!(*attrs & (1 << OVS_KEY_ATTR_UDP)))
 897                        return -EINVAL;
 898                *attrs &= ~(1 << OVS_KEY_ATTR_UDP);
 899
 900                *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
 901                udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
 902                swkey->ipv6.tp.src = udp_key->udp_src;
 903                swkey->ipv6.tp.dst = udp_key->udp_dst;
 904                break;
 905
 906        case IPPROTO_ICMPV6:
 907                if (!(*attrs & (1 << OVS_KEY_ATTR_ICMPV6)))
 908                        return -EINVAL;
 909                *attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
 910
 911                *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
 912                icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
 913                swkey->ipv6.tp.src = htons(icmpv6_key->icmpv6_type);
 914                swkey->ipv6.tp.dst = htons(icmpv6_key->icmpv6_code);
 915
 916                if (swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) ||
 917                    swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
 918                        const struct ovs_key_nd *nd_key;
 919
 920                        if (!(*attrs & (1 << OVS_KEY_ATTR_ND)))
 921                                return -EINVAL;
 922                        *attrs &= ~(1 << OVS_KEY_ATTR_ND);
 923
 924                        *key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
 925                        nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
 926                        memcpy(&swkey->ipv6.nd.target, nd_key->nd_target,
 927                               sizeof(swkey->ipv6.nd.target));
 928                        memcpy(swkey->ipv6.nd.sll, nd_key->nd_sll, ETH_ALEN);
 929                        memcpy(swkey->ipv6.nd.tll, nd_key->nd_tll, ETH_ALEN);
 930                }
 931                break;
 932        }
 933
 934        return 0;
 935}
 936
 937static int parse_flow_nlattrs(const struct nlattr *attr,
 938                              const struct nlattr *a[], u32 *attrsp)
 939{
 940        const struct nlattr *nla;
 941        u32 attrs;
 942        int rem;
 943
 944        attrs = 0;
 945        nla_for_each_nested(nla, attr, rem) {
 946                u16 type = nla_type(nla);
 947                int expected_len;
 948
 949                if (type > OVS_KEY_ATTR_MAX || attrs & (1 << type))
 950                        return -EINVAL;
 951
 952                expected_len = ovs_key_lens[type];
 953                if (nla_len(nla) != expected_len && expected_len != -1)
 954                        return -EINVAL;
 955
 956                attrs |= 1 << type;
 957                a[type] = nla;
 958        }
 959        if (rem)
 960                return -EINVAL;
 961
 962        *attrsp = attrs;
 963        return 0;
 964}
 965
 966/**
 967 * ovs_flow_from_nlattrs - parses Netlink attributes into a flow key.
 968 * @swkey: receives the extracted flow key.
 969 * @key_lenp: number of bytes used in @swkey.
 970 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
 971 * sequence.
 972 */
 973int ovs_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_lenp,
 974                      const struct nlattr *attr)
 975{
 976        const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
 977        const struct ovs_key_ethernet *eth_key;
 978        int key_len;
 979        u32 attrs;
 980        int err;
 981
 982        memset(swkey, 0, sizeof(struct sw_flow_key));
 983        key_len = SW_FLOW_KEY_OFFSET(eth);
 984
 985        err = parse_flow_nlattrs(attr, a, &attrs);
 986        if (err)
 987                return err;
 988
 989        /* Metadata attributes. */
 990        if (attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
 991                swkey->phy.priority = nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]);
 992                attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
 993        }
 994        if (attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
 995                u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
 996                if (in_port >= DP_MAX_PORTS)
 997                        return -EINVAL;
 998                swkey->phy.in_port = in_port;
 999                attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1000        } else {
1001                swkey->phy.in_port = USHRT_MAX;
1002        }
1003
1004        /* Data attributes. */
1005        if (!(attrs & (1 << OVS_KEY_ATTR_ETHERNET)))
1006                return -EINVAL;
1007        attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1008
1009        eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1010        memcpy(swkey->eth.src, eth_key->eth_src, ETH_ALEN);
1011        memcpy(swkey->eth.dst, eth_key->eth_dst, ETH_ALEN);
1012
1013        if (attrs & (1u << OVS_KEY_ATTR_ETHERTYPE) &&
1014            nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q)) {
1015                const struct nlattr *encap;
1016                __be16 tci;
1017
1018                if (attrs != ((1 << OVS_KEY_ATTR_VLAN) |
1019                              (1 << OVS_KEY_ATTR_ETHERTYPE) |
1020                              (1 << OVS_KEY_ATTR_ENCAP)))
1021                        return -EINVAL;
1022
1023                encap = a[OVS_KEY_ATTR_ENCAP];
1024                tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1025                if (tci & htons(VLAN_TAG_PRESENT)) {
1026                        swkey->eth.tci = tci;
1027
1028                        err = parse_flow_nlattrs(encap, a, &attrs);
1029                        if (err)
1030                                return err;
1031                } else if (!tci) {
1032                        /* Corner case for truncated 802.1Q header. */
1033                        if (nla_len(encap))
1034                                return -EINVAL;
1035
1036                        swkey->eth.type = htons(ETH_P_8021Q);
1037                        *key_lenp = key_len;
1038                        return 0;
1039                } else {
1040                        return -EINVAL;
1041                }
1042        }
1043
1044        if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1045                swkey->eth.type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1046                if (ntohs(swkey->eth.type) < 1536)
1047                        return -EINVAL;
1048                attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1049        } else {
1050                swkey->eth.type = htons(ETH_P_802_2);
1051        }
1052
1053        if (swkey->eth.type == htons(ETH_P_IP)) {
1054                const struct ovs_key_ipv4 *ipv4_key;
1055
1056                if (!(attrs & (1 << OVS_KEY_ATTR_IPV4)))
1057                        return -EINVAL;
1058                attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1059
1060                key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);
1061                ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1062                if (ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX)
1063                        return -EINVAL;
1064                swkey->ip.proto = ipv4_key->ipv4_proto;
1065                swkey->ip.tos = ipv4_key->ipv4_tos;
1066                swkey->ip.ttl = ipv4_key->ipv4_ttl;
1067                swkey->ip.frag = ipv4_key->ipv4_frag;
1068                swkey->ipv4.addr.src = ipv4_key->ipv4_src;
1069                swkey->ipv4.addr.dst = ipv4_key->ipv4_dst;
1070
1071                if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1072                        err = ipv4_flow_from_nlattrs(swkey, &key_len, a, &attrs);
1073                        if (err)
1074                                return err;
1075                }
1076        } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1077                const struct ovs_key_ipv6 *ipv6_key;
1078
1079                if (!(attrs & (1 << OVS_KEY_ATTR_IPV6)))
1080                        return -EINVAL;
1081                attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1082
1083                key_len = SW_FLOW_KEY_OFFSET(ipv6.label);
1084                ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1085                if (ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX)
1086                        return -EINVAL;
1087                swkey->ipv6.label = ipv6_key->ipv6_label;
1088                swkey->ip.proto = ipv6_key->ipv6_proto;
1089                swkey->ip.tos = ipv6_key->ipv6_tclass;
1090                swkey->ip.ttl = ipv6_key->ipv6_hlimit;
1091                swkey->ip.frag = ipv6_key->ipv6_frag;
1092                memcpy(&swkey->ipv6.addr.src, ipv6_key->ipv6_src,
1093                       sizeof(swkey->ipv6.addr.src));
1094                memcpy(&swkey->ipv6.addr.dst, ipv6_key->ipv6_dst,
1095                       sizeof(swkey->ipv6.addr.dst));
1096
1097                if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1098                        err = ipv6_flow_from_nlattrs(swkey, &key_len, a, &attrs);
1099                        if (err)
1100                                return err;
1101                }
1102        } else if (swkey->eth.type == htons(ETH_P_ARP)) {
1103                const struct ovs_key_arp *arp_key;
1104
1105                if (!(attrs & (1 << OVS_KEY_ATTR_ARP)))
1106                        return -EINVAL;
1107                attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1108
1109                key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
1110                arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1111                swkey->ipv4.addr.src = arp_key->arp_sip;
1112                swkey->ipv4.addr.dst = arp_key->arp_tip;
1113                if (arp_key->arp_op & htons(0xff00))
1114                        return -EINVAL;
1115                swkey->ip.proto = ntohs(arp_key->arp_op);
1116                memcpy(swkey->ipv4.arp.sha, arp_key->arp_sha, ETH_ALEN);
1117                memcpy(swkey->ipv4.arp.tha, arp_key->arp_tha, ETH_ALEN);
1118        }
1119
1120        if (attrs)
1121                return -EINVAL;
1122        *key_lenp = key_len;
1123
1124        return 0;
1125}
1126
1127/**
1128 * ovs_flow_metadata_from_nlattrs - parses Netlink attributes into a flow key.
1129 * @in_port: receives the extracted input port.
1130 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1131 * sequence.
1132 *
1133 * This parses a series of Netlink attributes that form a flow key, which must
1134 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1135 * get the metadata, that is, the parts of the flow key that cannot be
1136 * extracted from the packet itself.
1137 */
1138int ovs_flow_metadata_from_nlattrs(u32 *priority, u16 *in_port,
1139                               const struct nlattr *attr)
1140{
1141        const struct nlattr *nla;
1142        int rem;
1143
1144        *in_port = USHRT_MAX;
1145        *priority = 0;
1146
1147        nla_for_each_nested(nla, attr, rem) {
1148                int type = nla_type(nla);
1149
1150                if (type <= OVS_KEY_ATTR_MAX && ovs_key_lens[type] > 0) {
1151                        if (nla_len(nla) != ovs_key_lens[type])
1152                                return -EINVAL;
1153
1154                        switch (type) {
1155                        case OVS_KEY_ATTR_PRIORITY:
1156                                *priority = nla_get_u32(nla);
1157                                break;
1158
1159                        case OVS_KEY_ATTR_IN_PORT:
1160                                if (nla_get_u32(nla) >= DP_MAX_PORTS)
1161                                        return -EINVAL;
1162                                *in_port = nla_get_u32(nla);
1163                                break;
1164                        }
1165                }
1166        }
1167        if (rem)
1168                return -EINVAL;
1169        return 0;
1170}
1171
1172int ovs_flow_to_nlattrs(const struct sw_flow_key *swkey, struct sk_buff *skb)
1173{
1174        struct ovs_key_ethernet *eth_key;
1175        struct nlattr *nla, *encap;
1176
1177        if (swkey->phy.priority)
1178                NLA_PUT_U32(skb, OVS_KEY_ATTR_PRIORITY, swkey->phy.priority);
1179
1180        if (swkey->phy.in_port != USHRT_MAX)
1181                NLA_PUT_U32(skb, OVS_KEY_ATTR_IN_PORT, swkey->phy.in_port);
1182
1183        nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1184        if (!nla)
1185                goto nla_put_failure;
1186        eth_key = nla_data(nla);
1187        memcpy(eth_key->eth_src, swkey->eth.src, ETH_ALEN);
1188        memcpy(eth_key->eth_dst, swkey->eth.dst, ETH_ALEN);
1189
1190        if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
1191                NLA_PUT_BE16(skb, OVS_KEY_ATTR_ETHERTYPE, htons(ETH_P_8021Q));
1192                NLA_PUT_BE16(skb, OVS_KEY_ATTR_VLAN, swkey->eth.tci);
1193                encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1194                if (!swkey->eth.tci)
1195                        goto unencap;
1196        } else {
1197                encap = NULL;
1198        }
1199
1200        if (swkey->eth.type == htons(ETH_P_802_2))
1201                goto unencap;
1202
1203        NLA_PUT_BE16(skb, OVS_KEY_ATTR_ETHERTYPE, swkey->eth.type);
1204
1205        if (swkey->eth.type == htons(ETH_P_IP)) {
1206                struct ovs_key_ipv4 *ipv4_key;
1207
1208                nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1209                if (!nla)
1210                        goto nla_put_failure;
1211                ipv4_key = nla_data(nla);
1212                ipv4_key->ipv4_src = swkey->ipv4.addr.src;
1213                ipv4_key->ipv4_dst = swkey->ipv4.addr.dst;
1214                ipv4_key->ipv4_proto = swkey->ip.proto;
1215                ipv4_key->ipv4_tos = swkey->ip.tos;
1216                ipv4_key->ipv4_ttl = swkey->ip.ttl;
1217                ipv4_key->ipv4_frag = swkey->ip.frag;
1218        } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1219                struct ovs_key_ipv6 *ipv6_key;
1220
1221                nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1222                if (!nla)
1223                        goto nla_put_failure;
1224                ipv6_key = nla_data(nla);
1225                memcpy(ipv6_key->ipv6_src, &swkey->ipv6.addr.src,
1226                                sizeof(ipv6_key->ipv6_src));
1227                memcpy(ipv6_key->ipv6_dst, &swkey->ipv6.addr.dst,
1228                                sizeof(ipv6_key->ipv6_dst));
1229                ipv6_key->ipv6_label = swkey->ipv6.label;
1230                ipv6_key->ipv6_proto = swkey->ip.proto;
1231                ipv6_key->ipv6_tclass = swkey->ip.tos;
1232                ipv6_key->ipv6_hlimit = swkey->ip.ttl;
1233                ipv6_key->ipv6_frag = swkey->ip.frag;
1234        } else if (swkey->eth.type == htons(ETH_P_ARP)) {
1235                struct ovs_key_arp *arp_key;
1236
1237                nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1238                if (!nla)
1239                        goto nla_put_failure;
1240                arp_key = nla_data(nla);
1241                memset(arp_key, 0, sizeof(struct ovs_key_arp));
1242                arp_key->arp_sip = swkey->ipv4.addr.src;
1243                arp_key->arp_tip = swkey->ipv4.addr.dst;
1244                arp_key->arp_op = htons(swkey->ip.proto);
1245                memcpy(arp_key->arp_sha, swkey->ipv4.arp.sha, ETH_ALEN);
1246                memcpy(arp_key->arp_tha, swkey->ipv4.arp.tha, ETH_ALEN);
1247        }
1248
1249        if ((swkey->eth.type == htons(ETH_P_IP) ||
1250             swkey->eth.type == htons(ETH_P_IPV6)) &&
1251             swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1252
1253                if (swkey->ip.proto == IPPROTO_TCP) {
1254                        struct ovs_key_tcp *tcp_key;
1255
1256                        nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1257                        if (!nla)
1258                                goto nla_put_failure;
1259                        tcp_key = nla_data(nla);
1260                        if (swkey->eth.type == htons(ETH_P_IP)) {
1261                                tcp_key->tcp_src = swkey->ipv4.tp.src;
1262                                tcp_key->tcp_dst = swkey->ipv4.tp.dst;
1263                        } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1264                                tcp_key->tcp_src = swkey->ipv6.tp.src;
1265                                tcp_key->tcp_dst = swkey->ipv6.tp.dst;
1266                        }
1267                } else if (swkey->ip.proto == IPPROTO_UDP) {
1268                        struct ovs_key_udp *udp_key;
1269
1270                        nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1271                        if (!nla)
1272                                goto nla_put_failure;
1273                        udp_key = nla_data(nla);
1274                        if (swkey->eth.type == htons(ETH_P_IP)) {
1275                                udp_key->udp_src = swkey->ipv4.tp.src;
1276                                udp_key->udp_dst = swkey->ipv4.tp.dst;
1277                        } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1278                                udp_key->udp_src = swkey->ipv6.tp.src;
1279                                udp_key->udp_dst = swkey->ipv6.tp.dst;
1280                        }
1281                } else if (swkey->eth.type == htons(ETH_P_IP) &&
1282                           swkey->ip.proto == IPPROTO_ICMP) {
1283                        struct ovs_key_icmp *icmp_key;
1284
1285                        nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1286                        if (!nla)
1287                                goto nla_put_failure;
1288                        icmp_key = nla_data(nla);
1289                        icmp_key->icmp_type = ntohs(swkey->ipv4.tp.src);
1290                        icmp_key->icmp_code = ntohs(swkey->ipv4.tp.dst);
1291                } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1292                           swkey->ip.proto == IPPROTO_ICMPV6) {
1293                        struct ovs_key_icmpv6 *icmpv6_key;
1294
1295                        nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1296                                                sizeof(*icmpv6_key));
1297                        if (!nla)
1298                                goto nla_put_failure;
1299                        icmpv6_key = nla_data(nla);
1300                        icmpv6_key->icmpv6_type = ntohs(swkey->ipv6.tp.src);
1301                        icmpv6_key->icmpv6_code = ntohs(swkey->ipv6.tp.dst);
1302
1303                        if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1304                            icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1305                                struct ovs_key_nd *nd_key;
1306
1307                                nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1308                                if (!nla)
1309                                        goto nla_put_failure;
1310                                nd_key = nla_data(nla);
1311                                memcpy(nd_key->nd_target, &swkey->ipv6.nd.target,
1312                                                        sizeof(nd_key->nd_target));
1313                                memcpy(nd_key->nd_sll, swkey->ipv6.nd.sll, ETH_ALEN);
1314                                memcpy(nd_key->nd_tll, swkey->ipv6.nd.tll, ETH_ALEN);
1315                        }
1316                }
1317        }
1318
1319unencap:
1320        if (encap)
1321                nla_nest_end(skb, encap);
1322
1323        return 0;
1324
1325nla_put_failure:
1326        return -EMSGSIZE;
1327}
1328
1329/* Initializes the flow module.
1330 * Returns zero if successful or a negative error code. */
1331int ovs_flow_init(void)
1332{
1333        flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0,
1334                                        0, NULL);
1335        if (flow_cache == NULL)
1336                return -ENOMEM;
1337
1338        return 0;
1339}
1340
1341/* Uninitializes the flow module. */
1342void ovs_flow_exit(void)
1343{
1344        kmem_cache_destroy(flow_cache);
1345}
1346