linux/sound/core/pcm_lib.c
<<
>>
Prefs
   1/*
   2 *  Digital Audio (PCM) abstract layer
   3 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
   4 *                   Abramo Bagnara <abramo@alsa-project.org>
   5 *
   6 *
   7 *   This program is free software; you can redistribute it and/or modify
   8 *   it under the terms of the GNU General Public License as published by
   9 *   the Free Software Foundation; either version 2 of the License, or
  10 *   (at your option) any later version.
  11 *
  12 *   This program is distributed in the hope that it will be useful,
  13 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 *   GNU General Public License for more details.
  16 *
  17 *   You should have received a copy of the GNU General Public License
  18 *   along with this program; if not, write to the Free Software
  19 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  20 *
  21 */
  22
  23#include <linux/slab.h>
  24#include <linux/time.h>
  25#include <linux/math64.h>
  26#include <sound/core.h>
  27#include <sound/control.h>
  28#include <sound/info.h>
  29#include <sound/pcm.h>
  30#include <sound/pcm_params.h>
  31#include <sound/timer.h>
  32
  33/*
  34 * fill ring buffer with silence
  35 * runtime->silence_start: starting pointer to silence area
  36 * runtime->silence_filled: size filled with silence
  37 * runtime->silence_threshold: threshold from application
  38 * runtime->silence_size: maximal size from application
  39 *
  40 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
  41 */
  42void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
  43{
  44        struct snd_pcm_runtime *runtime = substream->runtime;
  45        snd_pcm_uframes_t frames, ofs, transfer;
  46
  47        if (runtime->silence_size < runtime->boundary) {
  48                snd_pcm_sframes_t noise_dist, n;
  49                if (runtime->silence_start != runtime->control->appl_ptr) {
  50                        n = runtime->control->appl_ptr - runtime->silence_start;
  51                        if (n < 0)
  52                                n += runtime->boundary;
  53                        if ((snd_pcm_uframes_t)n < runtime->silence_filled)
  54                                runtime->silence_filled -= n;
  55                        else
  56                                runtime->silence_filled = 0;
  57                        runtime->silence_start = runtime->control->appl_ptr;
  58                }
  59                if (runtime->silence_filled >= runtime->buffer_size)
  60                        return;
  61                noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
  62                if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
  63                        return;
  64                frames = runtime->silence_threshold - noise_dist;
  65                if (frames > runtime->silence_size)
  66                        frames = runtime->silence_size;
  67        } else {
  68                if (new_hw_ptr == ULONG_MAX) {  /* initialization */
  69                        snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
  70                        if (avail > runtime->buffer_size)
  71                                avail = runtime->buffer_size;
  72                        runtime->silence_filled = avail > 0 ? avail : 0;
  73                        runtime->silence_start = (runtime->status->hw_ptr +
  74                                                  runtime->silence_filled) %
  75                                                 runtime->boundary;
  76                } else {
  77                        ofs = runtime->status->hw_ptr;
  78                        frames = new_hw_ptr - ofs;
  79                        if ((snd_pcm_sframes_t)frames < 0)
  80                                frames += runtime->boundary;
  81                        runtime->silence_filled -= frames;
  82                        if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
  83                                runtime->silence_filled = 0;
  84                                runtime->silence_start = new_hw_ptr;
  85                        } else {
  86                                runtime->silence_start = ofs;
  87                        }
  88                }
  89                frames = runtime->buffer_size - runtime->silence_filled;
  90        }
  91        if (snd_BUG_ON(frames > runtime->buffer_size))
  92                return;
  93        if (frames == 0)
  94                return;
  95        ofs = runtime->silence_start % runtime->buffer_size;
  96        while (frames > 0) {
  97                transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
  98                if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
  99                    runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
 100                        if (substream->ops->silence) {
 101                                int err;
 102                                err = substream->ops->silence(substream, -1, ofs, transfer);
 103                                snd_BUG_ON(err < 0);
 104                        } else {
 105                                char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
 106                                snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
 107                        }
 108                } else {
 109                        unsigned int c;
 110                        unsigned int channels = runtime->channels;
 111                        if (substream->ops->silence) {
 112                                for (c = 0; c < channels; ++c) {
 113                                        int err;
 114                                        err = substream->ops->silence(substream, c, ofs, transfer);
 115                                        snd_BUG_ON(err < 0);
 116                                }
 117                        } else {
 118                                size_t dma_csize = runtime->dma_bytes / channels;
 119                                for (c = 0; c < channels; ++c) {
 120                                        char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
 121                                        snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
 122                                }
 123                        }
 124                }
 125                runtime->silence_filled += transfer;
 126                frames -= transfer;
 127                ofs = 0;
 128        }
 129}
 130
 131static void pcm_debug_name(struct snd_pcm_substream *substream,
 132                           char *name, size_t len)
 133{
 134        snprintf(name, len, "pcmC%dD%d%c:%d",
 135                 substream->pcm->card->number,
 136                 substream->pcm->device,
 137                 substream->stream ? 'c' : 'p',
 138                 substream->number);
 139}
 140
 141#define XRUN_DEBUG_BASIC        (1<<0)
 142#define XRUN_DEBUG_STACK        (1<<1)  /* dump also stack */
 143#define XRUN_DEBUG_JIFFIESCHECK (1<<2)  /* do jiffies check */
 144#define XRUN_DEBUG_PERIODUPDATE (1<<3)  /* full period update info */
 145#define XRUN_DEBUG_HWPTRUPDATE  (1<<4)  /* full hwptr update info */
 146#define XRUN_DEBUG_LOG          (1<<5)  /* show last 10 positions on err */
 147#define XRUN_DEBUG_LOGONCE      (1<<6)  /* do above only once */
 148
 149#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 150
 151#define xrun_debug(substream, mask) \
 152                        ((substream)->pstr->xrun_debug & (mask))
 153#else
 154#define xrun_debug(substream, mask)     0
 155#endif
 156
 157#define dump_stack_on_xrun(substream) do {                      \
 158                if (xrun_debug(substream, XRUN_DEBUG_STACK))    \
 159                        dump_stack();                           \
 160        } while (0)
 161
 162static void xrun(struct snd_pcm_substream *substream)
 163{
 164        struct snd_pcm_runtime *runtime = substream->runtime;
 165
 166        if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
 167                snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
 168        snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
 169        if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
 170                char name[16];
 171                pcm_debug_name(substream, name, sizeof(name));
 172                snd_printd(KERN_DEBUG "XRUN: %s\n", name);
 173                dump_stack_on_xrun(substream);
 174        }
 175}
 176
 177#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 178#define hw_ptr_error(substream, fmt, args...)                           \
 179        do {                                                            \
 180                if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {          \
 181                        xrun_log_show(substream);                       \
 182                        if (printk_ratelimit()) {                       \
 183                                snd_printd("PCM: " fmt, ##args);        \
 184                        }                                               \
 185                        dump_stack_on_xrun(substream);                  \
 186                }                                                       \
 187        } while (0)
 188
 189#define XRUN_LOG_CNT    10
 190
 191struct hwptr_log_entry {
 192        unsigned long jiffies;
 193        snd_pcm_uframes_t pos;
 194        snd_pcm_uframes_t period_size;
 195        snd_pcm_uframes_t buffer_size;
 196        snd_pcm_uframes_t old_hw_ptr;
 197        snd_pcm_uframes_t hw_ptr_base;
 198};
 199
 200struct snd_pcm_hwptr_log {
 201        unsigned int idx;
 202        unsigned int hit: 1;
 203        struct hwptr_log_entry entries[XRUN_LOG_CNT];
 204};
 205
 206static void xrun_log(struct snd_pcm_substream *substream,
 207                     snd_pcm_uframes_t pos)
 208{
 209        struct snd_pcm_runtime *runtime = substream->runtime;
 210        struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
 211        struct hwptr_log_entry *entry;
 212
 213        if (log == NULL) {
 214                log = kzalloc(sizeof(*log), GFP_ATOMIC);
 215                if (log == NULL)
 216                        return;
 217                runtime->hwptr_log = log;
 218        } else {
 219                if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
 220                        return;
 221        }
 222        entry = &log->entries[log->idx];
 223        entry->jiffies = jiffies;
 224        entry->pos = pos;
 225        entry->period_size = runtime->period_size;
 226        entry->buffer_size = runtime->buffer_size;
 227        entry->old_hw_ptr = runtime->status->hw_ptr;
 228        entry->hw_ptr_base = runtime->hw_ptr_base;
 229        log->idx = (log->idx + 1) % XRUN_LOG_CNT;
 230}
 231
 232static void xrun_log_show(struct snd_pcm_substream *substream)
 233{
 234        struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
 235        struct hwptr_log_entry *entry;
 236        char name[16];
 237        unsigned int idx;
 238        int cnt;
 239
 240        if (log == NULL)
 241                return;
 242        if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
 243                return;
 244        pcm_debug_name(substream, name, sizeof(name));
 245        for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
 246                entry = &log->entries[idx];
 247                if (entry->period_size == 0)
 248                        break;
 249                snd_printd("hwptr log: %s: j=%lu, pos=%ld/%ld/%ld, "
 250                           "hwptr=%ld/%ld\n",
 251                           name, entry->jiffies, (unsigned long)entry->pos,
 252                           (unsigned long)entry->period_size,
 253                           (unsigned long)entry->buffer_size,
 254                           (unsigned long)entry->old_hw_ptr,
 255                           (unsigned long)entry->hw_ptr_base);
 256                idx++;
 257                idx %= XRUN_LOG_CNT;
 258        }
 259        log->hit = 1;
 260}
 261
 262#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
 263
 264#define hw_ptr_error(substream, fmt, args...) do { } while (0)
 265#define xrun_log(substream, pos)        do { } while (0)
 266#define xrun_log_show(substream)        do { } while (0)
 267
 268#endif
 269
 270int snd_pcm_update_state(struct snd_pcm_substream *substream,
 271                         struct snd_pcm_runtime *runtime)
 272{
 273        snd_pcm_uframes_t avail;
 274
 275        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 276                avail = snd_pcm_playback_avail(runtime);
 277        else
 278                avail = snd_pcm_capture_avail(runtime);
 279        if (avail > runtime->avail_max)
 280                runtime->avail_max = avail;
 281        if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
 282                if (avail >= runtime->buffer_size) {
 283                        snd_pcm_drain_done(substream);
 284                        return -EPIPE;
 285                }
 286        } else {
 287                if (avail >= runtime->stop_threshold) {
 288                        xrun(substream);
 289                        return -EPIPE;
 290                }
 291        }
 292        if (runtime->twake) {
 293                if (avail >= runtime->twake)
 294                        wake_up(&runtime->tsleep);
 295        } else if (avail >= runtime->control->avail_min)
 296                wake_up(&runtime->sleep);
 297        return 0;
 298}
 299
 300static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
 301                                  unsigned int in_interrupt)
 302{
 303        struct snd_pcm_runtime *runtime = substream->runtime;
 304        snd_pcm_uframes_t pos;
 305        snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
 306        snd_pcm_sframes_t hdelta, delta;
 307        unsigned long jdelta;
 308
 309        old_hw_ptr = runtime->status->hw_ptr;
 310        pos = substream->ops->pointer(substream);
 311        if (pos == SNDRV_PCM_POS_XRUN) {
 312                xrun(substream);
 313                return -EPIPE;
 314        }
 315        if (pos >= runtime->buffer_size) {
 316                if (printk_ratelimit()) {
 317                        char name[16];
 318                        pcm_debug_name(substream, name, sizeof(name));
 319                        xrun_log_show(substream);
 320                        snd_printd(KERN_ERR  "BUG: %s, pos = %ld, "
 321                                   "buffer size = %ld, period size = %ld\n",
 322                                   name, pos, runtime->buffer_size,
 323                                   runtime->period_size);
 324                }
 325                pos = 0;
 326        }
 327        pos -= pos % runtime->min_align;
 328        if (xrun_debug(substream, XRUN_DEBUG_LOG))
 329                xrun_log(substream, pos);
 330        hw_base = runtime->hw_ptr_base;
 331        new_hw_ptr = hw_base + pos;
 332        if (in_interrupt) {
 333                /* we know that one period was processed */
 334                /* delta = "expected next hw_ptr" for in_interrupt != 0 */
 335                delta = runtime->hw_ptr_interrupt + runtime->period_size;
 336                if (delta > new_hw_ptr) {
 337                        /* check for double acknowledged interrupts */
 338                        hdelta = jiffies - runtime->hw_ptr_jiffies;
 339                        if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
 340                                hw_base += runtime->buffer_size;
 341                                if (hw_base >= runtime->boundary)
 342                                        hw_base = 0;
 343                                new_hw_ptr = hw_base + pos;
 344                                goto __delta;
 345                        }
 346                }
 347        }
 348        /* new_hw_ptr might be lower than old_hw_ptr in case when */
 349        /* pointer crosses the end of the ring buffer */
 350        if (new_hw_ptr < old_hw_ptr) {
 351                hw_base += runtime->buffer_size;
 352                if (hw_base >= runtime->boundary)
 353                        hw_base = 0;
 354                new_hw_ptr = hw_base + pos;
 355        }
 356      __delta:
 357        delta = new_hw_ptr - old_hw_ptr;
 358        if (delta < 0)
 359                delta += runtime->boundary;
 360        if (xrun_debug(substream, in_interrupt ?
 361                        XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
 362                char name[16];
 363                pcm_debug_name(substream, name, sizeof(name));
 364                snd_printd("%s_update: %s: pos=%u/%u/%u, "
 365                           "hwptr=%ld/%ld/%ld/%ld\n",
 366                           in_interrupt ? "period" : "hwptr",
 367                           name,
 368                           (unsigned int)pos,
 369                           (unsigned int)runtime->period_size,
 370                           (unsigned int)runtime->buffer_size,
 371                           (unsigned long)delta,
 372                           (unsigned long)old_hw_ptr,
 373                           (unsigned long)new_hw_ptr,
 374                           (unsigned long)runtime->hw_ptr_base);
 375        }
 376
 377        if (runtime->no_period_wakeup) {
 378                snd_pcm_sframes_t xrun_threshold;
 379                /*
 380                 * Without regular period interrupts, we have to check
 381                 * the elapsed time to detect xruns.
 382                 */
 383                jdelta = jiffies - runtime->hw_ptr_jiffies;
 384                if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
 385                        goto no_delta_check;
 386                hdelta = jdelta - delta * HZ / runtime->rate;
 387                xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
 388                while (hdelta > xrun_threshold) {
 389                        delta += runtime->buffer_size;
 390                        hw_base += runtime->buffer_size;
 391                        if (hw_base >= runtime->boundary)
 392                                hw_base = 0;
 393                        new_hw_ptr = hw_base + pos;
 394                        hdelta -= runtime->hw_ptr_buffer_jiffies;
 395                }
 396                goto no_delta_check;
 397        }
 398
 399        /* something must be really wrong */
 400        if (delta >= runtime->buffer_size + runtime->period_size) {
 401                hw_ptr_error(substream,
 402                               "Unexpected hw_pointer value %s"
 403                               "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
 404                               "old_hw_ptr=%ld)\n",
 405                                     in_interrupt ? "[Q] " : "[P]",
 406                                     substream->stream, (long)pos,
 407                                     (long)new_hw_ptr, (long)old_hw_ptr);
 408                return 0;
 409        }
 410
 411        /* Do jiffies check only in xrun_debug mode */
 412        if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
 413                goto no_jiffies_check;
 414
 415        /* Skip the jiffies check for hardwares with BATCH flag.
 416         * Such hardware usually just increases the position at each IRQ,
 417         * thus it can't give any strange position.
 418         */
 419        if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
 420                goto no_jiffies_check;
 421        hdelta = delta;
 422        if (hdelta < runtime->delay)
 423                goto no_jiffies_check;
 424        hdelta -= runtime->delay;
 425        jdelta = jiffies - runtime->hw_ptr_jiffies;
 426        if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
 427                delta = jdelta /
 428                        (((runtime->period_size * HZ) / runtime->rate)
 429                                                                + HZ/100);
 430                /* move new_hw_ptr according jiffies not pos variable */
 431                new_hw_ptr = old_hw_ptr;
 432                hw_base = delta;
 433                /* use loop to avoid checks for delta overflows */
 434                /* the delta value is small or zero in most cases */
 435                while (delta > 0) {
 436                        new_hw_ptr += runtime->period_size;
 437                        if (new_hw_ptr >= runtime->boundary)
 438                                new_hw_ptr -= runtime->boundary;
 439                        delta--;
 440                }
 441                /* align hw_base to buffer_size */
 442                hw_ptr_error(substream,
 443                             "hw_ptr skipping! %s"
 444                             "(pos=%ld, delta=%ld, period=%ld, "
 445                             "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
 446                             in_interrupt ? "[Q] " : "",
 447                             (long)pos, (long)hdelta,
 448                             (long)runtime->period_size, jdelta,
 449                             ((hdelta * HZ) / runtime->rate), hw_base,
 450                             (unsigned long)old_hw_ptr,
 451                             (unsigned long)new_hw_ptr);
 452                /* reset values to proper state */
 453                delta = 0;
 454                hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
 455        }
 456 no_jiffies_check:
 457        if (delta > runtime->period_size + runtime->period_size / 2) {
 458                hw_ptr_error(substream,
 459                             "Lost interrupts? %s"
 460                             "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
 461                             "old_hw_ptr=%ld)\n",
 462                             in_interrupt ? "[Q] " : "",
 463                             substream->stream, (long)delta,
 464                             (long)new_hw_ptr,
 465                             (long)old_hw_ptr);
 466        }
 467
 468 no_delta_check:
 469        if (runtime->status->hw_ptr == new_hw_ptr)
 470                return 0;
 471
 472        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
 473            runtime->silence_size > 0)
 474                snd_pcm_playback_silence(substream, new_hw_ptr);
 475
 476        if (in_interrupt) {
 477                delta = new_hw_ptr - runtime->hw_ptr_interrupt;
 478                if (delta < 0)
 479                        delta += runtime->boundary;
 480                delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
 481                runtime->hw_ptr_interrupt += delta;
 482                if (runtime->hw_ptr_interrupt >= runtime->boundary)
 483                        runtime->hw_ptr_interrupt -= runtime->boundary;
 484        }
 485        runtime->hw_ptr_base = hw_base;
 486        runtime->status->hw_ptr = new_hw_ptr;
 487        runtime->hw_ptr_jiffies = jiffies;
 488        if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
 489                snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
 490
 491        return snd_pcm_update_state(substream, runtime);
 492}
 493
 494/* CAUTION: call it with irq disabled */
 495int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
 496{
 497        return snd_pcm_update_hw_ptr0(substream, 0);
 498}
 499
 500/**
 501 * snd_pcm_set_ops - set the PCM operators
 502 * @pcm: the pcm instance
 503 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
 504 * @ops: the operator table
 505 *
 506 * Sets the given PCM operators to the pcm instance.
 507 */
 508void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
 509{
 510        struct snd_pcm_str *stream = &pcm->streams[direction];
 511        struct snd_pcm_substream *substream;
 512        
 513        for (substream = stream->substream; substream != NULL; substream = substream->next)
 514                substream->ops = ops;
 515}
 516
 517EXPORT_SYMBOL(snd_pcm_set_ops);
 518
 519/**
 520 * snd_pcm_sync - set the PCM sync id
 521 * @substream: the pcm substream
 522 *
 523 * Sets the PCM sync identifier for the card.
 524 */
 525void snd_pcm_set_sync(struct snd_pcm_substream *substream)
 526{
 527        struct snd_pcm_runtime *runtime = substream->runtime;
 528        
 529        runtime->sync.id32[0] = substream->pcm->card->number;
 530        runtime->sync.id32[1] = -1;
 531        runtime->sync.id32[2] = -1;
 532        runtime->sync.id32[3] = -1;
 533}
 534
 535EXPORT_SYMBOL(snd_pcm_set_sync);
 536
 537/*
 538 *  Standard ioctl routine
 539 */
 540
 541static inline unsigned int div32(unsigned int a, unsigned int b, 
 542                                 unsigned int *r)
 543{
 544        if (b == 0) {
 545                *r = 0;
 546                return UINT_MAX;
 547        }
 548        *r = a % b;
 549        return a / b;
 550}
 551
 552static inline unsigned int div_down(unsigned int a, unsigned int b)
 553{
 554        if (b == 0)
 555                return UINT_MAX;
 556        return a / b;
 557}
 558
 559static inline unsigned int div_up(unsigned int a, unsigned int b)
 560{
 561        unsigned int r;
 562        unsigned int q;
 563        if (b == 0)
 564                return UINT_MAX;
 565        q = div32(a, b, &r);
 566        if (r)
 567                ++q;
 568        return q;
 569}
 570
 571static inline unsigned int mul(unsigned int a, unsigned int b)
 572{
 573        if (a == 0)
 574                return 0;
 575        if (div_down(UINT_MAX, a) < b)
 576                return UINT_MAX;
 577        return a * b;
 578}
 579
 580static inline unsigned int muldiv32(unsigned int a, unsigned int b,
 581                                    unsigned int c, unsigned int *r)
 582{
 583        u_int64_t n = (u_int64_t) a * b;
 584        if (c == 0) {
 585                snd_BUG_ON(!n);
 586                *r = 0;
 587                return UINT_MAX;
 588        }
 589        n = div_u64_rem(n, c, r);
 590        if (n >= UINT_MAX) {
 591                *r = 0;
 592                return UINT_MAX;
 593        }
 594        return n;
 595}
 596
 597/**
 598 * snd_interval_refine - refine the interval value of configurator
 599 * @i: the interval value to refine
 600 * @v: the interval value to refer to
 601 *
 602 * Refines the interval value with the reference value.
 603 * The interval is changed to the range satisfying both intervals.
 604 * The interval status (min, max, integer, etc.) are evaluated.
 605 *
 606 * Returns non-zero if the value is changed, zero if not changed.
 607 */
 608int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
 609{
 610        int changed = 0;
 611        if (snd_BUG_ON(snd_interval_empty(i)))
 612                return -EINVAL;
 613        if (i->min < v->min) {
 614                i->min = v->min;
 615                i->openmin = v->openmin;
 616                changed = 1;
 617        } else if (i->min == v->min && !i->openmin && v->openmin) {
 618                i->openmin = 1;
 619                changed = 1;
 620        }
 621        if (i->max > v->max) {
 622                i->max = v->max;
 623                i->openmax = v->openmax;
 624                changed = 1;
 625        } else if (i->max == v->max && !i->openmax && v->openmax) {
 626                i->openmax = 1;
 627                changed = 1;
 628        }
 629        if (!i->integer && v->integer) {
 630                i->integer = 1;
 631                changed = 1;
 632        }
 633        if (i->integer) {
 634                if (i->openmin) {
 635                        i->min++;
 636                        i->openmin = 0;
 637                }
 638                if (i->openmax) {
 639                        i->max--;
 640                        i->openmax = 0;
 641                }
 642        } else if (!i->openmin && !i->openmax && i->min == i->max)
 643                i->integer = 1;
 644        if (snd_interval_checkempty(i)) {
 645                snd_interval_none(i);
 646                return -EINVAL;
 647        }
 648        return changed;
 649}
 650
 651EXPORT_SYMBOL(snd_interval_refine);
 652
 653static int snd_interval_refine_first(struct snd_interval *i)
 654{
 655        if (snd_BUG_ON(snd_interval_empty(i)))
 656                return -EINVAL;
 657        if (snd_interval_single(i))
 658                return 0;
 659        i->max = i->min;
 660        i->openmax = i->openmin;
 661        if (i->openmax)
 662                i->max++;
 663        return 1;
 664}
 665
 666static int snd_interval_refine_last(struct snd_interval *i)
 667{
 668        if (snd_BUG_ON(snd_interval_empty(i)))
 669                return -EINVAL;
 670        if (snd_interval_single(i))
 671                return 0;
 672        i->min = i->max;
 673        i->openmin = i->openmax;
 674        if (i->openmin)
 675                i->min--;
 676        return 1;
 677}
 678
 679void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 680{
 681        if (a->empty || b->empty) {
 682                snd_interval_none(c);
 683                return;
 684        }
 685        c->empty = 0;
 686        c->min = mul(a->min, b->min);
 687        c->openmin = (a->openmin || b->openmin);
 688        c->max = mul(a->max,  b->max);
 689        c->openmax = (a->openmax || b->openmax);
 690        c->integer = (a->integer && b->integer);
 691}
 692
 693/**
 694 * snd_interval_div - refine the interval value with division
 695 * @a: dividend
 696 * @b: divisor
 697 * @c: quotient
 698 *
 699 * c = a / b
 700 *
 701 * Returns non-zero if the value is changed, zero if not changed.
 702 */
 703void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 704{
 705        unsigned int r;
 706        if (a->empty || b->empty) {
 707                snd_interval_none(c);
 708                return;
 709        }
 710        c->empty = 0;
 711        c->min = div32(a->min, b->max, &r);
 712        c->openmin = (r || a->openmin || b->openmax);
 713        if (b->min > 0) {
 714                c->max = div32(a->max, b->min, &r);
 715                if (r) {
 716                        c->max++;
 717                        c->openmax = 1;
 718                } else
 719                        c->openmax = (a->openmax || b->openmin);
 720        } else {
 721                c->max = UINT_MAX;
 722                c->openmax = 0;
 723        }
 724        c->integer = 0;
 725}
 726
 727/**
 728 * snd_interval_muldivk - refine the interval value
 729 * @a: dividend 1
 730 * @b: dividend 2
 731 * @k: divisor (as integer)
 732 * @c: result
 733  *
 734 * c = a * b / k
 735 *
 736 * Returns non-zero if the value is changed, zero if not changed.
 737 */
 738void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
 739                      unsigned int k, struct snd_interval *c)
 740{
 741        unsigned int r;
 742        if (a->empty || b->empty) {
 743                snd_interval_none(c);
 744                return;
 745        }
 746        c->empty = 0;
 747        c->min = muldiv32(a->min, b->min, k, &r);
 748        c->openmin = (r || a->openmin || b->openmin);
 749        c->max = muldiv32(a->max, b->max, k, &r);
 750        if (r) {
 751                c->max++;
 752                c->openmax = 1;
 753        } else
 754                c->openmax = (a->openmax || b->openmax);
 755        c->integer = 0;
 756}
 757
 758/**
 759 * snd_interval_mulkdiv - refine the interval value
 760 * @a: dividend 1
 761 * @k: dividend 2 (as integer)
 762 * @b: divisor
 763 * @c: result
 764 *
 765 * c = a * k / b
 766 *
 767 * Returns non-zero if the value is changed, zero if not changed.
 768 */
 769void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
 770                      const struct snd_interval *b, struct snd_interval *c)
 771{
 772        unsigned int r;
 773        if (a->empty || b->empty) {
 774                snd_interval_none(c);
 775                return;
 776        }
 777        c->empty = 0;
 778        c->min = muldiv32(a->min, k, b->max, &r);
 779        c->openmin = (r || a->openmin || b->openmax);
 780        if (b->min > 0) {
 781                c->max = muldiv32(a->max, k, b->min, &r);
 782                if (r) {
 783                        c->max++;
 784                        c->openmax = 1;
 785                } else
 786                        c->openmax = (a->openmax || b->openmin);
 787        } else {
 788                c->max = UINT_MAX;
 789                c->openmax = 0;
 790        }
 791        c->integer = 0;
 792}
 793
 794/* ---- */
 795
 796
 797/**
 798 * snd_interval_ratnum - refine the interval value
 799 * @i: interval to refine
 800 * @rats_count: number of ratnum_t 
 801 * @rats: ratnum_t array
 802 * @nump: pointer to store the resultant numerator
 803 * @denp: pointer to store the resultant denominator
 804 *
 805 * Returns non-zero if the value is changed, zero if not changed.
 806 */
 807int snd_interval_ratnum(struct snd_interval *i,
 808                        unsigned int rats_count, struct snd_ratnum *rats,
 809                        unsigned int *nump, unsigned int *denp)
 810{
 811        unsigned int best_num, best_den;
 812        int best_diff;
 813        unsigned int k;
 814        struct snd_interval t;
 815        int err;
 816        unsigned int result_num, result_den;
 817        int result_diff;
 818
 819        best_num = best_den = best_diff = 0;
 820        for (k = 0; k < rats_count; ++k) {
 821                unsigned int num = rats[k].num;
 822                unsigned int den;
 823                unsigned int q = i->min;
 824                int diff;
 825                if (q == 0)
 826                        q = 1;
 827                den = div_up(num, q);
 828                if (den < rats[k].den_min)
 829                        continue;
 830                if (den > rats[k].den_max)
 831                        den = rats[k].den_max;
 832                else {
 833                        unsigned int r;
 834                        r = (den - rats[k].den_min) % rats[k].den_step;
 835                        if (r != 0)
 836                                den -= r;
 837                }
 838                diff = num - q * den;
 839                if (diff < 0)
 840                        diff = -diff;
 841                if (best_num == 0 ||
 842                    diff * best_den < best_diff * den) {
 843                        best_diff = diff;
 844                        best_den = den;
 845                        best_num = num;
 846                }
 847        }
 848        if (best_den == 0) {
 849                i->empty = 1;
 850                return -EINVAL;
 851        }
 852        t.min = div_down(best_num, best_den);
 853        t.openmin = !!(best_num % best_den);
 854        
 855        result_num = best_num;
 856        result_diff = best_diff;
 857        result_den = best_den;
 858        best_num = best_den = best_diff = 0;
 859        for (k = 0; k < rats_count; ++k) {
 860                unsigned int num = rats[k].num;
 861                unsigned int den;
 862                unsigned int q = i->max;
 863                int diff;
 864                if (q == 0) {
 865                        i->empty = 1;
 866                        return -EINVAL;
 867                }
 868                den = div_down(num, q);
 869                if (den > rats[k].den_max)
 870                        continue;
 871                if (den < rats[k].den_min)
 872                        den = rats[k].den_min;
 873                else {
 874                        unsigned int r;
 875                        r = (den - rats[k].den_min) % rats[k].den_step;
 876                        if (r != 0)
 877                                den += rats[k].den_step - r;
 878                }
 879                diff = q * den - num;
 880                if (diff < 0)
 881                        diff = -diff;
 882                if (best_num == 0 ||
 883                    diff * best_den < best_diff * den) {
 884                        best_diff = diff;
 885                        best_den = den;
 886                        best_num = num;
 887                }
 888        }
 889        if (best_den == 0) {
 890                i->empty = 1;
 891                return -EINVAL;
 892        }
 893        t.max = div_up(best_num, best_den);
 894        t.openmax = !!(best_num % best_den);
 895        t.integer = 0;
 896        err = snd_interval_refine(i, &t);
 897        if (err < 0)
 898                return err;
 899
 900        if (snd_interval_single(i)) {
 901                if (best_diff * result_den < result_diff * best_den) {
 902                        result_num = best_num;
 903                        result_den = best_den;
 904                }
 905                if (nump)
 906                        *nump = result_num;
 907                if (denp)
 908                        *denp = result_den;
 909        }
 910        return err;
 911}
 912
 913EXPORT_SYMBOL(snd_interval_ratnum);
 914
 915/**
 916 * snd_interval_ratden - refine the interval value
 917 * @i: interval to refine
 918 * @rats_count: number of struct ratden
 919 * @rats: struct ratden array
 920 * @nump: pointer to store the resultant numerator
 921 * @denp: pointer to store the resultant denominator
 922 *
 923 * Returns non-zero if the value is changed, zero if not changed.
 924 */
 925static int snd_interval_ratden(struct snd_interval *i,
 926                               unsigned int rats_count, struct snd_ratden *rats,
 927                               unsigned int *nump, unsigned int *denp)
 928{
 929        unsigned int best_num, best_diff, best_den;
 930        unsigned int k;
 931        struct snd_interval t;
 932        int err;
 933
 934        best_num = best_den = best_diff = 0;
 935        for (k = 0; k < rats_count; ++k) {
 936                unsigned int num;
 937                unsigned int den = rats[k].den;
 938                unsigned int q = i->min;
 939                int diff;
 940                num = mul(q, den);
 941                if (num > rats[k].num_max)
 942                        continue;
 943                if (num < rats[k].num_min)
 944                        num = rats[k].num_max;
 945                else {
 946                        unsigned int r;
 947                        r = (num - rats[k].num_min) % rats[k].num_step;
 948                        if (r != 0)
 949                                num += rats[k].num_step - r;
 950                }
 951                diff = num - q * den;
 952                if (best_num == 0 ||
 953                    diff * best_den < best_diff * den) {
 954                        best_diff = diff;
 955                        best_den = den;
 956                        best_num = num;
 957                }
 958        }
 959        if (best_den == 0) {
 960                i->empty = 1;
 961                return -EINVAL;
 962        }
 963        t.min = div_down(best_num, best_den);
 964        t.openmin = !!(best_num % best_den);
 965        
 966        best_num = best_den = best_diff = 0;
 967        for (k = 0; k < rats_count; ++k) {
 968                unsigned int num;
 969                unsigned int den = rats[k].den;
 970                unsigned int q = i->max;
 971                int diff;
 972                num = mul(q, den);
 973                if (num < rats[k].num_min)
 974                        continue;
 975                if (num > rats[k].num_max)
 976                        num = rats[k].num_max;
 977                else {
 978                        unsigned int r;
 979                        r = (num - rats[k].num_min) % rats[k].num_step;
 980                        if (r != 0)
 981                                num -= r;
 982                }
 983                diff = q * den - num;
 984                if (best_num == 0 ||
 985                    diff * best_den < best_diff * den) {
 986                        best_diff = diff;
 987                        best_den = den;
 988                        best_num = num;
 989                }
 990        }
 991        if (best_den == 0) {
 992                i->empty = 1;
 993                return -EINVAL;
 994        }
 995        t.max = div_up(best_num, best_den);
 996        t.openmax = !!(best_num % best_den);
 997        t.integer = 0;
 998        err = snd_interval_refine(i, &t);
 999        if (err < 0)
1000                return err;
1001
1002        if (snd_interval_single(i)) {
1003                if (nump)
1004                        *nump = best_num;
1005                if (denp)
1006                        *denp = best_den;
1007        }
1008        return err;
1009}
1010
1011/**
1012 * snd_interval_list - refine the interval value from the list
1013 * @i: the interval value to refine
1014 * @count: the number of elements in the list
1015 * @list: the value list
1016 * @mask: the bit-mask to evaluate
1017 *
1018 * Refines the interval value from the list.
1019 * When mask is non-zero, only the elements corresponding to bit 1 are
1020 * evaluated.
1021 *
1022 * Returns non-zero if the value is changed, zero if not changed.
1023 */
1024int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask)
1025{
1026        unsigned int k;
1027        struct snd_interval list_range;
1028
1029        if (!count) {
1030                i->empty = 1;
1031                return -EINVAL;
1032        }
1033        snd_interval_any(&list_range);
1034        list_range.min = UINT_MAX;
1035        list_range.max = 0;
1036        for (k = 0; k < count; k++) {
1037                if (mask && !(mask & (1 << k)))
1038                        continue;
1039                if (!snd_interval_test(i, list[k]))
1040                        continue;
1041                list_range.min = min(list_range.min, list[k]);
1042                list_range.max = max(list_range.max, list[k]);
1043        }
1044        return snd_interval_refine(i, &list_range);
1045}
1046
1047EXPORT_SYMBOL(snd_interval_list);
1048
1049static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
1050{
1051        unsigned int n;
1052        int changed = 0;
1053        n = (i->min - min) % step;
1054        if (n != 0 || i->openmin) {
1055                i->min += step - n;
1056                changed = 1;
1057        }
1058        n = (i->max - min) % step;
1059        if (n != 0 || i->openmax) {
1060                i->max -= n;
1061                changed = 1;
1062        }
1063        if (snd_interval_checkempty(i)) {
1064                i->empty = 1;
1065                return -EINVAL;
1066        }
1067        return changed;
1068}
1069
1070/* Info constraints helpers */
1071
1072/**
1073 * snd_pcm_hw_rule_add - add the hw-constraint rule
1074 * @runtime: the pcm runtime instance
1075 * @cond: condition bits
1076 * @var: the variable to evaluate
1077 * @func: the evaluation function
1078 * @private: the private data pointer passed to function
1079 * @dep: the dependent variables
1080 *
1081 * Returns zero if successful, or a negative error code on failure.
1082 */
1083int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1084                        int var,
1085                        snd_pcm_hw_rule_func_t func, void *private,
1086                        int dep, ...)
1087{
1088        struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1089        struct snd_pcm_hw_rule *c;
1090        unsigned int k;
1091        va_list args;
1092        va_start(args, dep);
1093        if (constrs->rules_num >= constrs->rules_all) {
1094                struct snd_pcm_hw_rule *new;
1095                unsigned int new_rules = constrs->rules_all + 16;
1096                new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1097                if (!new) {
1098                        va_end(args);
1099                        return -ENOMEM;
1100                }
1101                if (constrs->rules) {
1102                        memcpy(new, constrs->rules,
1103                               constrs->rules_num * sizeof(*c));
1104                        kfree(constrs->rules);
1105                }
1106                constrs->rules = new;
1107                constrs->rules_all = new_rules;
1108        }
1109        c = &constrs->rules[constrs->rules_num];
1110        c->cond = cond;
1111        c->func = func;
1112        c->var = var;
1113        c->private = private;
1114        k = 0;
1115        while (1) {
1116                if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1117                        va_end(args);
1118                        return -EINVAL;
1119                }
1120                c->deps[k++] = dep;
1121                if (dep < 0)
1122                        break;
1123                dep = va_arg(args, int);
1124        }
1125        constrs->rules_num++;
1126        va_end(args);
1127        return 0;
1128}
1129
1130EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1131
1132/**
1133 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1134 * @runtime: PCM runtime instance
1135 * @var: hw_params variable to apply the mask
1136 * @mask: the bitmap mask
1137 *
1138 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1139 */
1140int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1141                               u_int32_t mask)
1142{
1143        struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1144        struct snd_mask *maskp = constrs_mask(constrs, var);
1145        *maskp->bits &= mask;
1146        memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1147        if (*maskp->bits == 0)
1148                return -EINVAL;
1149        return 0;
1150}
1151
1152/**
1153 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1154 * @runtime: PCM runtime instance
1155 * @var: hw_params variable to apply the mask
1156 * @mask: the 64bit bitmap mask
1157 *
1158 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1159 */
1160int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1161                                 u_int64_t mask)
1162{
1163        struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1164        struct snd_mask *maskp = constrs_mask(constrs, var);
1165        maskp->bits[0] &= (u_int32_t)mask;
1166        maskp->bits[1] &= (u_int32_t)(mask >> 32);
1167        memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1168        if (! maskp->bits[0] && ! maskp->bits[1])
1169                return -EINVAL;
1170        return 0;
1171}
1172
1173/**
1174 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1175 * @runtime: PCM runtime instance
1176 * @var: hw_params variable to apply the integer constraint
1177 *
1178 * Apply the constraint of integer to an interval parameter.
1179 */
1180int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1181{
1182        struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1183        return snd_interval_setinteger(constrs_interval(constrs, var));
1184}
1185
1186EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1187
1188/**
1189 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1190 * @runtime: PCM runtime instance
1191 * @var: hw_params variable to apply the range
1192 * @min: the minimal value
1193 * @max: the maximal value
1194 * 
1195 * Apply the min/max range constraint to an interval parameter.
1196 */
1197int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1198                                 unsigned int min, unsigned int max)
1199{
1200        struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1201        struct snd_interval t;
1202        t.min = min;
1203        t.max = max;
1204        t.openmin = t.openmax = 0;
1205        t.integer = 0;
1206        return snd_interval_refine(constrs_interval(constrs, var), &t);
1207}
1208
1209EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1210
1211static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1212                                struct snd_pcm_hw_rule *rule)
1213{
1214        struct snd_pcm_hw_constraint_list *list = rule->private;
1215        return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1216}               
1217
1218
1219/**
1220 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1221 * @runtime: PCM runtime instance
1222 * @cond: condition bits
1223 * @var: hw_params variable to apply the list constraint
1224 * @l: list
1225 * 
1226 * Apply the list of constraints to an interval parameter.
1227 */
1228int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1229                               unsigned int cond,
1230                               snd_pcm_hw_param_t var,
1231                               struct snd_pcm_hw_constraint_list *l)
1232{
1233        return snd_pcm_hw_rule_add(runtime, cond, var,
1234                                   snd_pcm_hw_rule_list, l,
1235                                   var, -1);
1236}
1237
1238EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1239
1240static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1241                                   struct snd_pcm_hw_rule *rule)
1242{
1243        struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1244        unsigned int num = 0, den = 0;
1245        int err;
1246        err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1247                                  r->nrats, r->rats, &num, &den);
1248        if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1249                params->rate_num = num;
1250                params->rate_den = den;
1251        }
1252        return err;
1253}
1254
1255/**
1256 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1257 * @runtime: PCM runtime instance
1258 * @cond: condition bits
1259 * @var: hw_params variable to apply the ratnums constraint
1260 * @r: struct snd_ratnums constriants
1261 */
1262int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1263                                  unsigned int cond,
1264                                  snd_pcm_hw_param_t var,
1265                                  struct snd_pcm_hw_constraint_ratnums *r)
1266{
1267        return snd_pcm_hw_rule_add(runtime, cond, var,
1268                                   snd_pcm_hw_rule_ratnums, r,
1269                                   var, -1);
1270}
1271
1272EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1273
1274static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1275                                   struct snd_pcm_hw_rule *rule)
1276{
1277        struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1278        unsigned int num = 0, den = 0;
1279        int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1280                                  r->nrats, r->rats, &num, &den);
1281        if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1282                params->rate_num = num;
1283                params->rate_den = den;
1284        }
1285        return err;
1286}
1287
1288/**
1289 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1290 * @runtime: PCM runtime instance
1291 * @cond: condition bits
1292 * @var: hw_params variable to apply the ratdens constraint
1293 * @r: struct snd_ratdens constriants
1294 */
1295int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1296                                  unsigned int cond,
1297                                  snd_pcm_hw_param_t var,
1298                                  struct snd_pcm_hw_constraint_ratdens *r)
1299{
1300        return snd_pcm_hw_rule_add(runtime, cond, var,
1301                                   snd_pcm_hw_rule_ratdens, r,
1302                                   var, -1);
1303}
1304
1305EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1306
1307static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1308                                  struct snd_pcm_hw_rule *rule)
1309{
1310        unsigned int l = (unsigned long) rule->private;
1311        int width = l & 0xffff;
1312        unsigned int msbits = l >> 16;
1313        struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1314        if (snd_interval_single(i) && snd_interval_value(i) == width)
1315                params->msbits = msbits;
1316        return 0;
1317}
1318
1319/**
1320 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1321 * @runtime: PCM runtime instance
1322 * @cond: condition bits
1323 * @width: sample bits width
1324 * @msbits: msbits width
1325 */
1326int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1327                                 unsigned int cond,
1328                                 unsigned int width,
1329                                 unsigned int msbits)
1330{
1331        unsigned long l = (msbits << 16) | width;
1332        return snd_pcm_hw_rule_add(runtime, cond, -1,
1333                                    snd_pcm_hw_rule_msbits,
1334                                    (void*) l,
1335                                    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1336}
1337
1338EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1339
1340static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1341                                struct snd_pcm_hw_rule *rule)
1342{
1343        unsigned long step = (unsigned long) rule->private;
1344        return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1345}
1346
1347/**
1348 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1349 * @runtime: PCM runtime instance
1350 * @cond: condition bits
1351 * @var: hw_params variable to apply the step constraint
1352 * @step: step size
1353 */
1354int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1355                               unsigned int cond,
1356                               snd_pcm_hw_param_t var,
1357                               unsigned long step)
1358{
1359        return snd_pcm_hw_rule_add(runtime, cond, var, 
1360                                   snd_pcm_hw_rule_step, (void *) step,
1361                                   var, -1);
1362}
1363
1364EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1365
1366static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1367{
1368        static unsigned int pow2_sizes[] = {
1369                1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1370                1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1371                1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1372                1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1373        };
1374        return snd_interval_list(hw_param_interval(params, rule->var),
1375                                 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1376}               
1377
1378/**
1379 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1380 * @runtime: PCM runtime instance
1381 * @cond: condition bits
1382 * @var: hw_params variable to apply the power-of-2 constraint
1383 */
1384int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1385                               unsigned int cond,
1386                               snd_pcm_hw_param_t var)
1387{
1388        return snd_pcm_hw_rule_add(runtime, cond, var, 
1389                                   snd_pcm_hw_rule_pow2, NULL,
1390                                   var, -1);
1391}
1392
1393EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1394
1395static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1396                                  snd_pcm_hw_param_t var)
1397{
1398        if (hw_is_mask(var)) {
1399                snd_mask_any(hw_param_mask(params, var));
1400                params->cmask |= 1 << var;
1401                params->rmask |= 1 << var;
1402                return;
1403        }
1404        if (hw_is_interval(var)) {
1405                snd_interval_any(hw_param_interval(params, var));
1406                params->cmask |= 1 << var;
1407                params->rmask |= 1 << var;
1408                return;
1409        }
1410        snd_BUG();
1411}
1412
1413void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1414{
1415        unsigned int k;
1416        memset(params, 0, sizeof(*params));
1417        for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1418                _snd_pcm_hw_param_any(params, k);
1419        for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1420                _snd_pcm_hw_param_any(params, k);
1421        params->info = ~0U;
1422}
1423
1424EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1425
1426/**
1427 * snd_pcm_hw_param_value - return @params field @var value
1428 * @params: the hw_params instance
1429 * @var: parameter to retrieve
1430 * @dir: pointer to the direction (-1,0,1) or %NULL
1431 *
1432 * Return the value for field @var if it's fixed in configuration space
1433 * defined by @params. Return -%EINVAL otherwise.
1434 */
1435int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1436                           snd_pcm_hw_param_t var, int *dir)
1437{
1438        if (hw_is_mask(var)) {
1439                const struct snd_mask *mask = hw_param_mask_c(params, var);
1440                if (!snd_mask_single(mask))
1441                        return -EINVAL;
1442                if (dir)
1443                        *dir = 0;
1444                return snd_mask_value(mask);
1445        }
1446        if (hw_is_interval(var)) {
1447                const struct snd_interval *i = hw_param_interval_c(params, var);
1448                if (!snd_interval_single(i))
1449                        return -EINVAL;
1450                if (dir)
1451                        *dir = i->openmin;
1452                return snd_interval_value(i);
1453        }
1454        return -EINVAL;
1455}
1456
1457EXPORT_SYMBOL(snd_pcm_hw_param_value);
1458
1459void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1460                                snd_pcm_hw_param_t var)
1461{
1462        if (hw_is_mask(var)) {
1463                snd_mask_none(hw_param_mask(params, var));
1464                params->cmask |= 1 << var;
1465                params->rmask |= 1 << var;
1466        } else if (hw_is_interval(var)) {
1467                snd_interval_none(hw_param_interval(params, var));
1468                params->cmask |= 1 << var;
1469                params->rmask |= 1 << var;
1470        } else {
1471                snd_BUG();
1472        }
1473}
1474
1475EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1476
1477static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1478                                   snd_pcm_hw_param_t var)
1479{
1480        int changed;
1481        if (hw_is_mask(var))
1482                changed = snd_mask_refine_first(hw_param_mask(params, var));
1483        else if (hw_is_interval(var))
1484                changed = snd_interval_refine_first(hw_param_interval(params, var));
1485        else
1486                return -EINVAL;
1487        if (changed) {
1488                params->cmask |= 1 << var;
1489                params->rmask |= 1 << var;
1490        }
1491        return changed;
1492}
1493
1494
1495/**
1496 * snd_pcm_hw_param_first - refine config space and return minimum value
1497 * @pcm: PCM instance
1498 * @params: the hw_params instance
1499 * @var: parameter to retrieve
1500 * @dir: pointer to the direction (-1,0,1) or %NULL
1501 *
1502 * Inside configuration space defined by @params remove from @var all
1503 * values > minimum. Reduce configuration space accordingly.
1504 * Return the minimum.
1505 */
1506int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1507                           struct snd_pcm_hw_params *params, 
1508                           snd_pcm_hw_param_t var, int *dir)
1509{
1510        int changed = _snd_pcm_hw_param_first(params, var);
1511        if (changed < 0)
1512                return changed;
1513        if (params->rmask) {
1514                int err = snd_pcm_hw_refine(pcm, params);
1515                if (snd_BUG_ON(err < 0))
1516                        return err;
1517        }
1518        return snd_pcm_hw_param_value(params, var, dir);
1519}
1520
1521EXPORT_SYMBOL(snd_pcm_hw_param_first);
1522
1523static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1524                                  snd_pcm_hw_param_t var)
1525{
1526        int changed;
1527        if (hw_is_mask(var))
1528                changed = snd_mask_refine_last(hw_param_mask(params, var));
1529        else if (hw_is_interval(var))
1530                changed = snd_interval_refine_last(hw_param_interval(params, var));
1531        else
1532                return -EINVAL;
1533        if (changed) {
1534                params->cmask |= 1 << var;
1535                params->rmask |= 1 << var;
1536        }
1537        return changed;
1538}
1539
1540
1541/**
1542 * snd_pcm_hw_param_last - refine config space and return maximum value
1543 * @pcm: PCM instance
1544 * @params: the hw_params instance
1545 * @var: parameter to retrieve
1546 * @dir: pointer to the direction (-1,0,1) or %NULL
1547 *
1548 * Inside configuration space defined by @params remove from @var all
1549 * values < maximum. Reduce configuration space accordingly.
1550 * Return the maximum.
1551 */
1552int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1553                          struct snd_pcm_hw_params *params,
1554                          snd_pcm_hw_param_t var, int *dir)
1555{
1556        int changed = _snd_pcm_hw_param_last(params, var);
1557        if (changed < 0)
1558                return changed;
1559        if (params->rmask) {
1560                int err = snd_pcm_hw_refine(pcm, params);
1561                if (snd_BUG_ON(err < 0))
1562                        return err;
1563        }
1564        return snd_pcm_hw_param_value(params, var, dir);
1565}
1566
1567EXPORT_SYMBOL(snd_pcm_hw_param_last);
1568
1569/**
1570 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1571 * @pcm: PCM instance
1572 * @params: the hw_params instance
1573 *
1574 * Choose one configuration from configuration space defined by @params.
1575 * The configuration chosen is that obtained fixing in this order:
1576 * first access, first format, first subformat, min channels,
1577 * min rate, min period time, max buffer size, min tick time
1578 */
1579int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1580                             struct snd_pcm_hw_params *params)
1581{
1582        static int vars[] = {
1583                SNDRV_PCM_HW_PARAM_ACCESS,
1584                SNDRV_PCM_HW_PARAM_FORMAT,
1585                SNDRV_PCM_HW_PARAM_SUBFORMAT,
1586                SNDRV_PCM_HW_PARAM_CHANNELS,
1587                SNDRV_PCM_HW_PARAM_RATE,
1588                SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1589                SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1590                SNDRV_PCM_HW_PARAM_TICK_TIME,
1591                -1
1592        };
1593        int err, *v;
1594
1595        for (v = vars; *v != -1; v++) {
1596                if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1597                        err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1598                else
1599                        err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1600                if (snd_BUG_ON(err < 0))
1601                        return err;
1602        }
1603        return 0;
1604}
1605
1606static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1607                                   void *arg)
1608{
1609        struct snd_pcm_runtime *runtime = substream->runtime;
1610        unsigned long flags;
1611        snd_pcm_stream_lock_irqsave(substream, flags);
1612        if (snd_pcm_running(substream) &&
1613            snd_pcm_update_hw_ptr(substream) >= 0)
1614                runtime->status->hw_ptr %= runtime->buffer_size;
1615        else
1616                runtime->status->hw_ptr = 0;
1617        snd_pcm_stream_unlock_irqrestore(substream, flags);
1618        return 0;
1619}
1620
1621static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1622                                          void *arg)
1623{
1624        struct snd_pcm_channel_info *info = arg;
1625        struct snd_pcm_runtime *runtime = substream->runtime;
1626        int width;
1627        if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1628                info->offset = -1;
1629                return 0;
1630        }
1631        width = snd_pcm_format_physical_width(runtime->format);
1632        if (width < 0)
1633                return width;
1634        info->offset = 0;
1635        switch (runtime->access) {
1636        case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1637        case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1638                info->first = info->channel * width;
1639                info->step = runtime->channels * width;
1640                break;
1641        case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1642        case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1643        {
1644                size_t size = runtime->dma_bytes / runtime->channels;
1645                info->first = info->channel * size * 8;
1646                info->step = width;
1647                break;
1648        }
1649        default:
1650                snd_BUG();
1651                break;
1652        }
1653        return 0;
1654}
1655
1656static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1657                                       void *arg)
1658{
1659        struct snd_pcm_hw_params *params = arg;
1660        snd_pcm_format_t format;
1661        int channels, width;
1662
1663        params->fifo_size = substream->runtime->hw.fifo_size;
1664        if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1665                format = params_format(params);
1666                channels = params_channels(params);
1667                width = snd_pcm_format_physical_width(format);
1668                params->fifo_size /= width * channels;
1669        }
1670        return 0;
1671}
1672
1673/**
1674 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1675 * @substream: the pcm substream instance
1676 * @cmd: ioctl command
1677 * @arg: ioctl argument
1678 *
1679 * Processes the generic ioctl commands for PCM.
1680 * Can be passed as the ioctl callback for PCM ops.
1681 *
1682 * Returns zero if successful, or a negative error code on failure.
1683 */
1684int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1685                      unsigned int cmd, void *arg)
1686{
1687        switch (cmd) {
1688        case SNDRV_PCM_IOCTL1_INFO:
1689                return 0;
1690        case SNDRV_PCM_IOCTL1_RESET:
1691                return snd_pcm_lib_ioctl_reset(substream, arg);
1692        case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1693                return snd_pcm_lib_ioctl_channel_info(substream, arg);
1694        case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1695                return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1696        }
1697        return -ENXIO;
1698}
1699
1700EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1701
1702/**
1703 * snd_pcm_period_elapsed - update the pcm status for the next period
1704 * @substream: the pcm substream instance
1705 *
1706 * This function is called from the interrupt handler when the
1707 * PCM has processed the period size.  It will update the current
1708 * pointer, wake up sleepers, etc.
1709 *
1710 * Even if more than one periods have elapsed since the last call, you
1711 * have to call this only once.
1712 */
1713void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1714{
1715        struct snd_pcm_runtime *runtime;
1716        unsigned long flags;
1717
1718        if (PCM_RUNTIME_CHECK(substream))
1719                return;
1720        runtime = substream->runtime;
1721
1722        if (runtime->transfer_ack_begin)
1723                runtime->transfer_ack_begin(substream);
1724
1725        snd_pcm_stream_lock_irqsave(substream, flags);
1726        if (!snd_pcm_running(substream) ||
1727            snd_pcm_update_hw_ptr0(substream, 1) < 0)
1728                goto _end;
1729
1730        if (substream->timer_running)
1731                snd_timer_interrupt(substream->timer, 1);
1732 _end:
1733        snd_pcm_stream_unlock_irqrestore(substream, flags);
1734        if (runtime->transfer_ack_end)
1735                runtime->transfer_ack_end(substream);
1736        kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1737}
1738
1739EXPORT_SYMBOL(snd_pcm_period_elapsed);
1740
1741/*
1742 * Wait until avail_min data becomes available
1743 * Returns a negative error code if any error occurs during operation.
1744 * The available space is stored on availp.  When err = 0 and avail = 0
1745 * on the capture stream, it indicates the stream is in DRAINING state.
1746 */
1747static int wait_for_avail(struct snd_pcm_substream *substream,
1748                              snd_pcm_uframes_t *availp)
1749{
1750        struct snd_pcm_runtime *runtime = substream->runtime;
1751        int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1752        wait_queue_t wait;
1753        int err = 0;
1754        snd_pcm_uframes_t avail = 0;
1755        long tout;
1756
1757        init_waitqueue_entry(&wait, current);
1758        add_wait_queue(&runtime->tsleep, &wait);
1759        for (;;) {
1760                if (signal_pending(current)) {
1761                        err = -ERESTARTSYS;
1762                        break;
1763                }
1764                set_current_state(TASK_INTERRUPTIBLE);
1765                snd_pcm_stream_unlock_irq(substream);
1766                tout = schedule_timeout(msecs_to_jiffies(10000));
1767                snd_pcm_stream_lock_irq(substream);
1768                switch (runtime->status->state) {
1769                case SNDRV_PCM_STATE_SUSPENDED:
1770                        err = -ESTRPIPE;
1771                        goto _endloop;
1772                case SNDRV_PCM_STATE_XRUN:
1773                        err = -EPIPE;
1774                        goto _endloop;
1775                case SNDRV_PCM_STATE_DRAINING:
1776                        if (is_playback)
1777                                err = -EPIPE;
1778                        else 
1779                                avail = 0; /* indicate draining */
1780                        goto _endloop;
1781                case SNDRV_PCM_STATE_OPEN:
1782                case SNDRV_PCM_STATE_SETUP:
1783                case SNDRV_PCM_STATE_DISCONNECTED:
1784                        err = -EBADFD;
1785                        goto _endloop;
1786                }
1787                if (!tout) {
1788                        snd_printd("%s write error (DMA or IRQ trouble?)\n",
1789                                   is_playback ? "playback" : "capture");
1790                        err = -EIO;
1791                        break;
1792                }
1793                if (is_playback)
1794                        avail = snd_pcm_playback_avail(runtime);
1795                else
1796                        avail = snd_pcm_capture_avail(runtime);
1797                if (avail >= runtime->twake)
1798                        break;
1799        }
1800 _endloop:
1801        remove_wait_queue(&runtime->tsleep, &wait);
1802        *availp = avail;
1803        return err;
1804}
1805        
1806static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1807                                      unsigned int hwoff,
1808                                      unsigned long data, unsigned int off,
1809                                      snd_pcm_uframes_t frames)
1810{
1811        struct snd_pcm_runtime *runtime = substream->runtime;
1812        int err;
1813        char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1814        if (substream->ops->copy) {
1815                if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1816                        return err;
1817        } else {
1818                char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1819                if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1820                        return -EFAULT;
1821        }
1822        return 0;
1823}
1824 
1825typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1826                          unsigned long data, unsigned int off,
1827                          snd_pcm_uframes_t size);
1828
1829static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
1830                                            unsigned long data,
1831                                            snd_pcm_uframes_t size,
1832                                            int nonblock,
1833                                            transfer_f transfer)
1834{
1835        struct snd_pcm_runtime *runtime = substream->runtime;
1836        snd_pcm_uframes_t xfer = 0;
1837        snd_pcm_uframes_t offset = 0;
1838        int err = 0;
1839
1840        if (size == 0)
1841                return 0;
1842
1843        snd_pcm_stream_lock_irq(substream);
1844        switch (runtime->status->state) {
1845        case SNDRV_PCM_STATE_PREPARED:
1846        case SNDRV_PCM_STATE_RUNNING:
1847        case SNDRV_PCM_STATE_PAUSED:
1848                break;
1849        case SNDRV_PCM_STATE_XRUN:
1850                err = -EPIPE;
1851                goto _end_unlock;
1852        case SNDRV_PCM_STATE_SUSPENDED:
1853                err = -ESTRPIPE;
1854                goto _end_unlock;
1855        default:
1856                err = -EBADFD;
1857                goto _end_unlock;
1858        }
1859
1860        runtime->twake = runtime->control->avail_min ? : 1;
1861        while (size > 0) {
1862                snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1863                snd_pcm_uframes_t avail;
1864                snd_pcm_uframes_t cont;
1865                if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1866                        snd_pcm_update_hw_ptr(substream);
1867                avail = snd_pcm_playback_avail(runtime);
1868                if (!avail) {
1869                        if (nonblock) {
1870                                err = -EAGAIN;
1871                                goto _end_unlock;
1872                        }
1873                        runtime->twake = min_t(snd_pcm_uframes_t, size,
1874                                        runtime->control->avail_min ? : 1);
1875                        err = wait_for_avail(substream, &avail);
1876                        if (err < 0)
1877                                goto _end_unlock;
1878                }
1879                frames = size > avail ? avail : size;
1880                cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1881                if (frames > cont)
1882                        frames = cont;
1883                if (snd_BUG_ON(!frames)) {
1884                        runtime->twake = 0;
1885                        snd_pcm_stream_unlock_irq(substream);
1886                        return -EINVAL;
1887                }
1888                appl_ptr = runtime->control->appl_ptr;
1889                appl_ofs = appl_ptr % runtime->buffer_size;
1890                snd_pcm_stream_unlock_irq(substream);
1891                err = transfer(substream, appl_ofs, data, offset, frames);
1892                snd_pcm_stream_lock_irq(substream);
1893                if (err < 0)
1894                        goto _end_unlock;
1895                switch (runtime->status->state) {
1896                case SNDRV_PCM_STATE_XRUN:
1897                        err = -EPIPE;
1898                        goto _end_unlock;
1899                case SNDRV_PCM_STATE_SUSPENDED:
1900                        err = -ESTRPIPE;
1901                        goto _end_unlock;
1902                default:
1903                        break;
1904                }
1905                appl_ptr += frames;
1906                if (appl_ptr >= runtime->boundary)
1907                        appl_ptr -= runtime->boundary;
1908                runtime->control->appl_ptr = appl_ptr;
1909                if (substream->ops->ack)
1910                        substream->ops->ack(substream);
1911
1912                offset += frames;
1913                size -= frames;
1914                xfer += frames;
1915                if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1916                    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1917                        err = snd_pcm_start(substream);
1918                        if (err < 0)
1919                                goto _end_unlock;
1920                }
1921        }
1922 _end_unlock:
1923        runtime->twake = 0;
1924        if (xfer > 0 && err >= 0)
1925                snd_pcm_update_state(substream, runtime);
1926        snd_pcm_stream_unlock_irq(substream);
1927        return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1928}
1929
1930/* sanity-check for read/write methods */
1931static int pcm_sanity_check(struct snd_pcm_substream *substream)
1932{
1933        struct snd_pcm_runtime *runtime;
1934        if (PCM_RUNTIME_CHECK(substream))
1935                return -ENXIO;
1936        runtime = substream->runtime;
1937        if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
1938                return -EINVAL;
1939        if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1940                return -EBADFD;
1941        return 0;
1942}
1943
1944snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
1945{
1946        struct snd_pcm_runtime *runtime;
1947        int nonblock;
1948        int err;
1949
1950        err = pcm_sanity_check(substream);
1951        if (err < 0)
1952                return err;
1953        runtime = substream->runtime;
1954        nonblock = !!(substream->f_flags & O_NONBLOCK);
1955
1956        if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
1957            runtime->channels > 1)
1958                return -EINVAL;
1959        return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
1960                                  snd_pcm_lib_write_transfer);
1961}
1962
1963EXPORT_SYMBOL(snd_pcm_lib_write);
1964
1965static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
1966                                       unsigned int hwoff,
1967                                       unsigned long data, unsigned int off,
1968                                       snd_pcm_uframes_t frames)
1969{
1970        struct snd_pcm_runtime *runtime = substream->runtime;
1971        int err;
1972        void __user **bufs = (void __user **)data;
1973        int channels = runtime->channels;
1974        int c;
1975        if (substream->ops->copy) {
1976                if (snd_BUG_ON(!substream->ops->silence))
1977                        return -EINVAL;
1978                for (c = 0; c < channels; ++c, ++bufs) {
1979                        if (*bufs == NULL) {
1980                                if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
1981                                        return err;
1982                        } else {
1983                                char __user *buf = *bufs + samples_to_bytes(runtime, off);
1984                                if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
1985                                        return err;
1986                        }
1987                }
1988        } else {
1989                /* default transfer behaviour */
1990                size_t dma_csize = runtime->dma_bytes / channels;
1991                for (c = 0; c < channels; ++c, ++bufs) {
1992                        char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
1993                        if (*bufs == NULL) {
1994                                snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
1995                        } else {
1996                                char __user *buf = *bufs + samples_to_bytes(runtime, off);
1997                                if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
1998                                        return -EFAULT;
1999                        }
2000                }
2001        }
2002        return 0;
2003}
2004 
2005snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2006                                     void __user **bufs,
2007                                     snd_pcm_uframes_t frames)
2008{
2009        struct snd_pcm_runtime *runtime;
2010        int nonblock;
2011        int err;
2012
2013        err = pcm_sanity_check(substream);
2014        if (err < 0)
2015                return err;
2016        runtime = substream->runtime;
2017        nonblock = !!(substream->f_flags & O_NONBLOCK);
2018
2019        if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2020                return -EINVAL;
2021        return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2022                                  nonblock, snd_pcm_lib_writev_transfer);
2023}
2024
2025EXPORT_SYMBOL(snd_pcm_lib_writev);
2026
2027static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
2028                                     unsigned int hwoff,
2029                                     unsigned long data, unsigned int off,
2030                                     snd_pcm_uframes_t frames)
2031{
2032        struct snd_pcm_runtime *runtime = substream->runtime;
2033        int err;
2034        char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2035        if (substream->ops->copy) {
2036                if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2037                        return err;
2038        } else {
2039                char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2040                if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2041                        return -EFAULT;
2042        }
2043        return 0;
2044}
2045
2046static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2047                                           unsigned long data,
2048                                           snd_pcm_uframes_t size,
2049                                           int nonblock,
2050                                           transfer_f transfer)
2051{
2052        struct snd_pcm_runtime *runtime = substream->runtime;
2053        snd_pcm_uframes_t xfer = 0;
2054        snd_pcm_uframes_t offset = 0;
2055        int err = 0;
2056
2057        if (size == 0)
2058                return 0;
2059
2060        snd_pcm_stream_lock_irq(substream);
2061        switch (runtime->status->state) {
2062        case SNDRV_PCM_STATE_PREPARED:
2063                if (size >= runtime->start_threshold) {
2064                        err = snd_pcm_start(substream);
2065                        if (err < 0)
2066                                goto _end_unlock;
2067                }
2068                break;
2069        case SNDRV_PCM_STATE_DRAINING:
2070        case SNDRV_PCM_STATE_RUNNING:
2071        case SNDRV_PCM_STATE_PAUSED:
2072                break;
2073        case SNDRV_PCM_STATE_XRUN:
2074                err = -EPIPE;
2075                goto _end_unlock;
2076        case SNDRV_PCM_STATE_SUSPENDED:
2077                err = -ESTRPIPE;
2078                goto _end_unlock;
2079        default:
2080                err = -EBADFD;
2081                goto _end_unlock;
2082        }
2083
2084        runtime->twake = runtime->control->avail_min ? : 1;
2085        while (size > 0) {
2086                snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2087                snd_pcm_uframes_t avail;
2088                snd_pcm_uframes_t cont;
2089                if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2090                        snd_pcm_update_hw_ptr(substream);
2091                avail = snd_pcm_capture_avail(runtime);
2092                if (!avail) {
2093                        if (runtime->status->state ==
2094                            SNDRV_PCM_STATE_DRAINING) {
2095                                snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2096                                goto _end_unlock;
2097                        }
2098                        if (nonblock) {
2099                                err = -EAGAIN;
2100                                goto _end_unlock;
2101                        }
2102                        runtime->twake = min_t(snd_pcm_uframes_t, size,
2103                                        runtime->control->avail_min ? : 1);
2104                        err = wait_for_avail(substream, &avail);
2105                        if (err < 0)
2106                                goto _end_unlock;
2107                        if (!avail)
2108                                continue; /* draining */
2109                }
2110                frames = size > avail ? avail : size;
2111                cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2112                if (frames > cont)
2113                        frames = cont;
2114                if (snd_BUG_ON(!frames)) {
2115                        runtime->twake = 0;
2116                        snd_pcm_stream_unlock_irq(substream);
2117                        return -EINVAL;
2118                }
2119                appl_ptr = runtime->control->appl_ptr;
2120                appl_ofs = appl_ptr % runtime->buffer_size;
2121                snd_pcm_stream_unlock_irq(substream);
2122                err = transfer(substream, appl_ofs, data, offset, frames);
2123                snd_pcm_stream_lock_irq(substream);
2124                if (err < 0)
2125                        goto _end_unlock;
2126                switch (runtime->status->state) {
2127                case SNDRV_PCM_STATE_XRUN:
2128                        err = -EPIPE;
2129                        goto _end_unlock;
2130                case SNDRV_PCM_STATE_SUSPENDED:
2131                        err = -ESTRPIPE;
2132                        goto _end_unlock;
2133                default:
2134                        break;
2135                }
2136                appl_ptr += frames;
2137                if (appl_ptr >= runtime->boundary)
2138                        appl_ptr -= runtime->boundary;
2139                runtime->control->appl_ptr = appl_ptr;
2140                if (substream->ops->ack)
2141                        substream->ops->ack(substream);
2142
2143                offset += frames;
2144                size -= frames;
2145                xfer += frames;
2146        }
2147 _end_unlock:
2148        runtime->twake = 0;
2149        if (xfer > 0 && err >= 0)
2150                snd_pcm_update_state(substream, runtime);
2151        snd_pcm_stream_unlock_irq(substream);
2152        return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2153}
2154
2155snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2156{
2157        struct snd_pcm_runtime *runtime;
2158        int nonblock;
2159        int err;
2160        
2161        err = pcm_sanity_check(substream);
2162        if (err < 0)
2163                return err;
2164        runtime = substream->runtime;
2165        nonblock = !!(substream->f_flags & O_NONBLOCK);
2166        if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2167                return -EINVAL;
2168        return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2169}
2170
2171EXPORT_SYMBOL(snd_pcm_lib_read);
2172
2173static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2174                                      unsigned int hwoff,
2175                                      unsigned long data, unsigned int off,
2176                                      snd_pcm_uframes_t frames)
2177{
2178        struct snd_pcm_runtime *runtime = substream->runtime;
2179        int err;
2180        void __user **bufs = (void __user **)data;
2181        int channels = runtime->channels;
2182        int c;
2183        if (substream->ops->copy) {
2184                for (c = 0; c < channels; ++c, ++bufs) {
2185                        char __user *buf;
2186                        if (*bufs == NULL)
2187                                continue;
2188                        buf = *bufs + samples_to_bytes(runtime, off);
2189                        if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2190                                return err;
2191                }
2192        } else {
2193                snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2194                for (c = 0; c < channels; ++c, ++bufs) {
2195                        char *hwbuf;
2196                        char __user *buf;
2197                        if (*bufs == NULL)
2198                                continue;
2199
2200                        hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2201                        buf = *bufs + samples_to_bytes(runtime, off);
2202                        if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2203                                return -EFAULT;
2204                }
2205        }
2206        return 0;
2207}
2208 
2209snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2210                                    void __user **bufs,
2211                                    snd_pcm_uframes_t frames)
2212{
2213        struct snd_pcm_runtime *runtime;
2214        int nonblock;
2215        int err;
2216
2217        err = pcm_sanity_check(substream);
2218        if (err < 0)
2219                return err;
2220        runtime = substream->runtime;
2221        if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2222                return -EBADFD;
2223
2224        nonblock = !!(substream->f_flags & O_NONBLOCK);
2225        if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2226                return -EINVAL;
2227        return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2228}
2229
2230EXPORT_SYMBOL(snd_pcm_lib_readv);
2231