linux/tools/perf/builtin-sched.c
<<
>>
Prefs
   1#include "builtin.h"
   2#include "perf.h"
   3
   4#include "util/util.h"
   5#include "util/cache.h"
   6#include "util/symbol.h"
   7#include "util/thread.h"
   8#include "util/header.h"
   9#include "util/session.h"
  10
  11#include "util/parse-options.h"
  12#include "util/trace-event.h"
  13
  14#include "util/debug.h"
  15
  16#include <sys/prctl.h>
  17
  18#include <semaphore.h>
  19#include <pthread.h>
  20#include <math.h>
  21
  22static char                     const *input_name = "perf.data";
  23
  24static char                     default_sort_order[] = "avg, max, switch, runtime";
  25static const char               *sort_order = default_sort_order;
  26
  27static int                      profile_cpu = -1;
  28
  29#define PR_SET_NAME             15               /* Set process name */
  30#define MAX_CPUS                4096
  31
  32static u64                      run_measurement_overhead;
  33static u64                      sleep_measurement_overhead;
  34
  35#define COMM_LEN                20
  36#define SYM_LEN                 129
  37
  38#define MAX_PID                 65536
  39
  40static unsigned long            nr_tasks;
  41
  42struct sched_atom;
  43
  44struct task_desc {
  45        unsigned long           nr;
  46        unsigned long           pid;
  47        char                    comm[COMM_LEN];
  48
  49        unsigned long           nr_events;
  50        unsigned long           curr_event;
  51        struct sched_atom       **atoms;
  52
  53        pthread_t               thread;
  54        sem_t                   sleep_sem;
  55
  56        sem_t                   ready_for_work;
  57        sem_t                   work_done_sem;
  58
  59        u64                     cpu_usage;
  60};
  61
  62enum sched_event_type {
  63        SCHED_EVENT_RUN,
  64        SCHED_EVENT_SLEEP,
  65        SCHED_EVENT_WAKEUP,
  66        SCHED_EVENT_MIGRATION,
  67};
  68
  69struct sched_atom {
  70        enum sched_event_type   type;
  71        int                     specific_wait;
  72        u64                     timestamp;
  73        u64                     duration;
  74        unsigned long           nr;
  75        sem_t                   *wait_sem;
  76        struct task_desc        *wakee;
  77};
  78
  79static struct task_desc         *pid_to_task[MAX_PID];
  80
  81static struct task_desc         **tasks;
  82
  83static pthread_mutex_t          start_work_mutex = PTHREAD_MUTEX_INITIALIZER;
  84static u64                      start_time;
  85
  86static pthread_mutex_t          work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
  87
  88static unsigned long            nr_run_events;
  89static unsigned long            nr_sleep_events;
  90static unsigned long            nr_wakeup_events;
  91
  92static unsigned long            nr_sleep_corrections;
  93static unsigned long            nr_run_events_optimized;
  94
  95static unsigned long            targetless_wakeups;
  96static unsigned long            multitarget_wakeups;
  97
  98static u64                      cpu_usage;
  99static u64                      runavg_cpu_usage;
 100static u64                      parent_cpu_usage;
 101static u64                      runavg_parent_cpu_usage;
 102
 103static unsigned long            nr_runs;
 104static u64                      sum_runtime;
 105static u64                      sum_fluct;
 106static u64                      run_avg;
 107
 108static unsigned int             replay_repeat = 10;
 109static unsigned long            nr_timestamps;
 110static unsigned long            nr_unordered_timestamps;
 111static unsigned long            nr_state_machine_bugs;
 112static unsigned long            nr_context_switch_bugs;
 113static unsigned long            nr_events;
 114static unsigned long            nr_lost_chunks;
 115static unsigned long            nr_lost_events;
 116
 117#define TASK_STATE_TO_CHAR_STR "RSDTtZX"
 118
 119enum thread_state {
 120        THREAD_SLEEPING = 0,
 121        THREAD_WAIT_CPU,
 122        THREAD_SCHED_IN,
 123        THREAD_IGNORE
 124};
 125
 126struct work_atom {
 127        struct list_head        list;
 128        enum thread_state       state;
 129        u64                     sched_out_time;
 130        u64                     wake_up_time;
 131        u64                     sched_in_time;
 132        u64                     runtime;
 133};
 134
 135struct work_atoms {
 136        struct list_head        work_list;
 137        struct thread           *thread;
 138        struct rb_node          node;
 139        u64                     max_lat;
 140        u64                     max_lat_at;
 141        u64                     total_lat;
 142        u64                     nb_atoms;
 143        u64                     total_runtime;
 144};
 145
 146typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
 147
 148static struct rb_root           atom_root, sorted_atom_root;
 149
 150static u64                      all_runtime;
 151static u64                      all_count;
 152
 153
 154static u64 get_nsecs(void)
 155{
 156        struct timespec ts;
 157
 158        clock_gettime(CLOCK_MONOTONIC, &ts);
 159
 160        return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
 161}
 162
 163static void burn_nsecs(u64 nsecs)
 164{
 165        u64 T0 = get_nsecs(), T1;
 166
 167        do {
 168                T1 = get_nsecs();
 169        } while (T1 + run_measurement_overhead < T0 + nsecs);
 170}
 171
 172static void sleep_nsecs(u64 nsecs)
 173{
 174        struct timespec ts;
 175
 176        ts.tv_nsec = nsecs % 999999999;
 177        ts.tv_sec = nsecs / 999999999;
 178
 179        nanosleep(&ts, NULL);
 180}
 181
 182static void calibrate_run_measurement_overhead(void)
 183{
 184        u64 T0, T1, delta, min_delta = 1000000000ULL;
 185        int i;
 186
 187        for (i = 0; i < 10; i++) {
 188                T0 = get_nsecs();
 189                burn_nsecs(0);
 190                T1 = get_nsecs();
 191                delta = T1-T0;
 192                min_delta = min(min_delta, delta);
 193        }
 194        run_measurement_overhead = min_delta;
 195
 196        printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 197}
 198
 199static void calibrate_sleep_measurement_overhead(void)
 200{
 201        u64 T0, T1, delta, min_delta = 1000000000ULL;
 202        int i;
 203
 204        for (i = 0; i < 10; i++) {
 205                T0 = get_nsecs();
 206                sleep_nsecs(10000);
 207                T1 = get_nsecs();
 208                delta = T1-T0;
 209                min_delta = min(min_delta, delta);
 210        }
 211        min_delta -= 10000;
 212        sleep_measurement_overhead = min_delta;
 213
 214        printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 215}
 216
 217static struct sched_atom *
 218get_new_event(struct task_desc *task, u64 timestamp)
 219{
 220        struct sched_atom *event = zalloc(sizeof(*event));
 221        unsigned long idx = task->nr_events;
 222        size_t size;
 223
 224        event->timestamp = timestamp;
 225        event->nr = idx;
 226
 227        task->nr_events++;
 228        size = sizeof(struct sched_atom *) * task->nr_events;
 229        task->atoms = realloc(task->atoms, size);
 230        BUG_ON(!task->atoms);
 231
 232        task->atoms[idx] = event;
 233
 234        return event;
 235}
 236
 237static struct sched_atom *last_event(struct task_desc *task)
 238{
 239        if (!task->nr_events)
 240                return NULL;
 241
 242        return task->atoms[task->nr_events - 1];
 243}
 244
 245static void
 246add_sched_event_run(struct task_desc *task, u64 timestamp, u64 duration)
 247{
 248        struct sched_atom *event, *curr_event = last_event(task);
 249
 250        /*
 251         * optimize an existing RUN event by merging this one
 252         * to it:
 253         */
 254        if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
 255                nr_run_events_optimized++;
 256                curr_event->duration += duration;
 257                return;
 258        }
 259
 260        event = get_new_event(task, timestamp);
 261
 262        event->type = SCHED_EVENT_RUN;
 263        event->duration = duration;
 264
 265        nr_run_events++;
 266}
 267
 268static void
 269add_sched_event_wakeup(struct task_desc *task, u64 timestamp,
 270                       struct task_desc *wakee)
 271{
 272        struct sched_atom *event, *wakee_event;
 273
 274        event = get_new_event(task, timestamp);
 275        event->type = SCHED_EVENT_WAKEUP;
 276        event->wakee = wakee;
 277
 278        wakee_event = last_event(wakee);
 279        if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
 280                targetless_wakeups++;
 281                return;
 282        }
 283        if (wakee_event->wait_sem) {
 284                multitarget_wakeups++;
 285                return;
 286        }
 287
 288        wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
 289        sem_init(wakee_event->wait_sem, 0, 0);
 290        wakee_event->specific_wait = 1;
 291        event->wait_sem = wakee_event->wait_sem;
 292
 293        nr_wakeup_events++;
 294}
 295
 296static void
 297add_sched_event_sleep(struct task_desc *task, u64 timestamp,
 298                      u64 task_state __used)
 299{
 300        struct sched_atom *event = get_new_event(task, timestamp);
 301
 302        event->type = SCHED_EVENT_SLEEP;
 303
 304        nr_sleep_events++;
 305}
 306
 307static struct task_desc *register_pid(unsigned long pid, const char *comm)
 308{
 309        struct task_desc *task;
 310
 311        BUG_ON(pid >= MAX_PID);
 312
 313        task = pid_to_task[pid];
 314
 315        if (task)
 316                return task;
 317
 318        task = zalloc(sizeof(*task));
 319        task->pid = pid;
 320        task->nr = nr_tasks;
 321        strcpy(task->comm, comm);
 322        /*
 323         * every task starts in sleeping state - this gets ignored
 324         * if there's no wakeup pointing to this sleep state:
 325         */
 326        add_sched_event_sleep(task, 0, 0);
 327
 328        pid_to_task[pid] = task;
 329        nr_tasks++;
 330        tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *));
 331        BUG_ON(!tasks);
 332        tasks[task->nr] = task;
 333
 334        if (verbose)
 335                printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm);
 336
 337        return task;
 338}
 339
 340
 341static void print_task_traces(void)
 342{
 343        struct task_desc *task;
 344        unsigned long i;
 345
 346        for (i = 0; i < nr_tasks; i++) {
 347                task = tasks[i];
 348                printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
 349                        task->nr, task->comm, task->pid, task->nr_events);
 350        }
 351}
 352
 353static void add_cross_task_wakeups(void)
 354{
 355        struct task_desc *task1, *task2;
 356        unsigned long i, j;
 357
 358        for (i = 0; i < nr_tasks; i++) {
 359                task1 = tasks[i];
 360                j = i + 1;
 361                if (j == nr_tasks)
 362                        j = 0;
 363                task2 = tasks[j];
 364                add_sched_event_wakeup(task1, 0, task2);
 365        }
 366}
 367
 368static void
 369process_sched_event(struct task_desc *this_task __used, struct sched_atom *atom)
 370{
 371        int ret = 0;
 372
 373        switch (atom->type) {
 374                case SCHED_EVENT_RUN:
 375                        burn_nsecs(atom->duration);
 376                        break;
 377                case SCHED_EVENT_SLEEP:
 378                        if (atom->wait_sem)
 379                                ret = sem_wait(atom->wait_sem);
 380                        BUG_ON(ret);
 381                        break;
 382                case SCHED_EVENT_WAKEUP:
 383                        if (atom->wait_sem)
 384                                ret = sem_post(atom->wait_sem);
 385                        BUG_ON(ret);
 386                        break;
 387                case SCHED_EVENT_MIGRATION:
 388                        break;
 389                default:
 390                        BUG_ON(1);
 391        }
 392}
 393
 394static u64 get_cpu_usage_nsec_parent(void)
 395{
 396        struct rusage ru;
 397        u64 sum;
 398        int err;
 399
 400        err = getrusage(RUSAGE_SELF, &ru);
 401        BUG_ON(err);
 402
 403        sum =  ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
 404        sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
 405
 406        return sum;
 407}
 408
 409static int self_open_counters(void)
 410{
 411        struct perf_event_attr attr;
 412        int fd;
 413
 414        memset(&attr, 0, sizeof(attr));
 415
 416        attr.type = PERF_TYPE_SOFTWARE;
 417        attr.config = PERF_COUNT_SW_TASK_CLOCK;
 418
 419        fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
 420
 421        if (fd < 0)
 422                die("Error: sys_perf_event_open() syscall returned"
 423                    "with %d (%s)\n", fd, strerror(errno));
 424        return fd;
 425}
 426
 427static u64 get_cpu_usage_nsec_self(int fd)
 428{
 429        u64 runtime;
 430        int ret;
 431
 432        ret = read(fd, &runtime, sizeof(runtime));
 433        BUG_ON(ret != sizeof(runtime));
 434
 435        return runtime;
 436}
 437
 438static void *thread_func(void *ctx)
 439{
 440        struct task_desc *this_task = ctx;
 441        u64 cpu_usage_0, cpu_usage_1;
 442        unsigned long i, ret;
 443        char comm2[22];
 444        int fd;
 445
 446        sprintf(comm2, ":%s", this_task->comm);
 447        prctl(PR_SET_NAME, comm2);
 448        fd = self_open_counters();
 449
 450again:
 451        ret = sem_post(&this_task->ready_for_work);
 452        BUG_ON(ret);
 453        ret = pthread_mutex_lock(&start_work_mutex);
 454        BUG_ON(ret);
 455        ret = pthread_mutex_unlock(&start_work_mutex);
 456        BUG_ON(ret);
 457
 458        cpu_usage_0 = get_cpu_usage_nsec_self(fd);
 459
 460        for (i = 0; i < this_task->nr_events; i++) {
 461                this_task->curr_event = i;
 462                process_sched_event(this_task, this_task->atoms[i]);
 463        }
 464
 465        cpu_usage_1 = get_cpu_usage_nsec_self(fd);
 466        this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
 467        ret = sem_post(&this_task->work_done_sem);
 468        BUG_ON(ret);
 469
 470        ret = pthread_mutex_lock(&work_done_wait_mutex);
 471        BUG_ON(ret);
 472        ret = pthread_mutex_unlock(&work_done_wait_mutex);
 473        BUG_ON(ret);
 474
 475        goto again;
 476}
 477
 478static void create_tasks(void)
 479{
 480        struct task_desc *task;
 481        pthread_attr_t attr;
 482        unsigned long i;
 483        int err;
 484
 485        err = pthread_attr_init(&attr);
 486        BUG_ON(err);
 487        err = pthread_attr_setstacksize(&attr,
 488                        (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
 489        BUG_ON(err);
 490        err = pthread_mutex_lock(&start_work_mutex);
 491        BUG_ON(err);
 492        err = pthread_mutex_lock(&work_done_wait_mutex);
 493        BUG_ON(err);
 494        for (i = 0; i < nr_tasks; i++) {
 495                task = tasks[i];
 496                sem_init(&task->sleep_sem, 0, 0);
 497                sem_init(&task->ready_for_work, 0, 0);
 498                sem_init(&task->work_done_sem, 0, 0);
 499                task->curr_event = 0;
 500                err = pthread_create(&task->thread, &attr, thread_func, task);
 501                BUG_ON(err);
 502        }
 503}
 504
 505static void wait_for_tasks(void)
 506{
 507        u64 cpu_usage_0, cpu_usage_1;
 508        struct task_desc *task;
 509        unsigned long i, ret;
 510
 511        start_time = get_nsecs();
 512        cpu_usage = 0;
 513        pthread_mutex_unlock(&work_done_wait_mutex);
 514
 515        for (i = 0; i < nr_tasks; i++) {
 516                task = tasks[i];
 517                ret = sem_wait(&task->ready_for_work);
 518                BUG_ON(ret);
 519                sem_init(&task->ready_for_work, 0, 0);
 520        }
 521        ret = pthread_mutex_lock(&work_done_wait_mutex);
 522        BUG_ON(ret);
 523
 524        cpu_usage_0 = get_cpu_usage_nsec_parent();
 525
 526        pthread_mutex_unlock(&start_work_mutex);
 527
 528        for (i = 0; i < nr_tasks; i++) {
 529                task = tasks[i];
 530                ret = sem_wait(&task->work_done_sem);
 531                BUG_ON(ret);
 532                sem_init(&task->work_done_sem, 0, 0);
 533                cpu_usage += task->cpu_usage;
 534                task->cpu_usage = 0;
 535        }
 536
 537        cpu_usage_1 = get_cpu_usage_nsec_parent();
 538        if (!runavg_cpu_usage)
 539                runavg_cpu_usage = cpu_usage;
 540        runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10;
 541
 542        parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
 543        if (!runavg_parent_cpu_usage)
 544                runavg_parent_cpu_usage = parent_cpu_usage;
 545        runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 +
 546                                   parent_cpu_usage)/10;
 547
 548        ret = pthread_mutex_lock(&start_work_mutex);
 549        BUG_ON(ret);
 550
 551        for (i = 0; i < nr_tasks; i++) {
 552                task = tasks[i];
 553                sem_init(&task->sleep_sem, 0, 0);
 554                task->curr_event = 0;
 555        }
 556}
 557
 558static void run_one_test(void)
 559{
 560        u64 T0, T1, delta, avg_delta, fluct;
 561
 562        T0 = get_nsecs();
 563        wait_for_tasks();
 564        T1 = get_nsecs();
 565
 566        delta = T1 - T0;
 567        sum_runtime += delta;
 568        nr_runs++;
 569
 570        avg_delta = sum_runtime / nr_runs;
 571        if (delta < avg_delta)
 572                fluct = avg_delta - delta;
 573        else
 574                fluct = delta - avg_delta;
 575        sum_fluct += fluct;
 576        if (!run_avg)
 577                run_avg = delta;
 578        run_avg = (run_avg*9 + delta)/10;
 579
 580        printf("#%-3ld: %0.3f, ",
 581                nr_runs, (double)delta/1000000.0);
 582
 583        printf("ravg: %0.2f, ",
 584                (double)run_avg/1e6);
 585
 586        printf("cpu: %0.2f / %0.2f",
 587                (double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6);
 588
 589#if 0
 590        /*
 591         * rusage statistics done by the parent, these are less
 592         * accurate than the sum_exec_runtime based statistics:
 593         */
 594        printf(" [%0.2f / %0.2f]",
 595                (double)parent_cpu_usage/1e6,
 596                (double)runavg_parent_cpu_usage/1e6);
 597#endif
 598
 599        printf("\n");
 600
 601        if (nr_sleep_corrections)
 602                printf(" (%ld sleep corrections)\n", nr_sleep_corrections);
 603        nr_sleep_corrections = 0;
 604}
 605
 606static void test_calibrations(void)
 607{
 608        u64 T0, T1;
 609
 610        T0 = get_nsecs();
 611        burn_nsecs(1e6);
 612        T1 = get_nsecs();
 613
 614        printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
 615
 616        T0 = get_nsecs();
 617        sleep_nsecs(1e6);
 618        T1 = get_nsecs();
 619
 620        printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
 621}
 622
 623#define FILL_FIELD(ptr, field, event, data)     \
 624        ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data)
 625
 626#define FILL_ARRAY(ptr, array, event, data)                     \
 627do {                                                            \
 628        void *__array = raw_field_ptr(event, #array, data);     \
 629        memcpy(ptr.array, __array, sizeof(ptr.array));  \
 630} while(0)
 631
 632#define FILL_COMMON_FIELDS(ptr, event, data)                    \
 633do {                                                            \
 634        FILL_FIELD(ptr, common_type, event, data);              \
 635        FILL_FIELD(ptr, common_flags, event, data);             \
 636        FILL_FIELD(ptr, common_preempt_count, event, data);     \
 637        FILL_FIELD(ptr, common_pid, event, data);               \
 638        FILL_FIELD(ptr, common_tgid, event, data);              \
 639} while (0)
 640
 641
 642
 643struct trace_switch_event {
 644        u32 size;
 645
 646        u16 common_type;
 647        u8 common_flags;
 648        u8 common_preempt_count;
 649        u32 common_pid;
 650        u32 common_tgid;
 651
 652        char prev_comm[16];
 653        u32 prev_pid;
 654        u32 prev_prio;
 655        u64 prev_state;
 656        char next_comm[16];
 657        u32 next_pid;
 658        u32 next_prio;
 659};
 660
 661struct trace_runtime_event {
 662        u32 size;
 663
 664        u16 common_type;
 665        u8 common_flags;
 666        u8 common_preempt_count;
 667        u32 common_pid;
 668        u32 common_tgid;
 669
 670        char comm[16];
 671        u32 pid;
 672        u64 runtime;
 673        u64 vruntime;
 674};
 675
 676struct trace_wakeup_event {
 677        u32 size;
 678
 679        u16 common_type;
 680        u8 common_flags;
 681        u8 common_preempt_count;
 682        u32 common_pid;
 683        u32 common_tgid;
 684
 685        char comm[16];
 686        u32 pid;
 687
 688        u32 prio;
 689        u32 success;
 690        u32 cpu;
 691};
 692
 693struct trace_fork_event {
 694        u32 size;
 695
 696        u16 common_type;
 697        u8 common_flags;
 698        u8 common_preempt_count;
 699        u32 common_pid;
 700        u32 common_tgid;
 701
 702        char parent_comm[16];
 703        u32 parent_pid;
 704        char child_comm[16];
 705        u32 child_pid;
 706};
 707
 708struct trace_migrate_task_event {
 709        u32 size;
 710
 711        u16 common_type;
 712        u8 common_flags;
 713        u8 common_preempt_count;
 714        u32 common_pid;
 715        u32 common_tgid;
 716
 717        char comm[16];
 718        u32 pid;
 719
 720        u32 prio;
 721        u32 cpu;
 722};
 723
 724struct trace_sched_handler {
 725        void (*switch_event)(struct trace_switch_event *,
 726                             struct perf_session *,
 727                             struct event *,
 728                             int cpu,
 729                             u64 timestamp,
 730                             struct thread *thread);
 731
 732        void (*runtime_event)(struct trace_runtime_event *,
 733                              struct perf_session *,
 734                              struct event *,
 735                              int cpu,
 736                              u64 timestamp,
 737                              struct thread *thread);
 738
 739        void (*wakeup_event)(struct trace_wakeup_event *,
 740                             struct perf_session *,
 741                             struct event *,
 742                             int cpu,
 743                             u64 timestamp,
 744                             struct thread *thread);
 745
 746        void (*fork_event)(struct trace_fork_event *,
 747                           struct event *,
 748                           int cpu,
 749                           u64 timestamp,
 750                           struct thread *thread);
 751
 752        void (*migrate_task_event)(struct trace_migrate_task_event *,
 753                           struct perf_session *session,
 754                           struct event *,
 755                           int cpu,
 756                           u64 timestamp,
 757                           struct thread *thread);
 758};
 759
 760
 761static void
 762replay_wakeup_event(struct trace_wakeup_event *wakeup_event,
 763                    struct perf_session *session __used,
 764                    struct event *event,
 765                    int cpu __used,
 766                    u64 timestamp __used,
 767                    struct thread *thread __used)
 768{
 769        struct task_desc *waker, *wakee;
 770
 771        if (verbose) {
 772                printf("sched_wakeup event %p\n", event);
 773
 774                printf(" ... pid %d woke up %s/%d\n",
 775                        wakeup_event->common_pid,
 776                        wakeup_event->comm,
 777                        wakeup_event->pid);
 778        }
 779
 780        waker = register_pid(wakeup_event->common_pid, "<unknown>");
 781        wakee = register_pid(wakeup_event->pid, wakeup_event->comm);
 782
 783        add_sched_event_wakeup(waker, timestamp, wakee);
 784}
 785
 786static u64 cpu_last_switched[MAX_CPUS];
 787
 788static void
 789replay_switch_event(struct trace_switch_event *switch_event,
 790                    struct perf_session *session __used,
 791                    struct event *event,
 792                    int cpu,
 793                    u64 timestamp,
 794                    struct thread *thread __used)
 795{
 796        struct task_desc *prev, __used *next;
 797        u64 timestamp0;
 798        s64 delta;
 799
 800        if (verbose)
 801                printf("sched_switch event %p\n", event);
 802
 803        if (cpu >= MAX_CPUS || cpu < 0)
 804                return;
 805
 806        timestamp0 = cpu_last_switched[cpu];
 807        if (timestamp0)
 808                delta = timestamp - timestamp0;
 809        else
 810                delta = 0;
 811
 812        if (delta < 0)
 813                die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 814
 815        if (verbose) {
 816                printf(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
 817                        switch_event->prev_comm, switch_event->prev_pid,
 818                        switch_event->next_comm, switch_event->next_pid,
 819                        delta);
 820        }
 821
 822        prev = register_pid(switch_event->prev_pid, switch_event->prev_comm);
 823        next = register_pid(switch_event->next_pid, switch_event->next_comm);
 824
 825        cpu_last_switched[cpu] = timestamp;
 826
 827        add_sched_event_run(prev, timestamp, delta);
 828        add_sched_event_sleep(prev, timestamp, switch_event->prev_state);
 829}
 830
 831
 832static void
 833replay_fork_event(struct trace_fork_event *fork_event,
 834                  struct event *event,
 835                  int cpu __used,
 836                  u64 timestamp __used,
 837                  struct thread *thread __used)
 838{
 839        if (verbose) {
 840                printf("sched_fork event %p\n", event);
 841                printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid);
 842                printf("...  child: %s/%d\n", fork_event->child_comm, fork_event->child_pid);
 843        }
 844        register_pid(fork_event->parent_pid, fork_event->parent_comm);
 845        register_pid(fork_event->child_pid, fork_event->child_comm);
 846}
 847
 848static struct trace_sched_handler replay_ops  = {
 849        .wakeup_event           = replay_wakeup_event,
 850        .switch_event           = replay_switch_event,
 851        .fork_event             = replay_fork_event,
 852};
 853
 854struct sort_dimension {
 855        const char              *name;
 856        sort_fn_t               cmp;
 857        struct list_head        list;
 858};
 859
 860static LIST_HEAD(cmp_pid);
 861
 862static int
 863thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
 864{
 865        struct sort_dimension *sort;
 866        int ret = 0;
 867
 868        BUG_ON(list_empty(list));
 869
 870        list_for_each_entry(sort, list, list) {
 871                ret = sort->cmp(l, r);
 872                if (ret)
 873                        return ret;
 874        }
 875
 876        return ret;
 877}
 878
 879static struct work_atoms *
 880thread_atoms_search(struct rb_root *root, struct thread *thread,
 881                         struct list_head *sort_list)
 882{
 883        struct rb_node *node = root->rb_node;
 884        struct work_atoms key = { .thread = thread };
 885
 886        while (node) {
 887                struct work_atoms *atoms;
 888                int cmp;
 889
 890                atoms = container_of(node, struct work_atoms, node);
 891
 892                cmp = thread_lat_cmp(sort_list, &key, atoms);
 893                if (cmp > 0)
 894                        node = node->rb_left;
 895                else if (cmp < 0)
 896                        node = node->rb_right;
 897                else {
 898                        BUG_ON(thread != atoms->thread);
 899                        return atoms;
 900                }
 901        }
 902        return NULL;
 903}
 904
 905static void
 906__thread_latency_insert(struct rb_root *root, struct work_atoms *data,
 907                         struct list_head *sort_list)
 908{
 909        struct rb_node **new = &(root->rb_node), *parent = NULL;
 910
 911        while (*new) {
 912                struct work_atoms *this;
 913                int cmp;
 914
 915                this = container_of(*new, struct work_atoms, node);
 916                parent = *new;
 917
 918                cmp = thread_lat_cmp(sort_list, data, this);
 919
 920                if (cmp > 0)
 921                        new = &((*new)->rb_left);
 922                else
 923                        new = &((*new)->rb_right);
 924        }
 925
 926        rb_link_node(&data->node, parent, new);
 927        rb_insert_color(&data->node, root);
 928}
 929
 930static void thread_atoms_insert(struct thread *thread)
 931{
 932        struct work_atoms *atoms = zalloc(sizeof(*atoms));
 933        if (!atoms)
 934                die("No memory");
 935
 936        atoms->thread = thread;
 937        INIT_LIST_HEAD(&atoms->work_list);
 938        __thread_latency_insert(&atom_root, atoms, &cmp_pid);
 939}
 940
 941static void
 942latency_fork_event(struct trace_fork_event *fork_event __used,
 943                   struct event *event __used,
 944                   int cpu __used,
 945                   u64 timestamp __used,
 946                   struct thread *thread __used)
 947{
 948        /* should insert the newcomer */
 949}
 950
 951__used
 952static char sched_out_state(struct trace_switch_event *switch_event)
 953{
 954        const char *str = TASK_STATE_TO_CHAR_STR;
 955
 956        return str[switch_event->prev_state];
 957}
 958
 959static void
 960add_sched_out_event(struct work_atoms *atoms,
 961                    char run_state,
 962                    u64 timestamp)
 963{
 964        struct work_atom *atom = zalloc(sizeof(*atom));
 965        if (!atom)
 966                die("Non memory");
 967
 968        atom->sched_out_time = timestamp;
 969
 970        if (run_state == 'R') {
 971                atom->state = THREAD_WAIT_CPU;
 972                atom->wake_up_time = atom->sched_out_time;
 973        }
 974
 975        list_add_tail(&atom->list, &atoms->work_list);
 976}
 977
 978static void
 979add_runtime_event(struct work_atoms *atoms, u64 delta, u64 timestamp __used)
 980{
 981        struct work_atom *atom;
 982
 983        BUG_ON(list_empty(&atoms->work_list));
 984
 985        atom = list_entry(atoms->work_list.prev, struct work_atom, list);
 986
 987        atom->runtime += delta;
 988        atoms->total_runtime += delta;
 989}
 990
 991static void
 992add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
 993{
 994        struct work_atom *atom;
 995        u64 delta;
 996
 997        if (list_empty(&atoms->work_list))
 998                return;
 999
1000        atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1001
1002        if (atom->state != THREAD_WAIT_CPU)
1003                return;
1004
1005        if (timestamp < atom->wake_up_time) {
1006                atom->state = THREAD_IGNORE;
1007                return;
1008        }
1009
1010        atom->state = THREAD_SCHED_IN;
1011        atom->sched_in_time = timestamp;
1012
1013        delta = atom->sched_in_time - atom->wake_up_time;
1014        atoms->total_lat += delta;
1015        if (delta > atoms->max_lat) {
1016                atoms->max_lat = delta;
1017                atoms->max_lat_at = timestamp;
1018        }
1019        atoms->nb_atoms++;
1020}
1021
1022static void
1023latency_switch_event(struct trace_switch_event *switch_event,
1024                     struct perf_session *session,
1025                     struct event *event __used,
1026                     int cpu,
1027                     u64 timestamp,
1028                     struct thread *thread __used)
1029{
1030        struct work_atoms *out_events, *in_events;
1031        struct thread *sched_out, *sched_in;
1032        u64 timestamp0;
1033        s64 delta;
1034
1035        BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1036
1037        timestamp0 = cpu_last_switched[cpu];
1038        cpu_last_switched[cpu] = timestamp;
1039        if (timestamp0)
1040                delta = timestamp - timestamp0;
1041        else
1042                delta = 0;
1043
1044        if (delta < 0)
1045                die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1046
1047
1048        sched_out = perf_session__findnew(session, switch_event->prev_pid);
1049        sched_in = perf_session__findnew(session, switch_event->next_pid);
1050
1051        out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1052        if (!out_events) {
1053                thread_atoms_insert(sched_out);
1054                out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1055                if (!out_events)
1056                        die("out-event: Internal tree error");
1057        }
1058        add_sched_out_event(out_events, sched_out_state(switch_event), timestamp);
1059
1060        in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1061        if (!in_events) {
1062                thread_atoms_insert(sched_in);
1063                in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1064                if (!in_events)
1065                        die("in-event: Internal tree error");
1066                /*
1067                 * Take came in we have not heard about yet,
1068                 * add in an initial atom in runnable state:
1069                 */
1070                add_sched_out_event(in_events, 'R', timestamp);
1071        }
1072        add_sched_in_event(in_events, timestamp);
1073}
1074
1075static void
1076latency_runtime_event(struct trace_runtime_event *runtime_event,
1077                     struct perf_session *session,
1078                     struct event *event __used,
1079                     int cpu,
1080                     u64 timestamp,
1081                     struct thread *this_thread __used)
1082{
1083        struct thread *thread = perf_session__findnew(session, runtime_event->pid);
1084        struct work_atoms *atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1085
1086        BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1087        if (!atoms) {
1088                thread_atoms_insert(thread);
1089                atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1090                if (!atoms)
1091                        die("in-event: Internal tree error");
1092                add_sched_out_event(atoms, 'R', timestamp);
1093        }
1094
1095        add_runtime_event(atoms, runtime_event->runtime, timestamp);
1096}
1097
1098static void
1099latency_wakeup_event(struct trace_wakeup_event *wakeup_event,
1100                     struct perf_session *session,
1101                     struct event *__event __used,
1102                     int cpu __used,
1103                     u64 timestamp,
1104                     struct thread *thread __used)
1105{
1106        struct work_atoms *atoms;
1107        struct work_atom *atom;
1108        struct thread *wakee;
1109
1110        /* Note for later, it may be interesting to observe the failing cases */
1111        if (!wakeup_event->success)
1112                return;
1113
1114        wakee = perf_session__findnew(session, wakeup_event->pid);
1115        atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1116        if (!atoms) {
1117                thread_atoms_insert(wakee);
1118                atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1119                if (!atoms)
1120                        die("wakeup-event: Internal tree error");
1121                add_sched_out_event(atoms, 'S', timestamp);
1122        }
1123
1124        BUG_ON(list_empty(&atoms->work_list));
1125
1126        atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1127
1128        /*
1129         * You WILL be missing events if you've recorded only
1130         * one CPU, or are only looking at only one, so don't
1131         * make useless noise.
1132         */
1133        if (profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1134                nr_state_machine_bugs++;
1135
1136        nr_timestamps++;
1137        if (atom->sched_out_time > timestamp) {
1138                nr_unordered_timestamps++;
1139                return;
1140        }
1141
1142        atom->state = THREAD_WAIT_CPU;
1143        atom->wake_up_time = timestamp;
1144}
1145
1146static void
1147latency_migrate_task_event(struct trace_migrate_task_event *migrate_task_event,
1148                     struct perf_session *session,
1149                     struct event *__event __used,
1150                     int cpu __used,
1151                     u64 timestamp,
1152                     struct thread *thread __used)
1153{
1154        struct work_atoms *atoms;
1155        struct work_atom *atom;
1156        struct thread *migrant;
1157
1158        /*
1159         * Only need to worry about migration when profiling one CPU.
1160         */
1161        if (profile_cpu == -1)
1162                return;
1163
1164        migrant = perf_session__findnew(session, migrate_task_event->pid);
1165        atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1166        if (!atoms) {
1167                thread_atoms_insert(migrant);
1168                register_pid(migrant->pid, migrant->comm);
1169                atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1170                if (!atoms)
1171                        die("migration-event: Internal tree error");
1172                add_sched_out_event(atoms, 'R', timestamp);
1173        }
1174
1175        BUG_ON(list_empty(&atoms->work_list));
1176
1177        atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1178        atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1179
1180        nr_timestamps++;
1181
1182        if (atom->sched_out_time > timestamp)
1183                nr_unordered_timestamps++;
1184}
1185
1186static struct trace_sched_handler lat_ops  = {
1187        .wakeup_event           = latency_wakeup_event,
1188        .switch_event           = latency_switch_event,
1189        .runtime_event          = latency_runtime_event,
1190        .fork_event             = latency_fork_event,
1191        .migrate_task_event     = latency_migrate_task_event,
1192};
1193
1194static void output_lat_thread(struct work_atoms *work_list)
1195{
1196        int i;
1197        int ret;
1198        u64 avg;
1199
1200        if (!work_list->nb_atoms)
1201                return;
1202        /*
1203         * Ignore idle threads:
1204         */
1205        if (!strcmp(work_list->thread->comm, "swapper"))
1206                return;
1207
1208        all_runtime += work_list->total_runtime;
1209        all_count += work_list->nb_atoms;
1210
1211        ret = printf("  %s:%d ", work_list->thread->comm, work_list->thread->pid);
1212
1213        for (i = 0; i < 24 - ret; i++)
1214                printf(" ");
1215
1216        avg = work_list->total_lat / work_list->nb_atoms;
1217
1218        printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %9.6f s\n",
1219              (double)work_list->total_runtime / 1e6,
1220                 work_list->nb_atoms, (double)avg / 1e6,
1221                 (double)work_list->max_lat / 1e6,
1222                 (double)work_list->max_lat_at / 1e9);
1223}
1224
1225static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1226{
1227        if (l->thread->pid < r->thread->pid)
1228                return -1;
1229        if (l->thread->pid > r->thread->pid)
1230                return 1;
1231
1232        return 0;
1233}
1234
1235static struct sort_dimension pid_sort_dimension = {
1236        .name                   = "pid",
1237        .cmp                    = pid_cmp,
1238};
1239
1240static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1241{
1242        u64 avgl, avgr;
1243
1244        if (!l->nb_atoms)
1245                return -1;
1246
1247        if (!r->nb_atoms)
1248                return 1;
1249
1250        avgl = l->total_lat / l->nb_atoms;
1251        avgr = r->total_lat / r->nb_atoms;
1252
1253        if (avgl < avgr)
1254                return -1;
1255        if (avgl > avgr)
1256                return 1;
1257
1258        return 0;
1259}
1260
1261static struct sort_dimension avg_sort_dimension = {
1262        .name                   = "avg",
1263        .cmp                    = avg_cmp,
1264};
1265
1266static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1267{
1268        if (l->max_lat < r->max_lat)
1269                return -1;
1270        if (l->max_lat > r->max_lat)
1271                return 1;
1272
1273        return 0;
1274}
1275
1276static struct sort_dimension max_sort_dimension = {
1277        .name                   = "max",
1278        .cmp                    = max_cmp,
1279};
1280
1281static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1282{
1283        if (l->nb_atoms < r->nb_atoms)
1284                return -1;
1285        if (l->nb_atoms > r->nb_atoms)
1286                return 1;
1287
1288        return 0;
1289}
1290
1291static struct sort_dimension switch_sort_dimension = {
1292        .name                   = "switch",
1293        .cmp                    = switch_cmp,
1294};
1295
1296static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1297{
1298        if (l->total_runtime < r->total_runtime)
1299                return -1;
1300        if (l->total_runtime > r->total_runtime)
1301                return 1;
1302
1303        return 0;
1304}
1305
1306static struct sort_dimension runtime_sort_dimension = {
1307        .name                   = "runtime",
1308        .cmp                    = runtime_cmp,
1309};
1310
1311static struct sort_dimension *available_sorts[] = {
1312        &pid_sort_dimension,
1313        &avg_sort_dimension,
1314        &max_sort_dimension,
1315        &switch_sort_dimension,
1316        &runtime_sort_dimension,
1317};
1318
1319#define NB_AVAILABLE_SORTS      (int)(sizeof(available_sorts) / sizeof(struct sort_dimension *))
1320
1321static LIST_HEAD(sort_list);
1322
1323static int sort_dimension__add(const char *tok, struct list_head *list)
1324{
1325        int i;
1326
1327        for (i = 0; i < NB_AVAILABLE_SORTS; i++) {
1328                if (!strcmp(available_sorts[i]->name, tok)) {
1329                        list_add_tail(&available_sorts[i]->list, list);
1330
1331                        return 0;
1332                }
1333        }
1334
1335        return -1;
1336}
1337
1338static void setup_sorting(void);
1339
1340static void sort_lat(void)
1341{
1342        struct rb_node *node;
1343
1344        for (;;) {
1345                struct work_atoms *data;
1346                node = rb_first(&atom_root);
1347                if (!node)
1348                        break;
1349
1350                rb_erase(node, &atom_root);
1351                data = rb_entry(node, struct work_atoms, node);
1352                __thread_latency_insert(&sorted_atom_root, data, &sort_list);
1353        }
1354}
1355
1356static struct trace_sched_handler *trace_handler;
1357
1358static void
1359process_sched_wakeup_event(void *data, struct perf_session *session,
1360                           struct event *event,
1361                           int cpu __used,
1362                           u64 timestamp __used,
1363                           struct thread *thread __used)
1364{
1365        struct trace_wakeup_event wakeup_event;
1366
1367        FILL_COMMON_FIELDS(wakeup_event, event, data);
1368
1369        FILL_ARRAY(wakeup_event, comm, event, data);
1370        FILL_FIELD(wakeup_event, pid, event, data);
1371        FILL_FIELD(wakeup_event, prio, event, data);
1372        FILL_FIELD(wakeup_event, success, event, data);
1373        FILL_FIELD(wakeup_event, cpu, event, data);
1374
1375        if (trace_handler->wakeup_event)
1376                trace_handler->wakeup_event(&wakeup_event, session, event,
1377                                            cpu, timestamp, thread);
1378}
1379
1380/*
1381 * Track the current task - that way we can know whether there's any
1382 * weird events, such as a task being switched away that is not current.
1383 */
1384static int max_cpu;
1385
1386static u32 curr_pid[MAX_CPUS] = { [0 ... MAX_CPUS-1] = -1 };
1387
1388static struct thread *curr_thread[MAX_CPUS];
1389
1390static char next_shortname1 = 'A';
1391static char next_shortname2 = '0';
1392
1393static void
1394map_switch_event(struct trace_switch_event *switch_event,
1395                 struct perf_session *session,
1396                 struct event *event __used,
1397                 int this_cpu,
1398                 u64 timestamp,
1399                 struct thread *thread __used)
1400{
1401        struct thread *sched_out __used, *sched_in;
1402        int new_shortname;
1403        u64 timestamp0;
1404        s64 delta;
1405        int cpu;
1406
1407        BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1408
1409        if (this_cpu > max_cpu)
1410                max_cpu = this_cpu;
1411
1412        timestamp0 = cpu_last_switched[this_cpu];
1413        cpu_last_switched[this_cpu] = timestamp;
1414        if (timestamp0)
1415                delta = timestamp - timestamp0;
1416        else
1417                delta = 0;
1418
1419        if (delta < 0)
1420                die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1421
1422
1423        sched_out = perf_session__findnew(session, switch_event->prev_pid);
1424        sched_in = perf_session__findnew(session, switch_event->next_pid);
1425
1426        curr_thread[this_cpu] = sched_in;
1427
1428        printf("  ");
1429
1430        new_shortname = 0;
1431        if (!sched_in->shortname[0]) {
1432                sched_in->shortname[0] = next_shortname1;
1433                sched_in->shortname[1] = next_shortname2;
1434
1435                if (next_shortname1 < 'Z') {
1436                        next_shortname1++;
1437                } else {
1438                        next_shortname1='A';
1439                        if (next_shortname2 < '9') {
1440                                next_shortname2++;
1441                        } else {
1442                                next_shortname2='0';
1443                        }
1444                }
1445                new_shortname = 1;
1446        }
1447
1448        for (cpu = 0; cpu <= max_cpu; cpu++) {
1449                if (cpu != this_cpu)
1450                        printf(" ");
1451                else
1452                        printf("*");
1453
1454                if (curr_thread[cpu]) {
1455                        if (curr_thread[cpu]->pid)
1456                                printf("%2s ", curr_thread[cpu]->shortname);
1457                        else
1458                                printf(".  ");
1459                } else
1460                        printf("   ");
1461        }
1462
1463        printf("  %12.6f secs ", (double)timestamp/1e9);
1464        if (new_shortname) {
1465                printf("%s => %s:%d\n",
1466                        sched_in->shortname, sched_in->comm, sched_in->pid);
1467        } else {
1468                printf("\n");
1469        }
1470}
1471
1472
1473static void
1474process_sched_switch_event(void *data, struct perf_session *session,
1475                           struct event *event,
1476                           int this_cpu,
1477                           u64 timestamp __used,
1478                           struct thread *thread __used)
1479{
1480        struct trace_switch_event switch_event;
1481
1482        FILL_COMMON_FIELDS(switch_event, event, data);
1483
1484        FILL_ARRAY(switch_event, prev_comm, event, data);
1485        FILL_FIELD(switch_event, prev_pid, event, data);
1486        FILL_FIELD(switch_event, prev_prio, event, data);
1487        FILL_FIELD(switch_event, prev_state, event, data);
1488        FILL_ARRAY(switch_event, next_comm, event, data);
1489        FILL_FIELD(switch_event, next_pid, event, data);
1490        FILL_FIELD(switch_event, next_prio, event, data);
1491
1492        if (curr_pid[this_cpu] != (u32)-1) {
1493                /*
1494                 * Are we trying to switch away a PID that is
1495                 * not current?
1496                 */
1497                if (curr_pid[this_cpu] != switch_event.prev_pid)
1498                        nr_context_switch_bugs++;
1499        }
1500        if (trace_handler->switch_event)
1501                trace_handler->switch_event(&switch_event, session, event,
1502                                            this_cpu, timestamp, thread);
1503
1504        curr_pid[this_cpu] = switch_event.next_pid;
1505}
1506
1507static void
1508process_sched_runtime_event(void *data, struct perf_session *session,
1509                           struct event *event,
1510                           int cpu __used,
1511                           u64 timestamp __used,
1512                           struct thread *thread __used)
1513{
1514        struct trace_runtime_event runtime_event;
1515
1516        FILL_ARRAY(runtime_event, comm, event, data);
1517        FILL_FIELD(runtime_event, pid, event, data);
1518        FILL_FIELD(runtime_event, runtime, event, data);
1519        FILL_FIELD(runtime_event, vruntime, event, data);
1520
1521        if (trace_handler->runtime_event)
1522                trace_handler->runtime_event(&runtime_event, session, event, cpu, timestamp, thread);
1523}
1524
1525static void
1526process_sched_fork_event(void *data,
1527                         struct event *event,
1528                         int cpu __used,
1529                         u64 timestamp __used,
1530                         struct thread *thread __used)
1531{
1532        struct trace_fork_event fork_event;
1533
1534        FILL_COMMON_FIELDS(fork_event, event, data);
1535
1536        FILL_ARRAY(fork_event, parent_comm, event, data);
1537        FILL_FIELD(fork_event, parent_pid, event, data);
1538        FILL_ARRAY(fork_event, child_comm, event, data);
1539        FILL_FIELD(fork_event, child_pid, event, data);
1540
1541        if (trace_handler->fork_event)
1542                trace_handler->fork_event(&fork_event, event,
1543                                          cpu, timestamp, thread);
1544}
1545
1546static void
1547process_sched_exit_event(struct event *event,
1548                         int cpu __used,
1549                         u64 timestamp __used,
1550                         struct thread *thread __used)
1551{
1552        if (verbose)
1553                printf("sched_exit event %p\n", event);
1554}
1555
1556static void
1557process_sched_migrate_task_event(void *data, struct perf_session *session,
1558                           struct event *event,
1559                           int cpu __used,
1560                           u64 timestamp __used,
1561                           struct thread *thread __used)
1562{
1563        struct trace_migrate_task_event migrate_task_event;
1564
1565        FILL_COMMON_FIELDS(migrate_task_event, event, data);
1566
1567        FILL_ARRAY(migrate_task_event, comm, event, data);
1568        FILL_FIELD(migrate_task_event, pid, event, data);
1569        FILL_FIELD(migrate_task_event, prio, event, data);
1570        FILL_FIELD(migrate_task_event, cpu, event, data);
1571
1572        if (trace_handler->migrate_task_event)
1573                trace_handler->migrate_task_event(&migrate_task_event, session,
1574                                                 event, cpu, timestamp, thread);
1575}
1576
1577static void process_raw_event(union perf_event *raw_event __used,
1578                              struct perf_session *session, void *data, int cpu,
1579                              u64 timestamp, struct thread *thread)
1580{
1581        struct event *event;
1582        int type;
1583
1584
1585        type = trace_parse_common_type(data);
1586        event = trace_find_event(type);
1587
1588        if (!strcmp(event->name, "sched_switch"))
1589                process_sched_switch_event(data, session, event, cpu, timestamp, thread);
1590        if (!strcmp(event->name, "sched_stat_runtime"))
1591                process_sched_runtime_event(data, session, event, cpu, timestamp, thread);
1592        if (!strcmp(event->name, "sched_wakeup"))
1593                process_sched_wakeup_event(data, session, event, cpu, timestamp, thread);
1594        if (!strcmp(event->name, "sched_wakeup_new"))
1595                process_sched_wakeup_event(data, session, event, cpu, timestamp, thread);
1596        if (!strcmp(event->name, "sched_process_fork"))
1597                process_sched_fork_event(data, event, cpu, timestamp, thread);
1598        if (!strcmp(event->name, "sched_process_exit"))
1599                process_sched_exit_event(event, cpu, timestamp, thread);
1600        if (!strcmp(event->name, "sched_migrate_task"))
1601                process_sched_migrate_task_event(data, session, event, cpu, timestamp, thread);
1602}
1603
1604static int process_sample_event(union perf_event *event,
1605                                struct perf_sample *sample,
1606                                struct perf_evsel *evsel __used,
1607                                struct perf_session *session)
1608{
1609        struct thread *thread;
1610
1611        if (!(session->sample_type & PERF_SAMPLE_RAW))
1612                return 0;
1613
1614        thread = perf_session__findnew(session, sample->pid);
1615        if (thread == NULL) {
1616                pr_debug("problem processing %d event, skipping it.\n",
1617                         event->header.type);
1618                return -1;
1619        }
1620
1621        dump_printf(" ... thread: %s:%d\n", thread->comm, thread->pid);
1622
1623        if (profile_cpu != -1 && profile_cpu != (int)sample->cpu)
1624                return 0;
1625
1626        process_raw_event(event, session, sample->raw_data, sample->cpu,
1627                          sample->time, thread);
1628
1629        return 0;
1630}
1631
1632static struct perf_event_ops event_ops = {
1633        .sample                 = process_sample_event,
1634        .comm                   = perf_event__process_comm,
1635        .lost                   = perf_event__process_lost,
1636        .fork                   = perf_event__process_task,
1637        .ordered_samples        = true,
1638};
1639
1640static int read_events(void)
1641{
1642        int err = -EINVAL;
1643        struct perf_session *session = perf_session__new(input_name, O_RDONLY,
1644                                                         0, false, &event_ops);
1645        if (session == NULL)
1646                return -ENOMEM;
1647
1648        if (perf_session__has_traces(session, "record -R")) {
1649                err = perf_session__process_events(session, &event_ops);
1650                nr_events      = session->hists.stats.nr_events[0];
1651                nr_lost_events = session->hists.stats.total_lost;
1652                nr_lost_chunks = session->hists.stats.nr_events[PERF_RECORD_LOST];
1653        }
1654
1655        perf_session__delete(session);
1656        return err;
1657}
1658
1659static void print_bad_events(void)
1660{
1661        if (nr_unordered_timestamps && nr_timestamps) {
1662                printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1663                        (double)nr_unordered_timestamps/(double)nr_timestamps*100.0,
1664                        nr_unordered_timestamps, nr_timestamps);
1665        }
1666        if (nr_lost_events && nr_events) {
1667                printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1668                        (double)nr_lost_events/(double)nr_events*100.0,
1669                        nr_lost_events, nr_events, nr_lost_chunks);
1670        }
1671        if (nr_state_machine_bugs && nr_timestamps) {
1672                printf("  INFO: %.3f%% state machine bugs (%ld out of %ld)",
1673                        (double)nr_state_machine_bugs/(double)nr_timestamps*100.0,
1674                        nr_state_machine_bugs, nr_timestamps);
1675                if (nr_lost_events)
1676                        printf(" (due to lost events?)");
1677                printf("\n");
1678        }
1679        if (nr_context_switch_bugs && nr_timestamps) {
1680                printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
1681                        (double)nr_context_switch_bugs/(double)nr_timestamps*100.0,
1682                        nr_context_switch_bugs, nr_timestamps);
1683                if (nr_lost_events)
1684                        printf(" (due to lost events?)");
1685                printf("\n");
1686        }
1687}
1688
1689static void __cmd_lat(void)
1690{
1691        struct rb_node *next;
1692
1693        setup_pager();
1694        read_events();
1695        sort_lat();
1696
1697        printf("\n ---------------------------------------------------------------------------------------------------------------\n");
1698        printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at     |\n");
1699        printf(" ---------------------------------------------------------------------------------------------------------------\n");
1700
1701        next = rb_first(&sorted_atom_root);
1702
1703        while (next) {
1704                struct work_atoms *work_list;
1705
1706                work_list = rb_entry(next, struct work_atoms, node);
1707                output_lat_thread(work_list);
1708                next = rb_next(next);
1709        }
1710
1711        printf(" -----------------------------------------------------------------------------------------\n");
1712        printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
1713                (double)all_runtime/1e6, all_count);
1714
1715        printf(" ---------------------------------------------------\n");
1716
1717        print_bad_events();
1718        printf("\n");
1719
1720}
1721
1722static struct trace_sched_handler map_ops  = {
1723        .wakeup_event           = NULL,
1724        .switch_event           = map_switch_event,
1725        .runtime_event          = NULL,
1726        .fork_event             = NULL,
1727};
1728
1729static void __cmd_map(void)
1730{
1731        max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1732
1733        setup_pager();
1734        read_events();
1735        print_bad_events();
1736}
1737
1738static void __cmd_replay(void)
1739{
1740        unsigned long i;
1741
1742        calibrate_run_measurement_overhead();
1743        calibrate_sleep_measurement_overhead();
1744
1745        test_calibrations();
1746
1747        read_events();
1748
1749        printf("nr_run_events:        %ld\n", nr_run_events);
1750        printf("nr_sleep_events:      %ld\n", nr_sleep_events);
1751        printf("nr_wakeup_events:     %ld\n", nr_wakeup_events);
1752
1753        if (targetless_wakeups)
1754                printf("target-less wakeups:  %ld\n", targetless_wakeups);
1755        if (multitarget_wakeups)
1756                printf("multi-target wakeups: %ld\n", multitarget_wakeups);
1757        if (nr_run_events_optimized)
1758                printf("run atoms optimized: %ld\n",
1759                        nr_run_events_optimized);
1760
1761        print_task_traces();
1762        add_cross_task_wakeups();
1763
1764        create_tasks();
1765        printf("------------------------------------------------------------\n");
1766        for (i = 0; i < replay_repeat; i++)
1767                run_one_test();
1768}
1769
1770
1771static const char * const sched_usage[] = {
1772        "perf sched [<options>] {record|latency|map|replay|trace}",
1773        NULL
1774};
1775
1776static const struct option sched_options[] = {
1777        OPT_STRING('i', "input", &input_name, "file",
1778                    "input file name"),
1779        OPT_INCR('v', "verbose", &verbose,
1780                    "be more verbose (show symbol address, etc)"),
1781        OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1782                    "dump raw trace in ASCII"),
1783        OPT_END()
1784};
1785
1786static const char * const latency_usage[] = {
1787        "perf sched latency [<options>]",
1788        NULL
1789};
1790
1791static const struct option latency_options[] = {
1792        OPT_STRING('s', "sort", &sort_order, "key[,key2...]",
1793                   "sort by key(s): runtime, switch, avg, max"),
1794        OPT_INCR('v', "verbose", &verbose,
1795                    "be more verbose (show symbol address, etc)"),
1796        OPT_INTEGER('C', "CPU", &profile_cpu,
1797                    "CPU to profile on"),
1798        OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1799                    "dump raw trace in ASCII"),
1800        OPT_END()
1801};
1802
1803static const char * const replay_usage[] = {
1804        "perf sched replay [<options>]",
1805        NULL
1806};
1807
1808static const struct option replay_options[] = {
1809        OPT_UINTEGER('r', "repeat", &replay_repeat,
1810                     "repeat the workload replay N times (-1: infinite)"),
1811        OPT_INCR('v', "verbose", &verbose,
1812                    "be more verbose (show symbol address, etc)"),
1813        OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1814                    "dump raw trace in ASCII"),
1815        OPT_END()
1816};
1817
1818static void setup_sorting(void)
1819{
1820        char *tmp, *tok, *str = strdup(sort_order);
1821
1822        for (tok = strtok_r(str, ", ", &tmp);
1823                        tok; tok = strtok_r(NULL, ", ", &tmp)) {
1824                if (sort_dimension__add(tok, &sort_list) < 0) {
1825                        error("Unknown --sort key: `%s'", tok);
1826                        usage_with_options(latency_usage, latency_options);
1827                }
1828        }
1829
1830        free(str);
1831
1832        sort_dimension__add("pid", &cmp_pid);
1833}
1834
1835static const char *record_args[] = {
1836        "record",
1837        "-a",
1838        "-R",
1839        "-f",
1840        "-m", "1024",
1841        "-c", "1",
1842        "-e", "sched:sched_switch",
1843        "-e", "sched:sched_stat_wait",
1844        "-e", "sched:sched_stat_sleep",
1845        "-e", "sched:sched_stat_iowait",
1846        "-e", "sched:sched_stat_runtime",
1847        "-e", "sched:sched_process_exit",
1848        "-e", "sched:sched_process_fork",
1849        "-e", "sched:sched_wakeup",
1850        "-e", "sched:sched_migrate_task",
1851};
1852
1853static int __cmd_record(int argc, const char **argv)
1854{
1855        unsigned int rec_argc, i, j;
1856        const char **rec_argv;
1857
1858        rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1859        rec_argv = calloc(rec_argc + 1, sizeof(char *));
1860
1861        if (rec_argv == NULL)
1862                return -ENOMEM;
1863
1864        for (i = 0; i < ARRAY_SIZE(record_args); i++)
1865                rec_argv[i] = strdup(record_args[i]);
1866
1867        for (j = 1; j < (unsigned int)argc; j++, i++)
1868                rec_argv[i] = argv[j];
1869
1870        BUG_ON(i != rec_argc);
1871
1872        return cmd_record(i, rec_argv, NULL);
1873}
1874
1875int cmd_sched(int argc, const char **argv, const char *prefix __used)
1876{
1877        argc = parse_options(argc, argv, sched_options, sched_usage,
1878                             PARSE_OPT_STOP_AT_NON_OPTION);
1879        if (!argc)
1880                usage_with_options(sched_usage, sched_options);
1881
1882        /*
1883         * Aliased to 'perf script' for now:
1884         */
1885        if (!strcmp(argv[0], "script"))
1886                return cmd_script(argc, argv, prefix);
1887
1888        symbol__init();
1889        if (!strncmp(argv[0], "rec", 3)) {
1890                return __cmd_record(argc, argv);
1891        } else if (!strncmp(argv[0], "lat", 3)) {
1892                trace_handler = &lat_ops;
1893                if (argc > 1) {
1894                        argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1895                        if (argc)
1896                                usage_with_options(latency_usage, latency_options);
1897                }
1898                setup_sorting();
1899                __cmd_lat();
1900        } else if (!strcmp(argv[0], "map")) {
1901                trace_handler = &map_ops;
1902                setup_sorting();
1903                __cmd_map();
1904        } else if (!strncmp(argv[0], "rep", 3)) {
1905                trace_handler = &replay_ops;
1906                if (argc) {
1907                        argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1908                        if (argc)
1909                                usage_with_options(replay_usage, replay_options);
1910                }
1911                __cmd_replay();
1912        } else {
1913                usage_with_options(sched_usage, sched_options);
1914        }
1915
1916        return 0;
1917}
1918