linux/security/commoncap.c
<<
>>
Prefs
   1/* Common capabilities, needed by capability.o.
   2 *
   3 *      This program is free software; you can redistribute it and/or modify
   4 *      it under the terms of the GNU General Public License as published by
   5 *      the Free Software Foundation; either version 2 of the License, or
   6 *      (at your option) any later version.
   7 *
   8 */
   9
  10#include <linux/capability.h>
  11#include <linux/audit.h>
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/kernel.h>
  15#include <linux/security.h>
  16#include <linux/file.h>
  17#include <linux/mm.h>
  18#include <linux/mman.h>
  19#include <linux/pagemap.h>
  20#include <linux/swap.h>
  21#include <linux/skbuff.h>
  22#include <linux/netlink.h>
  23#include <linux/ptrace.h>
  24#include <linux/xattr.h>
  25#include <linux/hugetlb.h>
  26#include <linux/mount.h>
  27#include <linux/sched.h>
  28#include <linux/prctl.h>
  29#include <linux/securebits.h>
  30#include <linux/user_namespace.h>
  31
  32/*
  33 * If a non-root user executes a setuid-root binary in
  34 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
  35 * However if fE is also set, then the intent is for only
  36 * the file capabilities to be applied, and the setuid-root
  37 * bit is left on either to change the uid (plausible) or
  38 * to get full privilege on a kernel without file capabilities
  39 * support.  So in that case we do not raise capabilities.
  40 *
  41 * Warn if that happens, once per boot.
  42 */
  43static void warn_setuid_and_fcaps_mixed(const char *fname)
  44{
  45        static int warned;
  46        if (!warned) {
  47                printk(KERN_INFO "warning: `%s' has both setuid-root and"
  48                        " effective capabilities. Therefore not raising all"
  49                        " capabilities.\n", fname);
  50                warned = 1;
  51        }
  52}
  53
  54int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
  55{
  56        return 0;
  57}
  58
  59int cap_netlink_recv(struct sk_buff *skb, int cap)
  60{
  61        if (!cap_raised(current_cap(), cap))
  62                return -EPERM;
  63        return 0;
  64}
  65EXPORT_SYMBOL(cap_netlink_recv);
  66
  67/**
  68 * cap_capable - Determine whether a task has a particular effective capability
  69 * @tsk: The task to query
  70 * @cred: The credentials to use
  71 * @ns:  The user namespace in which we need the capability
  72 * @cap: The capability to check for
  73 * @audit: Whether to write an audit message or not
  74 *
  75 * Determine whether the nominated task has the specified capability amongst
  76 * its effective set, returning 0 if it does, -ve if it does not.
  77 *
  78 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
  79 * and has_capability() functions.  That is, it has the reverse semantics:
  80 * cap_has_capability() returns 0 when a task has a capability, but the
  81 * kernel's capable() and has_capability() returns 1 for this case.
  82 */
  83int cap_capable(struct task_struct *tsk, const struct cred *cred,
  84                struct user_namespace *targ_ns, int cap, int audit)
  85{
  86        for (;;) {
  87                /* The creator of the user namespace has all caps. */
  88                if (targ_ns != &init_user_ns && targ_ns->creator == cred->user)
  89                        return 0;
  90
  91                /* Do we have the necessary capabilities? */
  92                if (targ_ns == cred->user->user_ns)
  93                        return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
  94
  95                /* Have we tried all of the parent namespaces? */
  96                if (targ_ns == &init_user_ns)
  97                        return -EPERM;
  98
  99                /*
 100                 *If you have a capability in a parent user ns, then you have
 101                 * it over all children user namespaces as well.
 102                 */
 103                targ_ns = targ_ns->creator->user_ns;
 104        }
 105
 106        /* We never get here */
 107}
 108
 109/**
 110 * cap_settime - Determine whether the current process may set the system clock
 111 * @ts: The time to set
 112 * @tz: The timezone to set
 113 *
 114 * Determine whether the current process may set the system clock and timezone
 115 * information, returning 0 if permission granted, -ve if denied.
 116 */
 117int cap_settime(const struct timespec *ts, const struct timezone *tz)
 118{
 119        if (!capable(CAP_SYS_TIME))
 120                return -EPERM;
 121        return 0;
 122}
 123
 124/**
 125 * cap_ptrace_access_check - Determine whether the current process may access
 126 *                         another
 127 * @child: The process to be accessed
 128 * @mode: The mode of attachment.
 129 *
 130 * If we are in the same or an ancestor user_ns and have all the target
 131 * task's capabilities, then ptrace access is allowed.
 132 * If we have the ptrace capability to the target user_ns, then ptrace
 133 * access is allowed.
 134 * Else denied.
 135 *
 136 * Determine whether a process may access another, returning 0 if permission
 137 * granted, -ve if denied.
 138 */
 139int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
 140{
 141        int ret = 0;
 142        const struct cred *cred, *child_cred;
 143
 144        rcu_read_lock();
 145        cred = current_cred();
 146        child_cred = __task_cred(child);
 147        if (cred->user->user_ns == child_cred->user->user_ns &&
 148            cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
 149                goto out;
 150        if (ns_capable(child_cred->user->user_ns, CAP_SYS_PTRACE))
 151                goto out;
 152        ret = -EPERM;
 153out:
 154        rcu_read_unlock();
 155        return ret;
 156}
 157
 158/**
 159 * cap_ptrace_traceme - Determine whether another process may trace the current
 160 * @parent: The task proposed to be the tracer
 161 *
 162 * If parent is in the same or an ancestor user_ns and has all current's
 163 * capabilities, then ptrace access is allowed.
 164 * If parent has the ptrace capability to current's user_ns, then ptrace
 165 * access is allowed.
 166 * Else denied.
 167 *
 168 * Determine whether the nominated task is permitted to trace the current
 169 * process, returning 0 if permission is granted, -ve if denied.
 170 */
 171int cap_ptrace_traceme(struct task_struct *parent)
 172{
 173        int ret = 0;
 174        const struct cred *cred, *child_cred;
 175
 176        rcu_read_lock();
 177        cred = __task_cred(parent);
 178        child_cred = current_cred();
 179        if (cred->user->user_ns == child_cred->user->user_ns &&
 180            cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
 181                goto out;
 182        if (has_ns_capability(parent, child_cred->user->user_ns, CAP_SYS_PTRACE))
 183                goto out;
 184        ret = -EPERM;
 185out:
 186        rcu_read_unlock();
 187        return ret;
 188}
 189
 190/**
 191 * cap_capget - Retrieve a task's capability sets
 192 * @target: The task from which to retrieve the capability sets
 193 * @effective: The place to record the effective set
 194 * @inheritable: The place to record the inheritable set
 195 * @permitted: The place to record the permitted set
 196 *
 197 * This function retrieves the capabilities of the nominated task and returns
 198 * them to the caller.
 199 */
 200int cap_capget(struct task_struct *target, kernel_cap_t *effective,
 201               kernel_cap_t *inheritable, kernel_cap_t *permitted)
 202{
 203        const struct cred *cred;
 204
 205        /* Derived from kernel/capability.c:sys_capget. */
 206        rcu_read_lock();
 207        cred = __task_cred(target);
 208        *effective   = cred->cap_effective;
 209        *inheritable = cred->cap_inheritable;
 210        *permitted   = cred->cap_permitted;
 211        rcu_read_unlock();
 212        return 0;
 213}
 214
 215/*
 216 * Determine whether the inheritable capabilities are limited to the old
 217 * permitted set.  Returns 1 if they are limited, 0 if they are not.
 218 */
 219static inline int cap_inh_is_capped(void)
 220{
 221
 222        /* they are so limited unless the current task has the CAP_SETPCAP
 223         * capability
 224         */
 225        if (cap_capable(current, current_cred(),
 226                        current_cred()->user->user_ns, CAP_SETPCAP,
 227                        SECURITY_CAP_AUDIT) == 0)
 228                return 0;
 229        return 1;
 230}
 231
 232/**
 233 * cap_capset - Validate and apply proposed changes to current's capabilities
 234 * @new: The proposed new credentials; alterations should be made here
 235 * @old: The current task's current credentials
 236 * @effective: A pointer to the proposed new effective capabilities set
 237 * @inheritable: A pointer to the proposed new inheritable capabilities set
 238 * @permitted: A pointer to the proposed new permitted capabilities set
 239 *
 240 * This function validates and applies a proposed mass change to the current
 241 * process's capability sets.  The changes are made to the proposed new
 242 * credentials, and assuming no error, will be committed by the caller of LSM.
 243 */
 244int cap_capset(struct cred *new,
 245               const struct cred *old,
 246               const kernel_cap_t *effective,
 247               const kernel_cap_t *inheritable,
 248               const kernel_cap_t *permitted)
 249{
 250        if (cap_inh_is_capped() &&
 251            !cap_issubset(*inheritable,
 252                          cap_combine(old->cap_inheritable,
 253                                      old->cap_permitted)))
 254                /* incapable of using this inheritable set */
 255                return -EPERM;
 256
 257        if (!cap_issubset(*inheritable,
 258                          cap_combine(old->cap_inheritable,
 259                                      old->cap_bset)))
 260                /* no new pI capabilities outside bounding set */
 261                return -EPERM;
 262
 263        /* verify restrictions on target's new Permitted set */
 264        if (!cap_issubset(*permitted, old->cap_permitted))
 265                return -EPERM;
 266
 267        /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
 268        if (!cap_issubset(*effective, *permitted))
 269                return -EPERM;
 270
 271        new->cap_effective   = *effective;
 272        new->cap_inheritable = *inheritable;
 273        new->cap_permitted   = *permitted;
 274        return 0;
 275}
 276
 277/*
 278 * Clear proposed capability sets for execve().
 279 */
 280static inline void bprm_clear_caps(struct linux_binprm *bprm)
 281{
 282        cap_clear(bprm->cred->cap_permitted);
 283        bprm->cap_effective = false;
 284}
 285
 286/**
 287 * cap_inode_need_killpriv - Determine if inode change affects privileges
 288 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
 289 *
 290 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
 291 * affects the security markings on that inode, and if it is, should
 292 * inode_killpriv() be invoked or the change rejected?
 293 *
 294 * Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and
 295 * -ve to deny the change.
 296 */
 297int cap_inode_need_killpriv(struct dentry *dentry)
 298{
 299        struct inode *inode = dentry->d_inode;
 300        int error;
 301
 302        if (!inode->i_op->getxattr)
 303               return 0;
 304
 305        error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0);
 306        if (error <= 0)
 307                return 0;
 308        return 1;
 309}
 310
 311/**
 312 * cap_inode_killpriv - Erase the security markings on an inode
 313 * @dentry: The inode/dentry to alter
 314 *
 315 * Erase the privilege-enhancing security markings on an inode.
 316 *
 317 * Returns 0 if successful, -ve on error.
 318 */
 319int cap_inode_killpriv(struct dentry *dentry)
 320{
 321        struct inode *inode = dentry->d_inode;
 322
 323        if (!inode->i_op->removexattr)
 324               return 0;
 325
 326        return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS);
 327}
 328
 329/*
 330 * Calculate the new process capability sets from the capability sets attached
 331 * to a file.
 332 */
 333static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
 334                                          struct linux_binprm *bprm,
 335                                          bool *effective)
 336{
 337        struct cred *new = bprm->cred;
 338        unsigned i;
 339        int ret = 0;
 340
 341        if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
 342                *effective = true;
 343
 344        CAP_FOR_EACH_U32(i) {
 345                __u32 permitted = caps->permitted.cap[i];
 346                __u32 inheritable = caps->inheritable.cap[i];
 347
 348                /*
 349                 * pP' = (X & fP) | (pI & fI)
 350                 */
 351                new->cap_permitted.cap[i] =
 352                        (new->cap_bset.cap[i] & permitted) |
 353                        (new->cap_inheritable.cap[i] & inheritable);
 354
 355                if (permitted & ~new->cap_permitted.cap[i])
 356                        /* insufficient to execute correctly */
 357                        ret = -EPERM;
 358        }
 359
 360        /*
 361         * For legacy apps, with no internal support for recognizing they
 362         * do not have enough capabilities, we return an error if they are
 363         * missing some "forced" (aka file-permitted) capabilities.
 364         */
 365        return *effective ? ret : 0;
 366}
 367
 368/*
 369 * Extract the on-exec-apply capability sets for an executable file.
 370 */
 371int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
 372{
 373        struct inode *inode = dentry->d_inode;
 374        __u32 magic_etc;
 375        unsigned tocopy, i;
 376        int size;
 377        struct vfs_cap_data caps;
 378
 379        memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
 380
 381        if (!inode || !inode->i_op->getxattr)
 382                return -ENODATA;
 383
 384        size = inode->i_op->getxattr((struct dentry *)dentry, XATTR_NAME_CAPS, &caps,
 385                                   XATTR_CAPS_SZ);
 386        if (size == -ENODATA || size == -EOPNOTSUPP)
 387                /* no data, that's ok */
 388                return -ENODATA;
 389        if (size < 0)
 390                return size;
 391
 392        if (size < sizeof(magic_etc))
 393                return -EINVAL;
 394
 395        cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps.magic_etc);
 396
 397        switch (magic_etc & VFS_CAP_REVISION_MASK) {
 398        case VFS_CAP_REVISION_1:
 399                if (size != XATTR_CAPS_SZ_1)
 400                        return -EINVAL;
 401                tocopy = VFS_CAP_U32_1;
 402                break;
 403        case VFS_CAP_REVISION_2:
 404                if (size != XATTR_CAPS_SZ_2)
 405                        return -EINVAL;
 406                tocopy = VFS_CAP_U32_2;
 407                break;
 408        default:
 409                return -EINVAL;
 410        }
 411
 412        CAP_FOR_EACH_U32(i) {
 413                if (i >= tocopy)
 414                        break;
 415                cpu_caps->permitted.cap[i] = le32_to_cpu(caps.data[i].permitted);
 416                cpu_caps->inheritable.cap[i] = le32_to_cpu(caps.data[i].inheritable);
 417        }
 418
 419        return 0;
 420}
 421
 422/*
 423 * Attempt to get the on-exec apply capability sets for an executable file from
 424 * its xattrs and, if present, apply them to the proposed credentials being
 425 * constructed by execve().
 426 */
 427static int get_file_caps(struct linux_binprm *bprm, bool *effective)
 428{
 429        struct dentry *dentry;
 430        int rc = 0;
 431        struct cpu_vfs_cap_data vcaps;
 432
 433        bprm_clear_caps(bprm);
 434
 435        if (!file_caps_enabled)
 436                return 0;
 437
 438        if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)
 439                return 0;
 440
 441        dentry = dget(bprm->file->f_dentry);
 442
 443        rc = get_vfs_caps_from_disk(dentry, &vcaps);
 444        if (rc < 0) {
 445                if (rc == -EINVAL)
 446                        printk(KERN_NOTICE "%s: get_vfs_caps_from_disk returned %d for %s\n",
 447                                __func__, rc, bprm->filename);
 448                else if (rc == -ENODATA)
 449                        rc = 0;
 450                goto out;
 451        }
 452
 453        rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective);
 454        if (rc == -EINVAL)
 455                printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
 456                       __func__, rc, bprm->filename);
 457
 458out:
 459        dput(dentry);
 460        if (rc)
 461                bprm_clear_caps(bprm);
 462
 463        return rc;
 464}
 465
 466/**
 467 * cap_bprm_set_creds - Set up the proposed credentials for execve().
 468 * @bprm: The execution parameters, including the proposed creds
 469 *
 470 * Set up the proposed credentials for a new execution context being
 471 * constructed by execve().  The proposed creds in @bprm->cred is altered,
 472 * which won't take effect immediately.  Returns 0 if successful, -ve on error.
 473 */
 474int cap_bprm_set_creds(struct linux_binprm *bprm)
 475{
 476        const struct cred *old = current_cred();
 477        struct cred *new = bprm->cred;
 478        bool effective;
 479        int ret;
 480
 481        effective = false;
 482        ret = get_file_caps(bprm, &effective);
 483        if (ret < 0)
 484                return ret;
 485
 486        if (!issecure(SECURE_NOROOT)) {
 487                /*
 488                 * If the legacy file capability is set, then don't set privs
 489                 * for a setuid root binary run by a non-root user.  Do set it
 490                 * for a root user just to cause least surprise to an admin.
 491                 */
 492                if (effective && new->uid != 0 && new->euid == 0) {
 493                        warn_setuid_and_fcaps_mixed(bprm->filename);
 494                        goto skip;
 495                }
 496                /*
 497                 * To support inheritance of root-permissions and suid-root
 498                 * executables under compatibility mode, we override the
 499                 * capability sets for the file.
 500                 *
 501                 * If only the real uid is 0, we do not set the effective bit.
 502                 */
 503                if (new->euid == 0 || new->uid == 0) {
 504                        /* pP' = (cap_bset & ~0) | (pI & ~0) */
 505                        new->cap_permitted = cap_combine(old->cap_bset,
 506                                                         old->cap_inheritable);
 507                }
 508                if (new->euid == 0)
 509                        effective = true;
 510        }
 511skip:
 512
 513        /* Don't let someone trace a set[ug]id/setpcap binary with the revised
 514         * credentials unless they have the appropriate permit
 515         */
 516        if ((new->euid != old->uid ||
 517             new->egid != old->gid ||
 518             !cap_issubset(new->cap_permitted, old->cap_permitted)) &&
 519            bprm->unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
 520                /* downgrade; they get no more than they had, and maybe less */
 521                if (!capable(CAP_SETUID)) {
 522                        new->euid = new->uid;
 523                        new->egid = new->gid;
 524                }
 525                new->cap_permitted = cap_intersect(new->cap_permitted,
 526                                                   old->cap_permitted);
 527        }
 528
 529        new->suid = new->fsuid = new->euid;
 530        new->sgid = new->fsgid = new->egid;
 531
 532        /* For init, we want to retain the capabilities set in the initial
 533         * task.  Thus we skip the usual capability rules
 534         */
 535        if (!is_global_init(current)) {
 536                if (effective)
 537                        new->cap_effective = new->cap_permitted;
 538                else
 539                        cap_clear(new->cap_effective);
 540        }
 541        bprm->cap_effective = effective;
 542
 543        /*
 544         * Audit candidate if current->cap_effective is set
 545         *
 546         * We do not bother to audit if 3 things are true:
 547         *   1) cap_effective has all caps
 548         *   2) we are root
 549         *   3) root is supposed to have all caps (SECURE_NOROOT)
 550         * Since this is just a normal root execing a process.
 551         *
 552         * Number 1 above might fail if you don't have a full bset, but I think
 553         * that is interesting information to audit.
 554         */
 555        if (!cap_isclear(new->cap_effective)) {
 556                if (!cap_issubset(CAP_FULL_SET, new->cap_effective) ||
 557                    new->euid != 0 || new->uid != 0 ||
 558                    issecure(SECURE_NOROOT)) {
 559                        ret = audit_log_bprm_fcaps(bprm, new, old);
 560                        if (ret < 0)
 561                                return ret;
 562                }
 563        }
 564
 565        new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
 566        return 0;
 567}
 568
 569/**
 570 * cap_bprm_secureexec - Determine whether a secure execution is required
 571 * @bprm: The execution parameters
 572 *
 573 * Determine whether a secure execution is required, return 1 if it is, and 0
 574 * if it is not.
 575 *
 576 * The credentials have been committed by this point, and so are no longer
 577 * available through @bprm->cred.
 578 */
 579int cap_bprm_secureexec(struct linux_binprm *bprm)
 580{
 581        const struct cred *cred = current_cred();
 582
 583        if (cred->uid != 0) {
 584                if (bprm->cap_effective)
 585                        return 1;
 586                if (!cap_isclear(cred->cap_permitted))
 587                        return 1;
 588        }
 589
 590        return (cred->euid != cred->uid ||
 591                cred->egid != cred->gid);
 592}
 593
 594/**
 595 * cap_inode_setxattr - Determine whether an xattr may be altered
 596 * @dentry: The inode/dentry being altered
 597 * @name: The name of the xattr to be changed
 598 * @value: The value that the xattr will be changed to
 599 * @size: The size of value
 600 * @flags: The replacement flag
 601 *
 602 * Determine whether an xattr may be altered or set on an inode, returning 0 if
 603 * permission is granted, -ve if denied.
 604 *
 605 * This is used to make sure security xattrs don't get updated or set by those
 606 * who aren't privileged to do so.
 607 */
 608int cap_inode_setxattr(struct dentry *dentry, const char *name,
 609                       const void *value, size_t size, int flags)
 610{
 611        if (!strcmp(name, XATTR_NAME_CAPS)) {
 612                if (!capable(CAP_SETFCAP))
 613                        return -EPERM;
 614                return 0;
 615        }
 616
 617        if (!strncmp(name, XATTR_SECURITY_PREFIX,
 618                     sizeof(XATTR_SECURITY_PREFIX) - 1) &&
 619            !capable(CAP_SYS_ADMIN))
 620                return -EPERM;
 621        return 0;
 622}
 623
 624/**
 625 * cap_inode_removexattr - Determine whether an xattr may be removed
 626 * @dentry: The inode/dentry being altered
 627 * @name: The name of the xattr to be changed
 628 *
 629 * Determine whether an xattr may be removed from an inode, returning 0 if
 630 * permission is granted, -ve if denied.
 631 *
 632 * This is used to make sure security xattrs don't get removed by those who
 633 * aren't privileged to remove them.
 634 */
 635int cap_inode_removexattr(struct dentry *dentry, const char *name)
 636{
 637        if (!strcmp(name, XATTR_NAME_CAPS)) {
 638                if (!capable(CAP_SETFCAP))
 639                        return -EPERM;
 640                return 0;
 641        }
 642
 643        if (!strncmp(name, XATTR_SECURITY_PREFIX,
 644                     sizeof(XATTR_SECURITY_PREFIX) - 1) &&
 645            !capable(CAP_SYS_ADMIN))
 646                return -EPERM;
 647        return 0;
 648}
 649
 650/*
 651 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
 652 * a process after a call to setuid, setreuid, or setresuid.
 653 *
 654 *  1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
 655 *  {r,e,s}uid != 0, the permitted and effective capabilities are
 656 *  cleared.
 657 *
 658 *  2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
 659 *  capabilities of the process are cleared.
 660 *
 661 *  3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
 662 *  capabilities are set to the permitted capabilities.
 663 *
 664 *  fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
 665 *  never happen.
 666 *
 667 *  -astor
 668 *
 669 * cevans - New behaviour, Oct '99
 670 * A process may, via prctl(), elect to keep its capabilities when it
 671 * calls setuid() and switches away from uid==0. Both permitted and
 672 * effective sets will be retained.
 673 * Without this change, it was impossible for a daemon to drop only some
 674 * of its privilege. The call to setuid(!=0) would drop all privileges!
 675 * Keeping uid 0 is not an option because uid 0 owns too many vital
 676 * files..
 677 * Thanks to Olaf Kirch and Peter Benie for spotting this.
 678 */
 679static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
 680{
 681        if ((old->uid == 0 || old->euid == 0 || old->suid == 0) &&
 682            (new->uid != 0 && new->euid != 0 && new->suid != 0) &&
 683            !issecure(SECURE_KEEP_CAPS)) {
 684                cap_clear(new->cap_permitted);
 685                cap_clear(new->cap_effective);
 686        }
 687        if (old->euid == 0 && new->euid != 0)
 688                cap_clear(new->cap_effective);
 689        if (old->euid != 0 && new->euid == 0)
 690                new->cap_effective = new->cap_permitted;
 691}
 692
 693/**
 694 * cap_task_fix_setuid - Fix up the results of setuid() call
 695 * @new: The proposed credentials
 696 * @old: The current task's current credentials
 697 * @flags: Indications of what has changed
 698 *
 699 * Fix up the results of setuid() call before the credential changes are
 700 * actually applied, returning 0 to grant the changes, -ve to deny them.
 701 */
 702int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
 703{
 704        switch (flags) {
 705        case LSM_SETID_RE:
 706        case LSM_SETID_ID:
 707        case LSM_SETID_RES:
 708                /* juggle the capabilities to follow [RES]UID changes unless
 709                 * otherwise suppressed */
 710                if (!issecure(SECURE_NO_SETUID_FIXUP))
 711                        cap_emulate_setxuid(new, old);
 712                break;
 713
 714        case LSM_SETID_FS:
 715                /* juggle the capabilties to follow FSUID changes, unless
 716                 * otherwise suppressed
 717                 *
 718                 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
 719                 *          if not, we might be a bit too harsh here.
 720                 */
 721                if (!issecure(SECURE_NO_SETUID_FIXUP)) {
 722                        if (old->fsuid == 0 && new->fsuid != 0)
 723                                new->cap_effective =
 724                                        cap_drop_fs_set(new->cap_effective);
 725
 726                        if (old->fsuid != 0 && new->fsuid == 0)
 727                                new->cap_effective =
 728                                        cap_raise_fs_set(new->cap_effective,
 729                                                         new->cap_permitted);
 730                }
 731                break;
 732
 733        default:
 734                return -EINVAL;
 735        }
 736
 737        return 0;
 738}
 739
 740/*
 741 * Rationale: code calling task_setscheduler, task_setioprio, and
 742 * task_setnice, assumes that
 743 *   . if capable(cap_sys_nice), then those actions should be allowed
 744 *   . if not capable(cap_sys_nice), but acting on your own processes,
 745 *      then those actions should be allowed
 746 * This is insufficient now since you can call code without suid, but
 747 * yet with increased caps.
 748 * So we check for increased caps on the target process.
 749 */
 750static int cap_safe_nice(struct task_struct *p)
 751{
 752        int is_subset;
 753
 754        rcu_read_lock();
 755        is_subset = cap_issubset(__task_cred(p)->cap_permitted,
 756                                 current_cred()->cap_permitted);
 757        rcu_read_unlock();
 758
 759        if (!is_subset && !capable(CAP_SYS_NICE))
 760                return -EPERM;
 761        return 0;
 762}
 763
 764/**
 765 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
 766 * @p: The task to affect
 767 *
 768 * Detemine if the requested scheduler policy change is permitted for the
 769 * specified task, returning 0 if permission is granted, -ve if denied.
 770 */
 771int cap_task_setscheduler(struct task_struct *p)
 772{
 773        return cap_safe_nice(p);
 774}
 775
 776/**
 777 * cap_task_ioprio - Detemine if I/O priority change is permitted
 778 * @p: The task to affect
 779 * @ioprio: The I/O priority to set
 780 *
 781 * Detemine if the requested I/O priority change is permitted for the specified
 782 * task, returning 0 if permission is granted, -ve if denied.
 783 */
 784int cap_task_setioprio(struct task_struct *p, int ioprio)
 785{
 786        return cap_safe_nice(p);
 787}
 788
 789/**
 790 * cap_task_ioprio - Detemine if task priority change is permitted
 791 * @p: The task to affect
 792 * @nice: The nice value to set
 793 *
 794 * Detemine if the requested task priority change is permitted for the
 795 * specified task, returning 0 if permission is granted, -ve if denied.
 796 */
 797int cap_task_setnice(struct task_struct *p, int nice)
 798{
 799        return cap_safe_nice(p);
 800}
 801
 802/*
 803 * Implement PR_CAPBSET_DROP.  Attempt to remove the specified capability from
 804 * the current task's bounding set.  Returns 0 on success, -ve on error.
 805 */
 806static long cap_prctl_drop(struct cred *new, unsigned long cap)
 807{
 808        if (!capable(CAP_SETPCAP))
 809                return -EPERM;
 810        if (!cap_valid(cap))
 811                return -EINVAL;
 812
 813        cap_lower(new->cap_bset, cap);
 814        return 0;
 815}
 816
 817/**
 818 * cap_task_prctl - Implement process control functions for this security module
 819 * @option: The process control function requested
 820 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
 821 *
 822 * Allow process control functions (sys_prctl()) to alter capabilities; may
 823 * also deny access to other functions not otherwise implemented here.
 824 *
 825 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
 826 * here, other -ve on error.  If -ENOSYS is returned, sys_prctl() and other LSM
 827 * modules will consider performing the function.
 828 */
 829int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
 830                   unsigned long arg4, unsigned long arg5)
 831{
 832        struct cred *new;
 833        long error = 0;
 834
 835        new = prepare_creds();
 836        if (!new)
 837                return -ENOMEM;
 838
 839        switch (option) {
 840        case PR_CAPBSET_READ:
 841                error = -EINVAL;
 842                if (!cap_valid(arg2))
 843                        goto error;
 844                error = !!cap_raised(new->cap_bset, arg2);
 845                goto no_change;
 846
 847        case PR_CAPBSET_DROP:
 848                error = cap_prctl_drop(new, arg2);
 849                if (error < 0)
 850                        goto error;
 851                goto changed;
 852
 853        /*
 854         * The next four prctl's remain to assist with transitioning a
 855         * system from legacy UID=0 based privilege (when filesystem
 856         * capabilities are not in use) to a system using filesystem
 857         * capabilities only - as the POSIX.1e draft intended.
 858         *
 859         * Note:
 860         *
 861         *  PR_SET_SECUREBITS =
 862         *      issecure_mask(SECURE_KEEP_CAPS_LOCKED)
 863         *    | issecure_mask(SECURE_NOROOT)
 864         *    | issecure_mask(SECURE_NOROOT_LOCKED)
 865         *    | issecure_mask(SECURE_NO_SETUID_FIXUP)
 866         *    | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
 867         *
 868         * will ensure that the current process and all of its
 869         * children will be locked into a pure
 870         * capability-based-privilege environment.
 871         */
 872        case PR_SET_SECUREBITS:
 873                error = -EPERM;
 874                if ((((new->securebits & SECURE_ALL_LOCKS) >> 1)
 875                     & (new->securebits ^ arg2))                        /*[1]*/
 876                    || ((new->securebits & SECURE_ALL_LOCKS & ~arg2))   /*[2]*/
 877                    || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS))   /*[3]*/
 878                    || (cap_capable(current, current_cred(),
 879                                    current_cred()->user->user_ns, CAP_SETPCAP,
 880                                    SECURITY_CAP_AUDIT) != 0)           /*[4]*/
 881                        /*
 882                         * [1] no changing of bits that are locked
 883                         * [2] no unlocking of locks
 884                         * [3] no setting of unsupported bits
 885                         * [4] doing anything requires privilege (go read about
 886                         *     the "sendmail capabilities bug")
 887                         */
 888                    )
 889                        /* cannot change a locked bit */
 890                        goto error;
 891                new->securebits = arg2;
 892                goto changed;
 893
 894        case PR_GET_SECUREBITS:
 895                error = new->securebits;
 896                goto no_change;
 897
 898        case PR_GET_KEEPCAPS:
 899                if (issecure(SECURE_KEEP_CAPS))
 900                        error = 1;
 901                goto no_change;
 902
 903        case PR_SET_KEEPCAPS:
 904                error = -EINVAL;
 905                if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
 906                        goto error;
 907                error = -EPERM;
 908                if (issecure(SECURE_KEEP_CAPS_LOCKED))
 909                        goto error;
 910                if (arg2)
 911                        new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
 912                else
 913                        new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
 914                goto changed;
 915
 916        default:
 917                /* No functionality available - continue with default */
 918                error = -ENOSYS;
 919                goto error;
 920        }
 921
 922        /* Functionality provided */
 923changed:
 924        return commit_creds(new);
 925
 926no_change:
 927error:
 928        abort_creds(new);
 929        return error;
 930}
 931
 932/**
 933 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
 934 * @mm: The VM space in which the new mapping is to be made
 935 * @pages: The size of the mapping
 936 *
 937 * Determine whether the allocation of a new virtual mapping by the current
 938 * task is permitted, returning 0 if permission is granted, -ve if not.
 939 */
 940int cap_vm_enough_memory(struct mm_struct *mm, long pages)
 941{
 942        int cap_sys_admin = 0;
 943
 944        if (cap_capable(current, current_cred(), &init_user_ns, CAP_SYS_ADMIN,
 945                        SECURITY_CAP_NOAUDIT) == 0)
 946                cap_sys_admin = 1;
 947        return __vm_enough_memory(mm, pages, cap_sys_admin);
 948}
 949
 950/*
 951 * cap_file_mmap - check if able to map given addr
 952 * @file: unused
 953 * @reqprot: unused
 954 * @prot: unused
 955 * @flags: unused
 956 * @addr: address attempting to be mapped
 957 * @addr_only: unused
 958 *
 959 * If the process is attempting to map memory below dac_mmap_min_addr they need
 960 * CAP_SYS_RAWIO.  The other parameters to this function are unused by the
 961 * capability security module.  Returns 0 if this mapping should be allowed
 962 * -EPERM if not.
 963 */
 964int cap_file_mmap(struct file *file, unsigned long reqprot,
 965                  unsigned long prot, unsigned long flags,
 966                  unsigned long addr, unsigned long addr_only)
 967{
 968        int ret = 0;
 969
 970        if (addr < dac_mmap_min_addr) {
 971                ret = cap_capable(current, current_cred(), &init_user_ns, CAP_SYS_RAWIO,
 972                                  SECURITY_CAP_AUDIT);
 973                /* set PF_SUPERPRIV if it turns out we allow the low mmap */
 974                if (ret == 0)
 975                        current->flags |= PF_SUPERPRIV;
 976        }
 977        return ret;
 978}
 979