linux/net/ipv4/tcp_input.c
<<
>>
Prefs
   1/*
   2 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   3 *              operating system.  INET is implemented using the  BSD Socket
   4 *              interface as the means of communication with the user level.
   5 *
   6 *              Implementation of the Transmission Control Protocol(TCP).
   7 *
   8 * Authors:     Ross Biro
   9 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *              Mark Evans, <evansmp@uhura.aston.ac.uk>
  11 *              Corey Minyard <wf-rch!minyard@relay.EU.net>
  12 *              Florian La Roche, <flla@stud.uni-sb.de>
  13 *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14 *              Linus Torvalds, <torvalds@cs.helsinki.fi>
  15 *              Alan Cox, <gw4pts@gw4pts.ampr.org>
  16 *              Matthew Dillon, <dillon@apollo.west.oic.com>
  17 *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18 *              Jorge Cwik, <jorge@laser.satlink.net>
  19 */
  20
  21/*
  22 * Changes:
  23 *              Pedro Roque     :       Fast Retransmit/Recovery.
  24 *                                      Two receive queues.
  25 *                                      Retransmit queue handled by TCP.
  26 *                                      Better retransmit timer handling.
  27 *                                      New congestion avoidance.
  28 *                                      Header prediction.
  29 *                                      Variable renaming.
  30 *
  31 *              Eric            :       Fast Retransmit.
  32 *              Randy Scott     :       MSS option defines.
  33 *              Eric Schenk     :       Fixes to slow start algorithm.
  34 *              Eric Schenk     :       Yet another double ACK bug.
  35 *              Eric Schenk     :       Delayed ACK bug fixes.
  36 *              Eric Schenk     :       Floyd style fast retrans war avoidance.
  37 *              David S. Miller :       Don't allow zero congestion window.
  38 *              Eric Schenk     :       Fix retransmitter so that it sends
  39 *                                      next packet on ack of previous packet.
  40 *              Andi Kleen      :       Moved open_request checking here
  41 *                                      and process RSTs for open_requests.
  42 *              Andi Kleen      :       Better prune_queue, and other fixes.
  43 *              Andrey Savochkin:       Fix RTT measurements in the presence of
  44 *                                      timestamps.
  45 *              Andrey Savochkin:       Check sequence numbers correctly when
  46 *                                      removing SACKs due to in sequence incoming
  47 *                                      data segments.
  48 *              Andi Kleen:             Make sure we never ack data there is not
  49 *                                      enough room for. Also make this condition
  50 *                                      a fatal error if it might still happen.
  51 *              Andi Kleen:             Add tcp_measure_rcv_mss to make
  52 *                                      connections with MSS<min(MTU,ann. MSS)
  53 *                                      work without delayed acks.
  54 *              Andi Kleen:             Process packets with PSH set in the
  55 *                                      fast path.
  56 *              J Hadi Salim:           ECN support
  57 *              Andrei Gurtov,
  58 *              Pasi Sarolahti,
  59 *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
  60 *                                      engine. Lots of bugs are found.
  61 *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
  62 */
  63
  64#include <linux/mm.h>
  65#include <linux/slab.h>
  66#include <linux/module.h>
  67#include <linux/sysctl.h>
  68#include <linux/kernel.h>
  69#include <net/dst.h>
  70#include <net/tcp.h>
  71#include <net/inet_common.h>
  72#include <linux/ipsec.h>
  73#include <asm/unaligned.h>
  74#include <net/netdma.h>
  75
  76int sysctl_tcp_timestamps __read_mostly = 1;
  77int sysctl_tcp_window_scaling __read_mostly = 1;
  78int sysctl_tcp_sack __read_mostly = 1;
  79int sysctl_tcp_fack __read_mostly = 1;
  80int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  81EXPORT_SYMBOL(sysctl_tcp_reordering);
  82int sysctl_tcp_ecn __read_mostly = 2;
  83EXPORT_SYMBOL(sysctl_tcp_ecn);
  84int sysctl_tcp_dsack __read_mostly = 1;
  85int sysctl_tcp_app_win __read_mostly = 31;
  86int sysctl_tcp_adv_win_scale __read_mostly = 2;
  87EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  88
  89int sysctl_tcp_stdurg __read_mostly;
  90int sysctl_tcp_rfc1337 __read_mostly;
  91int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  92int sysctl_tcp_frto __read_mostly = 2;
  93int sysctl_tcp_frto_response __read_mostly;
  94int sysctl_tcp_nometrics_save __read_mostly;
  95
  96int sysctl_tcp_thin_dupack __read_mostly;
  97
  98int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  99int sysctl_tcp_abc __read_mostly;
 100
 101#define FLAG_DATA               0x01 /* Incoming frame contained data.          */
 102#define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
 103#define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
 104#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
 105#define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
 106#define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
 107#define FLAG_ECE                0x40 /* ECE in this ACK                         */
 108#define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
 109#define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
 110#define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
 111#define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
 112#define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
 113#define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
 114
 115#define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
 116#define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
 117#define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
 118#define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
 119#define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
 120
 121#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
 122#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
 123
 124/* Adapt the MSS value used to make delayed ack decision to the
 125 * real world.
 126 */
 127static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
 128{
 129        struct inet_connection_sock *icsk = inet_csk(sk);
 130        const unsigned int lss = icsk->icsk_ack.last_seg_size;
 131        unsigned int len;
 132
 133        icsk->icsk_ack.last_seg_size = 0;
 134
 135        /* skb->len may jitter because of SACKs, even if peer
 136         * sends good full-sized frames.
 137         */
 138        len = skb_shinfo(skb)->gso_size ? : skb->len;
 139        if (len >= icsk->icsk_ack.rcv_mss) {
 140                icsk->icsk_ack.rcv_mss = len;
 141        } else {
 142                /* Otherwise, we make more careful check taking into account,
 143                 * that SACKs block is variable.
 144                 *
 145                 * "len" is invariant segment length, including TCP header.
 146                 */
 147                len += skb->data - skb_transport_header(skb);
 148                if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
 149                    /* If PSH is not set, packet should be
 150                     * full sized, provided peer TCP is not badly broken.
 151                     * This observation (if it is correct 8)) allows
 152                     * to handle super-low mtu links fairly.
 153                     */
 154                    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
 155                     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
 156                        /* Subtract also invariant (if peer is RFC compliant),
 157                         * tcp header plus fixed timestamp option length.
 158                         * Resulting "len" is MSS free of SACK jitter.
 159                         */
 160                        len -= tcp_sk(sk)->tcp_header_len;
 161                        icsk->icsk_ack.last_seg_size = len;
 162                        if (len == lss) {
 163                                icsk->icsk_ack.rcv_mss = len;
 164                                return;
 165                        }
 166                }
 167                if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
 168                        icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
 169                icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
 170        }
 171}
 172
 173static void tcp_incr_quickack(struct sock *sk)
 174{
 175        struct inet_connection_sock *icsk = inet_csk(sk);
 176        unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
 177
 178        if (quickacks == 0)
 179                quickacks = 2;
 180        if (quickacks > icsk->icsk_ack.quick)
 181                icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
 182}
 183
 184static void tcp_enter_quickack_mode(struct sock *sk)
 185{
 186        struct inet_connection_sock *icsk = inet_csk(sk);
 187        tcp_incr_quickack(sk);
 188        icsk->icsk_ack.pingpong = 0;
 189        icsk->icsk_ack.ato = TCP_ATO_MIN;
 190}
 191
 192/* Send ACKs quickly, if "quick" count is not exhausted
 193 * and the session is not interactive.
 194 */
 195
 196static inline int tcp_in_quickack_mode(const struct sock *sk)
 197{
 198        const struct inet_connection_sock *icsk = inet_csk(sk);
 199        return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
 200}
 201
 202static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
 203{
 204        if (tp->ecn_flags & TCP_ECN_OK)
 205                tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
 206}
 207
 208static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
 209{
 210        if (tcp_hdr(skb)->cwr)
 211                tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 212}
 213
 214static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
 215{
 216        tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 217}
 218
 219static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
 220{
 221        if (!(tp->ecn_flags & TCP_ECN_OK))
 222                return;
 223
 224        switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
 225        case INET_ECN_NOT_ECT:
 226                /* Funny extension: if ECT is not set on a segment,
 227                 * and we already seen ECT on a previous segment,
 228                 * it is probably a retransmit.
 229                 */
 230                if (tp->ecn_flags & TCP_ECN_SEEN)
 231                        tcp_enter_quickack_mode((struct sock *)tp);
 232                break;
 233        case INET_ECN_CE:
 234                tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
 235                /* fallinto */
 236        default:
 237                tp->ecn_flags |= TCP_ECN_SEEN;
 238        }
 239}
 240
 241static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
 242{
 243        if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
 244                tp->ecn_flags &= ~TCP_ECN_OK;
 245}
 246
 247static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
 248{
 249        if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
 250                tp->ecn_flags &= ~TCP_ECN_OK;
 251}
 252
 253static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
 254{
 255        if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
 256                return 1;
 257        return 0;
 258}
 259
 260/* Buffer size and advertised window tuning.
 261 *
 262 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
 263 */
 264
 265static void tcp_fixup_sndbuf(struct sock *sk)
 266{
 267        int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
 268
 269        sndmem *= TCP_INIT_CWND;
 270        if (sk->sk_sndbuf < sndmem)
 271                sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
 272}
 273
 274/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
 275 *
 276 * All tcp_full_space() is split to two parts: "network" buffer, allocated
 277 * forward and advertised in receiver window (tp->rcv_wnd) and
 278 * "application buffer", required to isolate scheduling/application
 279 * latencies from network.
 280 * window_clamp is maximal advertised window. It can be less than
 281 * tcp_full_space(), in this case tcp_full_space() - window_clamp
 282 * is reserved for "application" buffer. The less window_clamp is
 283 * the smoother our behaviour from viewpoint of network, but the lower
 284 * throughput and the higher sensitivity of the connection to losses. 8)
 285 *
 286 * rcv_ssthresh is more strict window_clamp used at "slow start"
 287 * phase to predict further behaviour of this connection.
 288 * It is used for two goals:
 289 * - to enforce header prediction at sender, even when application
 290 *   requires some significant "application buffer". It is check #1.
 291 * - to prevent pruning of receive queue because of misprediction
 292 *   of receiver window. Check #2.
 293 *
 294 * The scheme does not work when sender sends good segments opening
 295 * window and then starts to feed us spaghetti. But it should work
 296 * in common situations. Otherwise, we have to rely on queue collapsing.
 297 */
 298
 299/* Slow part of check#2. */
 300static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
 301{
 302        struct tcp_sock *tp = tcp_sk(sk);
 303        /* Optimize this! */
 304        int truesize = tcp_win_from_space(skb->truesize) >> 1;
 305        int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
 306
 307        while (tp->rcv_ssthresh <= window) {
 308                if (truesize <= skb->len)
 309                        return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
 310
 311                truesize >>= 1;
 312                window >>= 1;
 313        }
 314        return 0;
 315}
 316
 317static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
 318{
 319        struct tcp_sock *tp = tcp_sk(sk);
 320
 321        /* Check #1 */
 322        if (tp->rcv_ssthresh < tp->window_clamp &&
 323            (int)tp->rcv_ssthresh < tcp_space(sk) &&
 324            !sk_under_memory_pressure(sk)) {
 325                int incr;
 326
 327                /* Check #2. Increase window, if skb with such overhead
 328                 * will fit to rcvbuf in future.
 329                 */
 330                if (tcp_win_from_space(skb->truesize) <= skb->len)
 331                        incr = 2 * tp->advmss;
 332                else
 333                        incr = __tcp_grow_window(sk, skb);
 334
 335                if (incr) {
 336                        tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
 337                                               tp->window_clamp);
 338                        inet_csk(sk)->icsk_ack.quick |= 1;
 339                }
 340        }
 341}
 342
 343/* 3. Tuning rcvbuf, when connection enters established state. */
 344
 345static void tcp_fixup_rcvbuf(struct sock *sk)
 346{
 347        u32 mss = tcp_sk(sk)->advmss;
 348        u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
 349        int rcvmem;
 350
 351        /* Limit to 10 segments if mss <= 1460,
 352         * or 14600/mss segments, with a minimum of two segments.
 353         */
 354        if (mss > 1460)
 355                icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
 356
 357        rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
 358        while (tcp_win_from_space(rcvmem) < mss)
 359                rcvmem += 128;
 360
 361        rcvmem *= icwnd;
 362
 363        if (sk->sk_rcvbuf < rcvmem)
 364                sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
 365}
 366
 367/* 4. Try to fixup all. It is made immediately after connection enters
 368 *    established state.
 369 */
 370static void tcp_init_buffer_space(struct sock *sk)
 371{
 372        struct tcp_sock *tp = tcp_sk(sk);
 373        int maxwin;
 374
 375        if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
 376                tcp_fixup_rcvbuf(sk);
 377        if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
 378                tcp_fixup_sndbuf(sk);
 379
 380        tp->rcvq_space.space = tp->rcv_wnd;
 381
 382        maxwin = tcp_full_space(sk);
 383
 384        if (tp->window_clamp >= maxwin) {
 385                tp->window_clamp = maxwin;
 386
 387                if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
 388                        tp->window_clamp = max(maxwin -
 389                                               (maxwin >> sysctl_tcp_app_win),
 390                                               4 * tp->advmss);
 391        }
 392
 393        /* Force reservation of one segment. */
 394        if (sysctl_tcp_app_win &&
 395            tp->window_clamp > 2 * tp->advmss &&
 396            tp->window_clamp + tp->advmss > maxwin)
 397                tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
 398
 399        tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
 400        tp->snd_cwnd_stamp = tcp_time_stamp;
 401}
 402
 403/* 5. Recalculate window clamp after socket hit its memory bounds. */
 404static void tcp_clamp_window(struct sock *sk)
 405{
 406        struct tcp_sock *tp = tcp_sk(sk);
 407        struct inet_connection_sock *icsk = inet_csk(sk);
 408
 409        icsk->icsk_ack.quick = 0;
 410
 411        if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
 412            !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
 413            !sk_under_memory_pressure(sk) &&
 414            sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
 415                sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
 416                                    sysctl_tcp_rmem[2]);
 417        }
 418        if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
 419                tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
 420}
 421
 422/* Initialize RCV_MSS value.
 423 * RCV_MSS is an our guess about MSS used by the peer.
 424 * We haven't any direct information about the MSS.
 425 * It's better to underestimate the RCV_MSS rather than overestimate.
 426 * Overestimations make us ACKing less frequently than needed.
 427 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
 428 */
 429void tcp_initialize_rcv_mss(struct sock *sk)
 430{
 431        const struct tcp_sock *tp = tcp_sk(sk);
 432        unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
 433
 434        hint = min(hint, tp->rcv_wnd / 2);
 435        hint = min(hint, TCP_MSS_DEFAULT);
 436        hint = max(hint, TCP_MIN_MSS);
 437
 438        inet_csk(sk)->icsk_ack.rcv_mss = hint;
 439}
 440EXPORT_SYMBOL(tcp_initialize_rcv_mss);
 441
 442/* Receiver "autotuning" code.
 443 *
 444 * The algorithm for RTT estimation w/o timestamps is based on
 445 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
 446 * <http://public.lanl.gov/radiant/pubs.html#DRS>
 447 *
 448 * More detail on this code can be found at
 449 * <http://staff.psc.edu/jheffner/>,
 450 * though this reference is out of date.  A new paper
 451 * is pending.
 452 */
 453static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
 454{
 455        u32 new_sample = tp->rcv_rtt_est.rtt;
 456        long m = sample;
 457
 458        if (m == 0)
 459                m = 1;
 460
 461        if (new_sample != 0) {
 462                /* If we sample in larger samples in the non-timestamp
 463                 * case, we could grossly overestimate the RTT especially
 464                 * with chatty applications or bulk transfer apps which
 465                 * are stalled on filesystem I/O.
 466                 *
 467                 * Also, since we are only going for a minimum in the
 468                 * non-timestamp case, we do not smooth things out
 469                 * else with timestamps disabled convergence takes too
 470                 * long.
 471                 */
 472                if (!win_dep) {
 473                        m -= (new_sample >> 3);
 474                        new_sample += m;
 475                } else if (m < new_sample)
 476                        new_sample = m << 3;
 477        } else {
 478                /* No previous measure. */
 479                new_sample = m << 3;
 480        }
 481
 482        if (tp->rcv_rtt_est.rtt != new_sample)
 483                tp->rcv_rtt_est.rtt = new_sample;
 484}
 485
 486static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
 487{
 488        if (tp->rcv_rtt_est.time == 0)
 489                goto new_measure;
 490        if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
 491                return;
 492        tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
 493
 494new_measure:
 495        tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
 496        tp->rcv_rtt_est.time = tcp_time_stamp;
 497}
 498
 499static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
 500                                          const struct sk_buff *skb)
 501{
 502        struct tcp_sock *tp = tcp_sk(sk);
 503        if (tp->rx_opt.rcv_tsecr &&
 504            (TCP_SKB_CB(skb)->end_seq -
 505             TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
 506                tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
 507}
 508
 509/*
 510 * This function should be called every time data is copied to user space.
 511 * It calculates the appropriate TCP receive buffer space.
 512 */
 513void tcp_rcv_space_adjust(struct sock *sk)
 514{
 515        struct tcp_sock *tp = tcp_sk(sk);
 516        int time;
 517        int space;
 518
 519        if (tp->rcvq_space.time == 0)
 520                goto new_measure;
 521
 522        time = tcp_time_stamp - tp->rcvq_space.time;
 523        if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
 524                return;
 525
 526        space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
 527
 528        space = max(tp->rcvq_space.space, space);
 529
 530        if (tp->rcvq_space.space != space) {
 531                int rcvmem;
 532
 533                tp->rcvq_space.space = space;
 534
 535                if (sysctl_tcp_moderate_rcvbuf &&
 536                    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
 537                        int new_clamp = space;
 538
 539                        /* Receive space grows, normalize in order to
 540                         * take into account packet headers and sk_buff
 541                         * structure overhead.
 542                         */
 543                        space /= tp->advmss;
 544                        if (!space)
 545                                space = 1;
 546                        rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
 547                        while (tcp_win_from_space(rcvmem) < tp->advmss)
 548                                rcvmem += 128;
 549                        space *= rcvmem;
 550                        space = min(space, sysctl_tcp_rmem[2]);
 551                        if (space > sk->sk_rcvbuf) {
 552                                sk->sk_rcvbuf = space;
 553
 554                                /* Make the window clamp follow along.  */
 555                                tp->window_clamp = new_clamp;
 556                        }
 557                }
 558        }
 559
 560new_measure:
 561        tp->rcvq_space.seq = tp->copied_seq;
 562        tp->rcvq_space.time = tcp_time_stamp;
 563}
 564
 565/* There is something which you must keep in mind when you analyze the
 566 * behavior of the tp->ato delayed ack timeout interval.  When a
 567 * connection starts up, we want to ack as quickly as possible.  The
 568 * problem is that "good" TCP's do slow start at the beginning of data
 569 * transmission.  The means that until we send the first few ACK's the
 570 * sender will sit on his end and only queue most of his data, because
 571 * he can only send snd_cwnd unacked packets at any given time.  For
 572 * each ACK we send, he increments snd_cwnd and transmits more of his
 573 * queue.  -DaveM
 574 */
 575static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
 576{
 577        struct tcp_sock *tp = tcp_sk(sk);
 578        struct inet_connection_sock *icsk = inet_csk(sk);
 579        u32 now;
 580
 581        inet_csk_schedule_ack(sk);
 582
 583        tcp_measure_rcv_mss(sk, skb);
 584
 585        tcp_rcv_rtt_measure(tp);
 586
 587        now = tcp_time_stamp;
 588
 589        if (!icsk->icsk_ack.ato) {
 590                /* The _first_ data packet received, initialize
 591                 * delayed ACK engine.
 592                 */
 593                tcp_incr_quickack(sk);
 594                icsk->icsk_ack.ato = TCP_ATO_MIN;
 595        } else {
 596                int m = now - icsk->icsk_ack.lrcvtime;
 597
 598                if (m <= TCP_ATO_MIN / 2) {
 599                        /* The fastest case is the first. */
 600                        icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
 601                } else if (m < icsk->icsk_ack.ato) {
 602                        icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
 603                        if (icsk->icsk_ack.ato > icsk->icsk_rto)
 604                                icsk->icsk_ack.ato = icsk->icsk_rto;
 605                } else if (m > icsk->icsk_rto) {
 606                        /* Too long gap. Apparently sender failed to
 607                         * restart window, so that we send ACKs quickly.
 608                         */
 609                        tcp_incr_quickack(sk);
 610                        sk_mem_reclaim(sk);
 611                }
 612        }
 613        icsk->icsk_ack.lrcvtime = now;
 614
 615        TCP_ECN_check_ce(tp, skb);
 616
 617        if (skb->len >= 128)
 618                tcp_grow_window(sk, skb);
 619}
 620
 621/* Called to compute a smoothed rtt estimate. The data fed to this
 622 * routine either comes from timestamps, or from segments that were
 623 * known _not_ to have been retransmitted [see Karn/Partridge
 624 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
 625 * piece by Van Jacobson.
 626 * NOTE: the next three routines used to be one big routine.
 627 * To save cycles in the RFC 1323 implementation it was better to break
 628 * it up into three procedures. -- erics
 629 */
 630static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
 631{
 632        struct tcp_sock *tp = tcp_sk(sk);
 633        long m = mrtt; /* RTT */
 634
 635        /*      The following amusing code comes from Jacobson's
 636         *      article in SIGCOMM '88.  Note that rtt and mdev
 637         *      are scaled versions of rtt and mean deviation.
 638         *      This is designed to be as fast as possible
 639         *      m stands for "measurement".
 640         *
 641         *      On a 1990 paper the rto value is changed to:
 642         *      RTO = rtt + 4 * mdev
 643         *
 644         * Funny. This algorithm seems to be very broken.
 645         * These formulae increase RTO, when it should be decreased, increase
 646         * too slowly, when it should be increased quickly, decrease too quickly
 647         * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
 648         * does not matter how to _calculate_ it. Seems, it was trap
 649         * that VJ failed to avoid. 8)
 650         */
 651        if (m == 0)
 652                m = 1;
 653        if (tp->srtt != 0) {
 654                m -= (tp->srtt >> 3);   /* m is now error in rtt est */
 655                tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
 656                if (m < 0) {
 657                        m = -m;         /* m is now abs(error) */
 658                        m -= (tp->mdev >> 2);   /* similar update on mdev */
 659                        /* This is similar to one of Eifel findings.
 660                         * Eifel blocks mdev updates when rtt decreases.
 661                         * This solution is a bit different: we use finer gain
 662                         * for mdev in this case (alpha*beta).
 663                         * Like Eifel it also prevents growth of rto,
 664                         * but also it limits too fast rto decreases,
 665                         * happening in pure Eifel.
 666                         */
 667                        if (m > 0)
 668                                m >>= 3;
 669                } else {
 670                        m -= (tp->mdev >> 2);   /* similar update on mdev */
 671                }
 672                tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
 673                if (tp->mdev > tp->mdev_max) {
 674                        tp->mdev_max = tp->mdev;
 675                        if (tp->mdev_max > tp->rttvar)
 676                                tp->rttvar = tp->mdev_max;
 677                }
 678                if (after(tp->snd_una, tp->rtt_seq)) {
 679                        if (tp->mdev_max < tp->rttvar)
 680                                tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
 681                        tp->rtt_seq = tp->snd_nxt;
 682                        tp->mdev_max = tcp_rto_min(sk);
 683                }
 684        } else {
 685                /* no previous measure. */
 686                tp->srtt = m << 3;      /* take the measured time to be rtt */
 687                tp->mdev = m << 1;      /* make sure rto = 3*rtt */
 688                tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
 689                tp->rtt_seq = tp->snd_nxt;
 690        }
 691}
 692
 693/* Calculate rto without backoff.  This is the second half of Van Jacobson's
 694 * routine referred to above.
 695 */
 696static inline void tcp_set_rto(struct sock *sk)
 697{
 698        const struct tcp_sock *tp = tcp_sk(sk);
 699        /* Old crap is replaced with new one. 8)
 700         *
 701         * More seriously:
 702         * 1. If rtt variance happened to be less 50msec, it is hallucination.
 703         *    It cannot be less due to utterly erratic ACK generation made
 704         *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
 705         *    to do with delayed acks, because at cwnd>2 true delack timeout
 706         *    is invisible. Actually, Linux-2.4 also generates erratic
 707         *    ACKs in some circumstances.
 708         */
 709        inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
 710
 711        /* 2. Fixups made earlier cannot be right.
 712         *    If we do not estimate RTO correctly without them,
 713         *    all the algo is pure shit and should be replaced
 714         *    with correct one. It is exactly, which we pretend to do.
 715         */
 716
 717        /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
 718         * guarantees that rto is higher.
 719         */
 720        tcp_bound_rto(sk);
 721}
 722
 723/* Save metrics learned by this TCP session.
 724   This function is called only, when TCP finishes successfully
 725   i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
 726 */
 727void tcp_update_metrics(struct sock *sk)
 728{
 729        struct tcp_sock *tp = tcp_sk(sk);
 730        struct dst_entry *dst = __sk_dst_get(sk);
 731
 732        if (sysctl_tcp_nometrics_save)
 733                return;
 734
 735        dst_confirm(dst);
 736
 737        if (dst && (dst->flags & DST_HOST)) {
 738                const struct inet_connection_sock *icsk = inet_csk(sk);
 739                int m;
 740                unsigned long rtt;
 741
 742                if (icsk->icsk_backoff || !tp->srtt) {
 743                        /* This session failed to estimate rtt. Why?
 744                         * Probably, no packets returned in time.
 745                         * Reset our results.
 746                         */
 747                        if (!(dst_metric_locked(dst, RTAX_RTT)))
 748                                dst_metric_set(dst, RTAX_RTT, 0);
 749                        return;
 750                }
 751
 752                rtt = dst_metric_rtt(dst, RTAX_RTT);
 753                m = rtt - tp->srtt;
 754
 755                /* If newly calculated rtt larger than stored one,
 756                 * store new one. Otherwise, use EWMA. Remember,
 757                 * rtt overestimation is always better than underestimation.
 758                 */
 759                if (!(dst_metric_locked(dst, RTAX_RTT))) {
 760                        if (m <= 0)
 761                                set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
 762                        else
 763                                set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
 764                }
 765
 766                if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
 767                        unsigned long var;
 768                        if (m < 0)
 769                                m = -m;
 770
 771                        /* Scale deviation to rttvar fixed point */
 772                        m >>= 1;
 773                        if (m < tp->mdev)
 774                                m = tp->mdev;
 775
 776                        var = dst_metric_rtt(dst, RTAX_RTTVAR);
 777                        if (m >= var)
 778                                var = m;
 779                        else
 780                                var -= (var - m) >> 2;
 781
 782                        set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
 783                }
 784
 785                if (tcp_in_initial_slowstart(tp)) {
 786                        /* Slow start still did not finish. */
 787                        if (dst_metric(dst, RTAX_SSTHRESH) &&
 788                            !dst_metric_locked(dst, RTAX_SSTHRESH) &&
 789                            (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
 790                                dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
 791                        if (!dst_metric_locked(dst, RTAX_CWND) &&
 792                            tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
 793                                dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
 794                } else if (tp->snd_cwnd > tp->snd_ssthresh &&
 795                           icsk->icsk_ca_state == TCP_CA_Open) {
 796                        /* Cong. avoidance phase, cwnd is reliable. */
 797                        if (!dst_metric_locked(dst, RTAX_SSTHRESH))
 798                                dst_metric_set(dst, RTAX_SSTHRESH,
 799                                               max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
 800                        if (!dst_metric_locked(dst, RTAX_CWND))
 801                                dst_metric_set(dst, RTAX_CWND,
 802                                               (dst_metric(dst, RTAX_CWND) +
 803                                                tp->snd_cwnd) >> 1);
 804                } else {
 805                        /* Else slow start did not finish, cwnd is non-sense,
 806                           ssthresh may be also invalid.
 807                         */
 808                        if (!dst_metric_locked(dst, RTAX_CWND))
 809                                dst_metric_set(dst, RTAX_CWND,
 810                                               (dst_metric(dst, RTAX_CWND) +
 811                                                tp->snd_ssthresh) >> 1);
 812                        if (dst_metric(dst, RTAX_SSTHRESH) &&
 813                            !dst_metric_locked(dst, RTAX_SSTHRESH) &&
 814                            tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
 815                                dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
 816                }
 817
 818                if (!dst_metric_locked(dst, RTAX_REORDERING)) {
 819                        if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
 820                            tp->reordering != sysctl_tcp_reordering)
 821                                dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
 822                }
 823        }
 824}
 825
 826__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
 827{
 828        __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
 829
 830        if (!cwnd)
 831                cwnd = TCP_INIT_CWND;
 832        return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
 833}
 834
 835/* Set slow start threshold and cwnd not falling to slow start */
 836void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
 837{
 838        struct tcp_sock *tp = tcp_sk(sk);
 839        const struct inet_connection_sock *icsk = inet_csk(sk);
 840
 841        tp->prior_ssthresh = 0;
 842        tp->bytes_acked = 0;
 843        if (icsk->icsk_ca_state < TCP_CA_CWR) {
 844                tp->undo_marker = 0;
 845                if (set_ssthresh)
 846                        tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
 847                tp->snd_cwnd = min(tp->snd_cwnd,
 848                                   tcp_packets_in_flight(tp) + 1U);
 849                tp->snd_cwnd_cnt = 0;
 850                tp->high_seq = tp->snd_nxt;
 851                tp->snd_cwnd_stamp = tcp_time_stamp;
 852                TCP_ECN_queue_cwr(tp);
 853
 854                tcp_set_ca_state(sk, TCP_CA_CWR);
 855        }
 856}
 857
 858/*
 859 * Packet counting of FACK is based on in-order assumptions, therefore TCP
 860 * disables it when reordering is detected
 861 */
 862static void tcp_disable_fack(struct tcp_sock *tp)
 863{
 864        /* RFC3517 uses different metric in lost marker => reset on change */
 865        if (tcp_is_fack(tp))
 866                tp->lost_skb_hint = NULL;
 867        tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
 868}
 869
 870/* Take a notice that peer is sending D-SACKs */
 871static void tcp_dsack_seen(struct tcp_sock *tp)
 872{
 873        tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
 874}
 875
 876/* Initialize metrics on socket. */
 877
 878static void tcp_init_metrics(struct sock *sk)
 879{
 880        struct tcp_sock *tp = tcp_sk(sk);
 881        struct dst_entry *dst = __sk_dst_get(sk);
 882
 883        if (dst == NULL)
 884                goto reset;
 885
 886        dst_confirm(dst);
 887
 888        if (dst_metric_locked(dst, RTAX_CWND))
 889                tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
 890        if (dst_metric(dst, RTAX_SSTHRESH)) {
 891                tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
 892                if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
 893                        tp->snd_ssthresh = tp->snd_cwnd_clamp;
 894        } else {
 895                /* ssthresh may have been reduced unnecessarily during.
 896                 * 3WHS. Restore it back to its initial default.
 897                 */
 898                tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
 899        }
 900        if (dst_metric(dst, RTAX_REORDERING) &&
 901            tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
 902                tcp_disable_fack(tp);
 903                tp->reordering = dst_metric(dst, RTAX_REORDERING);
 904        }
 905
 906        if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
 907                goto reset;
 908
 909        /* Initial rtt is determined from SYN,SYN-ACK.
 910         * The segment is small and rtt may appear much
 911         * less than real one. Use per-dst memory
 912         * to make it more realistic.
 913         *
 914         * A bit of theory. RTT is time passed after "normal" sized packet
 915         * is sent until it is ACKed. In normal circumstances sending small
 916         * packets force peer to delay ACKs and calculation is correct too.
 917         * The algorithm is adaptive and, provided we follow specs, it
 918         * NEVER underestimate RTT. BUT! If peer tries to make some clever
 919         * tricks sort of "quick acks" for time long enough to decrease RTT
 920         * to low value, and then abruptly stops to do it and starts to delay
 921         * ACKs, wait for troubles.
 922         */
 923        if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
 924                tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
 925                tp->rtt_seq = tp->snd_nxt;
 926        }
 927        if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
 928                tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
 929                tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
 930        }
 931        tcp_set_rto(sk);
 932reset:
 933        if (tp->srtt == 0) {
 934                /* RFC2988bis: We've failed to get a valid RTT sample from
 935                 * 3WHS. This is most likely due to retransmission,
 936                 * including spurious one. Reset the RTO back to 3secs
 937                 * from the more aggressive 1sec to avoid more spurious
 938                 * retransmission.
 939                 */
 940                tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
 941                inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
 942        }
 943        /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
 944         * retransmitted. In light of RFC2988bis' more aggressive 1sec
 945         * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
 946         * retransmission has occurred.
 947         */
 948        if (tp->total_retrans > 1)
 949                tp->snd_cwnd = 1;
 950        else
 951                tp->snd_cwnd = tcp_init_cwnd(tp, dst);
 952        tp->snd_cwnd_stamp = tcp_time_stamp;
 953}
 954
 955static void tcp_update_reordering(struct sock *sk, const int metric,
 956                                  const int ts)
 957{
 958        struct tcp_sock *tp = tcp_sk(sk);
 959        if (metric > tp->reordering) {
 960                int mib_idx;
 961
 962                tp->reordering = min(TCP_MAX_REORDERING, metric);
 963
 964                /* This exciting event is worth to be remembered. 8) */
 965                if (ts)
 966                        mib_idx = LINUX_MIB_TCPTSREORDER;
 967                else if (tcp_is_reno(tp))
 968                        mib_idx = LINUX_MIB_TCPRENOREORDER;
 969                else if (tcp_is_fack(tp))
 970                        mib_idx = LINUX_MIB_TCPFACKREORDER;
 971                else
 972                        mib_idx = LINUX_MIB_TCPSACKREORDER;
 973
 974                NET_INC_STATS_BH(sock_net(sk), mib_idx);
 975#if FASTRETRANS_DEBUG > 1
 976                printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
 977                       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
 978                       tp->reordering,
 979                       tp->fackets_out,
 980                       tp->sacked_out,
 981                       tp->undo_marker ? tp->undo_retrans : 0);
 982#endif
 983                tcp_disable_fack(tp);
 984        }
 985}
 986
 987/* This must be called before lost_out is incremented */
 988static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
 989{
 990        if ((tp->retransmit_skb_hint == NULL) ||
 991            before(TCP_SKB_CB(skb)->seq,
 992                   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
 993                tp->retransmit_skb_hint = skb;
 994
 995        if (!tp->lost_out ||
 996            after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
 997                tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
 998}
 999
1000static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
1001{
1002        if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1003                tcp_verify_retransmit_hint(tp, skb);
1004
1005                tp->lost_out += tcp_skb_pcount(skb);
1006                TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1007        }
1008}
1009
1010static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1011                                            struct sk_buff *skb)
1012{
1013        tcp_verify_retransmit_hint(tp, skb);
1014
1015        if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1016                tp->lost_out += tcp_skb_pcount(skb);
1017                TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1018        }
1019}
1020
1021/* This procedure tags the retransmission queue when SACKs arrive.
1022 *
1023 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1024 * Packets in queue with these bits set are counted in variables
1025 * sacked_out, retrans_out and lost_out, correspondingly.
1026 *
1027 * Valid combinations are:
1028 * Tag  InFlight        Description
1029 * 0    1               - orig segment is in flight.
1030 * S    0               - nothing flies, orig reached receiver.
1031 * L    0               - nothing flies, orig lost by net.
1032 * R    2               - both orig and retransmit are in flight.
1033 * L|R  1               - orig is lost, retransmit is in flight.
1034 * S|R  1               - orig reached receiver, retrans is still in flight.
1035 * (L|S|R is logically valid, it could occur when L|R is sacked,
1036 *  but it is equivalent to plain S and code short-curcuits it to S.
1037 *  L|S is logically invalid, it would mean -1 packet in flight 8))
1038 *
1039 * These 6 states form finite state machine, controlled by the following events:
1040 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1041 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1042 * 3. Loss detection event of two flavors:
1043 *      A. Scoreboard estimator decided the packet is lost.
1044 *         A'. Reno "three dupacks" marks head of queue lost.
1045 *         A''. Its FACK modification, head until snd.fack is lost.
1046 *      B. SACK arrives sacking SND.NXT at the moment, when the
1047 *         segment was retransmitted.
1048 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1049 *
1050 * It is pleasant to note, that state diagram turns out to be commutative,
1051 * so that we are allowed not to be bothered by order of our actions,
1052 * when multiple events arrive simultaneously. (see the function below).
1053 *
1054 * Reordering detection.
1055 * --------------------
1056 * Reordering metric is maximal distance, which a packet can be displaced
1057 * in packet stream. With SACKs we can estimate it:
1058 *
1059 * 1. SACK fills old hole and the corresponding segment was not
1060 *    ever retransmitted -> reordering. Alas, we cannot use it
1061 *    when segment was retransmitted.
1062 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1063 *    for retransmitted and already SACKed segment -> reordering..
1064 * Both of these heuristics are not used in Loss state, when we cannot
1065 * account for retransmits accurately.
1066 *
1067 * SACK block validation.
1068 * ----------------------
1069 *
1070 * SACK block range validation checks that the received SACK block fits to
1071 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1072 * Note that SND.UNA is not included to the range though being valid because
1073 * it means that the receiver is rather inconsistent with itself reporting
1074 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1075 * perfectly valid, however, in light of RFC2018 which explicitly states
1076 * that "SACK block MUST reflect the newest segment.  Even if the newest
1077 * segment is going to be discarded ...", not that it looks very clever
1078 * in case of head skb. Due to potentional receiver driven attacks, we
1079 * choose to avoid immediate execution of a walk in write queue due to
1080 * reneging and defer head skb's loss recovery to standard loss recovery
1081 * procedure that will eventually trigger (nothing forbids us doing this).
1082 *
1083 * Implements also blockage to start_seq wrap-around. Problem lies in the
1084 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1085 * there's no guarantee that it will be before snd_nxt (n). The problem
1086 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1087 * wrap (s_w):
1088 *
1089 *         <- outs wnd ->                          <- wrapzone ->
1090 *         u     e      n                         u_w   e_w  s n_w
1091 *         |     |      |                          |     |   |  |
1092 * |<------------+------+----- TCP seqno space --------------+---------->|
1093 * ...-- <2^31 ->|                                           |<--------...
1094 * ...---- >2^31 ------>|                                    |<--------...
1095 *
1096 * Current code wouldn't be vulnerable but it's better still to discard such
1097 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1098 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1099 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1100 * equal to the ideal case (infinite seqno space without wrap caused issues).
1101 *
1102 * With D-SACK the lower bound is extended to cover sequence space below
1103 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1104 * again, D-SACK block must not to go across snd_una (for the same reason as
1105 * for the normal SACK blocks, explained above). But there all simplicity
1106 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1107 * fully below undo_marker they do not affect behavior in anyway and can
1108 * therefore be safely ignored. In rare cases (which are more or less
1109 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1110 * fragmentation and packet reordering past skb's retransmission. To consider
1111 * them correctly, the acceptable range must be extended even more though
1112 * the exact amount is rather hard to quantify. However, tp->max_window can
1113 * be used as an exaggerated estimate.
1114 */
1115static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1116                                  u32 start_seq, u32 end_seq)
1117{
1118        /* Too far in future, or reversed (interpretation is ambiguous) */
1119        if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1120                return 0;
1121
1122        /* Nasty start_seq wrap-around check (see comments above) */
1123        if (!before(start_seq, tp->snd_nxt))
1124                return 0;
1125
1126        /* In outstanding window? ...This is valid exit for D-SACKs too.
1127         * start_seq == snd_una is non-sensical (see comments above)
1128         */
1129        if (after(start_seq, tp->snd_una))
1130                return 1;
1131
1132        if (!is_dsack || !tp->undo_marker)
1133                return 0;
1134
1135        /* ...Then it's D-SACK, and must reside below snd_una completely */
1136        if (after(end_seq, tp->snd_una))
1137                return 0;
1138
1139        if (!before(start_seq, tp->undo_marker))
1140                return 1;
1141
1142        /* Too old */
1143        if (!after(end_seq, tp->undo_marker))
1144                return 0;
1145
1146        /* Undo_marker boundary crossing (overestimates a lot). Known already:
1147         *   start_seq < undo_marker and end_seq >= undo_marker.
1148         */
1149        return !before(start_seq, end_seq - tp->max_window);
1150}
1151
1152/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1153 * Event "B". Later note: FACK people cheated me again 8), we have to account
1154 * for reordering! Ugly, but should help.
1155 *
1156 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1157 * less than what is now known to be received by the other end (derived from
1158 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1159 * retransmitted skbs to avoid some costly processing per ACKs.
1160 */
1161static void tcp_mark_lost_retrans(struct sock *sk)
1162{
1163        const struct inet_connection_sock *icsk = inet_csk(sk);
1164        struct tcp_sock *tp = tcp_sk(sk);
1165        struct sk_buff *skb;
1166        int cnt = 0;
1167        u32 new_low_seq = tp->snd_nxt;
1168        u32 received_upto = tcp_highest_sack_seq(tp);
1169
1170        if (!tcp_is_fack(tp) || !tp->retrans_out ||
1171            !after(received_upto, tp->lost_retrans_low) ||
1172            icsk->icsk_ca_state != TCP_CA_Recovery)
1173                return;
1174
1175        tcp_for_write_queue(skb, sk) {
1176                u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1177
1178                if (skb == tcp_send_head(sk))
1179                        break;
1180                if (cnt == tp->retrans_out)
1181                        break;
1182                if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1183                        continue;
1184
1185                if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1186                        continue;
1187
1188                /* TODO: We would like to get rid of tcp_is_fack(tp) only
1189                 * constraint here (see above) but figuring out that at
1190                 * least tp->reordering SACK blocks reside between ack_seq
1191                 * and received_upto is not easy task to do cheaply with
1192                 * the available datastructures.
1193                 *
1194                 * Whether FACK should check here for tp->reordering segs
1195                 * in-between one could argue for either way (it would be
1196                 * rather simple to implement as we could count fack_count
1197                 * during the walk and do tp->fackets_out - fack_count).
1198                 */
1199                if (after(received_upto, ack_seq)) {
1200                        TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1201                        tp->retrans_out -= tcp_skb_pcount(skb);
1202
1203                        tcp_skb_mark_lost_uncond_verify(tp, skb);
1204                        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1205                } else {
1206                        if (before(ack_seq, new_low_seq))
1207                                new_low_seq = ack_seq;
1208                        cnt += tcp_skb_pcount(skb);
1209                }
1210        }
1211
1212        if (tp->retrans_out)
1213                tp->lost_retrans_low = new_low_seq;
1214}
1215
1216static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1217                           struct tcp_sack_block_wire *sp, int num_sacks,
1218                           u32 prior_snd_una)
1219{
1220        struct tcp_sock *tp = tcp_sk(sk);
1221        u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1222        u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1223        int dup_sack = 0;
1224
1225        if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1226                dup_sack = 1;
1227                tcp_dsack_seen(tp);
1228                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1229        } else if (num_sacks > 1) {
1230                u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1231                u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1232
1233                if (!after(end_seq_0, end_seq_1) &&
1234                    !before(start_seq_0, start_seq_1)) {
1235                        dup_sack = 1;
1236                        tcp_dsack_seen(tp);
1237                        NET_INC_STATS_BH(sock_net(sk),
1238                                        LINUX_MIB_TCPDSACKOFORECV);
1239                }
1240        }
1241
1242        /* D-SACK for already forgotten data... Do dumb counting. */
1243        if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1244            !after(end_seq_0, prior_snd_una) &&
1245            after(end_seq_0, tp->undo_marker))
1246                tp->undo_retrans--;
1247
1248        return dup_sack;
1249}
1250
1251struct tcp_sacktag_state {
1252        int reord;
1253        int fack_count;
1254        int flag;
1255};
1256
1257/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1258 * the incoming SACK may not exactly match but we can find smaller MSS
1259 * aligned portion of it that matches. Therefore we might need to fragment
1260 * which may fail and creates some hassle (caller must handle error case
1261 * returns).
1262 *
1263 * FIXME: this could be merged to shift decision code
1264 */
1265static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1266                                 u32 start_seq, u32 end_seq)
1267{
1268        int in_sack, err;
1269        unsigned int pkt_len;
1270        unsigned int mss;
1271
1272        in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1273                  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1274
1275        if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1276            after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1277                mss = tcp_skb_mss(skb);
1278                in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1279
1280                if (!in_sack) {
1281                        pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1282                        if (pkt_len < mss)
1283                                pkt_len = mss;
1284                } else {
1285                        pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1286                        if (pkt_len < mss)
1287                                return -EINVAL;
1288                }
1289
1290                /* Round if necessary so that SACKs cover only full MSSes
1291                 * and/or the remaining small portion (if present)
1292                 */
1293                if (pkt_len > mss) {
1294                        unsigned int new_len = (pkt_len / mss) * mss;
1295                        if (!in_sack && new_len < pkt_len) {
1296                                new_len += mss;
1297                                if (new_len > skb->len)
1298                                        return 0;
1299                        }
1300                        pkt_len = new_len;
1301                }
1302                err = tcp_fragment(sk, skb, pkt_len, mss);
1303                if (err < 0)
1304                        return err;
1305        }
1306
1307        return in_sack;
1308}
1309
1310/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1311static u8 tcp_sacktag_one(struct sock *sk,
1312                          struct tcp_sacktag_state *state, u8 sacked,
1313                          u32 start_seq, u32 end_seq,
1314                          int dup_sack, int pcount)
1315{
1316        struct tcp_sock *tp = tcp_sk(sk);
1317        int fack_count = state->fack_count;
1318
1319        /* Account D-SACK for retransmitted packet. */
1320        if (dup_sack && (sacked & TCPCB_RETRANS)) {
1321                if (tp->undo_marker && tp->undo_retrans &&
1322                    after(end_seq, tp->undo_marker))
1323                        tp->undo_retrans--;
1324                if (sacked & TCPCB_SACKED_ACKED)
1325                        state->reord = min(fack_count, state->reord);
1326        }
1327
1328        /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1329        if (!after(end_seq, tp->snd_una))
1330                return sacked;
1331
1332        if (!(sacked & TCPCB_SACKED_ACKED)) {
1333                if (sacked & TCPCB_SACKED_RETRANS) {
1334                        /* If the segment is not tagged as lost,
1335                         * we do not clear RETRANS, believing
1336                         * that retransmission is still in flight.
1337                         */
1338                        if (sacked & TCPCB_LOST) {
1339                                sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1340                                tp->lost_out -= pcount;
1341                                tp->retrans_out -= pcount;
1342                        }
1343                } else {
1344                        if (!(sacked & TCPCB_RETRANS)) {
1345                                /* New sack for not retransmitted frame,
1346                                 * which was in hole. It is reordering.
1347                                 */
1348                                if (before(start_seq,
1349                                           tcp_highest_sack_seq(tp)))
1350                                        state->reord = min(fack_count,
1351                                                           state->reord);
1352
1353                                /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1354                                if (!after(end_seq, tp->frto_highmark))
1355                                        state->flag |= FLAG_ONLY_ORIG_SACKED;
1356                        }
1357
1358                        if (sacked & TCPCB_LOST) {
1359                                sacked &= ~TCPCB_LOST;
1360                                tp->lost_out -= pcount;
1361                        }
1362                }
1363
1364                sacked |= TCPCB_SACKED_ACKED;
1365                state->flag |= FLAG_DATA_SACKED;
1366                tp->sacked_out += pcount;
1367
1368                fack_count += pcount;
1369
1370                /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1371                if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1372                    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1373                        tp->lost_cnt_hint += pcount;
1374
1375                if (fack_count > tp->fackets_out)
1376                        tp->fackets_out = fack_count;
1377        }
1378
1379        /* D-SACK. We can detect redundant retransmission in S|R and plain R
1380         * frames and clear it. undo_retrans is decreased above, L|R frames
1381         * are accounted above as well.
1382         */
1383        if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1384                sacked &= ~TCPCB_SACKED_RETRANS;
1385                tp->retrans_out -= pcount;
1386        }
1387
1388        return sacked;
1389}
1390
1391/* Shift newly-SACKed bytes from this skb to the immediately previous
1392 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1393 */
1394static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1395                           struct tcp_sacktag_state *state,
1396                           unsigned int pcount, int shifted, int mss,
1397                           int dup_sack)
1398{
1399        struct tcp_sock *tp = tcp_sk(sk);
1400        struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1401        u32 start_seq = TCP_SKB_CB(skb)->seq;   /* start of newly-SACKed */
1402        u32 end_seq = start_seq + shifted;      /* end of newly-SACKed */
1403
1404        BUG_ON(!pcount);
1405
1406        /* Adjust counters and hints for the newly sacked sequence
1407         * range but discard the return value since prev is already
1408         * marked. We must tag the range first because the seq
1409         * advancement below implicitly advances
1410         * tcp_highest_sack_seq() when skb is highest_sack.
1411         */
1412        tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1413                        start_seq, end_seq, dup_sack, pcount);
1414
1415        if (skb == tp->lost_skb_hint)
1416                tp->lost_cnt_hint += pcount;
1417
1418        TCP_SKB_CB(prev)->end_seq += shifted;
1419        TCP_SKB_CB(skb)->seq += shifted;
1420
1421        skb_shinfo(prev)->gso_segs += pcount;
1422        BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1423        skb_shinfo(skb)->gso_segs -= pcount;
1424
1425        /* When we're adding to gso_segs == 1, gso_size will be zero,
1426         * in theory this shouldn't be necessary but as long as DSACK
1427         * code can come after this skb later on it's better to keep
1428         * setting gso_size to something.
1429         */
1430        if (!skb_shinfo(prev)->gso_size) {
1431                skb_shinfo(prev)->gso_size = mss;
1432                skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1433        }
1434
1435        /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1436        if (skb_shinfo(skb)->gso_segs <= 1) {
1437                skb_shinfo(skb)->gso_size = 0;
1438                skb_shinfo(skb)->gso_type = 0;
1439        }
1440
1441        /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1442        TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1443
1444        if (skb->len > 0) {
1445                BUG_ON(!tcp_skb_pcount(skb));
1446                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1447                return 0;
1448        }
1449
1450        /* Whole SKB was eaten :-) */
1451
1452        if (skb == tp->retransmit_skb_hint)
1453                tp->retransmit_skb_hint = prev;
1454        if (skb == tp->scoreboard_skb_hint)
1455                tp->scoreboard_skb_hint = prev;
1456        if (skb == tp->lost_skb_hint) {
1457                tp->lost_skb_hint = prev;
1458                tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1459        }
1460
1461        TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1462        if (skb == tcp_highest_sack(sk))
1463                tcp_advance_highest_sack(sk, skb);
1464
1465        tcp_unlink_write_queue(skb, sk);
1466        sk_wmem_free_skb(sk, skb);
1467
1468        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1469
1470        return 1;
1471}
1472
1473/* I wish gso_size would have a bit more sane initialization than
1474 * something-or-zero which complicates things
1475 */
1476static int tcp_skb_seglen(const struct sk_buff *skb)
1477{
1478        return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1479}
1480
1481/* Shifting pages past head area doesn't work */
1482static int skb_can_shift(const struct sk_buff *skb)
1483{
1484        return !skb_headlen(skb) && skb_is_nonlinear(skb);
1485}
1486
1487/* Try collapsing SACK blocks spanning across multiple skbs to a single
1488 * skb.
1489 */
1490static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1491                                          struct tcp_sacktag_state *state,
1492                                          u32 start_seq, u32 end_seq,
1493                                          int dup_sack)
1494{
1495        struct tcp_sock *tp = tcp_sk(sk);
1496        struct sk_buff *prev;
1497        int mss;
1498        int pcount = 0;
1499        int len;
1500        int in_sack;
1501
1502        if (!sk_can_gso(sk))
1503                goto fallback;
1504
1505        /* Normally R but no L won't result in plain S */
1506        if (!dup_sack &&
1507            (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1508                goto fallback;
1509        if (!skb_can_shift(skb))
1510                goto fallback;
1511        /* This frame is about to be dropped (was ACKed). */
1512        if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1513                goto fallback;
1514
1515        /* Can only happen with delayed DSACK + discard craziness */
1516        if (unlikely(skb == tcp_write_queue_head(sk)))
1517                goto fallback;
1518        prev = tcp_write_queue_prev(sk, skb);
1519
1520        if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1521                goto fallback;
1522
1523        in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1524                  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1525
1526        if (in_sack) {
1527                len = skb->len;
1528                pcount = tcp_skb_pcount(skb);
1529                mss = tcp_skb_seglen(skb);
1530
1531                /* TODO: Fix DSACKs to not fragment already SACKed and we can
1532                 * drop this restriction as unnecessary
1533                 */
1534                if (mss != tcp_skb_seglen(prev))
1535                        goto fallback;
1536        } else {
1537                if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1538                        goto noop;
1539                /* CHECKME: This is non-MSS split case only?, this will
1540                 * cause skipped skbs due to advancing loop btw, original
1541                 * has that feature too
1542                 */
1543                if (tcp_skb_pcount(skb) <= 1)
1544                        goto noop;
1545
1546                in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1547                if (!in_sack) {
1548                        /* TODO: head merge to next could be attempted here
1549                         * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1550                         * though it might not be worth of the additional hassle
1551                         *
1552                         * ...we can probably just fallback to what was done
1553                         * previously. We could try merging non-SACKed ones
1554                         * as well but it probably isn't going to buy off
1555                         * because later SACKs might again split them, and
1556                         * it would make skb timestamp tracking considerably
1557                         * harder problem.
1558                         */
1559                        goto fallback;
1560                }
1561
1562                len = end_seq - TCP_SKB_CB(skb)->seq;
1563                BUG_ON(len < 0);
1564                BUG_ON(len > skb->len);
1565
1566                /* MSS boundaries should be honoured or else pcount will
1567                 * severely break even though it makes things bit trickier.
1568                 * Optimize common case to avoid most of the divides
1569                 */
1570                mss = tcp_skb_mss(skb);
1571
1572                /* TODO: Fix DSACKs to not fragment already SACKed and we can
1573                 * drop this restriction as unnecessary
1574                 */
1575                if (mss != tcp_skb_seglen(prev))
1576                        goto fallback;
1577
1578                if (len == mss) {
1579                        pcount = 1;
1580                } else if (len < mss) {
1581                        goto noop;
1582                } else {
1583                        pcount = len / mss;
1584                        len = pcount * mss;
1585                }
1586        }
1587
1588        /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1589        if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1590                goto fallback;
1591
1592        if (!skb_shift(prev, skb, len))
1593                goto fallback;
1594        if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1595                goto out;
1596
1597        /* Hole filled allows collapsing with the next as well, this is very
1598         * useful when hole on every nth skb pattern happens
1599         */
1600        if (prev == tcp_write_queue_tail(sk))
1601                goto out;
1602        skb = tcp_write_queue_next(sk, prev);
1603
1604        if (!skb_can_shift(skb) ||
1605            (skb == tcp_send_head(sk)) ||
1606            ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1607            (mss != tcp_skb_seglen(skb)))
1608                goto out;
1609
1610        len = skb->len;
1611        if (skb_shift(prev, skb, len)) {
1612                pcount += tcp_skb_pcount(skb);
1613                tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1614        }
1615
1616out:
1617        state->fack_count += pcount;
1618        return prev;
1619
1620noop:
1621        return skb;
1622
1623fallback:
1624        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1625        return NULL;
1626}
1627
1628static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1629                                        struct tcp_sack_block *next_dup,
1630                                        struct tcp_sacktag_state *state,
1631                                        u32 start_seq, u32 end_seq,
1632                                        int dup_sack_in)
1633{
1634        struct tcp_sock *tp = tcp_sk(sk);
1635        struct sk_buff *tmp;
1636
1637        tcp_for_write_queue_from(skb, sk) {
1638                int in_sack = 0;
1639                int dup_sack = dup_sack_in;
1640
1641                if (skb == tcp_send_head(sk))
1642                        break;
1643
1644                /* queue is in-order => we can short-circuit the walk early */
1645                if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1646                        break;
1647
1648                if ((next_dup != NULL) &&
1649                    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1650                        in_sack = tcp_match_skb_to_sack(sk, skb,
1651                                                        next_dup->start_seq,
1652                                                        next_dup->end_seq);
1653                        if (in_sack > 0)
1654                                dup_sack = 1;
1655                }
1656
1657                /* skb reference here is a bit tricky to get right, since
1658                 * shifting can eat and free both this skb and the next,
1659                 * so not even _safe variant of the loop is enough.
1660                 */
1661                if (in_sack <= 0) {
1662                        tmp = tcp_shift_skb_data(sk, skb, state,
1663                                                 start_seq, end_seq, dup_sack);
1664                        if (tmp != NULL) {
1665                                if (tmp != skb) {
1666                                        skb = tmp;
1667                                        continue;
1668                                }
1669
1670                                in_sack = 0;
1671                        } else {
1672                                in_sack = tcp_match_skb_to_sack(sk, skb,
1673                                                                start_seq,
1674                                                                end_seq);
1675                        }
1676                }
1677
1678                if (unlikely(in_sack < 0))
1679                        break;
1680
1681                if (in_sack) {
1682                        TCP_SKB_CB(skb)->sacked =
1683                                tcp_sacktag_one(sk,
1684                                                state,
1685                                                TCP_SKB_CB(skb)->sacked,
1686                                                TCP_SKB_CB(skb)->seq,
1687                                                TCP_SKB_CB(skb)->end_seq,
1688                                                dup_sack,
1689                                                tcp_skb_pcount(skb));
1690
1691                        if (!before(TCP_SKB_CB(skb)->seq,
1692                                    tcp_highest_sack_seq(tp)))
1693                                tcp_advance_highest_sack(sk, skb);
1694                }
1695
1696                state->fack_count += tcp_skb_pcount(skb);
1697        }
1698        return skb;
1699}
1700
1701/* Avoid all extra work that is being done by sacktag while walking in
1702 * a normal way
1703 */
1704static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1705                                        struct tcp_sacktag_state *state,
1706                                        u32 skip_to_seq)
1707{
1708        tcp_for_write_queue_from(skb, sk) {
1709                if (skb == tcp_send_head(sk))
1710                        break;
1711
1712                if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1713                        break;
1714
1715                state->fack_count += tcp_skb_pcount(skb);
1716        }
1717        return skb;
1718}
1719
1720static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1721                                                struct sock *sk,
1722                                                struct tcp_sack_block *next_dup,
1723                                                struct tcp_sacktag_state *state,
1724                                                u32 skip_to_seq)
1725{
1726        if (next_dup == NULL)
1727                return skb;
1728
1729        if (before(next_dup->start_seq, skip_to_seq)) {
1730                skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1731                skb = tcp_sacktag_walk(skb, sk, NULL, state,
1732                                       next_dup->start_seq, next_dup->end_seq,
1733                                       1);
1734        }
1735
1736        return skb;
1737}
1738
1739static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1740{
1741        return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1742}
1743
1744static int
1745tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1746                        u32 prior_snd_una)
1747{
1748        const struct inet_connection_sock *icsk = inet_csk(sk);
1749        struct tcp_sock *tp = tcp_sk(sk);
1750        const unsigned char *ptr = (skb_transport_header(ack_skb) +
1751                                    TCP_SKB_CB(ack_skb)->sacked);
1752        struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1753        struct tcp_sack_block sp[TCP_NUM_SACKS];
1754        struct tcp_sack_block *cache;
1755        struct tcp_sacktag_state state;
1756        struct sk_buff *skb;
1757        int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1758        int used_sacks;
1759        int found_dup_sack = 0;
1760        int i, j;
1761        int first_sack_index;
1762
1763        state.flag = 0;
1764        state.reord = tp->packets_out;
1765
1766        if (!tp->sacked_out) {
1767                if (WARN_ON(tp->fackets_out))
1768                        tp->fackets_out = 0;
1769                tcp_highest_sack_reset(sk);
1770        }
1771
1772        found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1773                                         num_sacks, prior_snd_una);
1774        if (found_dup_sack)
1775                state.flag |= FLAG_DSACKING_ACK;
1776
1777        /* Eliminate too old ACKs, but take into
1778         * account more or less fresh ones, they can
1779         * contain valid SACK info.
1780         */
1781        if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1782                return 0;
1783
1784        if (!tp->packets_out)
1785                goto out;
1786
1787        used_sacks = 0;
1788        first_sack_index = 0;
1789        for (i = 0; i < num_sacks; i++) {
1790                int dup_sack = !i && found_dup_sack;
1791
1792                sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1793                sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1794
1795                if (!tcp_is_sackblock_valid(tp, dup_sack,
1796                                            sp[used_sacks].start_seq,
1797                                            sp[used_sacks].end_seq)) {
1798                        int mib_idx;
1799
1800                        if (dup_sack) {
1801                                if (!tp->undo_marker)
1802                                        mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1803                                else
1804                                        mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1805                        } else {
1806                                /* Don't count olds caused by ACK reordering */
1807                                if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1808                                    !after(sp[used_sacks].end_seq, tp->snd_una))
1809                                        continue;
1810                                mib_idx = LINUX_MIB_TCPSACKDISCARD;
1811                        }
1812
1813                        NET_INC_STATS_BH(sock_net(sk), mib_idx);
1814                        if (i == 0)
1815                                first_sack_index = -1;
1816                        continue;
1817                }
1818
1819                /* Ignore very old stuff early */
1820                if (!after(sp[used_sacks].end_seq, prior_snd_una))
1821                        continue;
1822
1823                used_sacks++;
1824        }
1825
1826        /* order SACK blocks to allow in order walk of the retrans queue */
1827        for (i = used_sacks - 1; i > 0; i--) {
1828                for (j = 0; j < i; j++) {
1829                        if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1830                                swap(sp[j], sp[j + 1]);
1831
1832                                /* Track where the first SACK block goes to */
1833                                if (j == first_sack_index)
1834                                        first_sack_index = j + 1;
1835                        }
1836                }
1837        }
1838
1839        skb = tcp_write_queue_head(sk);
1840        state.fack_count = 0;
1841        i = 0;
1842
1843        if (!tp->sacked_out) {
1844                /* It's already past, so skip checking against it */
1845                cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1846        } else {
1847                cache = tp->recv_sack_cache;
1848                /* Skip empty blocks in at head of the cache */
1849                while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1850                       !cache->end_seq)
1851                        cache++;
1852        }
1853
1854        while (i < used_sacks) {
1855                u32 start_seq = sp[i].start_seq;
1856                u32 end_seq = sp[i].end_seq;
1857                int dup_sack = (found_dup_sack && (i == first_sack_index));
1858                struct tcp_sack_block *next_dup = NULL;
1859
1860                if (found_dup_sack && ((i + 1) == first_sack_index))
1861                        next_dup = &sp[i + 1];
1862
1863                /* Skip too early cached blocks */
1864                while (tcp_sack_cache_ok(tp, cache) &&
1865                       !before(start_seq, cache->end_seq))
1866                        cache++;
1867
1868                /* Can skip some work by looking recv_sack_cache? */
1869                if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1870                    after(end_seq, cache->start_seq)) {
1871
1872                        /* Head todo? */
1873                        if (before(start_seq, cache->start_seq)) {
1874                                skb = tcp_sacktag_skip(skb, sk, &state,
1875                                                       start_seq);
1876                                skb = tcp_sacktag_walk(skb, sk, next_dup,
1877                                                       &state,
1878                                                       start_seq,
1879                                                       cache->start_seq,
1880                                                       dup_sack);
1881                        }
1882
1883                        /* Rest of the block already fully processed? */
1884                        if (!after(end_seq, cache->end_seq))
1885                                goto advance_sp;
1886
1887                        skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1888                                                       &state,
1889                                                       cache->end_seq);
1890
1891                        /* ...tail remains todo... */
1892                        if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1893                                /* ...but better entrypoint exists! */
1894                                skb = tcp_highest_sack(sk);
1895                                if (skb == NULL)
1896                                        break;
1897                                state.fack_count = tp->fackets_out;
1898                                cache++;
1899                                goto walk;
1900                        }
1901
1902                        skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1903                        /* Check overlap against next cached too (past this one already) */
1904                        cache++;
1905                        continue;
1906                }
1907
1908                if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1909                        skb = tcp_highest_sack(sk);
1910                        if (skb == NULL)
1911                                break;
1912                        state.fack_count = tp->fackets_out;
1913                }
1914                skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1915
1916walk:
1917                skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1918                                       start_seq, end_seq, dup_sack);
1919
1920advance_sp:
1921                /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1922                 * due to in-order walk
1923                 */
1924                if (after(end_seq, tp->frto_highmark))
1925                        state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1926
1927                i++;
1928        }
1929
1930        /* Clear the head of the cache sack blocks so we can skip it next time */
1931        for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1932                tp->recv_sack_cache[i].start_seq = 0;
1933                tp->recv_sack_cache[i].end_seq = 0;
1934        }
1935        for (j = 0; j < used_sacks; j++)
1936                tp->recv_sack_cache[i++] = sp[j];
1937
1938        tcp_mark_lost_retrans(sk);
1939
1940        tcp_verify_left_out(tp);
1941
1942        if ((state.reord < tp->fackets_out) &&
1943            ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1944            (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1945                tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1946
1947out:
1948
1949#if FASTRETRANS_DEBUG > 0
1950        WARN_ON((int)tp->sacked_out < 0);
1951        WARN_ON((int)tp->lost_out < 0);
1952        WARN_ON((int)tp->retrans_out < 0);
1953        WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1954#endif
1955        return state.flag;
1956}
1957
1958/* Limits sacked_out so that sum with lost_out isn't ever larger than
1959 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1960 */
1961static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1962{
1963        u32 holes;
1964
1965        holes = max(tp->lost_out, 1U);
1966        holes = min(holes, tp->packets_out);
1967
1968        if ((tp->sacked_out + holes) > tp->packets_out) {
1969                tp->sacked_out = tp->packets_out - holes;
1970                return 1;
1971        }
1972        return 0;
1973}
1974
1975/* If we receive more dupacks than we expected counting segments
1976 * in assumption of absent reordering, interpret this as reordering.
1977 * The only another reason could be bug in receiver TCP.
1978 */
1979static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1980{
1981        struct tcp_sock *tp = tcp_sk(sk);
1982        if (tcp_limit_reno_sacked(tp))
1983                tcp_update_reordering(sk, tp->packets_out + addend, 0);
1984}
1985
1986/* Emulate SACKs for SACKless connection: account for a new dupack. */
1987
1988static void tcp_add_reno_sack(struct sock *sk)
1989{
1990        struct tcp_sock *tp = tcp_sk(sk);
1991        tp->sacked_out++;
1992        tcp_check_reno_reordering(sk, 0);
1993        tcp_verify_left_out(tp);
1994}
1995
1996/* Account for ACK, ACKing some data in Reno Recovery phase. */
1997
1998static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1999{
2000        struct tcp_sock *tp = tcp_sk(sk);
2001
2002        if (acked > 0) {
2003                /* One ACK acked hole. The rest eat duplicate ACKs. */
2004                if (acked - 1 >= tp->sacked_out)
2005                        tp->sacked_out = 0;
2006                else
2007                        tp->sacked_out -= acked - 1;
2008        }
2009        tcp_check_reno_reordering(sk, acked);
2010        tcp_verify_left_out(tp);
2011}
2012
2013static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2014{
2015        tp->sacked_out = 0;
2016}
2017
2018static int tcp_is_sackfrto(const struct tcp_sock *tp)
2019{
2020        return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2021}
2022
2023/* F-RTO can only be used if TCP has never retransmitted anything other than
2024 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2025 */
2026int tcp_use_frto(struct sock *sk)
2027{
2028        const struct tcp_sock *tp = tcp_sk(sk);
2029        const struct inet_connection_sock *icsk = inet_csk(sk);
2030        struct sk_buff *skb;
2031
2032        if (!sysctl_tcp_frto)
2033                return 0;
2034
2035        /* MTU probe and F-RTO won't really play nicely along currently */
2036        if (icsk->icsk_mtup.probe_size)
2037                return 0;
2038
2039        if (tcp_is_sackfrto(tp))
2040                return 1;
2041
2042        /* Avoid expensive walking of rexmit queue if possible */
2043        if (tp->retrans_out > 1)
2044                return 0;
2045
2046        skb = tcp_write_queue_head(sk);
2047        if (tcp_skb_is_last(sk, skb))
2048                return 1;
2049        skb = tcp_write_queue_next(sk, skb);    /* Skips head */
2050        tcp_for_write_queue_from(skb, sk) {
2051                if (skb == tcp_send_head(sk))
2052                        break;
2053                if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2054                        return 0;
2055                /* Short-circuit when first non-SACKed skb has been checked */
2056                if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2057                        break;
2058        }
2059        return 1;
2060}
2061
2062/* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2063 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2064 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2065 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2066 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2067 * bits are handled if the Loss state is really to be entered (in
2068 * tcp_enter_frto_loss).
2069 *
2070 * Do like tcp_enter_loss() would; when RTO expires the second time it
2071 * does:
2072 *  "Reduce ssthresh if it has not yet been made inside this window."
2073 */
2074void tcp_enter_frto(struct sock *sk)
2075{
2076        const struct inet_connection_sock *icsk = inet_csk(sk);
2077        struct tcp_sock *tp = tcp_sk(sk);
2078        struct sk_buff *skb;
2079
2080        if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2081            tp->snd_una == tp->high_seq ||
2082            ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2083             !icsk->icsk_retransmits)) {
2084                tp->prior_ssthresh = tcp_current_ssthresh(sk);
2085                /* Our state is too optimistic in ssthresh() call because cwnd
2086                 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2087                 * recovery has not yet completed. Pattern would be this: RTO,
2088                 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2089                 * up here twice).
2090                 * RFC4138 should be more specific on what to do, even though
2091                 * RTO is quite unlikely to occur after the first Cumulative ACK
2092                 * due to back-off and complexity of triggering events ...
2093                 */
2094                if (tp->frto_counter) {
2095                        u32 stored_cwnd;
2096                        stored_cwnd = tp->snd_cwnd;
2097                        tp->snd_cwnd = 2;
2098                        tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2099                        tp->snd_cwnd = stored_cwnd;
2100                } else {
2101                        tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2102                }
2103                /* ... in theory, cong.control module could do "any tricks" in
2104                 * ssthresh(), which means that ca_state, lost bits and lost_out
2105                 * counter would have to be faked before the call occurs. We
2106                 * consider that too expensive, unlikely and hacky, so modules
2107                 * using these in ssthresh() must deal these incompatibility
2108                 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2109                 */
2110                tcp_ca_event(sk, CA_EVENT_FRTO);
2111        }
2112
2113        tp->undo_marker = tp->snd_una;
2114        tp->undo_retrans = 0;
2115
2116        skb = tcp_write_queue_head(sk);
2117        if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2118                tp->undo_marker = 0;
2119        if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2120                TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2121                tp->retrans_out -= tcp_skb_pcount(skb);
2122        }
2123        tcp_verify_left_out(tp);
2124
2125        /* Too bad if TCP was application limited */
2126        tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2127
2128        /* Earlier loss recovery underway (see RFC4138; Appendix B).
2129         * The last condition is necessary at least in tp->frto_counter case.
2130         */
2131        if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2132            ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2133            after(tp->high_seq, tp->snd_una)) {
2134                tp->frto_highmark = tp->high_seq;
2135        } else {
2136                tp->frto_highmark = tp->snd_nxt;
2137        }
2138        tcp_set_ca_state(sk, TCP_CA_Disorder);
2139        tp->high_seq = tp->snd_nxt;
2140        tp->frto_counter = 1;
2141}
2142
2143/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2144 * which indicates that we should follow the traditional RTO recovery,
2145 * i.e. mark everything lost and do go-back-N retransmission.
2146 */
2147static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2148{
2149        struct tcp_sock *tp = tcp_sk(sk);
2150        struct sk_buff *skb;
2151
2152        tp->lost_out = 0;
2153        tp->retrans_out = 0;
2154        if (tcp_is_reno(tp))
2155                tcp_reset_reno_sack(tp);
2156
2157        tcp_for_write_queue(skb, sk) {
2158                if (skb == tcp_send_head(sk))
2159                        break;
2160
2161                TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2162                /*
2163                 * Count the retransmission made on RTO correctly (only when
2164                 * waiting for the first ACK and did not get it)...
2165                 */
2166                if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2167                        /* For some reason this R-bit might get cleared? */
2168                        if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2169                                tp->retrans_out += tcp_skb_pcount(skb);
2170                        /* ...enter this if branch just for the first segment */
2171                        flag |= FLAG_DATA_ACKED;
2172                } else {
2173                        if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2174                                tp->undo_marker = 0;
2175                        TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2176                }
2177
2178                /* Marking forward transmissions that were made after RTO lost
2179                 * can cause unnecessary retransmissions in some scenarios,
2180                 * SACK blocks will mitigate that in some but not in all cases.
2181                 * We used to not mark them but it was causing break-ups with
2182                 * receivers that do only in-order receival.
2183                 *
2184                 * TODO: we could detect presence of such receiver and select
2185                 * different behavior per flow.
2186                 */
2187                if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2188                        TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2189                        tp->lost_out += tcp_skb_pcount(skb);
2190                        tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2191                }
2192        }
2193        tcp_verify_left_out(tp);
2194
2195        tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2196        tp->snd_cwnd_cnt = 0;
2197        tp->snd_cwnd_stamp = tcp_time_stamp;
2198        tp->frto_counter = 0;
2199        tp->bytes_acked = 0;
2200
2201        tp->reordering = min_t(unsigned int, tp->reordering,
2202                               sysctl_tcp_reordering);
2203        tcp_set_ca_state(sk, TCP_CA_Loss);
2204        tp->high_seq = tp->snd_nxt;
2205        TCP_ECN_queue_cwr(tp);
2206
2207        tcp_clear_all_retrans_hints(tp);
2208}
2209
2210static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2211{
2212        tp->retrans_out = 0;
2213        tp->lost_out = 0;
2214
2215        tp->undo_marker = 0;
2216        tp->undo_retrans = 0;
2217}
2218
2219void tcp_clear_retrans(struct tcp_sock *tp)
2220{
2221        tcp_clear_retrans_partial(tp);
2222
2223        tp->fackets_out = 0;
2224        tp->sacked_out = 0;
2225}
2226
2227/* Enter Loss state. If "how" is not zero, forget all SACK information
2228 * and reset tags completely, otherwise preserve SACKs. If receiver
2229 * dropped its ofo queue, we will know this due to reneging detection.
2230 */
2231void tcp_enter_loss(struct sock *sk, int how)
2232{
2233        const struct inet_connection_sock *icsk = inet_csk(sk);
2234        struct tcp_sock *tp = tcp_sk(sk);
2235        struct sk_buff *skb;
2236
2237        /* Reduce ssthresh if it has not yet been made inside this window. */
2238        if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2239            (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2240                tp->prior_ssthresh = tcp_current_ssthresh(sk);
2241                tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2242                tcp_ca_event(sk, CA_EVENT_LOSS);
2243        }
2244        tp->snd_cwnd       = 1;
2245        tp->snd_cwnd_cnt   = 0;
2246        tp->snd_cwnd_stamp = tcp_time_stamp;
2247
2248        tp->bytes_acked = 0;
2249        tcp_clear_retrans_partial(tp);
2250
2251        if (tcp_is_reno(tp))
2252                tcp_reset_reno_sack(tp);
2253
2254        if (!how) {
2255                /* Push undo marker, if it was plain RTO and nothing
2256                 * was retransmitted. */
2257                tp->undo_marker = tp->snd_una;
2258        } else {
2259                tp->sacked_out = 0;
2260                tp->fackets_out = 0;
2261        }
2262        tcp_clear_all_retrans_hints(tp);
2263
2264        tcp_for_write_queue(skb, sk) {
2265                if (skb == tcp_send_head(sk))
2266                        break;
2267
2268                if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2269                        tp->undo_marker = 0;
2270                TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2271                if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2272                        TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2273                        TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2274                        tp->lost_out += tcp_skb_pcount(skb);
2275                        tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2276                }
2277        }
2278        tcp_verify_left_out(tp);
2279
2280        tp->reordering = min_t(unsigned int, tp->reordering,
2281                               sysctl_tcp_reordering);
2282        tcp_set_ca_state(sk, TCP_CA_Loss);
2283        tp->high_seq = tp->snd_nxt;
2284        TCP_ECN_queue_cwr(tp);
2285        /* Abort F-RTO algorithm if one is in progress */
2286        tp->frto_counter = 0;
2287}
2288
2289/* If ACK arrived pointing to a remembered SACK, it means that our
2290 * remembered SACKs do not reflect real state of receiver i.e.
2291 * receiver _host_ is heavily congested (or buggy).
2292 *
2293 * Do processing similar to RTO timeout.
2294 */
2295static int tcp_check_sack_reneging(struct sock *sk, int flag)
2296{
2297        if (flag & FLAG_SACK_RENEGING) {
2298                struct inet_connection_sock *icsk = inet_csk(sk);
2299                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2300
2301                tcp_enter_loss(sk, 1);
2302                icsk->icsk_retransmits++;
2303                tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2304                inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2305                                          icsk->icsk_rto, TCP_RTO_MAX);
2306                return 1;
2307        }
2308        return 0;
2309}
2310
2311static inline int tcp_fackets_out(const struct tcp_sock *tp)
2312{
2313        return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2314}
2315
2316/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2317 * counter when SACK is enabled (without SACK, sacked_out is used for
2318 * that purpose).
2319 *
2320 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2321 * segments up to the highest received SACK block so far and holes in
2322 * between them.
2323 *
2324 * With reordering, holes may still be in flight, so RFC3517 recovery
2325 * uses pure sacked_out (total number of SACKed segments) even though
2326 * it violates the RFC that uses duplicate ACKs, often these are equal
2327 * but when e.g. out-of-window ACKs or packet duplication occurs,
2328 * they differ. Since neither occurs due to loss, TCP should really
2329 * ignore them.
2330 */
2331static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2332{
2333        return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2334}
2335
2336static inline int tcp_skb_timedout(const struct sock *sk,
2337                                   const struct sk_buff *skb)
2338{
2339        return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2340}
2341
2342static inline int tcp_head_timedout(const struct sock *sk)
2343{
2344        const struct tcp_sock *tp = tcp_sk(sk);
2345
2346        return tp->packets_out &&
2347               tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2348}
2349
2350/* Linux NewReno/SACK/FACK/ECN state machine.
2351 * --------------------------------------
2352 *
2353 * "Open"       Normal state, no dubious events, fast path.
2354 * "Disorder"   In all the respects it is "Open",
2355 *              but requires a bit more attention. It is entered when
2356 *              we see some SACKs or dupacks. It is split of "Open"
2357 *              mainly to move some processing from fast path to slow one.
2358 * "CWR"        CWND was reduced due to some Congestion Notification event.
2359 *              It can be ECN, ICMP source quench, local device congestion.
2360 * "Recovery"   CWND was reduced, we are fast-retransmitting.
2361 * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2362 *
2363 * tcp_fastretrans_alert() is entered:
2364 * - each incoming ACK, if state is not "Open"
2365 * - when arrived ACK is unusual, namely:
2366 *      * SACK
2367 *      * Duplicate ACK.
2368 *      * ECN ECE.
2369 *
2370 * Counting packets in flight is pretty simple.
2371 *
2372 *      in_flight = packets_out - left_out + retrans_out
2373 *
2374 *      packets_out is SND.NXT-SND.UNA counted in packets.
2375 *
2376 *      retrans_out is number of retransmitted segments.
2377 *
2378 *      left_out is number of segments left network, but not ACKed yet.
2379 *
2380 *              left_out = sacked_out + lost_out
2381 *
2382 *     sacked_out: Packets, which arrived to receiver out of order
2383 *                 and hence not ACKed. With SACKs this number is simply
2384 *                 amount of SACKed data. Even without SACKs
2385 *                 it is easy to give pretty reliable estimate of this number,
2386 *                 counting duplicate ACKs.
2387 *
2388 *       lost_out: Packets lost by network. TCP has no explicit
2389 *                 "loss notification" feedback from network (for now).
2390 *                 It means that this number can be only _guessed_.
2391 *                 Actually, it is the heuristics to predict lossage that
2392 *                 distinguishes different algorithms.
2393 *
2394 *      F.e. after RTO, when all the queue is considered as lost,
2395 *      lost_out = packets_out and in_flight = retrans_out.
2396 *
2397 *              Essentially, we have now two algorithms counting
2398 *              lost packets.
2399 *
2400 *              FACK: It is the simplest heuristics. As soon as we decided
2401 *              that something is lost, we decide that _all_ not SACKed
2402 *              packets until the most forward SACK are lost. I.e.
2403 *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2404 *              It is absolutely correct estimate, if network does not reorder
2405 *              packets. And it loses any connection to reality when reordering
2406 *              takes place. We use FACK by default until reordering
2407 *              is suspected on the path to this destination.
2408 *
2409 *              NewReno: when Recovery is entered, we assume that one segment
2410 *              is lost (classic Reno). While we are in Recovery and
2411 *              a partial ACK arrives, we assume that one more packet
2412 *              is lost (NewReno). This heuristics are the same in NewReno
2413 *              and SACK.
2414 *
2415 *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2416 *  deflation etc. CWND is real congestion window, never inflated, changes
2417 *  only according to classic VJ rules.
2418 *
2419 * Really tricky (and requiring careful tuning) part of algorithm
2420 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2421 * The first determines the moment _when_ we should reduce CWND and,
2422 * hence, slow down forward transmission. In fact, it determines the moment
2423 * when we decide that hole is caused by loss, rather than by a reorder.
2424 *
2425 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2426 * holes, caused by lost packets.
2427 *
2428 * And the most logically complicated part of algorithm is undo
2429 * heuristics. We detect false retransmits due to both too early
2430 * fast retransmit (reordering) and underestimated RTO, analyzing
2431 * timestamps and D-SACKs. When we detect that some segments were
2432 * retransmitted by mistake and CWND reduction was wrong, we undo
2433 * window reduction and abort recovery phase. This logic is hidden
2434 * inside several functions named tcp_try_undo_<something>.
2435 */
2436
2437/* This function decides, when we should leave Disordered state
2438 * and enter Recovery phase, reducing congestion window.
2439 *
2440 * Main question: may we further continue forward transmission
2441 * with the same cwnd?
2442 */
2443static int tcp_time_to_recover(struct sock *sk)
2444{
2445        struct tcp_sock *tp = tcp_sk(sk);
2446        __u32 packets_out;
2447
2448        /* Do not perform any recovery during F-RTO algorithm */
2449        if (tp->frto_counter)
2450                return 0;
2451
2452        /* Trick#1: The loss is proven. */
2453        if (tp->lost_out)
2454                return 1;
2455
2456        /* Not-A-Trick#2 : Classic rule... */
2457        if (tcp_dupack_heuristics(tp) > tp->reordering)
2458                return 1;
2459
2460        /* Trick#3 : when we use RFC2988 timer restart, fast
2461         * retransmit can be triggered by timeout of queue head.
2462         */
2463        if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2464                return 1;
2465
2466        /* Trick#4: It is still not OK... But will it be useful to delay
2467         * recovery more?
2468         */
2469        packets_out = tp->packets_out;
2470        if (packets_out <= tp->reordering &&
2471            tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2472            !tcp_may_send_now(sk)) {
2473                /* We have nothing to send. This connection is limited
2474                 * either by receiver window or by application.
2475                 */
2476                return 1;
2477        }
2478
2479        /* If a thin stream is detected, retransmit after first
2480         * received dupack. Employ only if SACK is supported in order
2481         * to avoid possible corner-case series of spurious retransmissions
2482         * Use only if there are no unsent data.
2483         */
2484        if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2485            tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2486            tcp_is_sack(tp) && !tcp_send_head(sk))
2487                return 1;
2488
2489        return 0;
2490}
2491
2492/* New heuristics: it is possible only after we switched to restart timer
2493 * each time when something is ACKed. Hence, we can detect timed out packets
2494 * during fast retransmit without falling to slow start.
2495 *
2496 * Usefulness of this as is very questionable, since we should know which of
2497 * the segments is the next to timeout which is relatively expensive to find
2498 * in general case unless we add some data structure just for that. The
2499 * current approach certainly won't find the right one too often and when it
2500 * finally does find _something_ it usually marks large part of the window
2501 * right away (because a retransmission with a larger timestamp blocks the
2502 * loop from advancing). -ij
2503 */
2504static void tcp_timeout_skbs(struct sock *sk)
2505{
2506        struct tcp_sock *tp = tcp_sk(sk);
2507        struct sk_buff *skb;
2508
2509        if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2510                return;
2511
2512        skb = tp->scoreboard_skb_hint;
2513        if (tp->scoreboard_skb_hint == NULL)
2514                skb = tcp_write_queue_head(sk);
2515
2516        tcp_for_write_queue_from(skb, sk) {
2517                if (skb == tcp_send_head(sk))
2518                        break;
2519                if (!tcp_skb_timedout(sk, skb))
2520                        break;
2521
2522                tcp_skb_mark_lost(tp, skb);
2523        }
2524
2525        tp->scoreboard_skb_hint = skb;
2526
2527        tcp_verify_left_out(tp);
2528}
2529
2530/* Detect loss in event "A" above by marking head of queue up as lost.
2531 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2532 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2533 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2534 * the maximum SACKed segments to pass before reaching this limit.
2535 */
2536static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2537{
2538        struct tcp_sock *tp = tcp_sk(sk);
2539        struct sk_buff *skb;
2540        int cnt, oldcnt;
2541        int err;
2542        unsigned int mss;
2543        /* Use SACK to deduce losses of new sequences sent during recovery */
2544        const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2545
2546        WARN_ON(packets > tp->packets_out);
2547        if (tp->lost_skb_hint) {
2548                skb = tp->lost_skb_hint;
2549                cnt = tp->lost_cnt_hint;
2550                /* Head already handled? */
2551                if (mark_head && skb != tcp_write_queue_head(sk))
2552                        return;
2553        } else {
2554                skb = tcp_write_queue_head(sk);
2555                cnt = 0;
2556        }
2557
2558        tcp_for_write_queue_from(skb, sk) {
2559                if (skb == tcp_send_head(sk))
2560                        break;
2561                /* TODO: do this better */
2562                /* this is not the most efficient way to do this... */
2563                tp->lost_skb_hint = skb;
2564                tp->lost_cnt_hint = cnt;
2565
2566                if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2567                        break;
2568
2569                oldcnt = cnt;
2570                if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2571                    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2572                        cnt += tcp_skb_pcount(skb);
2573
2574                if (cnt > packets) {
2575                        if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2576                            (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2577                            (oldcnt >= packets))
2578                                break;
2579
2580                        mss = skb_shinfo(skb)->gso_size;
2581                        err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2582                        if (err < 0)
2583                                break;
2584                        cnt = packets;
2585                }
2586
2587                tcp_skb_mark_lost(tp, skb);
2588
2589                if (mark_head)
2590                        break;
2591        }
2592        tcp_verify_left_out(tp);
2593}
2594
2595/* Account newly detected lost packet(s) */
2596
2597static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2598{
2599        struct tcp_sock *tp = tcp_sk(sk);
2600
2601        if (tcp_is_reno(tp)) {
2602                tcp_mark_head_lost(sk, 1, 1);
2603        } else if (tcp_is_fack(tp)) {
2604                int lost = tp->fackets_out - tp->reordering;
2605                if (lost <= 0)
2606                        lost = 1;
2607                tcp_mark_head_lost(sk, lost, 0);
2608        } else {
2609                int sacked_upto = tp->sacked_out - tp->reordering;
2610                if (sacked_upto >= 0)
2611                        tcp_mark_head_lost(sk, sacked_upto, 0);
2612                else if (fast_rexmit)
2613                        tcp_mark_head_lost(sk, 1, 1);
2614        }
2615
2616        tcp_timeout_skbs(sk);
2617}
2618
2619/* CWND moderation, preventing bursts due to too big ACKs
2620 * in dubious situations.
2621 */
2622static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2623{
2624        tp->snd_cwnd = min(tp->snd_cwnd,
2625                           tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2626        tp->snd_cwnd_stamp = tcp_time_stamp;
2627}
2628
2629/* Lower bound on congestion window is slow start threshold
2630 * unless congestion avoidance choice decides to overide it.
2631 */
2632static inline u32 tcp_cwnd_min(const struct sock *sk)
2633{
2634        const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2635
2636        return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2637}
2638
2639/* Decrease cwnd each second ack. */
2640static void tcp_cwnd_down(struct sock *sk, int flag)
2641{
2642        struct tcp_sock *tp = tcp_sk(sk);
2643        int decr = tp->snd_cwnd_cnt + 1;
2644
2645        if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2646            (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2647                tp->snd_cwnd_cnt = decr & 1;
2648                decr >>= 1;
2649
2650                if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2651                        tp->snd_cwnd -= decr;
2652
2653                tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2654                tp->snd_cwnd_stamp = tcp_time_stamp;
2655        }
2656}
2657
2658/* Nothing was retransmitted or returned timestamp is less
2659 * than timestamp of the first retransmission.
2660 */
2661static inline int tcp_packet_delayed(const struct tcp_sock *tp)
2662{
2663        return !tp->retrans_stamp ||
2664                (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2665                 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2666}
2667
2668/* Undo procedures. */
2669
2670#if FASTRETRANS_DEBUG > 1
2671static void DBGUNDO(struct sock *sk, const char *msg)
2672{
2673        struct tcp_sock *tp = tcp_sk(sk);
2674        struct inet_sock *inet = inet_sk(sk);
2675
2676        if (sk->sk_family == AF_INET) {
2677                printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2678                       msg,
2679                       &inet->inet_daddr, ntohs(inet->inet_dport),
2680                       tp->snd_cwnd, tcp_left_out(tp),
2681                       tp->snd_ssthresh, tp->prior_ssthresh,
2682                       tp->packets_out);
2683        }
2684#if IS_ENABLED(CONFIG_IPV6)
2685        else if (sk->sk_family == AF_INET6) {
2686                struct ipv6_pinfo *np = inet6_sk(sk);
2687                printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2688                       msg,
2689                       &np->daddr, ntohs(inet->inet_dport),
2690                       tp->snd_cwnd, tcp_left_out(tp),
2691                       tp->snd_ssthresh, tp->prior_ssthresh,
2692                       tp->packets_out);
2693        }
2694#endif
2695}
2696#else
2697#define DBGUNDO(x...) do { } while (0)
2698#endif
2699
2700static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2701{
2702        struct tcp_sock *tp = tcp_sk(sk);
2703
2704        if (tp->prior_ssthresh) {
2705                const struct inet_connection_sock *icsk = inet_csk(sk);
2706
2707                if (icsk->icsk_ca_ops->undo_cwnd)
2708                        tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2709                else
2710                        tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2711
2712                if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2713                        tp->snd_ssthresh = tp->prior_ssthresh;
2714                        TCP_ECN_withdraw_cwr(tp);
2715                }
2716        } else {
2717                tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2718        }
2719        tp->snd_cwnd_stamp = tcp_time_stamp;
2720}
2721
2722static inline int tcp_may_undo(const struct tcp_sock *tp)
2723{
2724        return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2725}
2726
2727/* People celebrate: "We love our President!" */
2728static int tcp_try_undo_recovery(struct sock *sk)
2729{
2730        struct tcp_sock *tp = tcp_sk(sk);
2731
2732        if (tcp_may_undo(tp)) {
2733                int mib_idx;
2734
2735                /* Happy end! We did not retransmit anything
2736                 * or our original transmission succeeded.
2737                 */
2738                DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2739                tcp_undo_cwr(sk, true);
2740                if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2741                        mib_idx = LINUX_MIB_TCPLOSSUNDO;
2742                else
2743                        mib_idx = LINUX_MIB_TCPFULLUNDO;
2744
2745                NET_INC_STATS_BH(sock_net(sk), mib_idx);
2746                tp->undo_marker = 0;
2747        }
2748        if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2749                /* Hold old state until something *above* high_seq
2750                 * is ACKed. For Reno it is MUST to prevent false
2751                 * fast retransmits (RFC2582). SACK TCP is safe. */
2752                tcp_moderate_cwnd(tp);
2753                return 1;
2754        }
2755        tcp_set_ca_state(sk, TCP_CA_Open);
2756        return 0;
2757}
2758
2759/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2760static void tcp_try_undo_dsack(struct sock *sk)
2761{
2762        struct tcp_sock *tp = tcp_sk(sk);
2763
2764        if (tp->undo_marker && !tp->undo_retrans) {
2765                DBGUNDO(sk, "D-SACK");
2766                tcp_undo_cwr(sk, true);
2767                tp->undo_marker = 0;
2768                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2769        }
2770}
2771
2772/* We can clear retrans_stamp when there are no retransmissions in the
2773 * window. It would seem that it is trivially available for us in
2774 * tp->retrans_out, however, that kind of assumptions doesn't consider
2775 * what will happen if errors occur when sending retransmission for the
2776 * second time. ...It could the that such segment has only
2777 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2778 * the head skb is enough except for some reneging corner cases that
2779 * are not worth the effort.
2780 *
2781 * Main reason for all this complexity is the fact that connection dying
2782 * time now depends on the validity of the retrans_stamp, in particular,
2783 * that successive retransmissions of a segment must not advance
2784 * retrans_stamp under any conditions.
2785 */
2786static int tcp_any_retrans_done(const struct sock *sk)
2787{
2788        const struct tcp_sock *tp = tcp_sk(sk);
2789        struct sk_buff *skb;
2790
2791        if (tp->retrans_out)
2792                return 1;
2793
2794        skb = tcp_write_queue_head(sk);
2795        if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2796                return 1;
2797
2798        return 0;
2799}
2800
2801/* Undo during fast recovery after partial ACK. */
2802
2803static int tcp_try_undo_partial(struct sock *sk, int acked)
2804{
2805        struct tcp_sock *tp = tcp_sk(sk);
2806        /* Partial ACK arrived. Force Hoe's retransmit. */
2807        int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2808
2809        if (tcp_may_undo(tp)) {
2810                /* Plain luck! Hole if filled with delayed
2811                 * packet, rather than with a retransmit.
2812                 */
2813                if (!tcp_any_retrans_done(sk))
2814                        tp->retrans_stamp = 0;
2815
2816                tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2817
2818                DBGUNDO(sk, "Hoe");
2819                tcp_undo_cwr(sk, false);
2820                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2821
2822                /* So... Do not make Hoe's retransmit yet.
2823                 * If the first packet was delayed, the rest
2824                 * ones are most probably delayed as well.
2825                 */
2826                failed = 0;
2827        }
2828        return failed;
2829}
2830
2831/* Undo during loss recovery after partial ACK. */
2832static int tcp_try_undo_loss(struct sock *sk)
2833{
2834        struct tcp_sock *tp = tcp_sk(sk);
2835
2836        if (tcp_may_undo(tp)) {
2837                struct sk_buff *skb;
2838                tcp_for_write_queue(skb, sk) {
2839                        if (skb == tcp_send_head(sk))
2840                                break;
2841                        TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2842                }
2843
2844                tcp_clear_all_retrans_hints(tp);
2845
2846                DBGUNDO(sk, "partial loss");
2847                tp->lost_out = 0;
2848                tcp_undo_cwr(sk, true);
2849                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2850                inet_csk(sk)->icsk_retransmits = 0;
2851                tp->undo_marker = 0;
2852                if (tcp_is_sack(tp))
2853                        tcp_set_ca_state(sk, TCP_CA_Open);
2854                return 1;
2855        }
2856        return 0;
2857}
2858
2859static inline void tcp_complete_cwr(struct sock *sk)
2860{
2861        struct tcp_sock *tp = tcp_sk(sk);
2862
2863        /* Do not moderate cwnd if it's already undone in cwr or recovery. */
2864        if (tp->undo_marker) {
2865                if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR)
2866                        tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2867                else /* PRR */
2868                        tp->snd_cwnd = tp->snd_ssthresh;
2869                tp->snd_cwnd_stamp = tcp_time_stamp;
2870        }
2871        tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2872}
2873
2874static void tcp_try_keep_open(struct sock *sk)
2875{
2876        struct tcp_sock *tp = tcp_sk(sk);
2877        int state = TCP_CA_Open;
2878
2879        if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2880                state = TCP_CA_Disorder;
2881
2882        if (inet_csk(sk)->icsk_ca_state != state) {
2883                tcp_set_ca_state(sk, state);
2884                tp->high_seq = tp->snd_nxt;
2885        }
2886}
2887
2888static void tcp_try_to_open(struct sock *sk, int flag)
2889{
2890        struct tcp_sock *tp = tcp_sk(sk);
2891
2892        tcp_verify_left_out(tp);
2893
2894        if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2895                tp->retrans_stamp = 0;
2896
2897        if (flag & FLAG_ECE)
2898                tcp_enter_cwr(sk, 1);
2899
2900        if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2901                tcp_try_keep_open(sk);
2902                if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2903                        tcp_moderate_cwnd(tp);
2904        } else {
2905                tcp_cwnd_down(sk, flag);
2906        }
2907}
2908
2909static void tcp_mtup_probe_failed(struct sock *sk)
2910{
2911        struct inet_connection_sock *icsk = inet_csk(sk);
2912
2913        icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2914        icsk->icsk_mtup.probe_size = 0;
2915}
2916
2917static void tcp_mtup_probe_success(struct sock *sk)
2918{
2919        struct tcp_sock *tp = tcp_sk(sk);
2920        struct inet_connection_sock *icsk = inet_csk(sk);
2921
2922        /* FIXME: breaks with very large cwnd */
2923        tp->prior_ssthresh = tcp_current_ssthresh(sk);
2924        tp->snd_cwnd = tp->snd_cwnd *
2925                       tcp_mss_to_mtu(sk, tp->mss_cache) /
2926                       icsk->icsk_mtup.probe_size;
2927        tp->snd_cwnd_cnt = 0;
2928        tp->snd_cwnd_stamp = tcp_time_stamp;
2929        tp->snd_ssthresh = tcp_current_ssthresh(sk);
2930
2931        icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2932        icsk->icsk_mtup.probe_size = 0;
2933        tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2934}
2935
2936/* Do a simple retransmit without using the backoff mechanisms in
2937 * tcp_timer. This is used for path mtu discovery.
2938 * The socket is already locked here.
2939 */
2940void tcp_simple_retransmit(struct sock *sk)
2941{
2942        const struct inet_connection_sock *icsk = inet_csk(sk);
2943        struct tcp_sock *tp = tcp_sk(sk);
2944        struct sk_buff *skb;
2945        unsigned int mss = tcp_current_mss(sk);
2946        u32 prior_lost = tp->lost_out;
2947
2948        tcp_for_write_queue(skb, sk) {
2949                if (skb == tcp_send_head(sk))
2950                        break;
2951                if (tcp_skb_seglen(skb) > mss &&
2952                    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2953                        if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2954                                TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2955                                tp->retrans_out -= tcp_skb_pcount(skb);
2956                        }
2957                        tcp_skb_mark_lost_uncond_verify(tp, skb);
2958                }
2959        }
2960
2961        tcp_clear_retrans_hints_partial(tp);
2962
2963        if (prior_lost == tp->lost_out)
2964                return;
2965
2966        if (tcp_is_reno(tp))
2967                tcp_limit_reno_sacked(tp);
2968
2969        tcp_verify_left_out(tp);
2970
2971        /* Don't muck with the congestion window here.
2972         * Reason is that we do not increase amount of _data_
2973         * in network, but units changed and effective
2974         * cwnd/ssthresh really reduced now.
2975         */
2976        if (icsk->icsk_ca_state != TCP_CA_Loss) {
2977                tp->high_seq = tp->snd_nxt;
2978                tp->snd_ssthresh = tcp_current_ssthresh(sk);
2979                tp->prior_ssthresh = 0;
2980                tp->undo_marker = 0;
2981                tcp_set_ca_state(sk, TCP_CA_Loss);
2982        }
2983        tcp_xmit_retransmit_queue(sk);
2984}
2985EXPORT_SYMBOL(tcp_simple_retransmit);
2986
2987/* This function implements the PRR algorithm, specifcally the PRR-SSRB
2988 * (proportional rate reduction with slow start reduction bound) as described in
2989 * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
2990 * It computes the number of packets to send (sndcnt) based on packets newly
2991 * delivered:
2992 *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2993 *      cwnd reductions across a full RTT.
2994 *   2) If packets in flight is lower than ssthresh (such as due to excess
2995 *      losses and/or application stalls), do not perform any further cwnd
2996 *      reductions, but instead slow start up to ssthresh.
2997 */
2998static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
2999                                        int fast_rexmit, int flag)
3000{
3001        struct tcp_sock *tp = tcp_sk(sk);
3002        int sndcnt = 0;
3003        int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
3004
3005        if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
3006                u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
3007                               tp->prior_cwnd - 1;
3008                sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
3009        } else {
3010                sndcnt = min_t(int, delta,
3011                               max_t(int, tp->prr_delivered - tp->prr_out,
3012                                     newly_acked_sacked) + 1);
3013        }
3014
3015        sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
3016        tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
3017}
3018
3019/* Process an event, which can update packets-in-flight not trivially.
3020 * Main goal of this function is to calculate new estimate for left_out,
3021 * taking into account both packets sitting in receiver's buffer and
3022 * packets lost by network.
3023 *
3024 * Besides that it does CWND reduction, when packet loss is detected
3025 * and changes state of machine.
3026 *
3027 * It does _not_ decide what to send, it is made in function
3028 * tcp_xmit_retransmit_queue().
3029 */
3030static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3031                                  int newly_acked_sacked, bool is_dupack,
3032                                  int flag)
3033{
3034        struct inet_connection_sock *icsk = inet_csk(sk);
3035        struct tcp_sock *tp = tcp_sk(sk);
3036        int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
3037                                    (tcp_fackets_out(tp) > tp->reordering));
3038        int fast_rexmit = 0, mib_idx;
3039
3040        if (WARN_ON(!tp->packets_out && tp->sacked_out))
3041                tp->sacked_out = 0;
3042        if (WARN_ON(!tp->sacked_out && tp->fackets_out))
3043                tp->fackets_out = 0;
3044
3045        /* Now state machine starts.
3046         * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3047        if (flag & FLAG_ECE)
3048                tp->prior_ssthresh = 0;
3049
3050        /* B. In all the states check for reneging SACKs. */
3051        if (tcp_check_sack_reneging(sk, flag))
3052                return;
3053
3054        /* C. Check consistency of the current state. */
3055        tcp_verify_left_out(tp);
3056
3057        /* D. Check state exit conditions. State can be terminated
3058         *    when high_seq is ACKed. */
3059        if (icsk->icsk_ca_state == TCP_CA_Open) {
3060                WARN_ON(tp->retrans_out != 0);
3061                tp->retrans_stamp = 0;
3062        } else if (!before(tp->snd_una, tp->high_seq)) {
3063                switch (icsk->icsk_ca_state) {
3064                case TCP_CA_Loss:
3065                        icsk->icsk_retransmits = 0;
3066                        if (tcp_try_undo_recovery(sk))
3067                                return;
3068                        break;
3069
3070                case TCP_CA_CWR:
3071                        /* CWR is to be held something *above* high_seq
3072                         * is ACKed for CWR bit to reach receiver. */
3073                        if (tp->snd_una != tp->high_seq) {
3074                                tcp_complete_cwr(sk);
3075                                tcp_set_ca_state(sk, TCP_CA_Open);
3076                        }
3077                        break;
3078
3079                case TCP_CA_Recovery:
3080                        if (tcp_is_reno(tp))
3081                                tcp_reset_reno_sack(tp);
3082                        if (tcp_try_undo_recovery(sk))
3083                                return;
3084                        tcp_complete_cwr(sk);
3085                        break;
3086                }
3087        }
3088
3089        /* E. Process state. */
3090        switch (icsk->icsk_ca_state) {
3091        case TCP_CA_Recovery:
3092                if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3093                        if (tcp_is_reno(tp) && is_dupack)
3094                                tcp_add_reno_sack(sk);
3095                } else
3096                        do_lost = tcp_try_undo_partial(sk, pkts_acked);
3097                break;
3098        case TCP_CA_Loss:
3099                if (flag & FLAG_DATA_ACKED)
3100                        icsk->icsk_retransmits = 0;
3101                if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3102                        tcp_reset_reno_sack(tp);
3103                if (!tcp_try_undo_loss(sk)) {
3104                        tcp_moderate_cwnd(tp);
3105                        tcp_xmit_retransmit_queue(sk);
3106                        return;
3107                }
3108                if (icsk->icsk_ca_state != TCP_CA_Open)
3109                        return;
3110                /* Loss is undone; fall through to processing in Open state. */
3111        default:
3112                if (tcp_is_reno(tp)) {
3113                        if (flag & FLAG_SND_UNA_ADVANCED)
3114                                tcp_reset_reno_sack(tp);
3115                        if (is_dupack)
3116                                tcp_add_reno_sack(sk);
3117                }
3118
3119                if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3120                        tcp_try_undo_dsack(sk);
3121
3122                if (!tcp_time_to_recover(sk)) {
3123                        tcp_try_to_open(sk, flag);
3124                        return;
3125                }
3126
3127                /* MTU probe failure: don't reduce cwnd */
3128                if (icsk->icsk_ca_state < TCP_CA_CWR &&
3129                    icsk->icsk_mtup.probe_size &&
3130                    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3131                        tcp_mtup_probe_failed(sk);
3132                        /* Restores the reduction we did in tcp_mtup_probe() */
3133                        tp->snd_cwnd++;
3134                        tcp_simple_retransmit(sk);
3135                        return;
3136                }
3137
3138                /* Otherwise enter Recovery state */
3139
3140                if (tcp_is_reno(tp))
3141                        mib_idx = LINUX_MIB_TCPRENORECOVERY;
3142                else
3143                        mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3144
3145                NET_INC_STATS_BH(sock_net(sk), mib_idx);
3146
3147                tp->high_seq = tp->snd_nxt;
3148                tp->prior_ssthresh = 0;
3149                tp->undo_marker = tp->snd_una;
3150                tp->undo_retrans = tp->retrans_out;
3151
3152                if (icsk->icsk_ca_state < TCP_CA_CWR) {
3153                        if (!(flag & FLAG_ECE))
3154                                tp->prior_ssthresh = tcp_current_ssthresh(sk);
3155                        tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3156                        TCP_ECN_queue_cwr(tp);
3157                }
3158
3159                tp->bytes_acked = 0;
3160                tp->snd_cwnd_cnt = 0;
3161                tp->prior_cwnd = tp->snd_cwnd;
3162                tp->prr_delivered = 0;
3163                tp->prr_out = 0;
3164                tcp_set_ca_state(sk, TCP_CA_Recovery);
3165                fast_rexmit = 1;
3166        }
3167
3168        if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3169                tcp_update_scoreboard(sk, fast_rexmit);
3170        tp->prr_delivered += newly_acked_sacked;
3171        tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
3172        tcp_xmit_retransmit_queue(sk);
3173}
3174
3175void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3176{
3177        tcp_rtt_estimator(sk, seq_rtt);
3178        tcp_set_rto(sk);
3179        inet_csk(sk)->icsk_backoff = 0;
3180}
3181EXPORT_SYMBOL(tcp_valid_rtt_meas);
3182
3183/* Read draft-ietf-tcplw-high-performance before mucking
3184 * with this code. (Supersedes RFC1323)
3185 */
3186static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3187{
3188        /* RTTM Rule: A TSecr value received in a segment is used to
3189         * update the averaged RTT measurement only if the segment
3190         * acknowledges some new data, i.e., only if it advances the
3191         * left edge of the send window.
3192         *
3193         * See draft-ietf-tcplw-high-performance-00, section 3.3.
3194         * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3195         *
3196         * Changed: reset backoff as soon as we see the first valid sample.
3197         * If we do not, we get strongly overestimated rto. With timestamps
3198         * samples are accepted even from very old segments: f.e., when rtt=1
3199         * increases to 8, we retransmit 5 times and after 8 seconds delayed
3200         * answer arrives rto becomes 120 seconds! If at least one of segments
3201         * in window is lost... Voila.                          --ANK (010210)
3202         */
3203        struct tcp_sock *tp = tcp_sk(sk);
3204
3205        tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3206}
3207
3208static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3209{
3210        /* We don't have a timestamp. Can only use
3211         * packets that are not retransmitted to determine
3212         * rtt estimates. Also, we must not reset the
3213         * backoff for rto until we get a non-retransmitted
3214         * packet. This allows us to deal with a situation
3215         * where the network delay has increased suddenly.
3216         * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3217         */
3218
3219        if (flag & FLAG_RETRANS_DATA_ACKED)
3220                return;
3221
3222        tcp_valid_rtt_meas(sk, seq_rtt);
3223}
3224
3225static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3226                                      const s32 seq_rtt)
3227{
3228        const struct tcp_sock *tp = tcp_sk(sk);
3229        /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3230        if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3231                tcp_ack_saw_tstamp(sk, flag);
3232        else if (seq_rtt >= 0)
3233                tcp_ack_no_tstamp(sk, seq_rtt, flag);
3234}
3235
3236static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3237{
3238        const struct inet_connection_sock *icsk = inet_csk(sk);
3239        icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3240        tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3241}
3242
3243/* Restart timer after forward progress on connection.
3244 * RFC2988 recommends to restart timer to now+rto.
3245 */
3246static void tcp_rearm_rto(struct sock *sk)
3247{
3248        const struct tcp_sock *tp = tcp_sk(sk);
3249
3250        if (!tp->packets_out) {
3251                inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3252        } else {
3253                inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3254                                          inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3255        }
3256}
3257
3258/* If we get here, the whole TSO packet has not been acked. */
3259static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3260{
3261        struct tcp_sock *tp = tcp_sk(sk);
3262        u32 packets_acked;
3263
3264        BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3265
3266        packets_acked = tcp_skb_pcount(skb);
3267        if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3268                return 0;
3269        packets_acked -= tcp_skb_pcount(skb);
3270
3271        if (packets_acked) {
3272                BUG_ON(tcp_skb_pcount(skb) == 0);
3273                BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3274        }
3275
3276        return packets_acked;
3277}
3278
3279/* Remove acknowledged frames from the retransmission queue. If our packet
3280 * is before the ack sequence we can discard it as it's confirmed to have
3281 * arrived at the other end.
3282 */
3283static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3284                               u32 prior_snd_una)
3285{
3286        struct tcp_sock *tp = tcp_sk(sk);
3287        const struct inet_connection_sock *icsk = inet_csk(sk);
3288        struct sk_buff *skb;
3289        u32 now = tcp_time_stamp;
3290        int fully_acked = 1;
3291        int flag = 0;
3292        u32 pkts_acked = 0;
3293        u32 reord = tp->packets_out;
3294        u32 prior_sacked = tp->sacked_out;
3295        s32 seq_rtt = -1;
3296        s32 ca_seq_rtt = -1;
3297        ktime_t last_ackt = net_invalid_timestamp();
3298
3299        while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3300                struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3301                u32 acked_pcount;
3302                u8 sacked = scb->sacked;
3303
3304                /* Determine how many packets and what bytes were acked, tso and else */
3305                if (after(scb->end_seq, tp->snd_una)) {
3306                        if (tcp_skb_pcount(skb) == 1 ||
3307                            !after(tp->snd_una, scb->seq))
3308                                break;
3309
3310                        acked_pcount = tcp_tso_acked(sk, skb);
3311                        if (!acked_pcount)
3312                                break;
3313
3314                        fully_acked = 0;
3315                } else {
3316                        acked_pcount = tcp_skb_pcount(skb);
3317                }
3318
3319                if (sacked & TCPCB_RETRANS) {
3320                        if (sacked & TCPCB_SACKED_RETRANS)
3321                                tp->retrans_out -= acked_pcount;
3322                        flag |= FLAG_RETRANS_DATA_ACKED;
3323                        ca_seq_rtt = -1;
3324                        seq_rtt = -1;
3325                        if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3326                                flag |= FLAG_NONHEAD_RETRANS_ACKED;
3327                } else {
3328                        ca_seq_rtt = now - scb->when;
3329                        last_ackt = skb->tstamp;
3330                        if (seq_rtt < 0) {
3331                                seq_rtt = ca_seq_rtt;
3332                        }
3333                        if (!(sacked & TCPCB_SACKED_ACKED))
3334                                reord = min(pkts_acked, reord);
3335                }
3336
3337                if (sacked & TCPCB_SACKED_ACKED)
3338                        tp->sacked_out -= acked_pcount;
3339                if (sacked & TCPCB_LOST)
3340                        tp->lost_out -= acked_pcount;
3341
3342                tp->packets_out -= acked_pcount;
3343                pkts_acked += acked_pcount;
3344
3345                /* Initial outgoing SYN's get put onto the write_queue
3346                 * just like anything else we transmit.  It is not
3347                 * true data, and if we misinform our callers that
3348                 * this ACK acks real data, we will erroneously exit
3349                 * connection startup slow start one packet too
3350                 * quickly.  This is severely frowned upon behavior.
3351                 */
3352                if (!(scb->tcp_flags & TCPHDR_SYN)) {
3353                        flag |= FLAG_DATA_ACKED;
3354                } else {
3355                        flag |= FLAG_SYN_ACKED;
3356                        tp->retrans_stamp = 0;
3357                }
3358
3359                if (!fully_acked)
3360                        break;
3361
3362                tcp_unlink_write_queue(skb, sk);
3363                sk_wmem_free_skb(sk, skb);
3364                tp->scoreboard_skb_hint = NULL;
3365                if (skb == tp->retransmit_skb_hint)
3366                        tp->retransmit_skb_hint = NULL;
3367                if (skb == tp->lost_skb_hint)
3368                        tp->lost_skb_hint = NULL;
3369        }
3370
3371        if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3372                tp->snd_up = tp->snd_una;
3373
3374        if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3375                flag |= FLAG_SACK_RENEGING;
3376
3377        if (flag & FLAG_ACKED) {
3378                const struct tcp_congestion_ops *ca_ops
3379                        = inet_csk(sk)->icsk_ca_ops;
3380
3381                if (unlikely(icsk->icsk_mtup.probe_size &&
3382                             !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3383                        tcp_mtup_probe_success(sk);
3384                }
3385
3386                tcp_ack_update_rtt(sk, flag, seq_rtt);
3387                tcp_rearm_rto(sk);
3388
3389                if (tcp_is_reno(tp)) {
3390                        tcp_remove_reno_sacks(sk, pkts_acked);
3391                } else {
3392                        int delta;
3393
3394                        /* Non-retransmitted hole got filled? That's reordering */
3395                        if (reord < prior_fackets)
3396                                tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3397
3398                        delta = tcp_is_fack(tp) ? pkts_acked :
3399                                                  prior_sacked - tp->sacked_out;
3400                        tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3401                }
3402
3403                tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3404
3405                if (ca_ops->pkts_acked) {
3406                        s32 rtt_us = -1;
3407
3408                        /* Is the ACK triggering packet unambiguous? */
3409                        if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3410                                /* High resolution needed and available? */
3411                                if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3412                                    !ktime_equal(last_ackt,
3413                                                 net_invalid_timestamp()))
3414                                        rtt_us = ktime_us_delta(ktime_get_real(),
3415                                                                last_ackt);
3416                                else if (ca_seq_rtt >= 0)
3417                                        rtt_us = jiffies_to_usecs(ca_seq_rtt);
3418                        }
3419
3420                        ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3421                }
3422        }
3423
3424#if FASTRETRANS_DEBUG > 0
3425        WARN_ON((int)tp->sacked_out < 0);
3426        WARN_ON((int)tp->lost_out < 0);
3427        WARN_ON((int)tp->retrans_out < 0);
3428        if (!tp->packets_out && tcp_is_sack(tp)) {
3429                icsk = inet_csk(sk);
3430                if (tp->lost_out) {
3431                        printk(KERN_DEBUG "Leak l=%u %d\n",
3432                               tp->lost_out, icsk->icsk_ca_state);
3433                        tp->lost_out = 0;
3434                }
3435                if (tp->sacked_out) {
3436                        printk(KERN_DEBUG "Leak s=%u %d\n",
3437                               tp->sacked_out, icsk->icsk_ca_state);
3438                        tp->sacked_out = 0;
3439                }
3440                if (tp->retrans_out) {
3441                        printk(KERN_DEBUG "Leak r=%u %d\n",
3442                               tp->retrans_out, icsk->icsk_ca_state);
3443                        tp->retrans_out = 0;
3444                }
3445        }
3446#endif
3447        return flag;
3448}
3449
3450static void tcp_ack_probe(struct sock *sk)
3451{
3452        const struct tcp_sock *tp = tcp_sk(sk);
3453        struct inet_connection_sock *icsk = inet_csk(sk);
3454
3455        /* Was it a usable window open? */
3456
3457        if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3458                icsk->icsk_backoff = 0;
3459                inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3460                /* Socket must be waked up by subsequent tcp_data_snd_check().
3461                 * This function is not for random using!
3462                 */
3463        } else {
3464                inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3465                                          min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3466                                          TCP_RTO_MAX);
3467        }
3468}
3469
3470static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3471{
3472        return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3473                inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3474}
3475
3476static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3477{
3478        const struct tcp_sock *tp = tcp_sk(sk);
3479        return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3480                !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3481}
3482
3483/* Check that window update is acceptable.
3484 * The function assumes that snd_una<=ack<=snd_next.
3485 */
3486static inline int tcp_may_update_window(const struct tcp_sock *tp,
3487                                        const u32 ack, const u32 ack_seq,
3488                                        const u32 nwin)
3489{
3490        return  after(ack, tp->snd_una) ||
3491                after(ack_seq, tp->snd_wl1) ||
3492                (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3493}
3494
3495/* Update our send window.
3496 *
3497 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3498 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3499 */
3500static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3501                                 u32 ack_seq)
3502{
3503        struct tcp_sock *tp = tcp_sk(sk);
3504        int flag = 0;
3505        u32 nwin = ntohs(tcp_hdr(skb)->window);
3506
3507        if (likely(!tcp_hdr(skb)->syn))
3508                nwin <<= tp->rx_opt.snd_wscale;
3509
3510        if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3511                flag |= FLAG_WIN_UPDATE;
3512                tcp_update_wl(tp, ack_seq);
3513
3514                if (tp->snd_wnd != nwin) {
3515                        tp->snd_wnd = nwin;
3516
3517                        /* Note, it is the only place, where
3518                         * fast path is recovered for sending TCP.
3519                         */
3520                        tp->pred_flags = 0;
3521                        tcp_fast_path_check(sk);
3522
3523                        if (nwin > tp->max_window) {
3524                                tp->max_window = nwin;
3525                                tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3526                        }
3527                }
3528        }
3529
3530        tp->snd_una = ack;
3531
3532        return flag;
3533}
3534
3535/* A very conservative spurious RTO response algorithm: reduce cwnd and
3536 * continue in congestion avoidance.
3537 */
3538static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3539{
3540        tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3541        tp->snd_cwnd_cnt = 0;
3542        tp->bytes_acked = 0;
3543        TCP_ECN_queue_cwr(tp);
3544        tcp_moderate_cwnd(tp);
3545}
3546
3547/* A conservative spurious RTO response algorithm: reduce cwnd using
3548 * rate halving and continue in congestion avoidance.
3549 */
3550static void tcp_ratehalving_spur_to_response(struct sock *sk)
3551{
3552        tcp_enter_cwr(sk, 0);
3553}
3554
3555static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3556{
3557        if (flag & FLAG_ECE)
3558                tcp_ratehalving_spur_to_response(sk);
3559        else
3560                tcp_undo_cwr(sk, true);
3561}
3562
3563/* F-RTO spurious RTO detection algorithm (RFC4138)
3564 *
3565 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3566 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3567 * window (but not to or beyond highest sequence sent before RTO):
3568 *   On First ACK,  send two new segments out.
3569 *   On Second ACK, RTO was likely spurious. Do spurious response (response
3570 *                  algorithm is not part of the F-RTO detection algorithm
3571 *                  given in RFC4138 but can be selected separately).
3572 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3573 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3574 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3575 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3576 *
3577 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3578 * original window even after we transmit two new data segments.
3579 *
3580 * SACK version:
3581 *   on first step, wait until first cumulative ACK arrives, then move to
3582 *   the second step. In second step, the next ACK decides.
3583 *
3584 * F-RTO is implemented (mainly) in four functions:
3585 *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3586 *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3587 *     called when tcp_use_frto() showed green light
3588 *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3589 *   - tcp_enter_frto_loss() is called if there is not enough evidence
3590 *     to prove that the RTO is indeed spurious. It transfers the control
3591 *     from F-RTO to the conventional RTO recovery
3592 */
3593static int tcp_process_frto(struct sock *sk, int flag)
3594{
3595        struct tcp_sock *tp = tcp_sk(sk);
3596
3597        tcp_verify_left_out(tp);
3598
3599        /* Duplicate the behavior from Loss state (fastretrans_alert) */
3600        if (flag & FLAG_DATA_ACKED)
3601                inet_csk(sk)->icsk_retransmits = 0;
3602
3603        if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3604            ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3605                tp->undo_marker = 0;
3606
3607        if (!before(tp->snd_una, tp->frto_highmark)) {
3608                tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3609                return 1;
3610        }
3611
3612        if (!tcp_is_sackfrto(tp)) {
3613                /* RFC4138 shortcoming in step 2; should also have case c):
3614                 * ACK isn't duplicate nor advances window, e.g., opposite dir
3615                 * data, winupdate
3616                 */
3617                if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3618                        return 1;
3619
3620                if (!(flag & FLAG_DATA_ACKED)) {
3621                        tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3622                                            flag);
3623                        return 1;
3624                }
3625        } else {
3626                if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3627                        /* Prevent sending of new data. */
3628                        tp->snd_cwnd = min(tp->snd_cwnd,
3629                                           tcp_packets_in_flight(tp));
3630                        return 1;
3631                }
3632
3633                if ((tp->frto_counter >= 2) &&
3634                    (!(flag & FLAG_FORWARD_PROGRESS) ||
3635                     ((flag & FLAG_DATA_SACKED) &&
3636                      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3637                        /* RFC4138 shortcoming (see comment above) */
3638                        if (!(flag & FLAG_FORWARD_PROGRESS) &&
3639                            (flag & FLAG_NOT_DUP))
3640                                return 1;
3641
3642                        tcp_enter_frto_loss(sk, 3, flag);
3643                        return 1;
3644                }
3645        }
3646
3647        if (tp->frto_counter == 1) {
3648                /* tcp_may_send_now needs to see updated state */
3649                tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3650                tp->frto_counter = 2;
3651
3652                if (!tcp_may_send_now(sk))
3653                        tcp_enter_frto_loss(sk, 2, flag);
3654
3655                return 1;
3656        } else {
3657                switch (sysctl_tcp_frto_response) {
3658                case 2:
3659                        tcp_undo_spur_to_response(sk, flag);
3660                        break;
3661                case 1:
3662                        tcp_conservative_spur_to_response(tp);
3663                        break;
3664                default:
3665                        tcp_ratehalving_spur_to_response(sk);
3666                        break;
3667                }
3668                tp->frto_counter = 0;
3669                tp->undo_marker = 0;
3670                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3671        }
3672        return 0;
3673}
3674
3675/* This routine deals with incoming acks, but not outgoing ones. */
3676static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3677{
3678        struct inet_connection_sock *icsk = inet_csk(sk);
3679        struct tcp_sock *tp = tcp_sk(sk);
3680        u32 prior_snd_una = tp->snd_una;
3681        u32 ack_seq = TCP_SKB_CB(skb)->seq;
3682        u32 ack = TCP_SKB_CB(skb)->ack_seq;
3683        bool is_dupack = false;
3684        u32 prior_in_flight;
3685        u32 prior_fackets;
3686        int prior_packets;
3687        int prior_sacked = tp->sacked_out;
3688        int pkts_acked = 0;
3689        int newly_acked_sacked = 0;
3690        int frto_cwnd = 0;
3691
3692        /* If the ack is older than previous acks
3693         * then we can probably ignore it.
3694         */
3695        if (before(ack, prior_snd_una))
3696                goto old_ack;
3697
3698        /* If the ack includes data we haven't sent yet, discard
3699         * this segment (RFC793 Section 3.9).
3700         */
3701        if (after(ack, tp->snd_nxt))
3702                goto invalid_ack;
3703
3704        if (after(ack, prior_snd_una))
3705                flag |= FLAG_SND_UNA_ADVANCED;
3706
3707        if (sysctl_tcp_abc) {
3708                if (icsk->icsk_ca_state < TCP_CA_CWR)
3709                        tp->bytes_acked += ack - prior_snd_una;
3710                else if (icsk->icsk_ca_state == TCP_CA_Loss)
3711                        /* we assume just one segment left network */
3712                        tp->bytes_acked += min(ack - prior_snd_una,
3713                                               tp->mss_cache);
3714        }
3715
3716        prior_fackets = tp->fackets_out;
3717        prior_in_flight = tcp_packets_in_flight(tp);
3718
3719        if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3720                /* Window is constant, pure forward advance.
3721                 * No more checks are required.
3722                 * Note, we use the fact that SND.UNA>=SND.WL2.
3723                 */
3724                tcp_update_wl(tp, ack_seq);
3725                tp->snd_una = ack;
3726                flag |= FLAG_WIN_UPDATE;
3727
3728                tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3729
3730                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3731        } else {
3732                if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3733                        flag |= FLAG_DATA;
3734                else
3735                        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3736
3737                flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3738
3739                if (TCP_SKB_CB(skb)->sacked)
3740                        flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3741
3742                if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3743                        flag |= FLAG_ECE;
3744
3745                tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3746        }
3747
3748        /* We passed data and got it acked, remove any soft error
3749         * log. Something worked...
3750         */
3751        sk->sk_err_soft = 0;
3752        icsk->icsk_probes_out = 0;
3753        tp->rcv_tstamp = tcp_time_stamp;
3754        prior_packets = tp->packets_out;
3755        if (!prior_packets)
3756                goto no_queue;
3757
3758        /* See if we can take anything off of the retransmit queue. */
3759        flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3760
3761        pkts_acked = prior_packets - tp->packets_out;
3762        newly_acked_sacked = (prior_packets - prior_sacked) -
3763                             (tp->packets_out - tp->sacked_out);
3764
3765        if (tp->frto_counter)
3766                frto_cwnd = tcp_process_frto(sk, flag);
3767        /* Guarantee sacktag reordering detection against wrap-arounds */
3768        if (before(tp->frto_highmark, tp->snd_una))
3769                tp->frto_highmark = 0;
3770
3771        if (tcp_ack_is_dubious(sk, flag)) {
3772                /* Advance CWND, if state allows this. */
3773                if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3774                    tcp_may_raise_cwnd(sk, flag))
3775                        tcp_cong_avoid(sk, ack, prior_in_flight);
3776                is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3777                tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3778                                      is_dupack, flag);
3779        } else {
3780                if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3781                        tcp_cong_avoid(sk, ack, prior_in_flight);
3782        }
3783
3784        if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3785                dst_confirm(__sk_dst_get(sk));
3786
3787        return 1;
3788
3789no_queue:
3790        /* If data was DSACKed, see if we can undo a cwnd reduction. */
3791        if (flag & FLAG_DSACKING_ACK)
3792                tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3793                                      is_dupack, flag);
3794        /* If this ack opens up a zero window, clear backoff.  It was
3795         * being used to time the probes, and is probably far higher than
3796         * it needs to be for normal retransmission.
3797         */
3798        if (tcp_send_head(sk))
3799                tcp_ack_probe(sk);
3800        return 1;
3801
3802invalid_ack:
3803        SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3804        return -1;
3805
3806old_ack:
3807        /* If data was SACKed, tag it and see if we should send more data.
3808         * If data was DSACKed, see if we can undo a cwnd reduction.
3809         */
3810        if (TCP_SKB_CB(skb)->sacked) {
3811                flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3812                newly_acked_sacked = tp->sacked_out - prior_sacked;
3813                tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3814                                      is_dupack, flag);
3815        }
3816
3817        SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3818        return 0;
3819}
3820
3821/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3822 * But, this can also be called on packets in the established flow when
3823 * the fast version below fails.
3824 */
3825void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3826                       const u8 **hvpp, int estab)
3827{
3828        const unsigned char *ptr;
3829        const struct tcphdr *th = tcp_hdr(skb);
3830        int length = (th->doff * 4) - sizeof(struct tcphdr);
3831
3832        ptr = (const unsigned char *)(th + 1);
3833        opt_rx->saw_tstamp = 0;
3834
3835        while (length > 0) {
3836                int opcode = *ptr++;
3837                int opsize;
3838
3839                switch (opcode) {
3840                case TCPOPT_EOL:
3841                        return;
3842                case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3843                        length--;
3844                        continue;
3845                default:
3846                        opsize = *ptr++;
3847                        if (opsize < 2) /* "silly options" */
3848                                return;
3849                        if (opsize > length)
3850                                return; /* don't parse partial options */
3851                        switch (opcode) {
3852                        case TCPOPT_MSS:
3853                                if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3854                                        u16 in_mss = get_unaligned_be16(ptr);
3855                                        if (in_mss) {
3856                                                if (opt_rx->user_mss &&
3857                                                    opt_rx->user_mss < in_mss)
3858                                                        in_mss = opt_rx->user_mss;
3859                                                opt_rx->mss_clamp = in_mss;
3860                                        }
3861                                }
3862                                break;
3863                        case TCPOPT_WINDOW:
3864                                if (opsize == TCPOLEN_WINDOW && th->syn &&
3865                                    !estab && sysctl_tcp_window_scaling) {
3866                                        __u8 snd_wscale = *(__u8 *)ptr;
3867                                        opt_rx->wscale_ok = 1;
3868                                        if (snd_wscale > 14) {
3869                                                if (net_ratelimit())
3870                                                        printk(KERN_INFO "tcp_parse_options: Illegal window "
3871                                                               "scaling value %d >14 received.\n",
3872                                                               snd_wscale);
3873                                                snd_wscale = 14;
3874                                        }
3875                                        opt_rx->snd_wscale = snd_wscale;
3876                                }
3877                                break;
3878                        case TCPOPT_TIMESTAMP:
3879                                if ((opsize == TCPOLEN_TIMESTAMP) &&
3880                                    ((estab && opt_rx->tstamp_ok) ||
3881                                     (!estab && sysctl_tcp_timestamps))) {
3882                                        opt_rx->saw_tstamp = 1;
3883                                        opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3884                                        opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3885                                }
3886                                break;
3887                        case TCPOPT_SACK_PERM:
3888                                if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3889                                    !estab && sysctl_tcp_sack) {
3890                                        opt_rx->sack_ok = TCP_SACK_SEEN;
3891                                        tcp_sack_reset(opt_rx);
3892                                }
3893                                break;
3894
3895                        case TCPOPT_SACK:
3896                                if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3897                                   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3898                                   opt_rx->sack_ok) {
3899                                        TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3900                                }
3901                                break;
3902#ifdef CONFIG_TCP_MD5SIG
3903                        case TCPOPT_MD5SIG:
3904                                /*
3905                                 * The MD5 Hash has already been
3906                                 * checked (see tcp_v{4,6}_do_rcv()).
3907                                 */
3908                                break;
3909#endif
3910                        case TCPOPT_COOKIE:
3911                                /* This option is variable length.
3912                                 */
3913                                switch (opsize) {
3914                                case TCPOLEN_COOKIE_BASE:
3915                                        /* not yet implemented */
3916                                        break;
3917                                case TCPOLEN_COOKIE_PAIR:
3918                                        /* not yet implemented */
3919                                        break;
3920                                case TCPOLEN_COOKIE_MIN+0:
3921                                case TCPOLEN_COOKIE_MIN+2:
3922                                case TCPOLEN_COOKIE_MIN+4:
3923                                case TCPOLEN_COOKIE_MIN+6:
3924                                case TCPOLEN_COOKIE_MAX:
3925                                        /* 16-bit multiple */
3926                                        opt_rx->cookie_plus = opsize;
3927                                        *hvpp = ptr;
3928                                        break;
3929                                default:
3930                                        /* ignore option */
3931                                        break;
3932                                }
3933                                break;
3934                        }
3935
3936                        ptr += opsize-2;
3937                        length -= opsize;
3938                }
3939        }
3940}
3941EXPORT_SYMBOL(tcp_parse_options);
3942
3943static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3944{
3945        const __be32 *ptr = (const __be32 *)(th + 1);
3946
3947        if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3948                          | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3949                tp->rx_opt.saw_tstamp = 1;
3950                ++ptr;
3951                tp->rx_opt.rcv_tsval = ntohl(*ptr);
3952                ++ptr;
3953                tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3954                return 1;
3955        }
3956        return 0;
3957}
3958
3959/* Fast parse options. This hopes to only see timestamps.
3960 * If it is wrong it falls back on tcp_parse_options().
3961 */
3962static int tcp_fast_parse_options(const struct sk_buff *skb,
3963                                  const struct tcphdr *th,
3964                                  struct tcp_sock *tp, const u8 **hvpp)
3965{
3966        /* In the spirit of fast parsing, compare doff directly to constant
3967         * values.  Because equality is used, short doff can be ignored here.
3968         */
3969        if (th->doff == (sizeof(*th) / 4)) {
3970                tp->rx_opt.saw_tstamp = 0;
3971                return 0;
3972        } else if (tp->rx_opt.tstamp_ok &&
3973                   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3974                if (tcp_parse_aligned_timestamp(tp, th))
3975                        return 1;
3976        }
3977        tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3978        return 1;
3979}
3980
3981#ifdef CONFIG_TCP_MD5SIG
3982/*
3983 * Parse MD5 Signature option
3984 */
3985const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3986{
3987        int length = (th->doff << 2) - sizeof(*th);
3988        const u8 *ptr = (const u8 *)(th + 1);
3989
3990        /* If the TCP option is too short, we can short cut */
3991        if (length < TCPOLEN_MD5SIG)
3992                return NULL;
3993
3994        while (length > 0) {
3995                int opcode = *ptr++;
3996                int opsize;
3997
3998                switch(opcode) {
3999                case TCPOPT_EOL:
4000                        return NULL;
4001                case TCPOPT_NOP:
4002                        length--;
4003                        continue;
4004                default:
4005                        opsize = *ptr++;
4006                        if (opsize < 2 || opsize > length)
4007                                return NULL;
4008                        if (opcode == TCPOPT_MD5SIG)
4009                                return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4010                }
4011                ptr += opsize - 2;
4012                length -= opsize;
4013        }
4014        return NULL;
4015}
4016EXPORT_SYMBOL(tcp_parse_md5sig_option);
4017#endif
4018
4019static inline void tcp_store_ts_recent(struct tcp_sock *tp)
4020{
4021        tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
4022        tp->rx_opt.ts_recent_stamp = get_seconds();
4023}
4024
4025static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
4026{
4027        if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
4028                /* PAWS bug workaround wrt. ACK frames, the PAWS discard
4029                 * extra check below makes sure this can only happen
4030                 * for pure ACK frames.  -DaveM
4031                 *
4032                 * Not only, also it occurs for expired timestamps.
4033                 */
4034
4035                if (tcp_paws_check(&tp->rx_opt, 0))
4036                        tcp_store_ts_recent(tp);
4037        }
4038}
4039
4040/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4041 *
4042 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4043 * it can pass through stack. So, the following predicate verifies that
4044 * this segment is not used for anything but congestion avoidance or
4045 * fast retransmit. Moreover, we even are able to eliminate most of such
4046 * second order effects, if we apply some small "replay" window (~RTO)
4047 * to timestamp space.
4048 *
4049 * All these measures still do not guarantee that we reject wrapped ACKs
4050 * on networks with high bandwidth, when sequence space is recycled fastly,
4051 * but it guarantees that such events will be very rare and do not affect
4052 * connection seriously. This doesn't look nice, but alas, PAWS is really
4053 * buggy extension.
4054 *
4055 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4056 * states that events when retransmit arrives after original data are rare.
4057 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4058 * the biggest problem on large power networks even with minor reordering.
4059 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4060 * up to bandwidth of 18Gigabit/sec. 8) ]
4061 */
4062
4063static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4064{
4065        const struct tcp_sock *tp = tcp_sk(sk);
4066        const struct tcphdr *th = tcp_hdr(skb);
4067        u32 seq = TCP_SKB_CB(skb)->seq;
4068        u32 ack = TCP_SKB_CB(skb)->ack_seq;
4069
4070        return (/* 1. Pure ACK with correct sequence number. */
4071                (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4072
4073                /* 2. ... and duplicate ACK. */
4074                ack == tp->snd_una &&
4075
4076                /* 3. ... and does not update window. */
4077                !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4078
4079                /* 4. ... and sits in replay window. */
4080                (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4081}
4082
4083static inline int tcp_paws_discard(const struct sock *sk,
4084                                   const struct sk_buff *skb)
4085{
4086        const struct tcp_sock *tp = tcp_sk(sk);
4087
4088        return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4089               !tcp_disordered_ack(sk, skb);
4090}
4091
4092/* Check segment sequence number for validity.
4093 *
4094 * Segment controls are considered valid, if the segment
4095 * fits to the window after truncation to the window. Acceptability
4096 * of data (and SYN, FIN, of course) is checked separately.
4097 * See tcp_data_queue(), for example.
4098 *
4099 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4100 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4101 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4102 * (borrowed from freebsd)
4103 */
4104
4105static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4106{
4107        return  !before(end_seq, tp->rcv_wup) &&
4108                !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4109}
4110
4111/* When we get a reset we do this. */
4112static void tcp_reset(struct sock *sk)
4113{
4114        /* We want the right error as BSD sees it (and indeed as we do). */
4115        switch (sk->sk_state) {
4116        case TCP_SYN_SENT:
4117                sk->sk_err = ECONNREFUSED;
4118                break;
4119        case TCP_CLOSE_WAIT:
4120                sk->sk_err = EPIPE;
4121                break;
4122        case TCP_CLOSE:
4123                return;
4124        default:
4125                sk->sk_err = ECONNRESET;
4126        }
4127        /* This barrier is coupled with smp_rmb() in tcp_poll() */
4128        smp_wmb();
4129
4130        if (!sock_flag(sk, SOCK_DEAD))
4131                sk->sk_error_report(sk);
4132
4133        tcp_done(sk);
4134}
4135
4136/*
4137 *      Process the FIN bit. This now behaves as it is supposed to work
4138 *      and the FIN takes effect when it is validly part of sequence
4139 *      space. Not before when we get holes.
4140 *
4141 *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4142 *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
4143 *      TIME-WAIT)
4144 *
4145 *      If we are in FINWAIT-1, a received FIN indicates simultaneous
4146 *      close and we go into CLOSING (and later onto TIME-WAIT)
4147 *
4148 *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4149 */
4150static void tcp_fin(struct sock *sk)
4151{
4152        struct tcp_sock *tp = tcp_sk(sk);
4153
4154        inet_csk_schedule_ack(sk);
4155
4156        sk->sk_shutdown |= RCV_SHUTDOWN;
4157        sock_set_flag(sk, SOCK_DONE);
4158
4159        switch (sk->sk_state) {
4160        case TCP_SYN_RECV:
4161        case TCP_ESTABLISHED:
4162                /* Move to CLOSE_WAIT */
4163                tcp_set_state(sk, TCP_CLOSE_WAIT);
4164                inet_csk(sk)->icsk_ack.pingpong = 1;
4165                break;
4166
4167        case TCP_CLOSE_WAIT:
4168        case TCP_CLOSING:
4169                /* Received a retransmission of the FIN, do
4170                 * nothing.
4171                 */
4172                break;
4173        case TCP_LAST_ACK:
4174                /* RFC793: Remain in the LAST-ACK state. */
4175                break;
4176
4177        case TCP_FIN_WAIT1:
4178                /* This case occurs when a simultaneous close
4179                 * happens, we must ack the received FIN and
4180                 * enter the CLOSING state.
4181                 */
4182                tcp_send_ack(sk);
4183                tcp_set_state(sk, TCP_CLOSING);
4184                break;
4185        case TCP_FIN_WAIT2:
4186                /* Received a FIN -- send ACK and enter TIME_WAIT. */
4187                tcp_send_ack(sk);
4188                tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4189                break;
4190        default:
4191                /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4192                 * cases we should never reach this piece of code.
4193                 */
4194                printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4195                       __func__, sk->sk_state);
4196                break;
4197        }
4198
4199        /* It _is_ possible, that we have something out-of-order _after_ FIN.
4200         * Probably, we should reset in this case. For now drop them.
4201         */
4202        __skb_queue_purge(&tp->out_of_order_queue);
4203        if (tcp_is_sack(tp))
4204                tcp_sack_reset(&tp->rx_opt);
4205        sk_mem_reclaim(sk);
4206
4207        if (!sock_flag(sk, SOCK_DEAD)) {
4208                sk->sk_state_change(sk);
4209
4210                /* Do not send POLL_HUP for half duplex close. */
4211                if (sk->sk_shutdown == SHUTDOWN_MASK ||
4212                    sk->sk_state == TCP_CLOSE)
4213                        sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4214                else
4215                        sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4216        }
4217}
4218
4219static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4220                                  u32 end_seq)
4221{
4222        if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4223                if (before(seq, sp->start_seq))
4224                        sp->start_seq = seq;
4225                if (after(end_seq, sp->end_seq))
4226                        sp->end_seq = end_seq;
4227                return 1;
4228        }
4229        return 0;
4230}
4231
4232static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4233{
4234        struct tcp_sock *tp = tcp_sk(sk);
4235
4236        if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4237                int mib_idx;
4238
4239                if (before(seq, tp->rcv_nxt))
4240                        mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4241                else
4242                        mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4243
4244                NET_INC_STATS_BH(sock_net(sk), mib_idx);
4245
4246                tp->rx_opt.dsack = 1;
4247                tp->duplicate_sack[0].start_seq = seq;
4248                tp->duplicate_sack[0].end_seq = end_seq;
4249        }
4250}
4251
4252static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4253{
4254        struct tcp_sock *tp = tcp_sk(sk);
4255
4256        if (!tp->rx_opt.dsack)
4257                tcp_dsack_set(sk, seq, end_seq);
4258        else
4259                tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4260}
4261
4262static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4263{
4264        struct tcp_sock *tp = tcp_sk(sk);
4265
4266        if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4267            before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4268                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4269                tcp_enter_quickack_mode(sk);
4270
4271                if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4272                        u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4273
4274                        if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4275                                end_seq = tp->rcv_nxt;
4276                        tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4277                }
4278        }
4279
4280        tcp_send_ack(sk);
4281}
4282
4283/* These routines update the SACK block as out-of-order packets arrive or
4284 * in-order packets close up the sequence space.
4285 */
4286static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4287{
4288        int this_sack;
4289        struct tcp_sack_block *sp = &tp->selective_acks[0];
4290        struct tcp_sack_block *swalk = sp + 1;
4291
4292        /* See if the recent change to the first SACK eats into
4293         * or hits the sequence space of other SACK blocks, if so coalesce.
4294         */
4295        for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4296                if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4297                        int i;
4298
4299                        /* Zap SWALK, by moving every further SACK up by one slot.
4300                         * Decrease num_sacks.
4301                         */
4302                        tp->rx_opt.num_sacks--;
4303                        for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4304                                sp[i] = sp[i + 1];
4305                        continue;
4306                }
4307                this_sack++, swalk++;
4308        }
4309}
4310
4311static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4312{
4313        struct tcp_sock *tp = tcp_sk(sk);
4314        struct tcp_sack_block *sp = &tp->selective_acks[0];
4315        int cur_sacks = tp->rx_opt.num_sacks;
4316        int this_sack;
4317
4318        if (!cur_sacks)
4319                goto new_sack;
4320
4321        for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4322                if (tcp_sack_extend(sp, seq, end_seq)) {
4323                        /* Rotate this_sack to the first one. */
4324                        for (; this_sack > 0; this_sack--, sp--)
4325                                swap(*sp, *(sp - 1));
4326                        if (cur_sacks > 1)
4327                                tcp_sack_maybe_coalesce(tp);
4328                        return;
4329                }
4330        }
4331
4332        /* Could not find an adjacent existing SACK, build a new one,
4333         * put it at the front, and shift everyone else down.  We
4334         * always know there is at least one SACK present already here.
4335         *
4336         * If the sack array is full, forget about the last one.
4337         */
4338        if (this_sack >= TCP_NUM_SACKS) {
4339                this_sack--;
4340                tp->rx_opt.num_sacks--;
4341                sp--;
4342        }
4343        for (; this_sack > 0; this_sack--, sp--)
4344                *sp = *(sp - 1);
4345
4346new_sack:
4347        /* Build the new head SACK, and we're done. */
4348        sp->start_seq = seq;
4349        sp->end_seq = end_seq;
4350        tp->rx_opt.num_sacks++;
4351}
4352
4353/* RCV.NXT advances, some SACKs should be eaten. */
4354
4355static void tcp_sack_remove(struct tcp_sock *tp)
4356{
4357        struct tcp_sack_block *sp = &tp->selective_acks[0];
4358        int num_sacks = tp->rx_opt.num_sacks;
4359        int this_sack;
4360
4361        /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4362        if (skb_queue_empty(&tp->out_of_order_queue)) {
4363                tp->rx_opt.num_sacks = 0;
4364                return;
4365        }
4366
4367        for (this_sack = 0; this_sack < num_sacks;) {
4368                /* Check if the start of the sack is covered by RCV.NXT. */
4369                if (!before(tp->rcv_nxt, sp->start_seq)) {
4370                        int i;
4371
4372                        /* RCV.NXT must cover all the block! */
4373                        WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4374
4375                        /* Zap this SACK, by moving forward any other SACKS. */
4376                        for (i=this_sack+1; i < num_sacks; i++)
4377                                tp->selective_acks[i-1] = tp->selective_acks[i];
4378                        num_sacks--;
4379                        continue;
4380                }
4381                this_sack++;
4382                sp++;
4383        }
4384        tp->rx_opt.num_sacks = num_sacks;
4385}
4386
4387/* This one checks to see if we can put data from the
4388 * out_of_order queue into the receive_queue.
4389 */
4390static void tcp_ofo_queue(struct sock *sk)
4391{
4392        struct tcp_sock *tp = tcp_sk(sk);
4393        __u32 dsack_high = tp->rcv_nxt;
4394        struct sk_buff *skb;
4395
4396        while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4397                if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4398                        break;
4399
4400                if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4401                        __u32 dsack = dsack_high;
4402                        if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4403                                dsack_high = TCP_SKB_CB(skb)->end_seq;
4404                        tcp_dsack_extend(sk, TCP_SKB_CB(skb)->