linux/fs/direct-io.c
<<
>>
Prefs
   1/*
   2 * fs/direct-io.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 *
   6 * O_DIRECT
   7 *
   8 * 04Jul2002    Andrew Morton
   9 *              Initial version
  10 * 11Sep2002    janetinc@us.ibm.com
  11 *              added readv/writev support.
  12 * 29Oct2002    Andrew Morton
  13 *              rewrote bio_add_page() support.
  14 * 30Oct2002    pbadari@us.ibm.com
  15 *              added support for non-aligned IO.
  16 * 06Nov2002    pbadari@us.ibm.com
  17 *              added asynchronous IO support.
  18 * 21Jul2003    nathans@sgi.com
  19 *              added IO completion notifier.
  20 */
  21
  22#include <linux/kernel.h>
  23#include <linux/module.h>
  24#include <linux/types.h>
  25#include <linux/fs.h>
  26#include <linux/mm.h>
  27#include <linux/slab.h>
  28#include <linux/highmem.h>
  29#include <linux/pagemap.h>
  30#include <linux/task_io_accounting_ops.h>
  31#include <linux/bio.h>
  32#include <linux/wait.h>
  33#include <linux/err.h>
  34#include <linux/blkdev.h>
  35#include <linux/buffer_head.h>
  36#include <linux/rwsem.h>
  37#include <linux/uio.h>
  38#include <linux/atomic.h>
  39
  40/*
  41 * How many user pages to map in one call to get_user_pages().  This determines
  42 * the size of a structure in the slab cache
  43 */
  44#define DIO_PAGES       64
  45
  46/*
  47 * This code generally works in units of "dio_blocks".  A dio_block is
  48 * somewhere between the hard sector size and the filesystem block size.  it
  49 * is determined on a per-invocation basis.   When talking to the filesystem
  50 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
  51 * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
  52 * to bio_block quantities by shifting left by blkfactor.
  53 *
  54 * If blkfactor is zero then the user's request was aligned to the filesystem's
  55 * blocksize.
  56 */
  57
  58/* dio_state only used in the submission path */
  59
  60struct dio_submit {
  61        struct bio *bio;                /* bio under assembly */
  62        unsigned blkbits;               /* doesn't change */
  63        unsigned blkfactor;             /* When we're using an alignment which
  64                                           is finer than the filesystem's soft
  65                                           blocksize, this specifies how much
  66                                           finer.  blkfactor=2 means 1/4-block
  67                                           alignment.  Does not change */
  68        unsigned start_zero_done;       /* flag: sub-blocksize zeroing has
  69                                           been performed at the start of a
  70                                           write */
  71        int pages_in_io;                /* approximate total IO pages */
  72        size_t  size;                   /* total request size (doesn't change)*/
  73        sector_t block_in_file;         /* Current offset into the underlying
  74                                           file in dio_block units. */
  75        unsigned blocks_available;      /* At block_in_file.  changes */
  76        int reap_counter;               /* rate limit reaping */
  77        sector_t final_block_in_request;/* doesn't change */
  78        unsigned first_block_in_page;   /* doesn't change, Used only once */
  79        int boundary;                   /* prev block is at a boundary */
  80        get_block_t *get_block;         /* block mapping function */
  81        dio_submit_t *submit_io;        /* IO submition function */
  82
  83        loff_t logical_offset_in_bio;   /* current first logical block in bio */
  84        sector_t final_block_in_bio;    /* current final block in bio + 1 */
  85        sector_t next_block_for_io;     /* next block to be put under IO,
  86                                           in dio_blocks units */
  87
  88        /*
  89         * Deferred addition of a page to the dio.  These variables are
  90         * private to dio_send_cur_page(), submit_page_section() and
  91         * dio_bio_add_page().
  92         */
  93        struct page *cur_page;          /* The page */
  94        unsigned cur_page_offset;       /* Offset into it, in bytes */
  95        unsigned cur_page_len;          /* Nr of bytes at cur_page_offset */
  96        sector_t cur_page_block;        /* Where it starts */
  97        loff_t cur_page_fs_offset;      /* Offset in file */
  98
  99        /*
 100         * Page fetching state. These variables belong to dio_refill_pages().
 101         */
 102        int curr_page;                  /* changes */
 103        int total_pages;                /* doesn't change */
 104        unsigned long curr_user_address;/* changes */
 105
 106        /*
 107         * Page queue.  These variables belong to dio_refill_pages() and
 108         * dio_get_page().
 109         */
 110        unsigned head;                  /* next page to process */
 111        unsigned tail;                  /* last valid page + 1 */
 112};
 113
 114/* dio_state communicated between submission path and end_io */
 115struct dio {
 116        int flags;                      /* doesn't change */
 117        int rw;
 118        struct inode *inode;
 119        loff_t i_size;                  /* i_size when submitted */
 120        dio_iodone_t *end_io;           /* IO completion function */
 121
 122        void *private;                  /* copy from map_bh.b_private */
 123
 124        /* BIO completion state */
 125        spinlock_t bio_lock;            /* protects BIO fields below */
 126        int page_errors;                /* errno from get_user_pages() */
 127        int is_async;                   /* is IO async ? */
 128        int io_error;                   /* IO error in completion path */
 129        unsigned long refcount;         /* direct_io_worker() and bios */
 130        struct bio *bio_list;           /* singly linked via bi_private */
 131        struct task_struct *waiter;     /* waiting task (NULL if none) */
 132
 133        /* AIO related stuff */
 134        struct kiocb *iocb;             /* kiocb */
 135        ssize_t result;                 /* IO result */
 136
 137        /*
 138         * pages[] (and any fields placed after it) are not zeroed out at
 139         * allocation time.  Don't add new fields after pages[] unless you
 140         * wish that they not be zeroed.
 141         */
 142        struct page *pages[DIO_PAGES];  /* page buffer */
 143} ____cacheline_aligned_in_smp;
 144
 145static struct kmem_cache *dio_cache __read_mostly;
 146
 147static void __inode_dio_wait(struct inode *inode)
 148{
 149        wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
 150        DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
 151
 152        do {
 153                prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
 154                if (atomic_read(&inode->i_dio_count))
 155                        schedule();
 156        } while (atomic_read(&inode->i_dio_count));
 157        finish_wait(wq, &q.wait);
 158}
 159
 160/**
 161 * inode_dio_wait - wait for outstanding DIO requests to finish
 162 * @inode: inode to wait for
 163 *
 164 * Waits for all pending direct I/O requests to finish so that we can
 165 * proceed with a truncate or equivalent operation.
 166 *
 167 * Must be called under a lock that serializes taking new references
 168 * to i_dio_count, usually by inode->i_mutex.
 169 */
 170void inode_dio_wait(struct inode *inode)
 171{
 172        if (atomic_read(&inode->i_dio_count))
 173                __inode_dio_wait(inode);
 174}
 175EXPORT_SYMBOL_GPL(inode_dio_wait);
 176
 177/*
 178 * inode_dio_done - signal finish of a direct I/O requests
 179 * @inode: inode the direct I/O happens on
 180 *
 181 * This is called once we've finished processing a direct I/O request,
 182 * and is used to wake up callers waiting for direct I/O to be quiesced.
 183 */
 184void inode_dio_done(struct inode *inode)
 185{
 186        if (atomic_dec_and_test(&inode->i_dio_count))
 187                wake_up_bit(&inode->i_state, __I_DIO_WAKEUP);
 188}
 189EXPORT_SYMBOL_GPL(inode_dio_done);
 190
 191/*
 192 * How many pages are in the queue?
 193 */
 194static inline unsigned dio_pages_present(struct dio_submit *sdio)
 195{
 196        return sdio->tail - sdio->head;
 197}
 198
 199/*
 200 * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
 201 */
 202static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
 203{
 204        int ret;
 205        int nr_pages;
 206
 207        nr_pages = min(sdio->total_pages - sdio->curr_page, DIO_PAGES);
 208        ret = get_user_pages_fast(
 209                sdio->curr_user_address,                /* Where from? */
 210                nr_pages,                       /* How many pages? */
 211                dio->rw == READ,                /* Write to memory? */
 212                &dio->pages[0]);                /* Put results here */
 213
 214        if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) {
 215                struct page *page = ZERO_PAGE(0);
 216                /*
 217                 * A memory fault, but the filesystem has some outstanding
 218                 * mapped blocks.  We need to use those blocks up to avoid
 219                 * leaking stale data in the file.
 220                 */
 221                if (dio->page_errors == 0)
 222                        dio->page_errors = ret;
 223                page_cache_get(page);
 224                dio->pages[0] = page;
 225                sdio->head = 0;
 226                sdio->tail = 1;
 227                ret = 0;
 228                goto out;
 229        }
 230
 231        if (ret >= 0) {
 232                sdio->curr_user_address += ret * PAGE_SIZE;
 233                sdio->curr_page += ret;
 234                sdio->head = 0;
 235                sdio->tail = ret;
 236                ret = 0;
 237        }
 238out:
 239        return ret;     
 240}
 241
 242/*
 243 * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
 244 * buffered inside the dio so that we can call get_user_pages() against a
 245 * decent number of pages, less frequently.  To provide nicer use of the
 246 * L1 cache.
 247 */
 248static inline struct page *dio_get_page(struct dio *dio,
 249                struct dio_submit *sdio)
 250{
 251        if (dio_pages_present(sdio) == 0) {
 252                int ret;
 253
 254                ret = dio_refill_pages(dio, sdio);
 255                if (ret)
 256                        return ERR_PTR(ret);
 257                BUG_ON(dio_pages_present(sdio) == 0);
 258        }
 259        return dio->pages[sdio->head++];
 260}
 261
 262/**
 263 * dio_complete() - called when all DIO BIO I/O has been completed
 264 * @offset: the byte offset in the file of the completed operation
 265 *
 266 * This releases locks as dictated by the locking type, lets interested parties
 267 * know that a DIO operation has completed, and calculates the resulting return
 268 * code for the operation.
 269 *
 270 * It lets the filesystem know if it registered an interest earlier via
 271 * get_block.  Pass the private field of the map buffer_head so that
 272 * filesystems can use it to hold additional state between get_block calls and
 273 * dio_complete.
 274 */
 275static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret, bool is_async)
 276{
 277        ssize_t transferred = 0;
 278
 279        /*
 280         * AIO submission can race with bio completion to get here while
 281         * expecting to have the last io completed by bio completion.
 282         * In that case -EIOCBQUEUED is in fact not an error we want
 283         * to preserve through this call.
 284         */
 285        if (ret == -EIOCBQUEUED)
 286                ret = 0;
 287
 288        if (dio->result) {
 289                transferred = dio->result;
 290
 291                /* Check for short read case */
 292                if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
 293                        transferred = dio->i_size - offset;
 294        }
 295
 296        if (ret == 0)
 297                ret = dio->page_errors;
 298        if (ret == 0)
 299                ret = dio->io_error;
 300        if (ret == 0)
 301                ret = transferred;
 302
 303        if (dio->end_io && dio->result) {
 304                dio->end_io(dio->iocb, offset, transferred,
 305                            dio->private, ret, is_async);
 306        } else {
 307                if (is_async)
 308                        aio_complete(dio->iocb, ret, 0);
 309                inode_dio_done(dio->inode);
 310        }
 311
 312        return ret;
 313}
 314
 315static int dio_bio_complete(struct dio *dio, struct bio *bio);
 316/*
 317 * Asynchronous IO callback. 
 318 */
 319static void dio_bio_end_aio(struct bio *bio, int error)
 320{
 321        struct dio *dio = bio->bi_private;
 322        unsigned long remaining;
 323        unsigned long flags;
 324
 325        /* cleanup the bio */
 326        dio_bio_complete(dio, bio);
 327
 328        spin_lock_irqsave(&dio->bio_lock, flags);
 329        remaining = --dio->refcount;
 330        if (remaining == 1 && dio->waiter)
 331                wake_up_process(dio->waiter);
 332        spin_unlock_irqrestore(&dio->bio_lock, flags);
 333
 334        if (remaining == 0) {
 335                dio_complete(dio, dio->iocb->ki_pos, 0, true);
 336                kmem_cache_free(dio_cache, dio);
 337        }
 338}
 339
 340/*
 341 * The BIO completion handler simply queues the BIO up for the process-context
 342 * handler.
 343 *
 344 * During I/O bi_private points at the dio.  After I/O, bi_private is used to
 345 * implement a singly-linked list of completed BIOs, at dio->bio_list.
 346 */
 347static void dio_bio_end_io(struct bio *bio, int error)
 348{
 349        struct dio *dio = bio->bi_private;
 350        unsigned long flags;
 351
 352        spin_lock_irqsave(&dio->bio_lock, flags);
 353        bio->bi_private = dio->bio_list;
 354        dio->bio_list = bio;
 355        if (--dio->refcount == 1 && dio->waiter)
 356                wake_up_process(dio->waiter);
 357        spin_unlock_irqrestore(&dio->bio_lock, flags);
 358}
 359
 360/**
 361 * dio_end_io - handle the end io action for the given bio
 362 * @bio: The direct io bio thats being completed
 363 * @error: Error if there was one
 364 *
 365 * This is meant to be called by any filesystem that uses their own dio_submit_t
 366 * so that the DIO specific endio actions are dealt with after the filesystem
 367 * has done it's completion work.
 368 */
 369void dio_end_io(struct bio *bio, int error)
 370{
 371        struct dio *dio = bio->bi_private;
 372
 373        if (dio->is_async)
 374                dio_bio_end_aio(bio, error);
 375        else
 376                dio_bio_end_io(bio, error);
 377}
 378EXPORT_SYMBOL_GPL(dio_end_io);
 379
 380static inline void
 381dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
 382              struct block_device *bdev,
 383              sector_t first_sector, int nr_vecs)
 384{
 385        struct bio *bio;
 386
 387        /*
 388         * bio_alloc() is guaranteed to return a bio when called with
 389         * __GFP_WAIT and we request a valid number of vectors.
 390         */
 391        bio = bio_alloc(GFP_KERNEL, nr_vecs);
 392
 393        bio->bi_bdev = bdev;
 394        bio->bi_sector = first_sector;
 395        if (dio->is_async)
 396                bio->bi_end_io = dio_bio_end_aio;
 397        else
 398                bio->bi_end_io = dio_bio_end_io;
 399
 400        sdio->bio = bio;
 401        sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
 402}
 403
 404/*
 405 * In the AIO read case we speculatively dirty the pages before starting IO.
 406 * During IO completion, any of these pages which happen to have been written
 407 * back will be redirtied by bio_check_pages_dirty().
 408 *
 409 * bios hold a dio reference between submit_bio and ->end_io.
 410 */
 411static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
 412{
 413        struct bio *bio = sdio->bio;
 414        unsigned long flags;
 415
 416        bio->bi_private = dio;
 417
 418        spin_lock_irqsave(&dio->bio_lock, flags);
 419        dio->refcount++;
 420        spin_unlock_irqrestore(&dio->bio_lock, flags);
 421
 422        if (dio->is_async && dio->rw == READ)
 423                bio_set_pages_dirty(bio);
 424
 425        if (sdio->submit_io)
 426                sdio->submit_io(dio->rw, bio, dio->inode,
 427                               sdio->logical_offset_in_bio);
 428        else
 429                submit_bio(dio->rw, bio);
 430
 431        sdio->bio = NULL;
 432        sdio->boundary = 0;
 433        sdio->logical_offset_in_bio = 0;
 434}
 435
 436/*
 437 * Release any resources in case of a failure
 438 */
 439static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
 440{
 441        while (dio_pages_present(sdio))
 442                page_cache_release(dio_get_page(dio, sdio));
 443}
 444
 445/*
 446 * Wait for the next BIO to complete.  Remove it and return it.  NULL is
 447 * returned once all BIOs have been completed.  This must only be called once
 448 * all bios have been issued so that dio->refcount can only decrease.  This
 449 * requires that that the caller hold a reference on the dio.
 450 */
 451static struct bio *dio_await_one(struct dio *dio)
 452{
 453        unsigned long flags;
 454        struct bio *bio = NULL;
 455
 456        spin_lock_irqsave(&dio->bio_lock, flags);
 457
 458        /*
 459         * Wait as long as the list is empty and there are bios in flight.  bio
 460         * completion drops the count, maybe adds to the list, and wakes while
 461         * holding the bio_lock so we don't need set_current_state()'s barrier
 462         * and can call it after testing our condition.
 463         */
 464        while (dio->refcount > 1 && dio->bio_list == NULL) {
 465                __set_current_state(TASK_UNINTERRUPTIBLE);
 466                dio->waiter = current;
 467                spin_unlock_irqrestore(&dio->bio_lock, flags);
 468                io_schedule();
 469                /* wake up sets us TASK_RUNNING */
 470                spin_lock_irqsave(&dio->bio_lock, flags);
 471                dio->waiter = NULL;
 472        }
 473        if (dio->bio_list) {
 474                bio = dio->bio_list;
 475                dio->bio_list = bio->bi_private;
 476        }
 477        spin_unlock_irqrestore(&dio->bio_lock, flags);
 478        return bio;
 479}
 480
 481/*
 482 * Process one completed BIO.  No locks are held.
 483 */
 484static int dio_bio_complete(struct dio *dio, struct bio *bio)
 485{
 486        const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 487        struct bio_vec *bvec = bio->bi_io_vec;
 488        int page_no;
 489
 490        if (!uptodate)
 491                dio->io_error = -EIO;
 492
 493        if (dio->is_async && dio->rw == READ) {
 494                bio_check_pages_dirty(bio);     /* transfers ownership */
 495        } else {
 496                for (page_no = 0; page_no < bio->bi_vcnt; page_no++) {
 497                        struct page *page = bvec[page_no].bv_page;
 498
 499                        if (dio->rw == READ && !PageCompound(page))
 500                                set_page_dirty_lock(page);
 501                        page_cache_release(page);
 502                }
 503                bio_put(bio);
 504        }
 505        return uptodate ? 0 : -EIO;
 506}
 507
 508/*
 509 * Wait on and process all in-flight BIOs.  This must only be called once
 510 * all bios have been issued so that the refcount can only decrease.
 511 * This just waits for all bios to make it through dio_bio_complete.  IO
 512 * errors are propagated through dio->io_error and should be propagated via
 513 * dio_complete().
 514 */
 515static void dio_await_completion(struct dio *dio)
 516{
 517        struct bio *bio;
 518        do {
 519                bio = dio_await_one(dio);
 520                if (bio)
 521                        dio_bio_complete(dio, bio);
 522        } while (bio);
 523}
 524
 525/*
 526 * A really large O_DIRECT read or write can generate a lot of BIOs.  So
 527 * to keep the memory consumption sane we periodically reap any completed BIOs
 528 * during the BIO generation phase.
 529 *
 530 * This also helps to limit the peak amount of pinned userspace memory.
 531 */
 532static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
 533{
 534        int ret = 0;
 535
 536        if (sdio->reap_counter++ >= 64) {
 537                while (dio->bio_list) {
 538                        unsigned long flags;
 539                        struct bio *bio;
 540                        int ret2;
 541
 542                        spin_lock_irqsave(&dio->bio_lock, flags);
 543                        bio = dio->bio_list;
 544                        dio->bio_list = bio->bi_private;
 545                        spin_unlock_irqrestore(&dio->bio_lock, flags);
 546                        ret2 = dio_bio_complete(dio, bio);
 547                        if (ret == 0)
 548                                ret = ret2;
 549                }
 550                sdio->reap_counter = 0;
 551        }
 552        return ret;
 553}
 554
 555/*
 556 * Call into the fs to map some more disk blocks.  We record the current number
 557 * of available blocks at sdio->blocks_available.  These are in units of the
 558 * fs blocksize, (1 << inode->i_blkbits).
 559 *
 560 * The fs is allowed to map lots of blocks at once.  If it wants to do that,
 561 * it uses the passed inode-relative block number as the file offset, as usual.
 562 *
 563 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
 564 * has remaining to do.  The fs should not map more than this number of blocks.
 565 *
 566 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
 567 * indicate how much contiguous disk space has been made available at
 568 * bh->b_blocknr.
 569 *
 570 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
 571 * This isn't very efficient...
 572 *
 573 * In the case of filesystem holes: the fs may return an arbitrarily-large
 574 * hole by returning an appropriate value in b_size and by clearing
 575 * buffer_mapped().  However the direct-io code will only process holes one
 576 * block at a time - it will repeatedly call get_block() as it walks the hole.
 577 */
 578static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
 579                           struct buffer_head *map_bh)
 580{
 581        int ret;
 582        sector_t fs_startblk;   /* Into file, in filesystem-sized blocks */
 583        unsigned long fs_count; /* Number of filesystem-sized blocks */
 584        unsigned long dio_count;/* Number of dio_block-sized blocks */
 585        unsigned long blkmask;
 586        int create;
 587
 588        /*
 589         * If there was a memory error and we've overwritten all the
 590         * mapped blocks then we can now return that memory error
 591         */
 592        ret = dio->page_errors;
 593        if (ret == 0) {
 594                BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
 595                fs_startblk = sdio->block_in_file >> sdio->blkfactor;
 596                dio_count = sdio->final_block_in_request - sdio->block_in_file;
 597                fs_count = dio_count >> sdio->blkfactor;
 598                blkmask = (1 << sdio->blkfactor) - 1;
 599                if (dio_count & blkmask)        
 600                        fs_count++;
 601
 602                map_bh->b_state = 0;
 603                map_bh->b_size = fs_count << dio->inode->i_blkbits;
 604
 605                /*
 606                 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
 607                 * forbid block creations: only overwrites are permitted.
 608                 * We will return early to the caller once we see an
 609                 * unmapped buffer head returned, and the caller will fall
 610                 * back to buffered I/O.
 611                 *
 612                 * Otherwise the decision is left to the get_blocks method,
 613                 * which may decide to handle it or also return an unmapped
 614                 * buffer head.
 615                 */
 616                create = dio->rw & WRITE;
 617                if (dio->flags & DIO_SKIP_HOLES) {
 618                        if (sdio->block_in_file < (i_size_read(dio->inode) >>
 619                                                        sdio->blkbits))
 620                                create = 0;
 621                }
 622
 623                ret = (*sdio->get_block)(dio->inode, fs_startblk,
 624                                                map_bh, create);
 625
 626                /* Store for completion */
 627                dio->private = map_bh->b_private;
 628        }
 629        return ret;
 630}
 631
 632/*
 633 * There is no bio.  Make one now.
 634 */
 635static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
 636                sector_t start_sector, struct buffer_head *map_bh)
 637{
 638        sector_t sector;
 639        int ret, nr_pages;
 640
 641        ret = dio_bio_reap(dio, sdio);
 642        if (ret)
 643                goto out;
 644        sector = start_sector << (sdio->blkbits - 9);
 645        nr_pages = min(sdio->pages_in_io, bio_get_nr_vecs(map_bh->b_bdev));
 646        nr_pages = min(nr_pages, BIO_MAX_PAGES);
 647        BUG_ON(nr_pages <= 0);
 648        dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
 649        sdio->boundary = 0;
 650out:
 651        return ret;
 652}
 653
 654/*
 655 * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
 656 * that was successful then update final_block_in_bio and take a ref against
 657 * the just-added page.
 658 *
 659 * Return zero on success.  Non-zero means the caller needs to start a new BIO.
 660 */
 661static inline int dio_bio_add_page(struct dio_submit *sdio)
 662{
 663        int ret;
 664
 665        ret = bio_add_page(sdio->bio, sdio->cur_page,
 666                        sdio->cur_page_len, sdio->cur_page_offset);
 667        if (ret == sdio->cur_page_len) {
 668                /*
 669                 * Decrement count only, if we are done with this page
 670                 */
 671                if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
 672                        sdio->pages_in_io--;
 673                page_cache_get(sdio->cur_page);
 674                sdio->final_block_in_bio = sdio->cur_page_block +
 675                        (sdio->cur_page_len >> sdio->blkbits);
 676                ret = 0;
 677        } else {
 678                ret = 1;
 679        }
 680        return ret;
 681}
 682                
 683/*
 684 * Put cur_page under IO.  The section of cur_page which is described by
 685 * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
 686 * starts on-disk at cur_page_block.
 687 *
 688 * We take a ref against the page here (on behalf of its presence in the bio).
 689 *
 690 * The caller of this function is responsible for removing cur_page from the
 691 * dio, and for dropping the refcount which came from that presence.
 692 */
 693static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
 694                struct buffer_head *map_bh)
 695{
 696        int ret = 0;
 697
 698        if (sdio->bio) {
 699                loff_t cur_offset = sdio->cur_page_fs_offset;
 700                loff_t bio_next_offset = sdio->logical_offset_in_bio +
 701                        sdio->bio->bi_size;
 702
 703                /*
 704                 * See whether this new request is contiguous with the old.
 705                 *
 706                 * Btrfs cannot handle having logically non-contiguous requests
 707                 * submitted.  For example if you have
 708                 *
 709                 * Logical:  [0-4095][HOLE][8192-12287]
 710                 * Physical: [0-4095]      [4096-8191]
 711                 *
 712                 * We cannot submit those pages together as one BIO.  So if our
 713                 * current logical offset in the file does not equal what would
 714                 * be the next logical offset in the bio, submit the bio we
 715                 * have.
 716                 */
 717                if (sdio->final_block_in_bio != sdio->cur_page_block ||
 718                    cur_offset != bio_next_offset)
 719                        dio_bio_submit(dio, sdio);
 720                /*
 721                 * Submit now if the underlying fs is about to perform a
 722                 * metadata read
 723                 */
 724                else if (sdio->boundary)
 725                        dio_bio_submit(dio, sdio);
 726        }
 727
 728        if (sdio->bio == NULL) {
 729                ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
 730                if (ret)
 731                        goto out;
 732        }
 733
 734        if (dio_bio_add_page(sdio) != 0) {
 735                dio_bio_submit(dio, sdio);
 736                ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
 737                if (ret == 0) {
 738                        ret = dio_bio_add_page(sdio);
 739                        BUG_ON(ret != 0);
 740                }
 741        }
 742out:
 743        return ret;
 744}
 745
 746/*
 747 * An autonomous function to put a chunk of a page under deferred IO.
 748 *
 749 * The caller doesn't actually know (or care) whether this piece of page is in
 750 * a BIO, or is under IO or whatever.  We just take care of all possible 
 751 * situations here.  The separation between the logic of do_direct_IO() and
 752 * that of submit_page_section() is important for clarity.  Please don't break.
 753 *
 754 * The chunk of page starts on-disk at blocknr.
 755 *
 756 * We perform deferred IO, by recording the last-submitted page inside our
 757 * private part of the dio structure.  If possible, we just expand the IO
 758 * across that page here.
 759 *
 760 * If that doesn't work out then we put the old page into the bio and add this
 761 * page to the dio instead.
 762 */
 763static inline int
 764submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
 765                    unsigned offset, unsigned len, sector_t blocknr,
 766                    struct buffer_head *map_bh)
 767{
 768        int ret = 0;
 769
 770        if (dio->rw & WRITE) {
 771                /*
 772                 * Read accounting is performed in submit_bio()
 773                 */
 774                task_io_account_write(len);
 775        }
 776
 777        /*
 778         * Can we just grow the current page's presence in the dio?
 779         */
 780        if (sdio->cur_page == page &&
 781            sdio->cur_page_offset + sdio->cur_page_len == offset &&
 782            sdio->cur_page_block +
 783            (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
 784                sdio->cur_page_len += len;
 785
 786                /*
 787                 * If sdio->boundary then we want to schedule the IO now to
 788                 * avoid metadata seeks.
 789                 */
 790                if (sdio->boundary) {
 791                        ret = dio_send_cur_page(dio, sdio, map_bh);
 792                        page_cache_release(sdio->cur_page);
 793                        sdio->cur_page = NULL;
 794                }
 795                goto out;
 796        }
 797
 798        /*
 799         * If there's a deferred page already there then send it.
 800         */
 801        if (sdio->cur_page) {
 802                ret = dio_send_cur_page(dio, sdio, map_bh);
 803                page_cache_release(sdio->cur_page);
 804                sdio->cur_page = NULL;
 805                if (ret)
 806                        goto out;
 807        }
 808
 809        page_cache_get(page);           /* It is in dio */
 810        sdio->cur_page = page;
 811        sdio->cur_page_offset = offset;
 812        sdio->cur_page_len = len;
 813        sdio->cur_page_block = blocknr;
 814        sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
 815out:
 816        return ret;
 817}
 818
 819/*
 820 * Clean any dirty buffers in the blockdev mapping which alias newly-created
 821 * file blocks.  Only called for S_ISREG files - blockdevs do not set
 822 * buffer_new
 823 */
 824static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh)
 825{
 826        unsigned i;
 827        unsigned nblocks;
 828
 829        nblocks = map_bh->b_size >> dio->inode->i_blkbits;
 830
 831        for (i = 0; i < nblocks; i++) {
 832                unmap_underlying_metadata(map_bh->b_bdev,
 833                                          map_bh->b_blocknr + i);
 834        }
 835}
 836
 837/*
 838 * If we are not writing the entire block and get_block() allocated
 839 * the block for us, we need to fill-in the unused portion of the
 840 * block with zeros. This happens only if user-buffer, fileoffset or
 841 * io length is not filesystem block-size multiple.
 842 *
 843 * `end' is zero if we're doing the start of the IO, 1 at the end of the
 844 * IO.
 845 */
 846static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
 847                int end, struct buffer_head *map_bh)
 848{
 849        unsigned dio_blocks_per_fs_block;
 850        unsigned this_chunk_blocks;     /* In dio_blocks */
 851        unsigned this_chunk_bytes;
 852        struct page *page;
 853
 854        sdio->start_zero_done = 1;
 855        if (!sdio->blkfactor || !buffer_new(map_bh))
 856                return;
 857
 858        dio_blocks_per_fs_block = 1 << sdio->blkfactor;
 859        this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
 860
 861        if (!this_chunk_blocks)
 862                return;
 863
 864        /*
 865         * We need to zero out part of an fs block.  It is either at the
 866         * beginning or the end of the fs block.
 867         */
 868        if (end) 
 869                this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
 870
 871        this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
 872
 873        page = ZERO_PAGE(0);
 874        if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
 875                                sdio->next_block_for_io, map_bh))
 876                return;
 877
 878        sdio->next_block_for_io += this_chunk_blocks;
 879}
 880
 881/*
 882 * Walk the user pages, and the file, mapping blocks to disk and generating
 883 * a sequence of (page,offset,len,block) mappings.  These mappings are injected
 884 * into submit_page_section(), which takes care of the next stage of submission
 885 *
 886 * Direct IO against a blockdev is different from a file.  Because we can
 887 * happily perform page-sized but 512-byte aligned IOs.  It is important that
 888 * blockdev IO be able to have fine alignment and large sizes.
 889 *
 890 * So what we do is to permit the ->get_block function to populate bh.b_size
 891 * with the size of IO which is permitted at this offset and this i_blkbits.
 892 *
 893 * For best results, the blockdev should be set up with 512-byte i_blkbits and
 894 * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
 895 * fine alignment but still allows this function to work in PAGE_SIZE units.
 896 */
 897static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
 898                        struct buffer_head *map_bh)
 899{
 900        const unsigned blkbits = sdio->blkbits;
 901        const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
 902        struct page *page;
 903        unsigned block_in_page;
 904        int ret = 0;
 905
 906        /* The I/O can start at any block offset within the first page */
 907        block_in_page = sdio->first_block_in_page;
 908
 909        while (sdio->block_in_file < sdio->final_block_in_request) {
 910                page = dio_get_page(dio, sdio);
 911                if (IS_ERR(page)) {
 912                        ret = PTR_ERR(page);
 913                        goto out;
 914                }
 915
 916                while (block_in_page < blocks_per_page) {
 917                        unsigned offset_in_page = block_in_page << blkbits;
 918                        unsigned this_chunk_bytes;      /* # of bytes mapped */
 919                        unsigned this_chunk_blocks;     /* # of blocks */
 920                        unsigned u;
 921
 922                        if (sdio->blocks_available == 0) {
 923                                /*
 924                                 * Need to go and map some more disk
 925                                 */
 926                                unsigned long blkmask;
 927                                unsigned long dio_remainder;
 928
 929                                ret = get_more_blocks(dio, sdio, map_bh);
 930                                if (ret) {
 931                                        page_cache_release(page);
 932                                        goto out;
 933                                }
 934                                if (!buffer_mapped(map_bh))
 935                                        goto do_holes;
 936
 937                                sdio->blocks_available =
 938                                                map_bh->b_size >> sdio->blkbits;
 939                                sdio->next_block_for_io =
 940                                        map_bh->b_blocknr << sdio->blkfactor;
 941                                if (buffer_new(map_bh))
 942                                        clean_blockdev_aliases(dio, map_bh);
 943
 944                                if (!sdio->blkfactor)
 945                                        goto do_holes;
 946
 947                                blkmask = (1 << sdio->blkfactor) - 1;
 948                                dio_remainder = (sdio->block_in_file & blkmask);
 949
 950                                /*
 951                                 * If we are at the start of IO and that IO
 952                                 * starts partway into a fs-block,
 953                                 * dio_remainder will be non-zero.  If the IO
 954                                 * is a read then we can simply advance the IO
 955                                 * cursor to the first block which is to be
 956                                 * read.  But if the IO is a write and the
 957                                 * block was newly allocated we cannot do that;
 958                                 * the start of the fs block must be zeroed out
 959                                 * on-disk
 960                                 */
 961                                if (!buffer_new(map_bh))
 962                                        sdio->next_block_for_io += dio_remainder;
 963                                sdio->blocks_available -= dio_remainder;
 964                        }
 965do_holes:
 966                        /* Handle holes */
 967                        if (!buffer_mapped(map_bh)) {
 968                                loff_t i_size_aligned;
 969
 970                                /* AKPM: eargh, -ENOTBLK is a hack */
 971                                if (dio->rw & WRITE) {
 972                                        page_cache_release(page);
 973                                        return -ENOTBLK;
 974                                }
 975
 976                                /*
 977                                 * Be sure to account for a partial block as the
 978                                 * last block in the file
 979                                 */
 980                                i_size_aligned = ALIGN(i_size_read(dio->inode),
 981                                                        1 << blkbits);
 982                                if (sdio->block_in_file >=
 983                                                i_size_aligned >> blkbits) {
 984                                        /* We hit eof */
 985                                        page_cache_release(page);
 986                                        goto out;
 987                                }
 988                                zero_user(page, block_in_page << blkbits,
 989                                                1 << blkbits);
 990                                sdio->block_in_file++;
 991                                block_in_page++;
 992                                goto next_block;
 993                        }
 994
 995                        /*
 996                         * If we're performing IO which has an alignment which
 997                         * is finer than the underlying fs, go check to see if
 998                         * we must zero out the start of this block.
 999                         */
1000                        if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1001                                dio_zero_block(dio, sdio, 0, map_bh);
1002
1003                        /*
1004                         * Work out, in this_chunk_blocks, how much disk we
1005                         * can add to this page
1006                         */
1007                        this_chunk_blocks = sdio->blocks_available;
1008                        u = (PAGE_SIZE - offset_in_page) >> blkbits;
1009                        if (this_chunk_blocks > u)
1010                                this_chunk_blocks = u;
1011                        u = sdio->final_block_in_request - sdio->block_in_file;
1012                        if (this_chunk_blocks > u)
1013                                this_chunk_blocks = u;
1014                        this_chunk_bytes = this_chunk_blocks << blkbits;
1015                        BUG_ON(this_chunk_bytes == 0);
1016
1017                        sdio->boundary = buffer_boundary(map_bh);
1018                        ret = submit_page_section(dio, sdio, page,
1019                                                  offset_in_page,
1020                                                  this_chunk_bytes,
1021                                                  sdio->next_block_for_io,
1022                                                  map_bh);
1023                        if (ret) {
1024                                page_cache_release(page);
1025                                goto out;
1026                        }
1027                        sdio->next_block_for_io += this_chunk_blocks;
1028
1029                        sdio->block_in_file += this_chunk_blocks;
1030                        block_in_page += this_chunk_blocks;
1031                        sdio->blocks_available -= this_chunk_blocks;
1032next_block:
1033                        BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1034                        if (sdio->block_in_file == sdio->final_block_in_request)
1035                                break;
1036                }
1037
1038                /* Drop the ref which was taken in get_user_pages() */
1039                page_cache_release(page);
1040                block_in_page = 0;
1041        }
1042out:
1043        return ret;
1044}
1045
1046static inline int drop_refcount(struct dio *dio)
1047{
1048        int ret2;
1049        unsigned long flags;
1050
1051        /*
1052         * Sync will always be dropping the final ref and completing the
1053         * operation.  AIO can if it was a broken operation described above or
1054         * in fact if all the bios race to complete before we get here.  In
1055         * that case dio_complete() translates the EIOCBQUEUED into the proper
1056         * return code that the caller will hand to aio_complete().
1057         *
1058         * This is managed by the bio_lock instead of being an atomic_t so that
1059         * completion paths can drop their ref and use the remaining count to
1060         * decide to wake the submission path atomically.
1061         */
1062        spin_lock_irqsave(&dio->bio_lock, flags);
1063        ret2 = --dio->refcount;
1064        spin_unlock_irqrestore(&dio->bio_lock, flags);
1065        return ret2;
1066}
1067
1068/*
1069 * This is a library function for use by filesystem drivers.
1070 *
1071 * The locking rules are governed by the flags parameter:
1072 *  - if the flags value contains DIO_LOCKING we use a fancy locking
1073 *    scheme for dumb filesystems.
1074 *    For writes this function is called under i_mutex and returns with
1075 *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1076 *    taken and dropped again before returning.
1077 *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1078 *    internal locking but rather rely on the filesystem to synchronize
1079 *    direct I/O reads/writes versus each other and truncate.
1080 *
1081 * To help with locking against truncate we incremented the i_dio_count
1082 * counter before starting direct I/O, and decrement it once we are done.
1083 * Truncate can wait for it to reach zero to provide exclusion.  It is
1084 * expected that filesystem provide exclusion between new direct I/O
1085 * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1086 * but other filesystems need to take care of this on their own.
1087 *
1088 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1089 * is always inlined. Otherwise gcc is unable to split the structure into
1090 * individual fields and will generate much worse code. This is important
1091 * for the whole file.
1092 */
1093ssize_t
1094__blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1095        struct block_device *bdev, const struct iovec *iov, loff_t offset, 
1096        unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1097        dio_submit_t submit_io, int flags)
1098{
1099        int seg;
1100        size_t size;
1101        unsigned long addr;
1102        unsigned blkbits = inode->i_blkbits;
1103        unsigned bdev_blkbits = 0;
1104        unsigned blocksize_mask = (1 << blkbits) - 1;
1105        ssize_t retval = -EINVAL;
1106        loff_t end = offset;
1107        struct dio *dio;
1108        struct dio_submit sdio = { 0, };
1109        unsigned long user_addr;
1110        size_t bytes;
1111        struct buffer_head map_bh = { 0, };
1112
1113        if (rw & WRITE)
1114                rw = WRITE_ODIRECT;
1115
1116        if (bdev)
1117                bdev_blkbits = blksize_bits(bdev_logical_block_size(bdev));
1118
1119        if (offset & blocksize_mask) {
1120                if (bdev)
1121                         blkbits = bdev_blkbits;
1122                blocksize_mask = (1 << blkbits) - 1;
1123                if (offset & blocksize_mask)
1124                        goto out;
1125        }
1126
1127        /* Check the memory alignment.  Blocks cannot straddle pages */
1128        for (seg = 0; seg < nr_segs; seg++) {
1129                addr = (unsigned long)iov[seg].iov_base;
1130                size = iov[seg].iov_len;
1131                end += size;
1132                if ((addr & blocksize_mask) || (size & blocksize_mask))  {
1133                        if (bdev)
1134                                 blkbits = bdev_blkbits;
1135                        blocksize_mask = (1 << blkbits) - 1;
1136                        if ((addr & blocksize_mask) || (size & blocksize_mask))  
1137                                goto out;
1138                }
1139        }
1140
1141        /* watch out for a 0 len io from a tricksy fs */
1142        if (rw == READ && end == offset)
1143                return 0;
1144
1145        dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1146        retval = -ENOMEM;
1147        if (!dio)
1148                goto out;
1149        /*
1150         * Believe it or not, zeroing out the page array caused a .5%
1151         * performance regression in a database benchmark.  So, we take
1152         * care to only zero out what's needed.
1153         */
1154        memset(dio, 0, offsetof(struct dio, pages));
1155
1156        dio->flags = flags;
1157        if (dio->flags & DIO_LOCKING) {
1158                if (rw == READ) {
1159                        struct address_space *mapping =
1160                                        iocb->ki_filp->f_mapping;
1161
1162                        /* will be released by direct_io_worker */
1163                        mutex_lock(&inode->i_mutex);
1164
1165                        retval = filemap_write_and_wait_range(mapping, offset,
1166                                                              end - 1);
1167                        if (retval) {
1168                                mutex_unlock(&inode->i_mutex);
1169                                kmem_cache_free(dio_cache, dio);
1170                                goto out;
1171                        }
1172                }
1173        }
1174
1175        /*
1176         * Will be decremented at I/O completion time.
1177         */
1178        atomic_inc(&inode->i_dio_count);
1179
1180        /*
1181         * For file extending writes updating i_size before data
1182         * writeouts complete can expose uninitialized blocks. So
1183         * even for AIO, we need to wait for i/o to complete before
1184         * returning in this case.
1185         */
1186        dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) &&
1187                (end > i_size_read(inode)));
1188
1189        retval = 0;
1190
1191        dio->inode = inode;
1192        dio->rw = rw;
1193        sdio.blkbits = blkbits;
1194        sdio.blkfactor = inode->i_blkbits - blkbits;
1195        sdio.block_in_file = offset >> blkbits;
1196
1197        sdio.get_block = get_block;
1198        dio->end_io = end_io;
1199        sdio.submit_io = submit_io;
1200        sdio.final_block_in_bio = -1;
1201        sdio.next_block_for_io = -1;
1202
1203        dio->iocb = iocb;
1204        dio->i_size = i_size_read(inode);
1205
1206        spin_lock_init(&dio->bio_lock);
1207        dio->refcount = 1;
1208
1209        /*
1210         * In case of non-aligned buffers, we may need 2 more
1211         * pages since we need to zero out first and last block.
1212         */
1213        if (unlikely(sdio.blkfactor))
1214                sdio.pages_in_io = 2;
1215
1216        for (seg = 0; seg < nr_segs; seg++) {
1217                user_addr = (unsigned long)iov[seg].iov_base;
1218                sdio.pages_in_io +=
1219                        ((user_addr + iov[seg].iov_len + PAGE_SIZE-1) /
1220                                PAGE_SIZE - user_addr / PAGE_SIZE);
1221        }
1222
1223        for (seg = 0; seg < nr_segs; seg++) {
1224                user_addr = (unsigned long)iov[seg].iov_base;
1225                sdio.size += bytes = iov[seg].iov_len;
1226
1227                /* Index into the first page of the first block */
1228                sdio.first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
1229                sdio.final_block_in_request = sdio.block_in_file +
1230                                                (bytes >> blkbits);
1231                /* Page fetching state */
1232                sdio.head = 0;
1233                sdio.tail = 0;
1234                sdio.curr_page = 0;
1235
1236                sdio.total_pages = 0;
1237                if (user_addr & (PAGE_SIZE-1)) {
1238                        sdio.total_pages++;
1239                        bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
1240                }
1241                sdio.total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1242                sdio.curr_user_address = user_addr;
1243
1244                retval = do_direct_IO(dio, &sdio, &map_bh);
1245
1246                dio->result += iov[seg].iov_len -
1247                        ((sdio.final_block_in_request - sdio.block_in_file) <<
1248                                        blkbits);
1249
1250                if (retval) {
1251                        dio_cleanup(dio, &sdio);
1252                        break;
1253                }
1254        } /* end iovec loop */
1255
1256        if (retval == -ENOTBLK) {
1257                /*
1258                 * The remaining part of the request will be
1259                 * be handled by buffered I/O when we return
1260                 */
1261                retval = 0;
1262        }
1263        /*
1264         * There may be some unwritten disk at the end of a part-written
1265         * fs-block-sized block.  Go zero that now.
1266         */
1267        dio_zero_block(dio, &sdio, 1, &map_bh);
1268
1269        if (sdio.cur_page) {
1270                ssize_t ret2;
1271
1272                ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1273                if (retval == 0)
1274                        retval = ret2;
1275                page_cache_release(sdio.cur_page);
1276                sdio.cur_page = NULL;
1277        }
1278        if (sdio.bio)
1279                dio_bio_submit(dio, &sdio);
1280
1281        /*
1282         * It is possible that, we return short IO due to end of file.
1283         * In that case, we need to release all the pages we got hold on.
1284         */
1285        dio_cleanup(dio, &sdio);
1286
1287        /*
1288         * All block lookups have been performed. For READ requests
1289         * we can let i_mutex go now that its achieved its purpose
1290         * of protecting us from looking up uninitialized blocks.
1291         */
1292        if (rw == READ && (dio->flags & DIO_LOCKING))
1293                mutex_unlock(&dio->inode->i_mutex);
1294
1295        /*
1296         * The only time we want to leave bios in flight is when a successful
1297         * partial aio read or full aio write have been setup.  In that case
1298         * bio completion will call aio_complete.  The only time it's safe to
1299         * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1300         * This had *better* be the only place that raises -EIOCBQUEUED.
1301         */
1302        BUG_ON(retval == -EIOCBQUEUED);
1303        if (dio->is_async && retval == 0 && dio->result &&
1304            ((rw & READ) || (dio->result == sdio.size)))
1305                retval = -EIOCBQUEUED;
1306
1307        if (retval != -EIOCBQUEUED)
1308                dio_await_completion(dio);
1309
1310        if (drop_refcount(dio) == 0) {
1311                retval = dio_complete(dio, offset, retval, false);
1312                kmem_cache_free(dio_cache, dio);
1313        } else
1314                BUG_ON(retval != -EIOCBQUEUED);
1315
1316out:
1317        return retval;
1318}
1319EXPORT_SYMBOL(__blockdev_direct_IO);
1320
1321static __init int dio_init(void)
1322{
1323        dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1324        return 0;
1325}
1326module_init(dio_init)
1327