1/* 2 * Functions to sequence FLUSH and FUA writes. 3 * 4 * Copyright (C) 2011 Max Planck Institute for Gravitational Physics 5 * Copyright (C) 2011 Tejun Heo <tj@kernel.org> 6 * 7 * This file is released under the GPLv2. 8 * 9 * REQ_{FLUSH|FUA} requests are decomposed to sequences consisted of three 10 * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request 11 * properties and hardware capability. 12 * 13 * If a request doesn't have data, only REQ_FLUSH makes sense, which 14 * indicates a simple flush request. If there is data, REQ_FLUSH indicates 15 * that the device cache should be flushed before the data is executed, and 16 * REQ_FUA means that the data must be on non-volatile media on request 17 * completion. 18 * 19 * If the device doesn't have writeback cache, FLUSH and FUA don't make any 20 * difference. The requests are either completed immediately if there's no 21 * data or executed as normal requests otherwise. 22 * 23 * If the device has writeback cache and supports FUA, REQ_FLUSH is 24 * translated to PREFLUSH but REQ_FUA is passed down directly with DATA. 25 * 26 * If the device has writeback cache and doesn't support FUA, REQ_FLUSH is 27 * translated to PREFLUSH and REQ_FUA to POSTFLUSH. 28 * 29 * The actual execution of flush is double buffered. Whenever a request 30 * needs to execute PRE or POSTFLUSH, it queues at 31 * q->flush_queue[q->flush_pending_idx]. Once certain criteria are met, a 32 * flush is issued and the pending_idx is toggled. When the flush 33 * completes, all the requests which were pending are proceeded to the next 34 * step. This allows arbitrary merging of different types of FLUSH/FUA 35 * requests. 36 * 37 * Currently, the following conditions are used to determine when to issue 38 * flush. 39 * 40 * C1. At any given time, only one flush shall be in progress. This makes 41 * double buffering sufficient. 42 * 43 * C2. Flush is deferred if any request is executing DATA of its sequence. 44 * This avoids issuing separate POSTFLUSHes for requests which shared 45 * PREFLUSH. 46 * 47 * C3. The second condition is ignored if there is a request which has 48 * waited longer than FLUSH_PENDING_TIMEOUT. This is to avoid 49 * starvation in the unlikely case where there are continuous stream of 50 * FUA (without FLUSH) requests. 51 * 52 * For devices which support FUA, it isn't clear whether C2 (and thus C3) 53 * is beneficial. 54 * 55 * Note that a sequenced FLUSH/FUA request with DATA is completed twice. 56 * Once while executing DATA and again after the whole sequence is 57 * complete. The first completion updates the contained bio but doesn't 58 * finish it so that the bio submitter is notified only after the whole 59 * sequence is complete. This is implemented by testing REQ_FLUSH_SEQ in 60 * req_bio_endio(). 61 * 62 * The above peculiarity requires that each FLUSH/FUA request has only one 63 * bio attached to it, which is guaranteed as they aren't allowed to be 64 * merged in the usual way. 65 */ 66 67#include <linux/kernel.h> 68#include <linux/module.h> 69#include <linux/bio.h> 70#include <linux/blkdev.h> 71#include <linux/gfp.h> 72 73#include "blk.h" 74 75/* FLUSH/FUA sequences */ 76enum { 77 REQ_FSEQ_PREFLUSH = (1 << 0), /* pre-flushing in progress */ 78 REQ_FSEQ_DATA = (1 << 1), /* data write in progress */ 79 REQ_FSEQ_POSTFLUSH = (1 << 2), /* post-flushing in progress */ 80 REQ_FSEQ_DONE = (1 << 3), 81 82 REQ_FSEQ_ACTIONS = REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA | 83 REQ_FSEQ_POSTFLUSH, 84 85 /* 86 * If flush has been pending longer than the following timeout, 87 * it's issued even if flush_data requests are still in flight. 88 */ 89 FLUSH_PENDING_TIMEOUT = 5 * HZ, 90}; 91 92static bool blk_kick_flush(struct request_queue *q); 93 94static unsigned int blk_flush_policy(unsigned int fflags, struct request *rq) 95{ 96 unsigned int policy = 0; 97 98 if (fflags & REQ_FLUSH) { 99 if (rq->cmd_flags & REQ_FLUSH) 100 policy |= REQ_FSEQ_PREFLUSH; 101 if (blk_rq_sectors(rq)) 102 policy |= REQ_FSEQ_DATA; 103 if (!(fflags & REQ_FUA) && (rq->cmd_flags & REQ_FUA)) 104 policy |= REQ_FSEQ_POSTFLUSH; 105 } 106 return policy; 107} 108 109static unsigned int blk_flush_cur_seq(struct request *rq) 110{ 111 return 1 << ffz(rq->flush.seq); 112} 113 114static void blk_flush_restore_request(struct request *rq) 115{ 116 /* 117 * After flush data completion, @rq->bio is %NULL but we need to 118 * complete the bio again. @rq->biotail is guaranteed to equal the 119 * original @rq->bio. Restore it. 120 */ 121 rq->bio = rq->biotail; 122 123 /* make @rq a normal request */ 124 rq->cmd_flags &= ~REQ_FLUSH_SEQ; 125 rq->end_io = NULL; 126} 127 128/** 129 * blk_flush_complete_seq - complete flush sequence 130 * @rq: FLUSH/FUA request being sequenced 131 * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero) 132 * @error: whether an error occurred 133 * 134 * @rq just completed @seq part of its flush sequence, record the 135 * completion and trigger the next step. 136 * 137 * CONTEXT: 138 * spin_lock_irq(q->queue_lock) 139 * 140 * RETURNS: 141 * %true if requests were added to the dispatch queue, %false otherwise. 142 */ 143static bool blk_flush_complete_seq(struct request *rq, unsigned int seq, 144 int error) 145{ 146 struct request_queue *q = rq->q; 147 struct list_head *pending = &q->flush_queue[q->flush_pending_idx]; 148 bool queued = false; 149 150 BUG_ON(rq->flush.seq & seq); 151 rq->flush.seq |= seq; 152 153 if (likely(!error)) 154 seq = blk_flush_cur_seq(rq); 155 else 156 seq = REQ_FSEQ_DONE; 157 158 switch (seq) { 159 case REQ_FSEQ_PREFLUSH: 160 case REQ_FSEQ_POSTFLUSH: 161 /* queue for flush */ 162 if (list_empty(pending)) 163 q->flush_pending_since = jiffies; 164 list_move_tail(&rq->flush.list, pending); 165 break; 166 167 case REQ_FSEQ_DATA: 168 list_move_tail(&rq->flush.list, &q->flush_data_in_flight); 169 list_add(&rq->queuelist, &q->queue_head); 170 queued = true; 171 break; 172 173 case REQ_FSEQ_DONE: 174 /* 175 * @rq was previously adjusted by blk_flush_issue() for 176 * flush sequencing and may already have gone through the 177 * flush data request completion path. Restore @rq for 178 * normal completion and end it. 179 */ 180 BUG_ON(!list_empty(&rq->queuelist)); 181 list_del_init(&rq->flush.list); 182 blk_flush_restore_request(rq); 183 __blk_end_request_all(rq, error); 184 break; 185 186 default: 187 BUG(); 188 } 189 190 return blk_kick_flush(q) | queued; 191} 192 193static void flush_end_io(struct request *flush_rq, int error) 194{ 195 struct request_queue *q = flush_rq->q; 196 struct list_head *running = &q->flush_queue[q->flush_running_idx]; 197 bool queued = false; 198 struct request *rq, *n; 199 200 BUG_ON(q->flush_pending_idx == q->flush_running_idx); 201 202 /* account completion of the flush request */ 203 q->flush_running_idx ^= 1; 204 elv_completed_request(q, flush_rq); 205 206 /* and push the waiting requests to the next stage */ 207 list_for_each_entry_safe(rq, n, running, flush.list) { 208 unsigned int seq = blk_flush_cur_seq(rq); 209 210 BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH); 211 queued |= blk_flush_complete_seq(rq, seq, error); 212 } 213 214 /* 215 * Moving a request silently to empty queue_head may stall the 216 * queue. Kick the queue in those cases. This function is called 217 * from request completion path and calling directly into 218 * request_fn may confuse the driver. Always use kblockd. 219 */ 220 if (queued) 221 blk_run_queue_async(q); 222} 223 224/** 225 * blk_kick_flush - consider issuing flush request 226 * @q: request_queue being kicked 227 * 228 * Flush related states of @q have changed, consider issuing flush request. 229 * Please read the comment at the top of this file for more info. 230 * 231 * CONTEXT: 232 * spin_lock_irq(q->queue_lock) 233 * 234 * RETURNS: 235 * %true if flush was issued, %false otherwise. 236 */ 237static bool blk_kick_flush(struct request_queue *q) 238{ 239 struct list_head *pending = &q->flush_queue[q->flush_pending_idx]; 240 struct request *first_rq = 241 list_first_entry(pending, struct request, flush.list); 242 243 /* C1 described at the top of this file */ 244 if (q->flush_pending_idx != q->flush_running_idx || list_empty(pending)) 245 return false; 246 247 /* C2 and C3 */ 248 if (!list_empty(&q->flush_data_in_flight) && 249 time_before(jiffies, 250 q->flush_pending_since + FLUSH_PENDING_TIMEOUT)) 251 return false; 252 253 /* 254 * Issue flush and toggle pending_idx. This makes pending_idx 255 * different from running_idx, which means flush is in flight. 256 */ 257 blk_rq_init(q, &q->flush_rq); 258 q->flush_rq.cmd_type = REQ_TYPE_FS; 259 q->flush_rq.cmd_flags = WRITE_FLUSH | REQ_FLUSH_SEQ; 260 q->flush_rq.rq_disk = first_rq->rq_disk; 261 q->flush_rq.end_io = flush_end_io; 262 263 q->flush_pending_idx ^= 1; 264 list_add_tail(&q->flush_rq.queuelist, &q->queue_head); 265 return true; 266} 267 268static void flush_data_end_io(struct request *rq, int error) 269{ 270 struct request_queue *q = rq->q; 271 272 /* 273 * After populating an empty queue, kick it to avoid stall. Read 274 * the comment in flush_end_io(). 275 */ 276 if (blk_flush_complete_seq(rq, REQ_FSEQ_DATA, error)) 277 blk_run_queue_async(q); 278} 279 280/** 281 * blk_insert_flush - insert a new FLUSH/FUA request 282 * @rq: request to insert 283 * 284 * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions. 285 * @rq is being submitted. Analyze what needs to be done and put it on the 286 * right queue. 287 * 288 * CONTEXT: 289 * spin_lock_irq(q->queue_lock) 290 */ 291void blk_insert_flush(struct request *rq) 292{ 293 struct request_queue *q = rq->q; 294 unsigned int fflags = q->flush_flags; /* may change, cache */ 295 unsigned int policy = blk_flush_policy(fflags, rq); 296 297 BUG_ON(rq->end_io); 298 BUG_ON(!rq->bio || rq->bio != rq->biotail); 299 300 /* 301 * @policy now records what operations need to be done. Adjust 302 * REQ_FLUSH and FUA for the driver. 303 */ 304 rq->cmd_flags &= ~REQ_FLUSH; 305 if (!(fflags & REQ_FUA)) 306 rq->cmd_flags &= ~REQ_FUA; 307 308 /* 309 * If there's data but flush is not necessary, the request can be 310 * processed directly without going through flush machinery. Queue 311 * for normal execution. 312 */ 313 if ((policy & REQ_FSEQ_DATA) && 314 !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) { 315 list_add_tail(&rq->queuelist, &q->queue_head); 316 return; 317 } 318 319 /* 320 * @rq should go through flush machinery. Mark it part of flush 321 * sequence and submit for further processing. 322 */ 323 memset(&rq->flush, 0, sizeof(rq->flush)); 324 INIT_LIST_HEAD(&rq->flush.list); 325 rq->cmd_flags |= REQ_FLUSH_SEQ; 326 rq->end_io = flush_data_end_io; 327 328 blk_flush_complete_seq(rq, REQ_FSEQ_ACTIONS & ~policy, 0); 329} 330 331/** 332 * blk_abort_flushes - @q is being aborted, abort flush requests 333 * @q: request_queue being aborted 334 * 335 * To be called from elv_abort_queue(). @q is being aborted. Prepare all 336 * FLUSH/FUA requests for abortion. 337 * 338 * CONTEXT: 339 * spin_lock_irq(q->queue_lock) 340 */ 341void blk_abort_flushes(struct request_queue *q) 342{ 343 struct request *rq, *n; 344 int i; 345 346 /* 347 * Requests in flight for data are already owned by the dispatch 348 * queue or the device driver. Just restore for normal completion. 349 */ 350 list_for_each_entry_safe(rq, n, &q->flush_data_in_flight, flush.list) { 351 list_del_init(&rq->flush.list); 352 blk_flush_restore_request(rq); 353 } 354 355 /* 356 * We need to give away requests on flush queues. Restore for 357 * normal completion and put them on the dispatch queue. 358 */ 359 for (i = 0; i < ARRAY_SIZE(q->flush_queue); i++) { 360 list_for_each_entry_safe(rq, n, &q->flush_queue[i], 361 flush.list) { 362 list_del_init(&rq->flush.list); 363 blk_flush_restore_request(rq); 364 list_add_tail(&rq->queuelist, &q->queue_head); 365 } 366 } 367} 368 369static void bio_end_flush(struct bio *bio, int err) 370{ 371 if (err) 372 clear_bit(BIO_UPTODATE, &bio->bi_flags); 373 if (bio->bi_private) 374 complete(bio->bi_private); 375 bio_put(bio); 376} 377 378/** 379 * blkdev_issue_flush - queue a flush 380 * @bdev: blockdev to issue flush for 381 * @gfp_mask: memory allocation flags (for bio_alloc) 382 * @error_sector: error sector 383 * 384 * Description: 385 * Issue a flush for the block device in question. Caller can supply 386 * room for storing the error offset in case of a flush error, if they 387 * wish to. If WAIT flag is not passed then caller may check only what 388 * request was pushed in some internal queue for later handling. 389 */ 390int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask, 391 sector_t *error_sector) 392{ 393 DECLARE_COMPLETION_ONSTACK(wait); 394 struct request_queue *q; 395 struct bio *bio; 396 int ret = 0; 397 398 if (bdev->bd_disk == NULL) 399 return -ENXIO; 400 401 q = bdev_get_queue(bdev); 402 if (!q) 403 return -ENXIO; 404 405 /* 406 * some block devices may not have their queue correctly set up here 407 * (e.g. loop device without a backing file) and so issuing a flush 408 * here will panic. Ensure there is a request function before issuing 409 * the flush. 410 */ 411 if (!q->make_request_fn) 412 return -ENXIO; 413 414 bio = bio_alloc(gfp_mask, 0); 415 bio->bi_end_io = bio_end_flush; 416 bio->bi_bdev = bdev; 417 bio->bi_private = &wait; 418 419 bio_get(bio); 420 submit_bio(WRITE_FLUSH, bio); 421 wait_for_completion(&wait); 422 423 /* 424 * The driver must store the error location in ->bi_sector, if 425 * it supports it. For non-stacked drivers, this should be 426 * copied from blk_rq_pos(rq). 427 */ 428 if (error_sector) 429 *error_sector = bio->bi_sector; 430 431 if (!bio_flagged(bio, BIO_UPTODATE)) 432 ret = -EIO; 433 434 bio_put(bio); 435 return ret; 436} 437EXPORT_SYMBOL(blkdev_issue_flush); 438