linux/tools/perf/builtin-timechart.c
<<
>>
Prefs
   1/*
   2 * builtin-timechart.c - make an svg timechart of system activity
   3 *
   4 * (C) Copyright 2009 Intel Corporation
   5 *
   6 * Authors:
   7 *     Arjan van de Ven <arjan@linux.intel.com>
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License
  11 * as published by the Free Software Foundation; version 2
  12 * of the License.
  13 */
  14
  15#include "builtin.h"
  16
  17#include "util/util.h"
  18
  19#include "util/color.h"
  20#include <linux/list.h>
  21#include "util/cache.h"
  22#include <linux/rbtree.h>
  23#include "util/symbol.h"
  24#include "util/callchain.h"
  25#include "util/strlist.h"
  26
  27#include "perf.h"
  28#include "util/header.h"
  29#include "util/parse-options.h"
  30#include "util/parse-events.h"
  31#include "util/event.h"
  32#include "util/session.h"
  33#include "util/svghelper.h"
  34
  35#define SUPPORT_OLD_POWER_EVENTS 1
  36#define PWR_EVENT_EXIT -1
  37
  38
  39static char             const *input_name = "perf.data";
  40static char             const *output_name = "output.svg";
  41
  42static unsigned int     numcpus;
  43static u64              min_freq;       /* Lowest CPU frequency seen */
  44static u64              max_freq;       /* Highest CPU frequency seen */
  45static u64              turbo_frequency;
  46
  47static u64              first_time, last_time;
  48
  49static bool             power_only;
  50
  51
  52struct per_pid;
  53struct per_pidcomm;
  54
  55struct cpu_sample;
  56struct power_event;
  57struct wake_event;
  58
  59struct sample_wrapper;
  60
  61/*
  62 * Datastructure layout:
  63 * We keep an list of "pid"s, matching the kernels notion of a task struct.
  64 * Each "pid" entry, has a list of "comm"s.
  65 *      this is because we want to track different programs different, while
  66 *      exec will reuse the original pid (by design).
  67 * Each comm has a list of samples that will be used to draw
  68 * final graph.
  69 */
  70
  71struct per_pid {
  72        struct per_pid *next;
  73
  74        int             pid;
  75        int             ppid;
  76
  77        u64             start_time;
  78        u64             end_time;
  79        u64             total_time;
  80        int             display;
  81
  82        struct per_pidcomm *all;
  83        struct per_pidcomm *current;
  84};
  85
  86
  87struct per_pidcomm {
  88        struct per_pidcomm *next;
  89
  90        u64             start_time;
  91        u64             end_time;
  92        u64             total_time;
  93
  94        int             Y;
  95        int             display;
  96
  97        long            state;
  98        u64             state_since;
  99
 100        char            *comm;
 101
 102        struct cpu_sample *samples;
 103};
 104
 105struct sample_wrapper {
 106        struct sample_wrapper *next;
 107
 108        u64             timestamp;
 109        unsigned char   data[0];
 110};
 111
 112#define TYPE_NONE       0
 113#define TYPE_RUNNING    1
 114#define TYPE_WAITING    2
 115#define TYPE_BLOCKED    3
 116
 117struct cpu_sample {
 118        struct cpu_sample *next;
 119
 120        u64 start_time;
 121        u64 end_time;
 122        int type;
 123        int cpu;
 124};
 125
 126static struct per_pid *all_data;
 127
 128#define CSTATE 1
 129#define PSTATE 2
 130
 131struct power_event {
 132        struct power_event *next;
 133        int type;
 134        int state;
 135        u64 start_time;
 136        u64 end_time;
 137        int cpu;
 138};
 139
 140struct wake_event {
 141        struct wake_event *next;
 142        int waker;
 143        int wakee;
 144        u64 time;
 145};
 146
 147static struct power_event    *power_events;
 148static struct wake_event     *wake_events;
 149
 150struct process_filter;
 151struct process_filter {
 152        char                    *name;
 153        int                     pid;
 154        struct process_filter   *next;
 155};
 156
 157static struct process_filter *process_filter;
 158
 159
 160static struct per_pid *find_create_pid(int pid)
 161{
 162        struct per_pid *cursor = all_data;
 163
 164        while (cursor) {
 165                if (cursor->pid == pid)
 166                        return cursor;
 167                cursor = cursor->next;
 168        }
 169        cursor = malloc(sizeof(struct per_pid));
 170        assert(cursor != NULL);
 171        memset(cursor, 0, sizeof(struct per_pid));
 172        cursor->pid = pid;
 173        cursor->next = all_data;
 174        all_data = cursor;
 175        return cursor;
 176}
 177
 178static void pid_set_comm(int pid, char *comm)
 179{
 180        struct per_pid *p;
 181        struct per_pidcomm *c;
 182        p = find_create_pid(pid);
 183        c = p->all;
 184        while (c) {
 185                if (c->comm && strcmp(c->comm, comm) == 0) {
 186                        p->current = c;
 187                        return;
 188                }
 189                if (!c->comm) {
 190                        c->comm = strdup(comm);
 191                        p->current = c;
 192                        return;
 193                }
 194                c = c->next;
 195        }
 196        c = malloc(sizeof(struct per_pidcomm));
 197        assert(c != NULL);
 198        memset(c, 0, sizeof(struct per_pidcomm));
 199        c->comm = strdup(comm);
 200        p->current = c;
 201        c->next = p->all;
 202        p->all = c;
 203}
 204
 205static void pid_fork(int pid, int ppid, u64 timestamp)
 206{
 207        struct per_pid *p, *pp;
 208        p = find_create_pid(pid);
 209        pp = find_create_pid(ppid);
 210        p->ppid = ppid;
 211        if (pp->current && pp->current->comm && !p->current)
 212                pid_set_comm(pid, pp->current->comm);
 213
 214        p->start_time = timestamp;
 215        if (p->current) {
 216                p->current->start_time = timestamp;
 217                p->current->state_since = timestamp;
 218        }
 219}
 220
 221static void pid_exit(int pid, u64 timestamp)
 222{
 223        struct per_pid *p;
 224        p = find_create_pid(pid);
 225        p->end_time = timestamp;
 226        if (p->current)
 227                p->current->end_time = timestamp;
 228}
 229
 230static void
 231pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
 232{
 233        struct per_pid *p;
 234        struct per_pidcomm *c;
 235        struct cpu_sample *sample;
 236
 237        p = find_create_pid(pid);
 238        c = p->current;
 239        if (!c) {
 240                c = malloc(sizeof(struct per_pidcomm));
 241                assert(c != NULL);
 242                memset(c, 0, sizeof(struct per_pidcomm));
 243                p->current = c;
 244                c->next = p->all;
 245                p->all = c;
 246        }
 247
 248        sample = malloc(sizeof(struct cpu_sample));
 249        assert(sample != NULL);
 250        memset(sample, 0, sizeof(struct cpu_sample));
 251        sample->start_time = start;
 252        sample->end_time = end;
 253        sample->type = type;
 254        sample->next = c->samples;
 255        sample->cpu = cpu;
 256        c->samples = sample;
 257
 258        if (sample->type == TYPE_RUNNING && end > start && start > 0) {
 259                c->total_time += (end-start);
 260                p->total_time += (end-start);
 261        }
 262
 263        if (c->start_time == 0 || c->start_time > start)
 264                c->start_time = start;
 265        if (p->start_time == 0 || p->start_time > start)
 266                p->start_time = start;
 267}
 268
 269#define MAX_CPUS 4096
 270
 271static u64 cpus_cstate_start_times[MAX_CPUS];
 272static int cpus_cstate_state[MAX_CPUS];
 273static u64 cpus_pstate_start_times[MAX_CPUS];
 274static u64 cpus_pstate_state[MAX_CPUS];
 275
 276static int process_comm_event(union perf_event *event,
 277                              struct perf_sample *sample __used,
 278                              struct perf_session *session __used)
 279{
 280        pid_set_comm(event->comm.tid, event->comm.comm);
 281        return 0;
 282}
 283
 284static int process_fork_event(union perf_event *event,
 285                              struct perf_sample *sample __used,
 286                              struct perf_session *session __used)
 287{
 288        pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
 289        return 0;
 290}
 291
 292static int process_exit_event(union perf_event *event,
 293                              struct perf_sample *sample __used,
 294                              struct perf_session *session __used)
 295{
 296        pid_exit(event->fork.pid, event->fork.time);
 297        return 0;
 298}
 299
 300struct trace_entry {
 301        unsigned short          type;
 302        unsigned char           flags;
 303        unsigned char           preempt_count;
 304        int                     pid;
 305        int                     lock_depth;
 306};
 307
 308#ifdef SUPPORT_OLD_POWER_EVENTS
 309static int use_old_power_events;
 310struct power_entry_old {
 311        struct trace_entry te;
 312        u64     type;
 313        u64     value;
 314        u64     cpu_id;
 315};
 316#endif
 317
 318struct power_processor_entry {
 319        struct trace_entry te;
 320        u32     state;
 321        u32     cpu_id;
 322};
 323
 324#define TASK_COMM_LEN 16
 325struct wakeup_entry {
 326        struct trace_entry te;
 327        char comm[TASK_COMM_LEN];
 328        int   pid;
 329        int   prio;
 330        int   success;
 331};
 332
 333/*
 334 * trace_flag_type is an enumeration that holds different
 335 * states when a trace occurs. These are:
 336 *  IRQS_OFF            - interrupts were disabled
 337 *  IRQS_NOSUPPORT      - arch does not support irqs_disabled_flags
 338 *  NEED_RESCED         - reschedule is requested
 339 *  HARDIRQ             - inside an interrupt handler
 340 *  SOFTIRQ             - inside a softirq handler
 341 */
 342enum trace_flag_type {
 343        TRACE_FLAG_IRQS_OFF             = 0x01,
 344        TRACE_FLAG_IRQS_NOSUPPORT       = 0x02,
 345        TRACE_FLAG_NEED_RESCHED         = 0x04,
 346        TRACE_FLAG_HARDIRQ              = 0x08,
 347        TRACE_FLAG_SOFTIRQ              = 0x10,
 348};
 349
 350
 351
 352struct sched_switch {
 353        struct trace_entry te;
 354        char prev_comm[TASK_COMM_LEN];
 355        int  prev_pid;
 356        int  prev_prio;
 357        long prev_state; /* Arjan weeps. */
 358        char next_comm[TASK_COMM_LEN];
 359        int  next_pid;
 360        int  next_prio;
 361};
 362
 363static void c_state_start(int cpu, u64 timestamp, int state)
 364{
 365        cpus_cstate_start_times[cpu] = timestamp;
 366        cpus_cstate_state[cpu] = state;
 367}
 368
 369static void c_state_end(int cpu, u64 timestamp)
 370{
 371        struct power_event *pwr;
 372        pwr = malloc(sizeof(struct power_event));
 373        if (!pwr)
 374                return;
 375        memset(pwr, 0, sizeof(struct power_event));
 376
 377        pwr->state = cpus_cstate_state[cpu];
 378        pwr->start_time = cpus_cstate_start_times[cpu];
 379        pwr->end_time = timestamp;
 380        pwr->cpu = cpu;
 381        pwr->type = CSTATE;
 382        pwr->next = power_events;
 383
 384        power_events = pwr;
 385}
 386
 387static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
 388{
 389        struct power_event *pwr;
 390        pwr = malloc(sizeof(struct power_event));
 391
 392        if (new_freq > 8000000) /* detect invalid data */
 393                return;
 394
 395        if (!pwr)
 396                return;
 397        memset(pwr, 0, sizeof(struct power_event));
 398
 399        pwr->state = cpus_pstate_state[cpu];
 400        pwr->start_time = cpus_pstate_start_times[cpu];
 401        pwr->end_time = timestamp;
 402        pwr->cpu = cpu;
 403        pwr->type = PSTATE;
 404        pwr->next = power_events;
 405
 406        if (!pwr->start_time)
 407                pwr->start_time = first_time;
 408
 409        power_events = pwr;
 410
 411        cpus_pstate_state[cpu] = new_freq;
 412        cpus_pstate_start_times[cpu] = timestamp;
 413
 414        if ((u64)new_freq > max_freq)
 415                max_freq = new_freq;
 416
 417        if (new_freq < min_freq || min_freq == 0)
 418                min_freq = new_freq;
 419
 420        if (new_freq == max_freq - 1000)
 421                        turbo_frequency = max_freq;
 422}
 423
 424static void
 425sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
 426{
 427        struct wake_event *we;
 428        struct per_pid *p;
 429        struct wakeup_entry *wake = (void *)te;
 430
 431        we = malloc(sizeof(struct wake_event));
 432        if (!we)
 433                return;
 434
 435        memset(we, 0, sizeof(struct wake_event));
 436        we->time = timestamp;
 437        we->waker = pid;
 438
 439        if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
 440                we->waker = -1;
 441
 442        we->wakee = wake->pid;
 443        we->next = wake_events;
 444        wake_events = we;
 445        p = find_create_pid(we->wakee);
 446
 447        if (p && p->current && p->current->state == TYPE_NONE) {
 448                p->current->state_since = timestamp;
 449                p->current->state = TYPE_WAITING;
 450        }
 451        if (p && p->current && p->current->state == TYPE_BLOCKED) {
 452                pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
 453                p->current->state_since = timestamp;
 454                p->current->state = TYPE_WAITING;
 455        }
 456}
 457
 458static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
 459{
 460        struct per_pid *p = NULL, *prev_p;
 461        struct sched_switch *sw = (void *)te;
 462
 463
 464        prev_p = find_create_pid(sw->prev_pid);
 465
 466        p = find_create_pid(sw->next_pid);
 467
 468        if (prev_p->current && prev_p->current->state != TYPE_NONE)
 469                pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
 470        if (p && p->current) {
 471                if (p->current->state != TYPE_NONE)
 472                        pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
 473
 474                p->current->state_since = timestamp;
 475                p->current->state = TYPE_RUNNING;
 476        }
 477
 478        if (prev_p->current) {
 479                prev_p->current->state = TYPE_NONE;
 480                prev_p->current->state_since = timestamp;
 481                if (sw->prev_state & 2)
 482                        prev_p->current->state = TYPE_BLOCKED;
 483                if (sw->prev_state == 0)
 484                        prev_p->current->state = TYPE_WAITING;
 485        }
 486}
 487
 488
 489static int process_sample_event(union perf_event *event __used,
 490                                struct perf_sample *sample,
 491                                struct perf_evsel *evsel __used,
 492                                struct perf_session *session)
 493{
 494        struct trace_entry *te;
 495
 496        if (session->sample_type & PERF_SAMPLE_TIME) {
 497                if (!first_time || first_time > sample->time)
 498                        first_time = sample->time;
 499                if (last_time < sample->time)
 500                        last_time = sample->time;
 501        }
 502
 503        te = (void *)sample->raw_data;
 504        if (session->sample_type & PERF_SAMPLE_RAW && sample->raw_size > 0) {
 505                char *event_str;
 506#ifdef SUPPORT_OLD_POWER_EVENTS
 507                struct power_entry_old *peo;
 508                peo = (void *)te;
 509#endif
 510                /*
 511                 * FIXME: use evsel, its already mapped from id to perf_evsel,
 512                 * remove perf_header__find_event infrastructure bits.
 513                 * Mapping all these "power:cpu_idle" strings to the tracepoint
 514                 * ID and then just comparing against evsel->attr.config.
 515                 *
 516                 * e.g.:
 517                 *
 518                 * if (evsel->attr.config == power_cpu_idle_id)
 519                 */
 520                event_str = perf_header__find_event(te->type);
 521
 522                if (!event_str)
 523                        return 0;
 524
 525                if (sample->cpu > numcpus)
 526                        numcpus = sample->cpu;
 527
 528                if (strcmp(event_str, "power:cpu_idle") == 0) {
 529                        struct power_processor_entry *ppe = (void *)te;
 530                        if (ppe->state == (u32)PWR_EVENT_EXIT)
 531                                c_state_end(ppe->cpu_id, sample->time);
 532                        else
 533                                c_state_start(ppe->cpu_id, sample->time,
 534                                              ppe->state);
 535                }
 536                else if (strcmp(event_str, "power:cpu_frequency") == 0) {
 537                        struct power_processor_entry *ppe = (void *)te;
 538                        p_state_change(ppe->cpu_id, sample->time, ppe->state);
 539                }
 540
 541                else if (strcmp(event_str, "sched:sched_wakeup") == 0)
 542                        sched_wakeup(sample->cpu, sample->time, sample->pid, te);
 543
 544                else if (strcmp(event_str, "sched:sched_switch") == 0)
 545                        sched_switch(sample->cpu, sample->time, te);
 546
 547#ifdef SUPPORT_OLD_POWER_EVENTS
 548                if (use_old_power_events) {
 549                        if (strcmp(event_str, "power:power_start") == 0)
 550                                c_state_start(peo->cpu_id, sample->time,
 551                                              peo->value);
 552
 553                        else if (strcmp(event_str, "power:power_end") == 0)
 554                                c_state_end(sample->cpu, sample->time);
 555
 556                        else if (strcmp(event_str,
 557                                        "power:power_frequency") == 0)
 558                                p_state_change(peo->cpu_id, sample->time,
 559                                               peo->value);
 560                }
 561#endif
 562        }
 563        return 0;
 564}
 565
 566/*
 567 * After the last sample we need to wrap up the current C/P state
 568 * and close out each CPU for these.
 569 */
 570static void end_sample_processing(void)
 571{
 572        u64 cpu;
 573        struct power_event *pwr;
 574
 575        for (cpu = 0; cpu <= numcpus; cpu++) {
 576                pwr = malloc(sizeof(struct power_event));
 577                if (!pwr)
 578                        return;
 579                memset(pwr, 0, sizeof(struct power_event));
 580
 581                /* C state */
 582#if 0
 583                pwr->state = cpus_cstate_state[cpu];
 584                pwr->start_time = cpus_cstate_start_times[cpu];
 585                pwr->end_time = last_time;
 586                pwr->cpu = cpu;
 587                pwr->type = CSTATE;
 588                pwr->next = power_events;
 589
 590                power_events = pwr;
 591#endif
 592                /* P state */
 593
 594                pwr = malloc(sizeof(struct power_event));
 595                if (!pwr)
 596                        return;
 597                memset(pwr, 0, sizeof(struct power_event));
 598
 599                pwr->state = cpus_pstate_state[cpu];
 600                pwr->start_time = cpus_pstate_start_times[cpu];
 601                pwr->end_time = last_time;
 602                pwr->cpu = cpu;
 603                pwr->type = PSTATE;
 604                pwr->next = power_events;
 605
 606                if (!pwr->start_time)
 607                        pwr->start_time = first_time;
 608                if (!pwr->state)
 609                        pwr->state = min_freq;
 610                power_events = pwr;
 611        }
 612}
 613
 614/*
 615 * Sort the pid datastructure
 616 */
 617static void sort_pids(void)
 618{
 619        struct per_pid *new_list, *p, *cursor, *prev;
 620        /* sort by ppid first, then by pid, lowest to highest */
 621
 622        new_list = NULL;
 623
 624        while (all_data) {
 625                p = all_data;
 626                all_data = p->next;
 627                p->next = NULL;
 628
 629                if (new_list == NULL) {
 630                        new_list = p;
 631                        p->next = NULL;
 632                        continue;
 633                }
 634                prev = NULL;
 635                cursor = new_list;
 636                while (cursor) {
 637                        if (cursor->ppid > p->ppid ||
 638                                (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
 639                                /* must insert before */
 640                                if (prev) {
 641                                        p->next = prev->next;
 642                                        prev->next = p;
 643                                        cursor = NULL;
 644                                        continue;
 645                                } else {
 646                                        p->next = new_list;
 647                                        new_list = p;
 648                                        cursor = NULL;
 649                                        continue;
 650                                }
 651                        }
 652
 653                        prev = cursor;
 654                        cursor = cursor->next;
 655                        if (!cursor)
 656                                prev->next = p;
 657                }
 658        }
 659        all_data = new_list;
 660}
 661
 662
 663static void draw_c_p_states(void)
 664{
 665        struct power_event *pwr;
 666        pwr = power_events;
 667
 668        /*
 669         * two pass drawing so that the P state bars are on top of the C state blocks
 670         */
 671        while (pwr) {
 672                if (pwr->type == CSTATE)
 673                        svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
 674                pwr = pwr->next;
 675        }
 676
 677        pwr = power_events;
 678        while (pwr) {
 679                if (pwr->type == PSTATE) {
 680                        if (!pwr->state)
 681                                pwr->state = min_freq;
 682                        svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
 683                }
 684                pwr = pwr->next;
 685        }
 686}
 687
 688static void draw_wakeups(void)
 689{
 690        struct wake_event *we;
 691        struct per_pid *p;
 692        struct per_pidcomm *c;
 693
 694        we = wake_events;
 695        while (we) {
 696                int from = 0, to = 0;
 697                char *task_from = NULL, *task_to = NULL;
 698
 699                /* locate the column of the waker and wakee */
 700                p = all_data;
 701                while (p) {
 702                        if (p->pid == we->waker || p->pid == we->wakee) {
 703                                c = p->all;
 704                                while (c) {
 705                                        if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
 706                                                if (p->pid == we->waker && !from) {
 707                                                        from = c->Y;
 708                                                        task_from = strdup(c->comm);
 709                                                }
 710                                                if (p->pid == we->wakee && !to) {
 711                                                        to = c->Y;
 712                                                        task_to = strdup(c->comm);
 713                                                }
 714                                        }
 715                                        c = c->next;
 716                                }
 717                                c = p->all;
 718                                while (c) {
 719                                        if (p->pid == we->waker && !from) {
 720                                                from = c->Y;
 721                                                task_from = strdup(c->comm);
 722                                        }
 723                                        if (p->pid == we->wakee && !to) {
 724                                                to = c->Y;
 725                                                task_to = strdup(c->comm);
 726                                        }
 727                                        c = c->next;
 728                                }
 729                        }
 730                        p = p->next;
 731                }
 732
 733                if (!task_from) {
 734                        task_from = malloc(40);
 735                        sprintf(task_from, "[%i]", we->waker);
 736                }
 737                if (!task_to) {
 738                        task_to = malloc(40);
 739                        sprintf(task_to, "[%i]", we->wakee);
 740                }
 741
 742                if (we->waker == -1)
 743                        svg_interrupt(we->time, to);
 744                else if (from && to && abs(from - to) == 1)
 745                        svg_wakeline(we->time, from, to);
 746                else
 747                        svg_partial_wakeline(we->time, from, task_from, to, task_to);
 748                we = we->next;
 749
 750                free(task_from);
 751                free(task_to);
 752        }
 753}
 754
 755static void draw_cpu_usage(void)
 756{
 757        struct per_pid *p;
 758        struct per_pidcomm *c;
 759        struct cpu_sample *sample;
 760        p = all_data;
 761        while (p) {
 762                c = p->all;
 763                while (c) {
 764                        sample = c->samples;
 765                        while (sample) {
 766                                if (sample->type == TYPE_RUNNING)
 767                                        svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
 768
 769                                sample = sample->next;
 770                        }
 771                        c = c->next;
 772                }
 773                p = p->next;
 774        }
 775}
 776
 777static void draw_process_bars(void)
 778{
 779        struct per_pid *p;
 780        struct per_pidcomm *c;
 781        struct cpu_sample *sample;
 782        int Y = 0;
 783
 784        Y = 2 * numcpus + 2;
 785
 786        p = all_data;
 787        while (p) {
 788                c = p->all;
 789                while (c) {
 790                        if (!c->display) {
 791                                c->Y = 0;
 792                                c = c->next;
 793                                continue;
 794                        }
 795
 796                        svg_box(Y, c->start_time, c->end_time, "process");
 797                        sample = c->samples;
 798                        while (sample) {
 799                                if (sample->type == TYPE_RUNNING)
 800                                        svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
 801                                if (sample->type == TYPE_BLOCKED)
 802                                        svg_box(Y, sample->start_time, sample->end_time, "blocked");
 803                                if (sample->type == TYPE_WAITING)
 804                                        svg_waiting(Y, sample->start_time, sample->end_time);
 805                                sample = sample->next;
 806                        }
 807
 808                        if (c->comm) {
 809                                char comm[256];
 810                                if (c->total_time > 5000000000) /* 5 seconds */
 811                                        sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
 812                                else
 813                                        sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
 814
 815                                svg_text(Y, c->start_time, comm);
 816                        }
 817                        c->Y = Y;
 818                        Y++;
 819                        c = c->next;
 820                }
 821                p = p->next;
 822        }
 823}
 824
 825static void add_process_filter(const char *string)
 826{
 827        struct process_filter *filt;
 828        int pid;
 829
 830        pid = strtoull(string, NULL, 10);
 831        filt = malloc(sizeof(struct process_filter));
 832        if (!filt)
 833                return;
 834
 835        filt->name = strdup(string);
 836        filt->pid  = pid;
 837        filt->next = process_filter;
 838
 839        process_filter = filt;
 840}
 841
 842static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
 843{
 844        struct process_filter *filt;
 845        if (!process_filter)
 846                return 1;
 847
 848        filt = process_filter;
 849        while (filt) {
 850                if (filt->pid && p->pid == filt->pid)
 851                        return 1;
 852                if (strcmp(filt->name, c->comm) == 0)
 853                        return 1;
 854                filt = filt->next;
 855        }
 856        return 0;
 857}
 858
 859static int determine_display_tasks_filtered(void)
 860{
 861        struct per_pid *p;
 862        struct per_pidcomm *c;
 863        int count = 0;
 864
 865        p = all_data;
 866        while (p) {
 867                p->display = 0;
 868                if (p->start_time == 1)
 869                        p->start_time = first_time;
 870
 871                /* no exit marker, task kept running to the end */
 872                if (p->end_time == 0)
 873                        p->end_time = last_time;
 874
 875                c = p->all;
 876
 877                while (c) {
 878                        c->display = 0;
 879
 880                        if (c->start_time == 1)
 881                                c->start_time = first_time;
 882
 883                        if (passes_filter(p, c)) {
 884                                c->display = 1;
 885                                p->display = 1;
 886                                count++;
 887                        }
 888
 889                        if (c->end_time == 0)
 890                                c->end_time = last_time;
 891
 892                        c = c->next;
 893                }
 894                p = p->next;
 895        }
 896        return count;
 897}
 898
 899static int determine_display_tasks(u64 threshold)
 900{
 901        struct per_pid *p;
 902        struct per_pidcomm *c;
 903        int count = 0;
 904
 905        if (process_filter)
 906                return determine_display_tasks_filtered();
 907
 908        p = all_data;
 909        while (p) {
 910                p->display = 0;
 911                if (p->start_time == 1)
 912                        p->start_time = first_time;
 913
 914                /* no exit marker, task kept running to the end */
 915                if (p->end_time == 0)
 916                        p->end_time = last_time;
 917                if (p->total_time >= threshold && !power_only)
 918                        p->display = 1;
 919
 920                c = p->all;
 921
 922                while (c) {
 923                        c->display = 0;
 924
 925                        if (c->start_time == 1)
 926                                c->start_time = first_time;
 927
 928                        if (c->total_time >= threshold && !power_only) {
 929                                c->display = 1;
 930                                count++;
 931                        }
 932
 933                        if (c->end_time == 0)
 934                                c->end_time = last_time;
 935
 936                        c = c->next;
 937                }
 938                p = p->next;
 939        }
 940        return count;
 941}
 942
 943
 944
 945#define TIME_THRESH 10000000
 946
 947static void write_svg_file(const char *filename)
 948{
 949        u64 i;
 950        int count;
 951
 952        numcpus++;
 953
 954
 955        count = determine_display_tasks(TIME_THRESH);
 956
 957        /* We'd like to show at least 15 tasks; be less picky if we have fewer */
 958        if (count < 15)
 959                count = determine_display_tasks(TIME_THRESH / 10);
 960
 961        open_svg(filename, numcpus, count, first_time, last_time);
 962
 963        svg_time_grid();
 964        svg_legenda();
 965
 966        for (i = 0; i < numcpus; i++)
 967                svg_cpu_box(i, max_freq, turbo_frequency);
 968
 969        draw_cpu_usage();
 970        draw_process_bars();
 971        draw_c_p_states();
 972        draw_wakeups();
 973
 974        svg_close();
 975}
 976
 977static struct perf_event_ops event_ops = {
 978        .comm                   = process_comm_event,
 979        .fork                   = process_fork_event,
 980        .exit                   = process_exit_event,
 981        .sample                 = process_sample_event,
 982        .ordered_samples        = true,
 983};
 984
 985static int __cmd_timechart(void)
 986{
 987        struct perf_session *session = perf_session__new(input_name, O_RDONLY,
 988                                                         0, false, &event_ops);
 989        int ret = -EINVAL;
 990
 991        if (session == NULL)
 992                return -ENOMEM;
 993
 994        if (!perf_session__has_traces(session, "timechart record"))
 995                goto out_delete;
 996
 997        ret = perf_session__process_events(session, &event_ops);
 998        if (ret)
 999                goto out_delete;
1000
1001        end_sample_processing();
1002
1003        sort_pids();
1004
1005        write_svg_file(output_name);
1006
1007        pr_info("Written %2.1f seconds of trace to %s.\n",
1008                (last_time - first_time) / 1000000000.0, output_name);
1009out_delete:
1010        perf_session__delete(session);
1011        return ret;
1012}
1013
1014static const char * const timechart_usage[] = {
1015        "perf timechart [<options>] {record}",
1016        NULL
1017};
1018
1019#ifdef SUPPORT_OLD_POWER_EVENTS
1020static const char * const record_old_args[] = {
1021        "record",
1022        "-a",
1023        "-R",
1024        "-f",
1025        "-c", "1",
1026        "-e", "power:power_start",
1027        "-e", "power:power_end",
1028        "-e", "power:power_frequency",
1029        "-e", "sched:sched_wakeup",
1030        "-e", "sched:sched_switch",
1031};
1032#endif
1033
1034static const char * const record_new_args[] = {
1035        "record",
1036        "-a",
1037        "-R",
1038        "-f",
1039        "-c", "1",
1040        "-e", "power:cpu_frequency",
1041        "-e", "power:cpu_idle",
1042        "-e", "sched:sched_wakeup",
1043        "-e", "sched:sched_switch",
1044};
1045
1046static int __cmd_record(int argc, const char **argv)
1047{
1048        unsigned int rec_argc, i, j;
1049        const char **rec_argv;
1050        const char * const *record_args = record_new_args;
1051        unsigned int record_elems = ARRAY_SIZE(record_new_args);
1052
1053#ifdef SUPPORT_OLD_POWER_EVENTS
1054        if (!is_valid_tracepoint("power:cpu_idle") &&
1055            is_valid_tracepoint("power:power_start")) {
1056                use_old_power_events = 1;
1057                record_args = record_old_args;
1058                record_elems = ARRAY_SIZE(record_old_args);
1059        }
1060#endif
1061
1062        rec_argc = record_elems + argc - 1;
1063        rec_argv = calloc(rec_argc + 1, sizeof(char *));
1064
1065        if (rec_argv == NULL)
1066                return -ENOMEM;
1067
1068        for (i = 0; i < record_elems; i++)
1069                rec_argv[i] = strdup(record_args[i]);
1070
1071        for (j = 1; j < (unsigned int)argc; j++, i++)
1072                rec_argv[i] = argv[j];
1073
1074        return cmd_record(i, rec_argv, NULL);
1075}
1076
1077static int
1078parse_process(const struct option *opt __used, const char *arg, int __used unset)
1079{
1080        if (arg)
1081                add_process_filter(arg);
1082        return 0;
1083}
1084
1085static const struct option options[] = {
1086        OPT_STRING('i', "input", &input_name, "file",
1087                    "input file name"),
1088        OPT_STRING('o', "output", &output_name, "file",
1089                    "output file name"),
1090        OPT_INTEGER('w', "width", &svg_page_width,
1091                    "page width"),
1092        OPT_BOOLEAN('P', "power-only", &power_only,
1093                    "output power data only"),
1094        OPT_CALLBACK('p', "process", NULL, "process",
1095                      "process selector. Pass a pid or process name.",
1096                       parse_process),
1097        OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1098                    "Look for files with symbols relative to this directory"),
1099        OPT_END()
1100};
1101
1102
1103int cmd_timechart(int argc, const char **argv, const char *prefix __used)
1104{
1105        argc = parse_options(argc, argv, options, timechart_usage,
1106                        PARSE_OPT_STOP_AT_NON_OPTION);
1107
1108        symbol__init();
1109
1110        if (argc && !strncmp(argv[0], "rec", 3))
1111                return __cmd_record(argc, argv);
1112        else if (argc)
1113                usage_with_options(timechart_usage, options);
1114
1115        setup_pager();
1116
1117        return __cmd_timechart();
1118}
1119