linux/fs/dcache.c
<<
>>
Prefs
   1/*
   2 * fs/dcache.c
   3 *
   4 * Complete reimplementation
   5 * (C) 1997 Thomas Schoebel-Theuer,
   6 * with heavy changes by Linus Torvalds
   7 */
   8
   9/*
  10 * Notes on the allocation strategy:
  11 *
  12 * The dcache is a master of the icache - whenever a dcache entry
  13 * exists, the inode will always exist. "iput()" is done either when
  14 * the dcache entry is deleted or garbage collected.
  15 */
  16
  17#include <linux/syscalls.h>
  18#include <linux/string.h>
  19#include <linux/mm.h>
  20#include <linux/fs.h>
  21#include <linux/fsnotify.h>
  22#include <linux/slab.h>
  23#include <linux/init.h>
  24#include <linux/hash.h>
  25#include <linux/cache.h>
  26#include <linux/module.h>
  27#include <linux/mount.h>
  28#include <linux/file.h>
  29#include <asm/uaccess.h>
  30#include <linux/security.h>
  31#include <linux/seqlock.h>
  32#include <linux/swap.h>
  33#include <linux/bootmem.h>
  34#include <linux/fs_struct.h>
  35#include <linux/hardirq.h>
  36#include <linux/bit_spinlock.h>
  37#include <linux/rculist_bl.h>
  38#include <linux/prefetch.h>
  39#include <linux/ratelimit.h>
  40#include "internal.h"
  41
  42/*
  43 * Usage:
  44 * dcache->d_inode->i_lock protects:
  45 *   - i_dentry, d_alias, d_inode of aliases
  46 * dcache_hash_bucket lock protects:
  47 *   - the dcache hash table
  48 * s_anon bl list spinlock protects:
  49 *   - the s_anon list (see __d_drop)
  50 * dcache_lru_lock protects:
  51 *   - the dcache lru lists and counters
  52 * d_lock protects:
  53 *   - d_flags
  54 *   - d_name
  55 *   - d_lru
  56 *   - d_count
  57 *   - d_unhashed()
  58 *   - d_parent and d_subdirs
  59 *   - childrens' d_child and d_parent
  60 *   - d_alias, d_inode
  61 *
  62 * Ordering:
  63 * dentry->d_inode->i_lock
  64 *   dentry->d_lock
  65 *     dcache_lru_lock
  66 *     dcache_hash_bucket lock
  67 *     s_anon lock
  68 *
  69 * If there is an ancestor relationship:
  70 * dentry->d_parent->...->d_parent->d_lock
  71 *   ...
  72 *     dentry->d_parent->d_lock
  73 *       dentry->d_lock
  74 *
  75 * If no ancestor relationship:
  76 * if (dentry1 < dentry2)
  77 *   dentry1->d_lock
  78 *     dentry2->d_lock
  79 */
  80int sysctl_vfs_cache_pressure __read_mostly = 100;
  81EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
  82
  83static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
  84__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
  85
  86EXPORT_SYMBOL(rename_lock);
  87
  88static struct kmem_cache *dentry_cache __read_mostly;
  89
  90/*
  91 * This is the single most critical data structure when it comes
  92 * to the dcache: the hashtable for lookups. Somebody should try
  93 * to make this good - I've just made it work.
  94 *
  95 * This hash-function tries to avoid losing too many bits of hash
  96 * information, yet avoid using a prime hash-size or similar.
  97 */
  98#define D_HASHBITS     d_hash_shift
  99#define D_HASHMASK     d_hash_mask
 100
 101static unsigned int d_hash_mask __read_mostly;
 102static unsigned int d_hash_shift __read_mostly;
 103
 104static struct hlist_bl_head *dentry_hashtable __read_mostly;
 105
 106static inline struct hlist_bl_head *d_hash(struct dentry *parent,
 107                                        unsigned long hash)
 108{
 109        hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
 110        hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
 111        return dentry_hashtable + (hash & D_HASHMASK);
 112}
 113
 114/* Statistics gathering. */
 115struct dentry_stat_t dentry_stat = {
 116        .age_limit = 45,
 117};
 118
 119static DEFINE_PER_CPU(unsigned int, nr_dentry);
 120
 121#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
 122static int get_nr_dentry(void)
 123{
 124        int i;
 125        int sum = 0;
 126        for_each_possible_cpu(i)
 127                sum += per_cpu(nr_dentry, i);
 128        return sum < 0 ? 0 : sum;
 129}
 130
 131int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
 132                   size_t *lenp, loff_t *ppos)
 133{
 134        dentry_stat.nr_dentry = get_nr_dentry();
 135        return proc_dointvec(table, write, buffer, lenp, ppos);
 136}
 137#endif
 138
 139static void __d_free(struct rcu_head *head)
 140{
 141        struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
 142
 143        WARN_ON(!list_empty(&dentry->d_alias));
 144        if (dname_external(dentry))
 145                kfree(dentry->d_name.name);
 146        kmem_cache_free(dentry_cache, dentry); 
 147}
 148
 149/*
 150 * no locks, please.
 151 */
 152static void d_free(struct dentry *dentry)
 153{
 154        BUG_ON(dentry->d_count);
 155        this_cpu_dec(nr_dentry);
 156        if (dentry->d_op && dentry->d_op->d_release)
 157                dentry->d_op->d_release(dentry);
 158
 159        /* if dentry was never visible to RCU, immediate free is OK */
 160        if (!(dentry->d_flags & DCACHE_RCUACCESS))
 161                __d_free(&dentry->d_u.d_rcu);
 162        else
 163                call_rcu(&dentry->d_u.d_rcu, __d_free);
 164}
 165
 166/**
 167 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
 168 * @dentry: the target dentry
 169 * After this call, in-progress rcu-walk path lookup will fail. This
 170 * should be called after unhashing, and after changing d_inode (if
 171 * the dentry has not already been unhashed).
 172 */
 173static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
 174{
 175        assert_spin_locked(&dentry->d_lock);
 176        /* Go through a barrier */
 177        write_seqcount_barrier(&dentry->d_seq);
 178}
 179
 180/*
 181 * Release the dentry's inode, using the filesystem
 182 * d_iput() operation if defined. Dentry has no refcount
 183 * and is unhashed.
 184 */
 185static void dentry_iput(struct dentry * dentry)
 186        __releases(dentry->d_lock)
 187        __releases(dentry->d_inode->i_lock)
 188{
 189        struct inode *inode = dentry->d_inode;
 190        if (inode) {
 191                dentry->d_inode = NULL;
 192                list_del_init(&dentry->d_alias);
 193                spin_unlock(&dentry->d_lock);
 194                spin_unlock(&inode->i_lock);
 195                if (!inode->i_nlink)
 196                        fsnotify_inoderemove(inode);
 197                if (dentry->d_op && dentry->d_op->d_iput)
 198                        dentry->d_op->d_iput(dentry, inode);
 199                else
 200                        iput(inode);
 201        } else {
 202                spin_unlock(&dentry->d_lock);
 203        }
 204}
 205
 206/*
 207 * Release the dentry's inode, using the filesystem
 208 * d_iput() operation if defined. dentry remains in-use.
 209 */
 210static void dentry_unlink_inode(struct dentry * dentry)
 211        __releases(dentry->d_lock)
 212        __releases(dentry->d_inode->i_lock)
 213{
 214        struct inode *inode = dentry->d_inode;
 215        dentry->d_inode = NULL;
 216        list_del_init(&dentry->d_alias);
 217        dentry_rcuwalk_barrier(dentry);
 218        spin_unlock(&dentry->d_lock);
 219        spin_unlock(&inode->i_lock);
 220        if (!inode->i_nlink)
 221                fsnotify_inoderemove(inode);
 222        if (dentry->d_op && dentry->d_op->d_iput)
 223                dentry->d_op->d_iput(dentry, inode);
 224        else
 225                iput(inode);
 226}
 227
 228/*
 229 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
 230 */
 231static void dentry_lru_add(struct dentry *dentry)
 232{
 233        if (list_empty(&dentry->d_lru)) {
 234                spin_lock(&dcache_lru_lock);
 235                list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
 236                dentry->d_sb->s_nr_dentry_unused++;
 237                dentry_stat.nr_unused++;
 238                spin_unlock(&dcache_lru_lock);
 239        }
 240}
 241
 242static void __dentry_lru_del(struct dentry *dentry)
 243{
 244        list_del_init(&dentry->d_lru);
 245        dentry->d_sb->s_nr_dentry_unused--;
 246        dentry_stat.nr_unused--;
 247}
 248
 249/*
 250 * Remove a dentry with references from the LRU.
 251 */
 252static void dentry_lru_del(struct dentry *dentry)
 253{
 254        if (!list_empty(&dentry->d_lru)) {
 255                spin_lock(&dcache_lru_lock);
 256                __dentry_lru_del(dentry);
 257                spin_unlock(&dcache_lru_lock);
 258        }
 259}
 260
 261/*
 262 * Remove a dentry that is unreferenced and about to be pruned
 263 * (unhashed and destroyed) from the LRU, and inform the file system.
 264 * This wrapper should be called _prior_ to unhashing a victim dentry.
 265 */
 266static void dentry_lru_prune(struct dentry *dentry)
 267{
 268        if (!list_empty(&dentry->d_lru)) {
 269                if (dentry->d_flags & DCACHE_OP_PRUNE)
 270                        dentry->d_op->d_prune(dentry);
 271
 272                spin_lock(&dcache_lru_lock);
 273                __dentry_lru_del(dentry);
 274                spin_unlock(&dcache_lru_lock);
 275        }
 276}
 277
 278static void dentry_lru_move_tail(struct dentry *dentry)
 279{
 280        spin_lock(&dcache_lru_lock);
 281        if (list_empty(&dentry->d_lru)) {
 282                list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
 283                dentry->d_sb->s_nr_dentry_unused++;
 284                dentry_stat.nr_unused++;
 285        } else {
 286                list_move_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
 287        }
 288        spin_unlock(&dcache_lru_lock);
 289}
 290
 291/**
 292 * d_kill - kill dentry and return parent
 293 * @dentry: dentry to kill
 294 * @parent: parent dentry
 295 *
 296 * The dentry must already be unhashed and removed from the LRU.
 297 *
 298 * If this is the root of the dentry tree, return NULL.
 299 *
 300 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
 301 * d_kill.
 302 */
 303static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
 304        __releases(dentry->d_lock)
 305        __releases(parent->d_lock)
 306        __releases(dentry->d_inode->i_lock)
 307{
 308        list_del(&dentry->d_u.d_child);
 309        /*
 310         * Inform try_to_ascend() that we are no longer attached to the
 311         * dentry tree
 312         */
 313        dentry->d_flags |= DCACHE_DISCONNECTED;
 314        if (parent)
 315                spin_unlock(&parent->d_lock);
 316        dentry_iput(dentry);
 317        /*
 318         * dentry_iput drops the locks, at which point nobody (except
 319         * transient RCU lookups) can reach this dentry.
 320         */
 321        d_free(dentry);
 322        return parent;
 323}
 324
 325/*
 326 * Unhash a dentry without inserting an RCU walk barrier or checking that
 327 * dentry->d_lock is locked.  The caller must take care of that, if
 328 * appropriate.
 329 */
 330static void __d_shrink(struct dentry *dentry)
 331{
 332        if (!d_unhashed(dentry)) {
 333                struct hlist_bl_head *b;
 334                if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
 335                        b = &dentry->d_sb->s_anon;
 336                else
 337                        b = d_hash(dentry->d_parent, dentry->d_name.hash);
 338
 339                hlist_bl_lock(b);
 340                __hlist_bl_del(&dentry->d_hash);
 341                dentry->d_hash.pprev = NULL;
 342                hlist_bl_unlock(b);
 343        }
 344}
 345
 346/**
 347 * d_drop - drop a dentry
 348 * @dentry: dentry to drop
 349 *
 350 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
 351 * be found through a VFS lookup any more. Note that this is different from
 352 * deleting the dentry - d_delete will try to mark the dentry negative if
 353 * possible, giving a successful _negative_ lookup, while d_drop will
 354 * just make the cache lookup fail.
 355 *
 356 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
 357 * reason (NFS timeouts or autofs deletes).
 358 *
 359 * __d_drop requires dentry->d_lock.
 360 */
 361void __d_drop(struct dentry *dentry)
 362{
 363        if (!d_unhashed(dentry)) {
 364                __d_shrink(dentry);
 365                dentry_rcuwalk_barrier(dentry);
 366        }
 367}
 368EXPORT_SYMBOL(__d_drop);
 369
 370void d_drop(struct dentry *dentry)
 371{
 372        spin_lock(&dentry->d_lock);
 373        __d_drop(dentry);
 374        spin_unlock(&dentry->d_lock);
 375}
 376EXPORT_SYMBOL(d_drop);
 377
 378/*
 379 * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
 380 * @dentry: dentry to drop
 381 *
 382 * This is called when we do a lookup on a placeholder dentry that needed to be
 383 * looked up.  The dentry should have been hashed in order for it to be found by
 384 * the lookup code, but now needs to be unhashed while we do the actual lookup
 385 * and clear the DCACHE_NEED_LOOKUP flag.
 386 */
 387void d_clear_need_lookup(struct dentry *dentry)
 388{
 389        spin_lock(&dentry->d_lock);
 390        __d_drop(dentry);
 391        dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
 392        spin_unlock(&dentry->d_lock);
 393}
 394EXPORT_SYMBOL(d_clear_need_lookup);
 395
 396/*
 397 * Finish off a dentry we've decided to kill.
 398 * dentry->d_lock must be held, returns with it unlocked.
 399 * If ref is non-zero, then decrement the refcount too.
 400 * Returns dentry requiring refcount drop, or NULL if we're done.
 401 */
 402static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
 403        __releases(dentry->d_lock)
 404{
 405        struct inode *inode;
 406        struct dentry *parent;
 407
 408        inode = dentry->d_inode;
 409        if (inode && !spin_trylock(&inode->i_lock)) {
 410relock:
 411                spin_unlock(&dentry->d_lock);
 412                cpu_relax();
 413                return dentry; /* try again with same dentry */
 414        }
 415        if (IS_ROOT(dentry))
 416                parent = NULL;
 417        else
 418                parent = dentry->d_parent;
 419        if (parent && !spin_trylock(&parent->d_lock)) {
 420                if (inode)
 421                        spin_unlock(&inode->i_lock);
 422                goto relock;
 423        }
 424
 425        if (ref)
 426                dentry->d_count--;
 427        /*
 428         * if dentry was on the d_lru list delete it from there.
 429         * inform the fs via d_prune that this dentry is about to be
 430         * unhashed and destroyed.
 431         */
 432        dentry_lru_prune(dentry);
 433        /* if it was on the hash then remove it */
 434        __d_drop(dentry);
 435        return d_kill(dentry, parent);
 436}
 437
 438/* 
 439 * This is dput
 440 *
 441 * This is complicated by the fact that we do not want to put
 442 * dentries that are no longer on any hash chain on the unused
 443 * list: we'd much rather just get rid of them immediately.
 444 *
 445 * However, that implies that we have to traverse the dentry
 446 * tree upwards to the parents which might _also_ now be
 447 * scheduled for deletion (it may have been only waiting for
 448 * its last child to go away).
 449 *
 450 * This tail recursion is done by hand as we don't want to depend
 451 * on the compiler to always get this right (gcc generally doesn't).
 452 * Real recursion would eat up our stack space.
 453 */
 454
 455/*
 456 * dput - release a dentry
 457 * @dentry: dentry to release 
 458 *
 459 * Release a dentry. This will drop the usage count and if appropriate
 460 * call the dentry unlink method as well as removing it from the queues and
 461 * releasing its resources. If the parent dentries were scheduled for release
 462 * they too may now get deleted.
 463 */
 464void dput(struct dentry *dentry)
 465{
 466        if (!dentry)
 467                return;
 468
 469repeat:
 470        if (dentry->d_count == 1)
 471                might_sleep();
 472        spin_lock(&dentry->d_lock);
 473        BUG_ON(!dentry->d_count);
 474        if (dentry->d_count > 1) {
 475                dentry->d_count--;
 476                spin_unlock(&dentry->d_lock);
 477                return;
 478        }
 479
 480        if (dentry->d_flags & DCACHE_OP_DELETE) {
 481                if (dentry->d_op->d_delete(dentry))
 482                        goto kill_it;
 483        }
 484
 485        /* Unreachable? Get rid of it */
 486        if (d_unhashed(dentry))
 487                goto kill_it;
 488
 489        /*
 490         * If this dentry needs lookup, don't set the referenced flag so that it
 491         * is more likely to be cleaned up by the dcache shrinker in case of
 492         * memory pressure.
 493         */
 494        if (!d_need_lookup(dentry))
 495                dentry->d_flags |= DCACHE_REFERENCED;
 496        dentry_lru_add(dentry);
 497
 498        dentry->d_count--;
 499        spin_unlock(&dentry->d_lock);
 500        return;
 501
 502kill_it:
 503        dentry = dentry_kill(dentry, 1);
 504        if (dentry)
 505                goto repeat;
 506}
 507EXPORT_SYMBOL(dput);
 508
 509/**
 510 * d_invalidate - invalidate a dentry
 511 * @dentry: dentry to invalidate
 512 *
 513 * Try to invalidate the dentry if it turns out to be
 514 * possible. If there are other dentries that can be
 515 * reached through this one we can't delete it and we
 516 * return -EBUSY. On success we return 0.
 517 *
 518 * no dcache lock.
 519 */
 520 
 521int d_invalidate(struct dentry * dentry)
 522{
 523        /*
 524         * If it's already been dropped, return OK.
 525         */
 526        spin_lock(&dentry->d_lock);
 527        if (d_unhashed(dentry)) {
 528                spin_unlock(&dentry->d_lock);
 529                return 0;
 530        }
 531        /*
 532         * Check whether to do a partial shrink_dcache
 533         * to get rid of unused child entries.
 534         */
 535        if (!list_empty(&dentry->d_subdirs)) {
 536                spin_unlock(&dentry->d_lock);
 537                shrink_dcache_parent(dentry);
 538                spin_lock(&dentry->d_lock);
 539        }
 540
 541        /*
 542         * Somebody else still using it?
 543         *
 544         * If it's a directory, we can't drop it
 545         * for fear of somebody re-populating it
 546         * with children (even though dropping it
 547         * would make it unreachable from the root,
 548         * we might still populate it if it was a
 549         * working directory or similar).
 550         * We also need to leave mountpoints alone,
 551         * directory or not.
 552         */
 553        if (dentry->d_count > 1 && dentry->d_inode) {
 554                if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
 555                        spin_unlock(&dentry->d_lock);
 556                        return -EBUSY;
 557                }
 558        }
 559
 560        __d_drop(dentry);
 561        spin_unlock(&dentry->d_lock);
 562        return 0;
 563}
 564EXPORT_SYMBOL(d_invalidate);
 565
 566/* This must be called with d_lock held */
 567static inline void __dget_dlock(struct dentry *dentry)
 568{
 569        dentry->d_count++;
 570}
 571
 572static inline void __dget(struct dentry *dentry)
 573{
 574        spin_lock(&dentry->d_lock);
 575        __dget_dlock(dentry);
 576        spin_unlock(&dentry->d_lock);
 577}
 578
 579struct dentry *dget_parent(struct dentry *dentry)
 580{
 581        struct dentry *ret;
 582
 583repeat:
 584        /*
 585         * Don't need rcu_dereference because we re-check it was correct under
 586         * the lock.
 587         */
 588        rcu_read_lock();
 589        ret = dentry->d_parent;
 590        spin_lock(&ret->d_lock);
 591        if (unlikely(ret != dentry->d_parent)) {
 592                spin_unlock(&ret->d_lock);
 593                rcu_read_unlock();
 594                goto repeat;
 595        }
 596        rcu_read_unlock();
 597        BUG_ON(!ret->d_count);
 598        ret->d_count++;
 599        spin_unlock(&ret->d_lock);
 600        return ret;
 601}
 602EXPORT_SYMBOL(dget_parent);
 603
 604/**
 605 * d_find_alias - grab a hashed alias of inode
 606 * @inode: inode in question
 607 * @want_discon:  flag, used by d_splice_alias, to request
 608 *          that only a DISCONNECTED alias be returned.
 609 *
 610 * If inode has a hashed alias, or is a directory and has any alias,
 611 * acquire the reference to alias and return it. Otherwise return NULL.
 612 * Notice that if inode is a directory there can be only one alias and
 613 * it can be unhashed only if it has no children, or if it is the root
 614 * of a filesystem.
 615 *
 616 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
 617 * any other hashed alias over that one unless @want_discon is set,
 618 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
 619 */
 620static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
 621{
 622        struct dentry *alias, *discon_alias;
 623
 624again:
 625        discon_alias = NULL;
 626        list_for_each_entry(alias, &inode->i_dentry, d_alias) {
 627                spin_lock(&alias->d_lock);
 628                if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
 629                        if (IS_ROOT(alias) &&
 630                            (alias->d_flags & DCACHE_DISCONNECTED)) {
 631                                discon_alias = alias;
 632                        } else if (!want_discon) {
 633                                __dget_dlock(alias);
 634                                spin_unlock(&alias->d_lock);
 635                                return alias;
 636                        }
 637                }
 638                spin_unlock(&alias->d_lock);
 639        }
 640        if (discon_alias) {
 641                alias = discon_alias;
 642                spin_lock(&alias->d_lock);
 643                if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
 644                        if (IS_ROOT(alias) &&
 645                            (alias->d_flags & DCACHE_DISCONNECTED)) {
 646                                __dget_dlock(alias);
 647                                spin_unlock(&alias->d_lock);
 648                                return alias;
 649                        }
 650                }
 651                spin_unlock(&alias->d_lock);
 652                goto again;
 653        }
 654        return NULL;
 655}
 656
 657struct dentry *d_find_alias(struct inode *inode)
 658{
 659        struct dentry *de = NULL;
 660
 661        if (!list_empty(&inode->i_dentry)) {
 662                spin_lock(&inode->i_lock);
 663                de = __d_find_alias(inode, 0);
 664                spin_unlock(&inode->i_lock);
 665        }
 666        return de;
 667}
 668EXPORT_SYMBOL(d_find_alias);
 669
 670/*
 671 *      Try to kill dentries associated with this inode.
 672 * WARNING: you must own a reference to inode.
 673 */
 674void d_prune_aliases(struct inode *inode)
 675{
 676        struct dentry *dentry;
 677restart:
 678        spin_lock(&inode->i_lock);
 679        list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
 680                spin_lock(&dentry->d_lock);
 681                if (!dentry->d_count) {
 682                        __dget_dlock(dentry);
 683                        __d_drop(dentry);
 684                        spin_unlock(&dentry->d_lock);
 685                        spin_unlock(&inode->i_lock);
 686                        dput(dentry);
 687                        goto restart;
 688                }
 689                spin_unlock(&dentry->d_lock);
 690        }
 691        spin_unlock(&inode->i_lock);
 692}
 693EXPORT_SYMBOL(d_prune_aliases);
 694
 695/*
 696 * Try to throw away a dentry - free the inode, dput the parent.
 697 * Requires dentry->d_lock is held, and dentry->d_count == 0.
 698 * Releases dentry->d_lock.
 699 *
 700 * This may fail if locks cannot be acquired no problem, just try again.
 701 */
 702static void try_prune_one_dentry(struct dentry *dentry)
 703        __releases(dentry->d_lock)
 704{
 705        struct dentry *parent;
 706
 707        parent = dentry_kill(dentry, 0);
 708        /*
 709         * If dentry_kill returns NULL, we have nothing more to do.
 710         * if it returns the same dentry, trylocks failed. In either
 711         * case, just loop again.
 712         *
 713         * Otherwise, we need to prune ancestors too. This is necessary
 714         * to prevent quadratic behavior of shrink_dcache_parent(), but
 715         * is also expected to be beneficial in reducing dentry cache
 716         * fragmentation.
 717         */
 718        if (!parent)
 719                return;
 720        if (parent == dentry)
 721                return;
 722
 723        /* Prune ancestors. */
 724        dentry = parent;
 725        while (dentry) {
 726                spin_lock(&dentry->d_lock);
 727                if (dentry->d_count > 1) {
 728                        dentry->d_count--;
 729                        spin_unlock(&dentry->d_lock);
 730                        return;
 731                }
 732                dentry = dentry_kill(dentry, 1);
 733        }
 734}
 735
 736static void shrink_dentry_list(struct list_head *list)
 737{
 738        struct dentry *dentry;
 739
 740        rcu_read_lock();
 741        for (;;) {
 742                dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
 743                if (&dentry->d_lru == list)
 744                        break; /* empty */
 745                spin_lock(&dentry->d_lock);
 746                if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
 747                        spin_unlock(&dentry->d_lock);
 748                        continue;
 749                }
 750
 751                /*
 752                 * We found an inuse dentry which was not removed from
 753                 * the LRU because of laziness during lookup.  Do not free
 754                 * it - just keep it off the LRU list.
 755                 */
 756                if (dentry->d_count) {
 757                        dentry_lru_del(dentry);
 758                        spin_unlock(&dentry->d_lock);
 759                        continue;
 760                }
 761
 762                rcu_read_unlock();
 763
 764                try_prune_one_dentry(dentry);
 765
 766                rcu_read_lock();
 767        }
 768        rcu_read_unlock();
 769}
 770
 771/**
 772 * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
 773 * @sb:         superblock to shrink dentry LRU.
 774 * @count:      number of entries to prune
 775 * @flags:      flags to control the dentry processing
 776 *
 777 * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
 778 */
 779static void __shrink_dcache_sb(struct super_block *sb, int count, int flags)
 780{
 781        struct dentry *dentry;
 782        LIST_HEAD(referenced);
 783        LIST_HEAD(tmp);
 784
 785relock:
 786        spin_lock(&dcache_lru_lock);
 787        while (!list_empty(&sb->s_dentry_lru)) {
 788                dentry = list_entry(sb->s_dentry_lru.prev,
 789                                struct dentry, d_lru);
 790                BUG_ON(dentry->d_sb != sb);
 791
 792                if (!spin_trylock(&dentry->d_lock)) {
 793                        spin_unlock(&dcache_lru_lock);
 794                        cpu_relax();
 795                        goto relock;
 796                }
 797
 798                /*
 799                 * If we are honouring the DCACHE_REFERENCED flag and the
 800                 * dentry has this flag set, don't free it.  Clear the flag
 801                 * and put it back on the LRU.
 802                 */
 803                if (flags & DCACHE_REFERENCED &&
 804                                dentry->d_flags & DCACHE_REFERENCED) {
 805                        dentry->d_flags &= ~DCACHE_REFERENCED;
 806                        list_move(&dentry->d_lru, &referenced);
 807                        spin_unlock(&dentry->d_lock);
 808                } else {
 809                        list_move_tail(&dentry->d_lru, &tmp);
 810                        spin_unlock(&dentry->d_lock);
 811                        if (!--count)
 812                                break;
 813                }
 814                cond_resched_lock(&dcache_lru_lock);
 815        }
 816        if (!list_empty(&referenced))
 817                list_splice(&referenced, &sb->s_dentry_lru);
 818        spin_unlock(&dcache_lru_lock);
 819
 820        shrink_dentry_list(&tmp);
 821}
 822
 823/**
 824 * prune_dcache_sb - shrink the dcache
 825 * @sb: superblock
 826 * @nr_to_scan: number of entries to try to free
 827 *
 828 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
 829 * done when we need more memory an called from the superblock shrinker
 830 * function.
 831 *
 832 * This function may fail to free any resources if all the dentries are in
 833 * use.
 834 */
 835void prune_dcache_sb(struct super_block *sb, int nr_to_scan)
 836{
 837        __shrink_dcache_sb(sb, nr_to_scan, DCACHE_REFERENCED);
 838}
 839
 840/**
 841 * shrink_dcache_sb - shrink dcache for a superblock
 842 * @sb: superblock
 843 *
 844 * Shrink the dcache for the specified super block. This is used to free
 845 * the dcache before unmounting a file system.
 846 */
 847void shrink_dcache_sb(struct super_block *sb)
 848{
 849        LIST_HEAD(tmp);
 850
 851        spin_lock(&dcache_lru_lock);
 852        while (!list_empty(&sb->s_dentry_lru)) {
 853                list_splice_init(&sb->s_dentry_lru, &tmp);
 854                spin_unlock(&dcache_lru_lock);
 855                shrink_dentry_list(&tmp);
 856                spin_lock(&dcache_lru_lock);
 857        }
 858        spin_unlock(&dcache_lru_lock);
 859}
 860EXPORT_SYMBOL(shrink_dcache_sb);
 861
 862/*
 863 * destroy a single subtree of dentries for unmount
 864 * - see the comments on shrink_dcache_for_umount() for a description of the
 865 *   locking
 866 */
 867static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
 868{
 869        struct dentry *parent;
 870
 871        BUG_ON(!IS_ROOT(dentry));
 872
 873        for (;;) {
 874                /* descend to the first leaf in the current subtree */
 875                while (!list_empty(&dentry->d_subdirs))
 876                        dentry = list_entry(dentry->d_subdirs.next,
 877                                            struct dentry, d_u.d_child);
 878
 879                /* consume the dentries from this leaf up through its parents
 880                 * until we find one with children or run out altogether */
 881                do {
 882                        struct inode *inode;
 883
 884                        /*
 885                         * remove the dentry from the lru, and inform
 886                         * the fs that this dentry is about to be
 887                         * unhashed and destroyed.
 888                         */
 889                        dentry_lru_prune(dentry);
 890                        __d_shrink(dentry);
 891
 892                        if (dentry->d_count != 0) {
 893                                printk(KERN_ERR
 894                                       "BUG: Dentry %p{i=%lx,n=%s}"
 895                                       " still in use (%d)"
 896                                       " [unmount of %s %s]\n",
 897                                       dentry,
 898                                       dentry->d_inode ?
 899                                       dentry->d_inode->i_ino : 0UL,
 900                                       dentry->d_name.name,
 901                                       dentry->d_count,
 902                                       dentry->d_sb->s_type->name,
 903                                       dentry->d_sb->s_id);
 904                                BUG();
 905                        }
 906
 907                        if (IS_ROOT(dentry)) {
 908                                parent = NULL;
 909                                list_del(&dentry->d_u.d_child);
 910                        } else {
 911                                parent = dentry->d_parent;
 912                                parent->d_count--;
 913                                list_del(&dentry->d_u.d_child);
 914                        }
 915
 916                        inode = dentry->d_inode;
 917                        if (inode) {
 918                                dentry->d_inode = NULL;
 919                                list_del_init(&dentry->d_alias);
 920                                if (dentry->d_op && dentry->d_op->d_iput)
 921                                        dentry->d_op->d_iput(dentry, inode);
 922                                else
 923                                        iput(inode);
 924                        }
 925
 926                        d_free(dentry);
 927
 928                        /* finished when we fall off the top of the tree,
 929                         * otherwise we ascend to the parent and move to the
 930                         * next sibling if there is one */
 931                        if (!parent)
 932                                return;
 933                        dentry = parent;
 934                } while (list_empty(&dentry->d_subdirs));
 935
 936                dentry = list_entry(dentry->d_subdirs.next,
 937                                    struct dentry, d_u.d_child);
 938        }
 939}
 940
 941/*
 942 * destroy the dentries attached to a superblock on unmounting
 943 * - we don't need to use dentry->d_lock because:
 944 *   - the superblock is detached from all mountings and open files, so the
 945 *     dentry trees will not be rearranged by the VFS
 946 *   - s_umount is write-locked, so the memory pressure shrinker will ignore
 947 *     any dentries belonging to this superblock that it comes across
 948 *   - the filesystem itself is no longer permitted to rearrange the dentries
 949 *     in this superblock
 950 */
 951void shrink_dcache_for_umount(struct super_block *sb)
 952{
 953        struct dentry *dentry;
 954
 955        if (down_read_trylock(&sb->s_umount))
 956                BUG();
 957
 958        dentry = sb->s_root;
 959        sb->s_root = NULL;
 960        dentry->d_count--;
 961        shrink_dcache_for_umount_subtree(dentry);
 962
 963        while (!hlist_bl_empty(&sb->s_anon)) {
 964                dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
 965                shrink_dcache_for_umount_subtree(dentry);
 966        }
 967}
 968
 969/*
 970 * This tries to ascend one level of parenthood, but
 971 * we can race with renaming, so we need to re-check
 972 * the parenthood after dropping the lock and check
 973 * that the sequence number still matches.
 974 */
 975static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
 976{
 977        struct dentry *new = old->d_parent;
 978
 979        rcu_read_lock();
 980        spin_unlock(&old->d_lock);
 981        spin_lock(&new->d_lock);
 982
 983        /*
 984         * might go back up the wrong parent if we have had a rename
 985         * or deletion
 986         */
 987        if (new != old->d_parent ||
 988                 (old->d_flags & DCACHE_DISCONNECTED) ||
 989                 (!locked && read_seqretry(&rename_lock, seq))) {
 990                spin_unlock(&new->d_lock);
 991                new = NULL;
 992        }
 993        rcu_read_unlock();
 994        return new;
 995}
 996
 997
 998/*
 999 * Search for at least 1 mount point in the dentry's subdirs.
1000 * We descend to the next level whenever the d_subdirs
1001 * list is non-empty and continue searching.
1002 */
1003 
1004/**
1005 * have_submounts - check for mounts over a dentry
1006 * @parent: dentry to check.
1007 *
1008 * Return true if the parent or its subdirectories contain
1009 * a mount point
1010 */
1011int have_submounts(struct dentry *parent)
1012{
1013        struct dentry *this_parent;
1014        struct list_head *next;
1015        unsigned seq;
1016        int locked = 0;
1017
1018        seq = read_seqbegin(&rename_lock);
1019again:
1020        this_parent = parent;
1021
1022        if (d_mountpoint(parent))
1023                goto positive;
1024        spin_lock(&this_parent->d_lock);
1025repeat:
1026        next = this_parent->d_subdirs.next;
1027resume:
1028        while (next != &this_parent->d_subdirs) {
1029                struct list_head *tmp = next;
1030                struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1031                next = tmp->next;
1032
1033                spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1034                /* Have we found a mount point ? */
1035                if (d_mountpoint(dentry)) {
1036                        spin_unlock(&dentry->d_lock);
1037                        spin_unlock(&this_parent->d_lock);
1038                        goto positive;
1039                }
1040                if (!list_empty(&dentry->d_subdirs)) {
1041                        spin_unlock(&this_parent->d_lock);
1042                        spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1043                        this_parent = dentry;
1044                        spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1045                        goto repeat;
1046                }
1047                spin_unlock(&dentry->d_lock);
1048        }
1049        /*
1050         * All done at this level ... ascend and resume the search.
1051         */
1052        if (this_parent != parent) {
1053                struct dentry *child = this_parent;
1054                this_parent = try_to_ascend(this_parent, locked, seq);
1055                if (!this_parent)
1056                        goto rename_retry;
1057                next = child->d_u.d_child.next;
1058                goto resume;
1059        }
1060        spin_unlock(&this_parent->d_lock);
1061        if (!locked && read_seqretry(&rename_lock, seq))
1062                goto rename_retry;
1063        if (locked)
1064                write_sequnlock(&rename_lock);
1065        return 0; /* No mount points found in tree */
1066positive:
1067        if (!locked && read_seqretry(&rename_lock, seq))
1068                goto rename_retry;
1069        if (locked)
1070                write_sequnlock(&rename_lock);
1071        return 1;
1072
1073rename_retry:
1074        locked = 1;
1075        write_seqlock(&rename_lock);
1076        goto again;
1077}
1078EXPORT_SYMBOL(have_submounts);
1079
1080/*
1081 * Search the dentry child list for the specified parent,
1082 * and move any unused dentries to the end of the unused
1083 * list for prune_dcache(). We descend to the next level
1084 * whenever the d_subdirs list is non-empty and continue
1085 * searching.
1086 *
1087 * It returns zero iff there are no unused children,
1088 * otherwise  it returns the number of children moved to
1089 * the end of the unused list. This may not be the total
1090 * number of unused children, because select_parent can
1091 * drop the lock and return early due to latency
1092 * constraints.
1093 */
1094static int select_parent(struct dentry * parent)
1095{
1096        struct dentry *this_parent;
1097        struct list_head *next;
1098        unsigned seq;
1099        int found = 0;
1100        int locked = 0;
1101
1102        seq = read_seqbegin(&rename_lock);
1103again:
1104        this_parent = parent;
1105        spin_lock(&this_parent->d_lock);
1106repeat:
1107        next = this_parent->d_subdirs.next;
1108resume:
1109        while (next != &this_parent->d_subdirs) {
1110                struct list_head *tmp = next;
1111                struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1112                next = tmp->next;
1113
1114                spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1115
1116                /* 
1117                 * move only zero ref count dentries to the end 
1118                 * of the unused list for prune_dcache
1119                 */
1120                if (!dentry->d_count) {
1121                        dentry_lru_move_tail(dentry);
1122                        found++;
1123                } else {
1124                        dentry_lru_del(dentry);
1125                }
1126
1127                /*
1128                 * We can return to the caller if we have found some (this
1129                 * ensures forward progress). We'll be coming back to find
1130                 * the rest.
1131                 */
1132                if (found && need_resched()) {
1133                        spin_unlock(&dentry->d_lock);
1134                        goto out;
1135                }
1136
1137                /*
1138                 * Descend a level if the d_subdirs list is non-empty.
1139                 */
1140                if (!list_empty(&dentry->d_subdirs)) {
1141                        spin_unlock(&this_parent->d_lock);
1142                        spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1143                        this_parent = dentry;
1144                        spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1145                        goto repeat;
1146                }
1147
1148                spin_unlock(&dentry->d_lock);
1149        }
1150        /*
1151         * All done at this level ... ascend and resume the search.
1152         */
1153        if (this_parent != parent) {
1154                struct dentry *child = this_parent;
1155                this_parent = try_to_ascend(this_parent, locked, seq);
1156                if (!this_parent)
1157                        goto rename_retry;
1158                next = child->d_u.d_child.next;
1159                goto resume;
1160        }
1161out:
1162        spin_unlock(&this_parent->d_lock);
1163        if (!locked && read_seqretry(&rename_lock, seq))
1164                goto rename_retry;
1165        if (locked)
1166                write_sequnlock(&rename_lock);
1167        return found;
1168
1169rename_retry:
1170        if (found)
1171                return found;
1172        locked = 1;
1173        write_seqlock(&rename_lock);
1174        goto again;
1175}
1176
1177/**
1178 * shrink_dcache_parent - prune dcache
1179 * @parent: parent of entries to prune
1180 *
1181 * Prune the dcache to remove unused children of the parent dentry.
1182 */
1183 
1184void shrink_dcache_parent(struct dentry * parent)
1185{
1186        struct super_block *sb = parent->d_sb;
1187        int found;
1188
1189        while ((found = select_parent(parent)) != 0)
1190                __shrink_dcache_sb(sb, found, 0);
1191}
1192EXPORT_SYMBOL(shrink_dcache_parent);
1193
1194/**
1195 * __d_alloc    -       allocate a dcache entry
1196 * @sb: filesystem it will belong to
1197 * @name: qstr of the name
1198 *
1199 * Allocates a dentry. It returns %NULL if there is insufficient memory
1200 * available. On a success the dentry is returned. The name passed in is
1201 * copied and the copy passed in may be reused after this call.
1202 */
1203 
1204struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1205{
1206        struct dentry *dentry;
1207        char *dname;
1208
1209        dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1210        if (!dentry)
1211                return NULL;
1212
1213        if (name->len > DNAME_INLINE_LEN-1) {
1214                dname = kmalloc(name->len + 1, GFP_KERNEL);
1215                if (!dname) {
1216                        kmem_cache_free(dentry_cache, dentry); 
1217                        return NULL;
1218                }
1219        } else  {
1220                dname = dentry->d_iname;
1221        }       
1222        dentry->d_name.name = dname;
1223
1224        dentry->d_name.len = name->len;
1225        dentry->d_name.hash = name->hash;
1226        memcpy(dname, name->name, name->len);
1227        dname[name->len] = 0;
1228
1229        dentry->d_count = 1;
1230        dentry->d_flags = 0;
1231        spin_lock_init(&dentry->d_lock);
1232        seqcount_init(&dentry->d_seq);
1233        dentry->d_inode = NULL;
1234        dentry->d_parent = dentry;
1235        dentry->d_sb = sb;
1236        dentry->d_op = NULL;
1237        dentry->d_fsdata = NULL;
1238        INIT_HLIST_BL_NODE(&dentry->d_hash);
1239        INIT_LIST_HEAD(&dentry->d_lru);
1240        INIT_LIST_HEAD(&dentry->d_subdirs);
1241        INIT_LIST_HEAD(&dentry->d_alias);
1242        INIT_LIST_HEAD(&dentry->d_u.d_child);
1243        d_set_d_op(dentry, dentry->d_sb->s_d_op);
1244
1245        this_cpu_inc(nr_dentry);
1246
1247        return dentry;
1248}
1249
1250/**
1251 * d_alloc      -       allocate a dcache entry
1252 * @parent: parent of entry to allocate
1253 * @name: qstr of the name
1254 *
1255 * Allocates a dentry. It returns %NULL if there is insufficient memory
1256 * available. On a success the dentry is returned. The name passed in is
1257 * copied and the copy passed in may be reused after this call.
1258 */
1259struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1260{
1261        struct dentry *dentry = __d_alloc(parent->d_sb, name);
1262        if (!dentry)
1263                return NULL;
1264
1265        spin_lock(&parent->d_lock);
1266        /*
1267         * don't need child lock because it is not subject
1268         * to concurrency here
1269         */
1270        __dget_dlock(parent);
1271        dentry->d_parent = parent;
1272        list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1273        spin_unlock(&parent->d_lock);
1274
1275        return dentry;
1276}
1277EXPORT_SYMBOL(d_alloc);
1278
1279struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1280{
1281        struct dentry *dentry = __d_alloc(sb, name);
1282        if (dentry)
1283                dentry->d_flags |= DCACHE_DISCONNECTED;
1284        return dentry;
1285}
1286EXPORT_SYMBOL(d_alloc_pseudo);
1287
1288struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1289{
1290        struct qstr q;
1291
1292        q.name = name;
1293        q.len = strlen(name);
1294        q.hash = full_name_hash(q.name, q.len);
1295        return d_alloc(parent, &q);
1296}
1297EXPORT_SYMBOL(d_alloc_name);
1298
1299void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1300{
1301        WARN_ON_ONCE(dentry->d_op);
1302        WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH  |
1303                                DCACHE_OP_COMPARE       |
1304                                DCACHE_OP_REVALIDATE    |
1305                                DCACHE_OP_DELETE ));
1306        dentry->d_op = op;
1307        if (!op)
1308                return;
1309        if (op->d_hash)
1310                dentry->d_flags |= DCACHE_OP_HASH;
1311        if (op->d_compare)
1312                dentry->d_flags |= DCACHE_OP_COMPARE;
1313        if (op->d_revalidate)
1314                dentry->d_flags |= DCACHE_OP_REVALIDATE;
1315        if (op->d_delete)
1316                dentry->d_flags |= DCACHE_OP_DELETE;
1317        if (op->d_prune)
1318                dentry->d_flags |= DCACHE_OP_PRUNE;
1319
1320}
1321EXPORT_SYMBOL(d_set_d_op);
1322
1323static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1324{
1325        spin_lock(&dentry->d_lock);
1326        if (inode) {
1327                if (unlikely(IS_AUTOMOUNT(inode)))
1328                        dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1329                list_add(&dentry->d_alias, &inode->i_dentry);
1330        }
1331        dentry->d_inode = inode;
1332        dentry_rcuwalk_barrier(dentry);
1333        spin_unlock(&dentry->d_lock);
1334        fsnotify_d_instantiate(dentry, inode);
1335}
1336
1337/**
1338 * d_instantiate - fill in inode information for a dentry
1339 * @entry: dentry to complete
1340 * @inode: inode to attach to this dentry
1341 *
1342 * Fill in inode information in the entry.
1343 *
1344 * This turns negative dentries into productive full members
1345 * of society.
1346 *
1347 * NOTE! This assumes that the inode count has been incremented
1348 * (or otherwise set) by the caller to indicate that it is now
1349 * in use by the dcache.
1350 */
1351 
1352void d_instantiate(struct dentry *entry, struct inode * inode)
1353{
1354        BUG_ON(!list_empty(&entry->d_alias));
1355        if (inode)
1356                spin_lock(&inode->i_lock);
1357        __d_instantiate(entry, inode);
1358        if (inode)
1359                spin_unlock(&inode->i_lock);
1360        security_d_instantiate(entry, inode);
1361}
1362EXPORT_SYMBOL(d_instantiate);
1363
1364/**
1365 * d_instantiate_unique - instantiate a non-aliased dentry
1366 * @entry: dentry to instantiate
1367 * @inode: inode to attach to this dentry
1368 *
1369 * Fill in inode information in the entry. On success, it returns NULL.
1370 * If an unhashed alias of "entry" already exists, then we return the
1371 * aliased dentry instead and drop one reference to inode.
1372 *
1373 * Note that in order to avoid conflicts with rename() etc, the caller
1374 * had better be holding the parent directory semaphore.
1375 *
1376 * This also assumes that the inode count has been incremented
1377 * (or otherwise set) by the caller to indicate that it is now
1378 * in use by the dcache.
1379 */
1380static struct dentry *__d_instantiate_unique(struct dentry *entry,
1381                                             struct inode *inode)
1382{
1383        struct dentry *alias;
1384        int len = entry->d_name.len;
1385        const char *name = entry->d_name.name;
1386        unsigned int hash = entry->d_name.hash;
1387
1388        if (!inode) {
1389                __d_instantiate(entry, NULL);
1390                return NULL;
1391        }
1392
1393        list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1394                struct qstr *qstr = &alias->d_name;
1395
1396                /*
1397                 * Don't need alias->d_lock here, because aliases with
1398                 * d_parent == entry->d_parent are not subject to name or
1399                 * parent changes, because the parent inode i_mutex is held.
1400                 */
1401                if (qstr->hash != hash)
1402                        continue;
1403                if (alias->d_parent != entry->d_parent)
1404                        continue;
1405                if (dentry_cmp(qstr->name, qstr->len, name, len))
1406                        continue;
1407                __dget(alias);
1408                return alias;
1409        }
1410
1411        __d_instantiate(entry, inode);
1412        return NULL;
1413}
1414
1415struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1416{
1417        struct dentry *result;
1418
1419        BUG_ON(!list_empty(&entry->d_alias));
1420
1421        if (inode)
1422                spin_lock(&inode->i_lock);
1423        result = __d_instantiate_unique(entry, inode);
1424        if (inode)
1425                spin_unlock(&inode->i_lock);
1426
1427        if (!result) {
1428                security_d_instantiate(entry, inode);
1429                return NULL;
1430        }
1431
1432        BUG_ON(!d_unhashed(result));
1433        iput(inode);
1434        return result;
1435}
1436
1437EXPORT_SYMBOL(d_instantiate_unique);
1438
1439/**
1440 * d_alloc_root - allocate root dentry
1441 * @root_inode: inode to allocate the root for
1442 *
1443 * Allocate a root ("/") dentry for the inode given. The inode is
1444 * instantiated and returned. %NULL is returned if there is insufficient
1445 * memory or the inode passed is %NULL.
1446 */
1447 
1448struct dentry * d_alloc_root(struct inode * root_inode)
1449{
1450        struct dentry *res = NULL;
1451
1452        if (root_inode) {
1453                static const struct qstr name = { .name = "/", .len = 1 };
1454
1455                res = __d_alloc(root_inode->i_sb, &name);
1456                if (res)
1457                        d_instantiate(res, root_inode);
1458        }
1459        return res;
1460}
1461EXPORT_SYMBOL(d_alloc_root);
1462
1463static struct dentry * __d_find_any_alias(struct inode *inode)
1464{
1465        struct dentry *alias;
1466
1467        if (list_empty(&inode->i_dentry))
1468                return NULL;
1469        alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias);
1470        __dget(alias);
1471        return alias;
1472}
1473
1474static struct dentry * d_find_any_alias(struct inode *inode)
1475{
1476        struct dentry *de;
1477
1478        spin_lock(&inode->i_lock);
1479        de = __d_find_any_alias(inode);
1480        spin_unlock(&inode->i_lock);
1481        return de;
1482}
1483
1484
1485/**
1486 * d_obtain_alias - find or allocate a dentry for a given inode
1487 * @inode: inode to allocate the dentry for
1488 *
1489 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1490 * similar open by handle operations.  The returned dentry may be anonymous,
1491 * or may have a full name (if the inode was already in the cache).
1492 *
1493 * When called on a directory inode, we must ensure that the inode only ever
1494 * has one dentry.  If a dentry is found, that is returned instead of
1495 * allocating a new one.
1496 *
1497 * On successful return, the reference to the inode has been transferred
1498 * to the dentry.  In case of an error the reference on the inode is released.
1499 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1500 * be passed in and will be the error will be propagate to the return value,
1501 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1502 */
1503struct dentry *d_obtain_alias(struct inode *inode)
1504{
1505        static const struct qstr anonstring = { .name = "" };
1506        struct dentry *tmp;
1507        struct dentry *res;
1508
1509        if (!inode)
1510                return ERR_PTR(-ESTALE);
1511        if (IS_ERR(inode))
1512                return ERR_CAST(inode);
1513
1514        res = d_find_any_alias(inode);
1515        if (res)
1516                goto out_iput;
1517
1518        tmp = __d_alloc(inode->i_sb, &anonstring);
1519        if (!tmp) {
1520                res = ERR_PTR(-ENOMEM);
1521                goto out_iput;
1522        }
1523
1524        spin_lock(&inode->i_lock);
1525        res = __d_find_any_alias(inode);
1526        if (res) {
1527                spin_unlock(&inode->i_lock);
1528                dput(tmp);
1529                goto out_iput;
1530        }
1531
1532        /* attach a disconnected dentry */
1533        spin_lock(&tmp->d_lock);
1534        tmp->d_inode = inode;
1535        tmp->d_flags |= DCACHE_DISCONNECTED;
1536        list_add(&tmp->d_alias, &inode->i_dentry);
1537        hlist_bl_lock(&tmp->d_sb->s_anon);
1538        hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1539        hlist_bl_unlock(&tmp->d_sb->s_anon);
1540        spin_unlock(&tmp->d_lock);
1541        spin_unlock(&inode->i_lock);
1542        security_d_instantiate(tmp, inode);
1543
1544        return tmp;
1545
1546 out_iput:
1547        if (res && !IS_ERR(res))
1548                security_d_instantiate(res, inode);
1549        iput(inode);
1550        return res;
1551}
1552EXPORT_SYMBOL(d_obtain_alias);
1553
1554/**
1555 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1556 * @inode:  the inode which may have a disconnected dentry
1557 * @dentry: a negative dentry which we want to point to the inode.
1558 *
1559 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1560 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1561 * and return it, else simply d_add the inode to the dentry and return NULL.
1562 *
1563 * This is needed in the lookup routine of any filesystem that is exportable
1564 * (via knfsd) so that we can build dcache paths to directories effectively.
1565 *
1566 * If a dentry was found and moved, then it is returned.  Otherwise NULL
1567 * is returned.  This matches the expected return value of ->lookup.
1568 *
1569 */
1570struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1571{
1572        struct dentry *new = NULL;
1573
1574        if (IS_ERR(inode))
1575                return ERR_CAST(inode);
1576
1577        if (inode && S_ISDIR(inode->i_mode)) {
1578                spin_lock(&inode->i_lock);
1579                new = __d_find_alias(inode, 1);
1580                if (new) {
1581                        BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1582                        spin_unlock(&inode->i_lock);
1583                        security_d_instantiate(new, inode);
1584                        d_move(new, dentry);
1585                        iput(inode);
1586                } else {
1587                        /* already taking inode->i_lock, so d_add() by hand */
1588                        __d_instantiate(dentry, inode);
1589                        spin_unlock(&inode->i_lock);
1590                        security_d_instantiate(dentry, inode);
1591                        d_rehash(dentry);
1592                }
1593        } else
1594                d_add(dentry, inode);
1595        return new;
1596}
1597EXPORT_SYMBOL(d_splice_alias);
1598
1599/**
1600 * d_add_ci - lookup or allocate new dentry with case-exact name
1601 * @inode:  the inode case-insensitive lookup has found
1602 * @dentry: the negative dentry that was passed to the parent's lookup func
1603 * @name:   the case-exact name to be associated with the returned dentry
1604 *
1605 * This is to avoid filling the dcache with case-insensitive names to the
1606 * same inode, only the actual correct case is stored in the dcache for
1607 * case-insensitive filesystems.
1608 *
1609 * For a case-insensitive lookup match and if the the case-exact dentry
1610 * already exists in in the dcache, use it and return it.
1611 *
1612 * If no entry exists with the exact case name, allocate new dentry with
1613 * the exact case, and return the spliced entry.
1614 */
1615struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1616                        struct qstr *name)
1617{
1618        int error;
1619        struct dentry *found;
1620        struct dentry *new;
1621
1622        /*
1623         * First check if a dentry matching the name already exists,
1624         * if not go ahead and create it now.
1625         */
1626        found = d_hash_and_lookup(dentry->d_parent, name);
1627        if (!found) {
1628                new = d_alloc(dentry->d_parent, name);
1629                if (!new) {
1630                        error = -ENOMEM;
1631                        goto err_out;
1632                }
1633
1634                found = d_splice_alias(inode, new);
1635                if (found) {
1636                        dput(new);
1637                        return found;
1638                }
1639                return new;
1640        }
1641
1642        /*
1643         * If a matching dentry exists, and it's not negative use it.
1644         *
1645         * Decrement the reference count to balance the iget() done
1646         * earlier on.
1647         */
1648        if (found->d_inode) {
1649                if (unlikely(found->d_inode != inode)) {
1650                        /* This can't happen because bad inodes are unhashed. */
1651                        BUG_ON(!is_bad_inode(inode));
1652                        BUG_ON(!is_bad_inode(found->d_inode));
1653                }
1654                iput(inode);
1655                return found;
1656        }
1657
1658        /*
1659         * We are going to instantiate this dentry, unhash it and clear the
1660         * lookup flag so we can do that.
1661         */
1662        if (unlikely(d_need_lookup(found)))
1663                d_clear_need_lookup(found);
1664
1665        /*
1666         * Negative dentry: instantiate it unless the inode is a directory and
1667         * already has a dentry.
1668         */
1669        new = d_splice_alias(inode, found);
1670        if (new) {
1671                dput(found);
1672                found = new;
1673        }
1674        return found;
1675
1676err_out:
1677        iput(inode);
1678        return ERR_PTR(error);
1679}
1680EXPORT_SYMBOL(d_add_ci);
1681
1682/**
1683 * __d_lookup_rcu - search for a dentry (racy, store-free)
1684 * @parent: parent dentry
1685 * @name: qstr of name we wish to find
1686 * @seq: returns d_seq value at the point where the dentry was found
1687 * @inode: returns dentry->d_inode when the inode was found valid.
1688 * Returns: dentry, or NULL
1689 *
1690 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1691 * resolution (store-free path walking) design described in
1692 * Documentation/filesystems/path-lookup.txt.
1693 *
1694 * This is not to be used outside core vfs.
1695 *
1696 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1697 * held, and rcu_read_lock held. The returned dentry must not be stored into
1698 * without taking d_lock and checking d_seq sequence count against @seq
1699 * returned here.
1700 *
1701 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1702 * function.
1703 *
1704 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1705 * the returned dentry, so long as its parent's seqlock is checked after the
1706 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1707 * is formed, giving integrity down the path walk.
1708 */
1709struct dentry *__d_lookup_rcu(struct dentry *parent, struct qstr *name,
1710                                unsigned *seq, struct inode **inode)
1711{
1712        unsigned int len = name->len;
1713        unsigned int hash = name->hash;
1714        const unsigned char *str = name->name;
1715        struct hlist_bl_head *b = d_hash(parent, hash);
1716        struct hlist_bl_node *node;
1717        struct dentry *dentry;
1718
1719        /*
1720         * Note: There is significant duplication with __d_lookup_rcu which is
1721         * required to prevent single threaded performance regressions
1722         * especially on architectures where smp_rmb (in seqcounts) are costly.
1723         * Keep the two functions in sync.
1724         */
1725
1726        /*
1727         * The hash list is protected using RCU.
1728         *
1729         * Carefully use d_seq when comparing a candidate dentry, to avoid
1730         * races with d_move().
1731         *
1732         * It is possible that concurrent renames can mess up our list
1733         * walk here and result in missing our dentry, resulting in the
1734         * false-negative result. d_lookup() protects against concurrent
1735         * renames using rename_lock seqlock.
1736         *
1737         * See Documentation/filesystems/path-lookup.txt for more details.
1738         */
1739        hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1740                struct inode *i;
1741                const char *tname;
1742                int tlen;
1743
1744                if (dentry->d_name.hash != hash)
1745                        continue;
1746
1747seqretry:
1748                *seq = read_seqcount_begin(&dentry->d_seq);
1749                if (dentry->d_parent != parent)
1750                        continue;
1751                if (d_unhashed(dentry))
1752                        continue;
1753                tlen = dentry->d_name.len;
1754                tname = dentry->d_name.name;
1755                i = dentry->d_inode;
1756                prefetch(tname);
1757                /*
1758                 * This seqcount check is required to ensure name and
1759                 * len are loaded atomically, so as not to walk off the
1760                 * edge of memory when walking. If we could load this
1761                 * atomically some other way, we could drop this check.
1762                 */
1763                if (read_seqcount_retry(&dentry->d_seq, *seq))
1764                        goto seqretry;
1765                if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
1766                        if (parent->d_op->d_compare(parent, *inode,
1767                                                dentry, i,
1768                                                tlen, tname, name))
1769                                continue;
1770                } else {
1771                        if (dentry_cmp(tname, tlen, str, len))
1772                                continue;
1773                }
1774                /*
1775                 * No extra seqcount check is required after the name
1776                 * compare. The caller must perform a seqcount check in
1777                 * order to do anything useful with the returned dentry
1778                 * anyway.
1779                 */
1780                *inode = i;
1781                return dentry;
1782        }
1783        return NULL;
1784}
1785
1786/**
1787 * d_lookup - search for a dentry
1788 * @parent: parent dentry
1789 * @name: qstr of name we wish to find
1790 * Returns: dentry, or NULL
1791 *
1792 * d_lookup searches the children of the parent dentry for the name in
1793 * question. If the dentry is found its reference count is incremented and the
1794 * dentry is returned. The caller must use dput to free the entry when it has
1795 * finished using it. %NULL is returned if the dentry does not exist.
1796 */
1797struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1798{
1799        struct dentry *dentry;
1800        unsigned seq;
1801
1802        do {
1803                seq = read_seqbegin(&rename_lock);
1804                dentry = __d_lookup(parent, name);
1805                if (dentry)
1806                        break;
1807        } while (read_seqretry(&rename_lock, seq));
1808        return dentry;
1809}
1810EXPORT_SYMBOL(d_lookup);
1811
1812/**
1813 * __d_lookup - search for a dentry (racy)
1814 * @parent: parent dentry
1815 * @name: qstr of name we wish to find
1816 * Returns: dentry, or NULL
1817 *
1818 * __d_lookup is like d_lookup, however it may (rarely) return a
1819 * false-negative result due to unrelated rename activity.
1820 *
1821 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1822 * however it must be used carefully, eg. with a following d_lookup in
1823 * the case of failure.
1824 *
1825 * __d_lookup callers must be commented.
1826 */
1827struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1828{
1829        unsigned int len = name->len;
1830        unsigned int hash = name->hash;
1831        const unsigned char *str = name->name;
1832        struct hlist_bl_head *b = d_hash(parent, hash);
1833        struct hlist_bl_node *node;
1834        struct dentry *found = NULL;
1835        struct dentry *dentry;
1836
1837        /*
1838         * Note: There is significant duplication with __d_lookup_rcu which is
1839         * required to prevent single threaded performance regressions
1840         * especially on architectures where smp_rmb (in seqcounts) are costly.
1841         * Keep the two functions in sync.
1842         */
1843
1844        /*
1845         * The hash list is protected using RCU.
1846         *
1847         * Take d_lock when comparing a candidate dentry, to avoid races
1848         * with d_move().
1849         *
1850         * It is possible that concurrent renames can mess up our list
1851         * walk here and result in missing our dentry, resulting in the
1852         * false-negative result. d_lookup() protects against concurrent
1853         * renames using rename_lock seqlock.
1854         *
1855         * See Documentation/filesystems/path-lookup.txt for more details.
1856         */
1857        rcu_read_lock();
1858        
1859        hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1860                const char *tname;
1861                int tlen;
1862
1863                if (dentry->d_name.hash != hash)
1864                        continue;
1865
1866                spin_lock(&dentry->d_lock);
1867                if (dentry->d_parent != parent)
1868                        goto next;
1869                if (d_unhashed(dentry))
1870                        goto next;
1871
1872                /*
1873                 * It is safe to compare names since d_move() cannot
1874                 * change the qstr (protected by d_lock).
1875                 */
1876                tlen = dentry->d_name.len;
1877                tname = dentry->d_name.name;
1878                if (parent->d_flags & DCACHE_OP_COMPARE) {
1879                        if (parent->d_op->d_compare(parent, parent->d_inode,
1880                                                dentry, dentry->d_inode,
1881                                                tlen, tname, name))
1882                                goto next;
1883                } else {
1884                        if (dentry_cmp(tname, tlen, str, len))
1885                                goto next;
1886                }
1887
1888                dentry->d_count++;
1889                found = dentry;
1890                spin_unlock(&dentry->d_lock);
1891                break;
1892next:
1893                spin_unlock(&dentry->d_lock);
1894        }
1895        rcu_read_unlock();
1896
1897        return found;
1898}
1899
1900/**
1901 * d_hash_and_lookup - hash the qstr then search for a dentry
1902 * @dir: Directory to search in
1903 * @name: qstr of name we wish to find
1904 *
1905 * On hash failure or on lookup failure NULL is returned.
1906 */
1907struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1908{
1909        struct dentry *dentry = NULL;
1910
1911        /*
1912         * Check for a fs-specific hash function. Note that we must
1913         * calculate the standard hash first, as the d_op->d_hash()
1914         * routine may choose to leave the hash value unchanged.
1915         */
1916        name->hash = full_name_hash(name->name, name->len);
1917        if (dir->d_flags & DCACHE_OP_HASH) {
1918                if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
1919                        goto out;
1920        }
1921        dentry = d_lookup(dir, name);
1922out:
1923        return dentry;
1924}
1925
1926/**
1927 * d_validate - verify dentry provided from insecure source (deprecated)
1928 * @dentry: The dentry alleged to be valid child of @dparent
1929 * @dparent: The parent dentry (known to be valid)
1930 *
1931 * An insecure source has sent us a dentry, here we verify it and dget() it.
1932 * This is used by ncpfs in its readdir implementation.
1933 * Zero is returned in the dentry is invalid.
1934 *
1935 * This function is slow for big directories, and deprecated, do not use it.
1936 */
1937int d_validate(struct dentry *dentry, struct dentry *dparent)
1938{
1939        struct dentry *child;
1940
1941        spin_lock(&dparent->d_lock);
1942        list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
1943                if (dentry == child) {
1944                        spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1945                        __dget_dlock(dentry);
1946                        spin_unlock(&dentry->d_lock);
1947                        spin_unlock(&dparent->d_lock);
1948                        return 1;
1949                }
1950        }
1951        spin_unlock(&dparent->d_lock);
1952
1953        return 0;
1954}
1955EXPORT_SYMBOL(d_validate);
1956
1957/*
1958 * When a file is deleted, we have two options:
1959 * - turn this dentry into a negative dentry
1960 * - unhash this dentry and free it.
1961 *
1962 * Usually, we want to just turn this into
1963 * a negative dentry, but if anybody else is
1964 * currently using the dentry or the inode
1965 * we can't do that and we fall back on removing
1966 * it from the hash queues and waiting for
1967 * it to be deleted later when it has no users
1968 */
1969 
1970/**
1971 * d_delete - delete a dentry
1972 * @dentry: The dentry to delete
1973 *
1974 * Turn the dentry into a negative dentry if possible, otherwise
1975 * remove it from the hash queues so it can be deleted later
1976 */
1977 
1978void d_delete(struct dentry * dentry)
1979{
1980        struct inode *inode;
1981        int isdir = 0;
1982        /*
1983         * Are we the only user?
1984         */
1985again:
1986        spin_lock(&dentry->d_lock);
1987        inode = dentry->d_inode;
1988        isdir = S_ISDIR(inode->i_mode);
1989        if (dentry->d_count == 1) {
1990                if (inode && !spin_trylock(&inode->i_lock)) {
1991                        spin_unlock(&dentry->d_lock);
1992                        cpu_relax();
1993                        goto again;
1994                }
1995                dentry->d_flags &= ~DCACHE_CANT_MOUNT;
1996                dentry_unlink_inode(dentry);
1997                fsnotify_nameremove(dentry, isdir);
1998                return;
1999        }
2000
2001        if (!d_unhashed(dentry))
2002                __d_drop(dentry);
2003
2004        spin_unlock(&dentry->d_lock);
2005
2006        fsnotify_nameremove(dentry, isdir);
2007}
2008EXPORT_SYMBOL(d_delete);
2009
2010static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2011{
2012        BUG_ON(!d_unhashed(entry));
2013        hlist_bl_lock(b);
2014        entry->d_flags |= DCACHE_RCUACCESS;
2015        hlist_bl_add_head_rcu(&entry->d_hash, b);
2016        hlist_bl_unlock(b);
2017}
2018
2019static void _d_rehash(struct dentry * entry)
2020{
2021        __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2022}
2023
2024/**
2025 * d_rehash     - add an entry back to the hash
2026 * @entry: dentry to add to the hash
2027 *
2028 * Adds a dentry to the hash according to its name.
2029 */
2030 
2031void d_rehash(struct dentry * entry)
2032{
2033        spin_lock(&entry->d_lock);
2034        _d_rehash(entry);
2035        spin_unlock(&entry->d_lock);
2036}
2037EXPORT_SYMBOL(d_rehash);
2038
2039/**
2040 * dentry_update_name_case - update case insensitive dentry with a new name
2041 * @dentry: dentry to be updated
2042 * @name: new name
2043 *
2044 * Update a case insensitive dentry with new case of name.
2045 *
2046 * dentry must have been returned by d_lookup with name @name. Old and new
2047 * name lengths must match (ie. no d_compare which allows mismatched name
2048 * lengths).
2049 *
2050 * Parent inode i_mutex must be held over d_lookup and into this call (to
2051 * keep renames and concurrent inserts, and readdir(2) away).
2052 */
2053void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2054{
2055        BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2056        BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2057
2058        spin_lock(&dentry->d_lock);
2059        write_seqcount_begin(&dentry->d_seq);
2060        memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2061        write_seqcount_end(&dentry->d_seq);
2062        spin_unlock(&dentry->d_lock);
2063}
2064EXPORT_SYMBOL(dentry_update_name_case);
2065
2066static void switch_names(struct dentry *dentry, struct dentry *target)
2067{
2068        if (dname_external(target)) {
2069                if (dname_external(dentry)) {
2070                        /*
2071                         * Both external: swap the pointers
2072                         */
2073                        swap(target->d_name.name, dentry->d_name.name);
2074                } else {
2075                        /*
2076                         * dentry:internal, target:external.  Steal target's
2077                         * storage and make target internal.
2078                         */
2079                        memcpy(target->d_iname, dentry->d_name.name,
2080                                        dentry->d_name.len + 1);
2081                        dentry->d_name.name = target->d_name.name;
2082                        target->d_name.name = target->d_iname;
2083                }
2084        } else {
2085                if (dname_external(dentry)) {
2086                        /*
2087                         * dentry:external, target:internal.  Give dentry's
2088                         * storage to target and make dentry internal
2089                         */
2090                        memcpy(dentry->d_iname, target->d_name.name,
2091                                        target->d_name.len + 1);
2092                        target->d_name.name = dentry->d_name.name;
2093                        dentry->d_name.name = dentry->d_iname;
2094                } else {
2095                        /*
2096                         * Both are internal.  Just copy target to dentry
2097                         */
2098                        memcpy(dentry->d_iname, target->d_name.name,
2099                                        target->d_name.len + 1);
2100                        dentry->d_name.len = target->d_name.len;
2101                        return;
2102                }
2103        }
2104        swap(dentry->d_name.len, target->d_name.len);
2105}
2106
2107static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2108{
2109        /*
2110         * XXXX: do we really need to take target->d_lock?
2111         */
2112        if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2113                spin_lock(&target->d_parent->d_lock);
2114        else {
2115                if (d_ancestor(dentry->d_parent, target->d_parent)) {
2116                        spin_lock(&dentry->d_parent->d_lock);
2117                        spin_lock_nested(&target->d_parent->d_lock,
2118                                                DENTRY_D_LOCK_NESTED);
2119                } else {
2120                        spin_lock(&target->d_parent->d_lock);
2121                        spin_lock_nested(&dentry->d_parent->d_lock,
2122                                                DENTRY_D_LOCK_NESTED);
2123                }
2124        }
2125        if (target < dentry) {
2126                spin_lock_nested(&target->d_lock, 2);
2127                spin_lock_nested(&dentry->d_lock, 3);
2128        } else {
2129                spin_lock_nested(&dentry->d_lock, 2);
2130                spin_lock_nested(&target->d_lock, 3);
2131        }
2132}
2133
2134static void dentry_unlock_parents_for_move(struct dentry *dentry,
2135                                        struct dentry *target)
2136{
2137        if (target->d_parent != dentry->d_parent)
2138                spin_unlock(&dentry->d_parent->d_lock);
2139        if (target->d_parent != target)
2140                spin_unlock(&target->d_parent->d_lock);
2141}
2142
2143/*
2144 * When switching names, the actual string doesn't strictly have to
2145 * be preserved in the target - because we're dropping the target
2146 * anyway. As such, we can just do a simple memcpy() to copy over
2147 * the new name before we switch.
2148 *
2149 * Note that we have to be a lot more careful about getting the hash
2150 * switched - we have to switch the hash value properly even if it
2151 * then no longer matches the actual (corrupted) string of the target.
2152 * The hash value has to match the hash queue that the dentry is on..
2153 */
2154/*
2155 * __d_move - move a dentry
2156 * @dentry: entry to move
2157 * @target: new dentry
2158 *
2159 * Update the dcache to reflect the move of a file name. Negative
2160 * dcache entries should not be moved in this way. Caller must hold
2161 * rename_lock, the i_mutex of the source and target directories,
2162 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2163 */
2164static void __d_move(struct dentry * dentry, struct dentry * target)
2165{
2166        if (!dentry->d_inode)
2167                printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2168
2169        BUG_ON(d_ancestor(dentry, target));
2170        BUG_ON(d_ancestor(target, dentry));
2171
2172        dentry_lock_for_move(dentry, target);
2173
2174        write_seqcount_begin(&dentry->d_seq);
2175        write_seqcount_begin(&target->d_seq);
2176
2177        /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2178
2179        /*
2180         * Move the dentry to the target hash queue. Don't bother checking
2181         * for the same hash queue because of how unlikely it is.
2182         */
2183        __d_drop(dentry);
2184        __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2185
2186        /* Unhash the target: dput() will then get rid of it */
2187        __d_drop(target);
2188
2189        list_del(&dentry->d_u.d_child);
2190        list_del(&target->d_u.d_child);
2191
2192        /* Switch the names.. */
2193        switch_names(dentry, target);
2194        swap(dentry->d_name.hash, target->d_name.hash);
2195
2196        /* ... and switch the parents */
2197        if (IS_ROOT(dentry)) {
2198                dentry->d_parent = target->d_parent;
2199                target->d_parent = target;
2200                INIT_LIST_HEAD(&target->d_u.d_child);
2201        } else {
2202                swap(dentry->d_parent, target->d_parent);
2203
2204                /* And add them back to the (new) parent lists */
2205                list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2206        }
2207
2208        list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2209
2210        write_seqcount_end(&target->d_seq);
2211        write_seqcount_end(&dentry->d_seq);
2212
2213        dentry_unlock_parents_for_move(dentry, target);
2214        spin_unlock(&target->d_lock);
2215        fsnotify_d_move(dentry);
2216        spin_unlock(&dentry->d_lock);
2217}
2218
2219/*
2220 * d_move - move a dentry
2221 * @dentry: entry to move
2222 * @target: new dentry
2223 *
2224 * Update the dcache to reflect the move of a file name. Negative
2225 * dcache entries should not be moved in this way. See the locking
2226 * requirements for __d_move.
2227 */
2228void d_move(struct dentry *dentry, struct dentry *target)
2229{
2230        write_seqlock(&rename_lock);
2231        __d_move(dentry, target);
2232        write_sequnlock(&rename_lock);
2233}
2234EXPORT_SYMBOL(d_move);
2235
2236/**
2237 * d_ancestor - search for an ancestor
2238 * @p1: ancestor dentry
2239 * @p2: child dentry
2240 *
2241 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2242 * an ancestor of p2, else NULL.
2243 */
2244struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2245{
2246        struct dentry *p;
2247
2248        for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2249                if (p->d_parent == p1)
2250                        return p;
2251        }
2252        return NULL;
2253}
2254
2255/*
2256 * This helper attempts to cope with remotely renamed directories
2257 *
2258 * It assumes that the caller is already holding
2259 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2260 *
2261 * Note: If ever the locking in lock_rename() changes, then please
2262 * remember to update this too...
2263 */
2264static struct dentry *__d_unalias(struct inode *inode,
2265                struct dentry *dentry, struct dentry *alias)
2266{
2267        struct mutex *m1 = NULL, *m2 = NULL;
2268        struct dentry *ret;
2269
2270        /* If alias and dentry share a parent, then no extra locks required */
2271        if (alias->d_parent == dentry->d_parent)
2272                goto out_unalias;
2273
2274        /* See lock_rename() */
2275        ret = ERR_PTR(-EBUSY);
2276        if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2277                goto out_err;
2278        m1 = &dentry->d_sb->s_vfs_rename_mutex;
2279        if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2280                goto out_err;
2281        m2 = &alias->d_parent->d_inode->i_mutex;
2282out_unalias:
2283        __d_move(alias, dentry);
2284        ret = alias;
2285out_err:
2286        spin_unlock(&inode->i_lock);
2287        if (m2)
2288                mutex_unlock(m2);
2289        if (m1)
2290                mutex_unlock(m1);
2291        return ret;
2292}
2293
2294/*
2295 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2296 * named dentry in place of the dentry to be replaced.
2297 * returns with anon->d_lock held!
2298 */
2299static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2300{
2301        struct dentry *dparent, *aparent;
2302
2303        dentry_lock_for_move(anon, dentry);
2304
2305        write_seqcount_begin(&dentry->d_seq);
2306        write_seqcount_begin(&anon->d_seq);
2307
2308        dparent = dentry->d_parent;
2309        aparent = anon->d_parent;
2310
2311        switch_names(dentry, anon);
2312        swap(dentry->d_name.hash, anon->d_name.hash);
2313
2314        dentry->d_parent = (aparent == anon) ? dentry : aparent;
2315        list_del(&dentry->d_u.d_child);
2316        if (!IS_ROOT(dentry))
2317                list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2318        else
2319                INIT_LIST_HEAD(&dentry->d_u.d_child);
2320
2321        anon->d_parent = (dparent == dentry) ? anon : dparent;
2322        list_del(&anon->d_u.d_child);
2323        if (!IS_ROOT(anon))
2324                list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2325        else
2326                INIT_LIST_HEAD(&anon->d_u.d_child);
2327
2328        write_seqcount_end(&dentry->d_seq);
2329        write_seqcount_end(&anon->d_seq);
2330
2331        dentry_unlock_parents_for_move(anon, dentry);
2332        spin_unlock(&dentry->d_lock);
2333
2334        /* anon->d_lock still locked, returns locked */
2335        anon->d_flags &= ~DCACHE_DISCONNECTED;
2336}
2337
2338/**
2339 * d_materialise_unique - introduce an inode into the tree
2340 * @dentry: candidate dentry
2341 * @inode: inode to bind to the dentry, to which aliases may be attached
2342 *
2343 * Introduces an dentry into the tree, substituting an extant disconnected
2344 * root directory alias in its place if there is one. Caller must hold the
2345 * i_mutex of the parent directory.
2346 */
2347struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2348{
2349        struct dentry *actual;
2350
2351        BUG_ON(!d_unhashed(dentry));
2352
2353        if (!inode) {
2354                actual = dentry;
2355                __d_instantiate(dentry, NULL);
2356                d_rehash(actual);
2357                goto out_nolock;
2358        }
2359
2360        spin_lock(&inode->i_lock);
2361
2362        if (S_ISDIR(inode->i_mode)) {
2363                struct dentry *alias;
2364
2365                /* Does an aliased dentry already exist? */
2366                alias = __d_find_alias(inode, 0);
2367                if (alias) {
2368                        actual = alias;
2369                        write_seqlock(&rename_lock);
2370
2371                        if (d_ancestor(alias, dentry)) {
2372                                /* Check for loops */
2373                                actual = ERR_PTR(-ELOOP);
2374                        } else if (IS_ROOT(alias)) {
2375                                /* Is this an anonymous mountpoint that we
2376                                 * could splice into our tree? */
2377                                __d_materialise_dentry(dentry, alias);
2378                                write_sequnlock(&rename_lock);
2379                                __d_drop(alias);
2380                                goto found;
2381                        } else {
2382                                /* Nope, but we must(!) avoid directory
2383                                 * aliasing */
2384                                actual = __d_unalias(inode, dentry, alias);
2385                        }
2386                        write_sequnlock(&rename_lock);
2387                        if (IS_ERR(actual)) {
2388                                if (PTR_ERR(actual) == -ELOOP)
2389                                        pr_warn_ratelimited(
2390                                                "VFS: Lookup of '%s' in %s %s"
2391                                                " would have caused loop\n",
2392                                                dentry->d_name.name,
2393                                                inode->i_sb->s_type->name,
2394                                                inode->i_sb->s_id);
2395                                dput(alias);
2396                        }
2397                        goto out_nolock;
2398                }
2399        }
2400
2401        /* Add a unique reference */
2402        actual = __d_instantiate_unique(dentry, inode);
2403        if (!actual)
2404                actual = dentry;
2405        else
2406                BUG_ON(!d_unhashed(actual));
2407
2408        spin_lock(&actual->d_lock);
2409found:
2410        _d_rehash(actual);
2411        spin_unlock(&actual->d_lock);
2412        spin_unlock(&inode->i_lock);
2413out_nolock:
2414        if (actual == dentry) {
2415                security_d_instantiate(dentry, inode);
2416                return NULL;
2417        }
2418
2419        iput(inode);
2420        return actual;
2421}
2422EXPORT_SYMBOL_GPL(d_materialise_unique);
2423
2424static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2425{
2426        *buflen -= namelen;
2427        if (*buflen < 0)
2428                return -ENAMETOOLONG;
2429        *buffer -= namelen;
2430        memcpy(*buffer, str, namelen);
2431        return 0;
2432}
2433
2434static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2435{
2436        return prepend(buffer, buflen, name->name, name->len);
2437}
2438
2439/**
2440 * prepend_path - Prepend path string to a buffer
2441 * @path: the dentry/vfsmount to report
2442 * @root: root vfsmnt/dentry
2443 * @buffer: pointer to the end of the buffer
2444 * @buflen: pointer to buffer length
2445 *
2446 * Caller holds the rename_lock.
2447 */
2448static int prepend_path(const struct path *path,
2449                        const struct path *root,
2450                        char **buffer, int *buflen)
2451{
2452        struct dentry *dentry = path->dentry;
2453        struct vfsmount *vfsmnt = path->mnt;
2454        bool slash = false;
2455        int error = 0;
2456
2457        br_read_lock(vfsmount_lock);
2458        while (dentry != root->dentry || vfsmnt != root->mnt) {
2459                struct dentry * parent;
2460
2461                if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2462                        /* Global root? */
2463                        if (vfsmnt->mnt_parent == vfsmnt) {
2464                                goto global_root;
2465                        }
2466                        dentry = vfsmnt->mnt_mountpoint;
2467                        vfsmnt = vfsmnt->mnt_parent;
2468                        continue;
2469                }
2470                parent = dentry->d_parent;
2471                prefetch(parent);
2472                spin_lock(&dentry->d_lock);
2473                error = prepend_name(buffer, buflen, &dentry->d_name);
2474                spin_unlock(&dentry->d_lock);
2475                if (!error)
2476                        error = prepend(buffer, buflen, "/", 1);
2477                if (error)
2478                        break;
2479
2480                slash = true;
2481                dentry = parent;
2482        }
2483
2484        if (!error && !slash)
2485                error = prepend(buffer, buflen, "/", 1);
2486
2487out:
2488        br_read_unlock(vfsmount_lock);
2489        return error;
2490
2491global_root:
2492        /*
2493         * Filesystems needing to implement special "root names"
2494         * should do so with ->d_dname()
2495         */
2496        if (IS_ROOT(dentry) &&
2497            (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2498                WARN(1, "Root dentry has weird name <%.*s>\n",
2499                     (int) dentry->d_name.len, dentry->d_name.name);
2500        }
2501        if (!slash)
2502                error = prepend(buffer, buflen, "/", 1);
2503        if (!error)
2504                error = vfsmnt->mnt_ns ? 1 : 2;
2505        goto out;
2506}
2507
2508/**
2509 * __d_path - return the path of a dentry
2510 * @path: the dentry/vfsmount to report
2511 * @root: root vfsmnt/dentry
2512 * @buf: buffer to return value in
2513 * @buflen: buffer length
2514 *
2515 * Convert a dentry into an ASCII path name.
2516 *
2517 * Returns a pointer into the buffer or an error code if the
2518 * path was too long.
2519 *
2520 * "buflen" should be positive.
2521 *
2522 * If the path is not reachable from the supplied root, return %NULL.
2523 */
2524char *__d_path(const struct path *path,
2525               const struct path *root,
2526               char *buf, int buflen)
2527{
2528        char *res = buf + buflen;
2529        int error;
2530
2531        prepend(&res, &buflen, "\0", 1);
2532        write_seqlock(&rename_lock);
2533        error = prepend_path(path, root, &res, &buflen);
2534        write_sequnlock(&rename_lock);
2535
2536        if (error < 0)
2537                return ERR_PTR(error);
2538        if (error > 0)
2539                return NULL;
2540        return res;
2541}
2542
2543char *d_absolute_path(const struct path *path,
2544               char *buf, int buflen)
2545{
2546        struct path root = {};
2547        char *res = buf + buflen;
2548        int error;
2549
2550        prepend(&res, &buflen, "\0", 1);
2551        write_seqlock(&rename_lock);
2552        error = prepend_path(path, &root, &res, &buflen);
2553        write_sequnlock(&rename_lock);
2554
2555        if (error > 1)
2556                error = -EINVAL;
2557        if (error < 0)
2558                return ERR_PTR(error);
2559        return res;
2560}
2561
2562/*
2563 * same as __d_path but appends "(deleted)" for unlinked files.
2564 */
2565static int path_with_deleted(const struct path *path,
2566                             const struct path *root,
2567                             char **buf, int *buflen)
2568{
2569        prepend(buf, buflen, "\0", 1);
2570        if (d_unlinked(path->dentry)) {
2571                int error = prepend(buf, buflen, " (deleted)", 10);
2572                if (error)
2573                        return error;
2574        }
2575
2576        return prepend_path(path, root, buf, buflen);
2577}
2578
2579static int prepend_unreachable(char **buffer, int *buflen)
2580{
2581        return prepend(buffer, buflen, "(unreachable)", 13);
2582}
2583
2584/**
2585 * d_path - return the path of a dentry
2586 * @path: path to report
2587 * @buf: buffer to return value in
2588 * @buflen: buffer length
2589 *
2590 * Convert a dentry into an ASCII path name. If the entry has been deleted
2591 * the string " (deleted)" is appended. Note that this is ambiguous.
2592 *
2593 * Returns a pointer into the buffer or an error code if the path was
2594 * too long. Note: Callers should use the returned pointer, not the passed
2595 * in buffer, to use the name! The implementation often starts at an offset
2596 * into the buffer, and may leave 0 bytes at the start.
2597 *
2598 * "buflen" should be positive.
2599 */
2600char *d_path(const struct path *path, char *buf, int buflen)
2601{
2602        char *res = buf + buflen;
2603        struct path root;
2604        int error;
2605
2606        /*
2607         * We have various synthetic filesystems that never get mounted.  On
2608         * these filesystems dentries are never used for lookup purposes, and
2609         * thus don't need to be hashed.  They also don't need a name until a
2610         * user wants to identify the object in /proc/pid/fd/.  The little hack
2611         * below allows us to generate a name for these objects on demand:
2612         */
2613        if (path->dentry->d_op && path->dentry->d_op->d_dname)
2614                return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2615
2616        get_fs_root(current->fs, &root);
2617        write_seqlock(&rename_lock);
2618        error = path_with_deleted(path, &root, &res, &buflen);
2619        if (error < 0)
2620                res = ERR_PTR(error);
2621        write_sequnlock(&rename_lock);
2622        path_put(&root);
2623        return res;
2624}
2625EXPORT_SYMBOL(d_path);
2626
2627/**
2628 * d_path_with_unreachable - return the path of a dentry
2629 * @path: path to report
2630 * @buf: buffer to return value in
2631 * @buflen: buffer length
2632 *
2633 * The difference from d_path() is that this prepends "(unreachable)"
2634 * to paths which are unreachable from the current process' root.
2635 */
2636char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2637{
2638        char *res = buf + buflen;
2639        struct path root;
2640        int error;
2641
2642        if (path->dentry->d_op && path->dentry->d_op->d_dname)
2643                return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2644
2645        get_fs_root(current->fs, &root);
2646        write_seqlock(&rename_lock);
2647        error = path_with_deleted(path, &root, &res, &buflen);
2648        if (error > 0)
2649                error = prepend_unreachable(&res, &buflen);
2650        write_sequnlock(&rename_lock);
2651        path_put(&root);
2652        if (error)
2653                res =  ERR_PTR(error);
2654
2655        return res;
2656}
2657
2658/*
2659 * Helper function for dentry_operations.d_dname() members
2660 */
2661char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2662                        const char *fmt, ...)
2663{
2664        va_list args;
2665        char temp[64];
2666        int sz;
2667
2668        va_start(args, fmt);
2669        sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2670        va_end(args);
2671
2672        if (sz > sizeof(temp) || sz > buflen)
2673                return ERR_PTR(-ENAMETOOLONG);
2674
2675        buffer += buflen - sz;
2676        return memcpy(buffer, temp, sz);
2677}
2678
2679/*
2680 * Write full pathname from the root of the filesystem into the buffer.
2681 */
2682static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2683{
2684        char *end = buf + buflen;
2685        char *retval;
2686
2687        prepend(&end, &buflen, "\0", 1);
2688        if (buflen < 1)
2689                goto Elong;
2690        /* Get '/' right */
2691        retval = end-1;
2692        *retval = '/';
2693
2694        while (!IS_ROOT(dentry)) {
2695                struct dentry *parent = dentry->d_parent;
2696                int error;
2697
2698                prefetch(parent);
2699                spin_lock(&dentry->d_lock);
2700                error = prepend_name(&end, &buflen, &dentry->d_name);
2701                spin_unlock(&dentry->d_lock);
2702                if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2703                        goto Elong;
2704
2705                retval = end;
2706                dentry = parent;
2707        }
2708        return retval;
2709Elong:
2710        return ERR_PTR(-ENAMETOOLONG);
2711}
2712
2713char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2714{
2715        char *retval;
2716
2717        write_seqlock(&rename_lock);
2718        retval = __dentry_path(dentry, buf, buflen);
2719        write_sequnlock(&rename_lock);
2720
2721        return retval;
2722}
2723EXPORT_SYMBOL(dentry_path_raw);
2724
2725char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2726{
2727        char *p = NULL;
2728        char *retval;
2729
2730        write_seqlock(&rename_lock);
2731        if (d_unlinked(dentry)) {
2732                p = buf + buflen;
2733                if (prepend(&p, &buflen, "//deleted", 10) != 0)
2734                        goto Elong;
2735                buflen++;
2736        }
2737        retval = __dentry_path(dentry, buf, buflen);
2738        write_sequnlock(&rename_lock);
2739        if (!IS_ERR(retval) && p)
2740                *p = '/';       /* restore '/' overriden with '\0' */
2741        return retval;
2742Elong:
2743        return ERR_PTR(-ENAMETOOLONG);
2744}
2745
2746/*
2747 * NOTE! The user-level library version returns a
2748 * character pointer. The kernel system call just
2749 * returns the length of the buffer filled (which
2750 * includes the ending '\0' character), or a negative
2751 * error value. So libc would do something like
2752 *
2753 *      char *getcwd(char * buf, size_t size)
2754 *      {
2755 *              int retval;
2756 *
2757 *              retval = sys_getcwd(buf, size);
2758 *              if (retval >= 0)
2759 *                      return buf;
2760 *              errno = -retval;
2761 *              return NULL;
2762 *      }
2763 */
2764SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2765{
2766        int error;
2767        struct path pwd, root;
2768        char *page = (char *) __get_free_page(GFP_USER);
2769
2770        if (!page)
2771                return -ENOMEM;
2772
2773        get_fs_root_and_pwd(current->fs, &root, &pwd);
2774
2775        error = -ENOENT;
2776        write_seqlock(&rename_lock);
2777        if (!d_unlinked(pwd.dentry)) {
2778                unsigned long len;
2779                char *cwd = page + PAGE_SIZE;
2780                int buflen = PAGE_SIZE;
2781
2782                prepend(&cwd, &buflen, "\0", 1);
2783                error = prepend_path(&pwd, &root, &cwd, &buflen);
2784                write_sequnlock(&rename_lock);
2785
2786                if (error < 0)
2787                        goto out;
2788
2789                /* Unreachable from current root */
2790                if (error > 0) {
2791                        error = prepend_unreachable(&cwd, &buflen);
2792                        if (error)
2793                                goto out;
2794                }
2795
2796                error = -ERANGE;
2797                len = PAGE_SIZE + page - cwd;
2798                if (len <= size) {
2799                        error = len;
2800                        if (copy_to_user(buf, cwd, len))
2801                                error = -EFAULT;
2802                }
2803        } else {
2804                write_sequnlock(&rename_lock);
2805        }
2806
2807out:
2808        path_put(&pwd);
2809        path_put(&root);
2810        free_page((unsigned long) page);
2811        return error;
2812}
2813
2814/*
2815 * Test whether new_dentry is a subdirectory of old_dentry.
2816 *
2817 * Trivially implemented using the dcache structure
2818 */
2819
2820/**
2821 * is_subdir - is new dentry a subdirectory of old_dentry
2822 * @new_dentry: new dentry
2823 * @old_dentry: old dentry
2824 *
2825 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2826 * Returns 0 otherwise.
2827 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2828 */
2829  
2830int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2831{
2832        int result;
2833        unsigned seq;
2834
2835        if (new_dentry == old_dentry)
2836                return 1;
2837
2838        do {
2839                /* for restarting inner loop in case of seq retry */
2840                seq = read_seqbegin(&rename_lock);
2841                /*
2842                 * Need rcu_readlock to protect against the d_parent trashing
2843                 * due to d_move
2844                 */
2845                rcu_read_lock();
2846                if (d_ancestor(old_dentry, new_dentry))
2847                        result = 1;
2848                else
2849                        result = 0;
2850                rcu_read_unlock();
2851        } while (read_seqretry(&rename_lock, seq));
2852
2853        return result;
2854}
2855
2856int path_is_under(struct path *path1, struct path *path2)
2857{
2858        struct vfsmount *mnt = path1->mnt;
2859        struct dentry *dentry = path1->dentry;
2860        int res;
2861
2862        br_read_lock(vfsmount_lock);
2863        if (mnt != path2->mnt) {
2864                for (;;) {
2865                        if (mnt->mnt_parent == mnt) {
2866                                br_read_unlock(vfsmount_lock);
2867                                return 0;
2868                        }
2869                        if (mnt->mnt_parent == path2->mnt)
2870                                break;
2871                        mnt = mnt->mnt_parent;
2872                }
2873                dentry = mnt->mnt_mountpoint;
2874        }
2875        res = is_subdir(dentry, path2->dentry);
2876        br_read_unlock(vfsmount_lock);
2877        return res;
2878}
2879EXPORT_SYMBOL(path_is_under);
2880
2881void d_genocide(struct dentry *root)
2882{
2883        struct dentry *this_parent;
2884        struct list_head *next;
2885        unsigned seq;
2886        int locked = 0;
2887
2888        seq = read_seqbegin(&rename_lock);
2889again:
2890        this_parent = root;
2891        spin_lock(&this_parent->d_lock);
2892repeat:
2893        next = this_parent->d_subdirs.next;
2894resume:
2895        while (next != &this_parent->d_subdirs) {
2896                struct list_head *tmp = next;
2897                struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2898                next = tmp->next;
2899
2900                spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2901                if (d_unhashed(dentry) || !dentry->d_inode) {
2902                        spin_unlock(&dentry->d_lock);
2903                        continue;
2904                }
2905                if (!list_empty(&dentry->d_subdirs)) {
2906                        spin_unlock(&this_parent->d_lock);
2907                        spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2908                        this_parent = dentry;
2909                        spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2910                        goto repeat;
2911                }
2912                if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2913                        dentry->d_flags |= DCACHE_GENOCIDE;
2914                        dentry->d_count--;
2915                }
2916                spin_unlock(&dentry->d_lock);
2917        }
2918        if (this_parent != root) {
2919                struct dentry *child = this_parent;
2920                if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2921                        this_parent->d_flags |= DCACHE_GENOCIDE;
2922                        this_parent->d_count--;
2923                }
2924                this_parent = try_to_ascend(this_parent, locked, seq);
2925                if (!this_parent)
2926                        goto rename_retry;
2927                next = child->d_u.d_child.next;
2928                goto resume;
2929        }
2930        spin_unlock(&this_parent->d_lock);
2931        if (!locked && read_seqretry(&rename_lock, seq))
2932                goto rename_retry;
2933        if (locked)
2934                write_sequnlock(&rename_lock);
2935        return;
2936
2937rename_retry:
2938        locked = 1;
2939        write_seqlock(&rename_lock);
2940        goto again;
2941}
2942
2943/**
2944 * find_inode_number - check for dentry with name
2945 * @dir: directory to check
2946 * @name: Name to find.
2947 *
2948 * Check whether a dentry already exists for the given name,
2949 * and return the inode number if it has an inode. Otherwise
2950 * 0 is returned.
2951 *
2952 * This routine is used to post-process directory listings for
2953 * filesystems using synthetic inode numbers, and is necessary
2954 * to keep getcwd() working.
2955 */
2956 
2957ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2958{
2959        struct dentry * dentry;
2960        ino_t ino = 0;
2961
2962        dentry = d_hash_and_lookup(dir, name);
2963        if (dentry) {
2964                if (dentry->d_inode)
2965                        ino = dentry->d_inode->i_ino;
2966                dput(dentry);
2967        }
2968        return ino;
2969}
2970EXPORT_SYMBOL(find_inode_number);
2971
2972static __initdata unsigned long dhash_entries;
2973static int __init set_dhash_entries(char *str)
2974{
2975        if (!str)
2976                return 0;
2977        dhash_entries = simple_strtoul(str, &str, 0);
2978        return 1;
2979}
2980__setup("dhash_entries=", set_dhash_entries);
2981
2982static void __init dcache_init_early(void)
2983{
2984        int loop;
2985
2986        /* If hashes are distributed across NUMA nodes, defer
2987         * hash allocation until vmalloc space is available.
2988         */
2989        if (hashdist)
2990                return;
2991
2992        dentry_hashtable =
2993                alloc_large_system_hash("Dentry cache",
2994                                        sizeof(struct hlist_bl_head),
2995                                        dhash_entries,
2996                                        13,
2997                                        HASH_EARLY,
2998                                        &d_hash_shift,
2999                                        &d_hash_mask,
3000                                        0);
3001
3002        for (loop = 0; loop < (1 << d_hash_shift); loop++)
3003                INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3004}
3005
3006static void __init dcache_init(void)
3007{
3008        int loop;
3009
3010        /* 
3011         * A constructor could be added for stable state like the lists,
3012         * but it is probably not worth it because of the cache nature
3013         * of the dcache. 
3014         */
3015        dentry_cache = KMEM_CACHE(dentry,
3016                SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3017
3018        /* Hash may have been set up in dcache_init_early */
3019        if (!hashdist)
3020                return;
3021
3022        dentry_hashtable =
3023                alloc_large_system_hash("Dentry cache",
3024                                        sizeof(struct hlist_bl_head),
3025                                        dhash_entries,
3026                                        13,
3027                                        0,
3028                                        &d_hash_shift,
3029                                        &d_hash_mask,
3030                                        0);
3031
3032        for (loop = 0; loop < (1 << d_hash_shift); loop++)
3033                INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3034}
3035
3036/* SLAB cache for __getname() consumers */
3037struct kmem_cache *names_cachep __read_mostly;
3038EXPORT_SYMBOL(names_cachep);
3039
3040EXPORT_SYMBOL(d_genocide);
3041
3042void __init vfs_caches_init_early(void)
3043{
3044        dcache_init_early();
3045        inode_init_early();
3046}
3047
3048void __init vfs_caches_init(unsigned long mempages)
3049{
3050        unsigned long reserve;
3051
3052        /* Base hash sizes on available memory, with a reserve equal to
3053           150% of current kernel size */
3054
3055        reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3056        mempages -= reserve;
3057
3058        names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3059                        SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3060
3061        dcache_init();
3062        inode_init();
3063        files_init(mempages);
3064        mnt_init();
3065        bdev_cache_init();
3066        chrdev_init();
3067}
3068