linux/tools/perf/builtin-timechart.c
<<
>>
Prefs
   1/*
   2 * builtin-timechart.c - make an svg timechart of system activity
   3 *
   4 * (C) Copyright 2009 Intel Corporation
   5 *
   6 * Authors:
   7 *     Arjan van de Ven <arjan@linux.intel.com>
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License
  11 * as published by the Free Software Foundation; version 2
  12 * of the License.
  13 */
  14
  15#include "builtin.h"
  16
  17#include "util/util.h"
  18
  19#include "util/color.h"
  20#include <linux/list.h>
  21#include "util/cache.h"
  22#include <linux/rbtree.h>
  23#include "util/symbol.h"
  24#include "util/callchain.h"
  25#include "util/strlist.h"
  26
  27#include "perf.h"
  28#include "util/header.h"
  29#include "util/parse-options.h"
  30#include "util/parse-events.h"
  31#include "util/event.h"
  32#include "util/session.h"
  33#include "util/svghelper.h"
  34
  35#define SUPPORT_OLD_POWER_EVENTS 1
  36#define PWR_EVENT_EXIT -1
  37
  38
  39static char             const *input_name = "perf.data";
  40static char             const *output_name = "output.svg";
  41
  42static unsigned int     numcpus;
  43static u64              min_freq;       /* Lowest CPU frequency seen */
  44static u64              max_freq;       /* Highest CPU frequency seen */
  45static u64              turbo_frequency;
  46
  47static u64              first_time, last_time;
  48
  49static bool             power_only;
  50
  51
  52struct per_pid;
  53struct per_pidcomm;
  54
  55struct cpu_sample;
  56struct power_event;
  57struct wake_event;
  58
  59struct sample_wrapper;
  60
  61/*
  62 * Datastructure layout:
  63 * We keep an list of "pid"s, matching the kernels notion of a task struct.
  64 * Each "pid" entry, has a list of "comm"s.
  65 *      this is because we want to track different programs different, while
  66 *      exec will reuse the original pid (by design).
  67 * Each comm has a list of samples that will be used to draw
  68 * final graph.
  69 */
  70
  71struct per_pid {
  72        struct per_pid *next;
  73
  74        int             pid;
  75        int             ppid;
  76
  77        u64             start_time;
  78        u64             end_time;
  79        u64             total_time;
  80        int             display;
  81
  82        struct per_pidcomm *all;
  83        struct per_pidcomm *current;
  84};
  85
  86
  87struct per_pidcomm {
  88        struct per_pidcomm *next;
  89
  90        u64             start_time;
  91        u64             end_time;
  92        u64             total_time;
  93
  94        int             Y;
  95        int             display;
  96
  97        long            state;
  98        u64             state_since;
  99
 100        char            *comm;
 101
 102        struct cpu_sample *samples;
 103};
 104
 105struct sample_wrapper {
 106        struct sample_wrapper *next;
 107
 108        u64             timestamp;
 109        unsigned char   data[0];
 110};
 111
 112#define TYPE_NONE       0
 113#define TYPE_RUNNING    1
 114#define TYPE_WAITING    2
 115#define TYPE_BLOCKED    3
 116
 117struct cpu_sample {
 118        struct cpu_sample *next;
 119
 120        u64 start_time;
 121        u64 end_time;
 122        int type;
 123        int cpu;
 124};
 125
 126static struct per_pid *all_data;
 127
 128#define CSTATE 1
 129#define PSTATE 2
 130
 131struct power_event {
 132        struct power_event *next;
 133        int type;
 134        int state;
 135        u64 start_time;
 136        u64 end_time;
 137        int cpu;
 138};
 139
 140struct wake_event {
 141        struct wake_event *next;
 142        int waker;
 143        int wakee;
 144        u64 time;
 145};
 146
 147static struct power_event    *power_events;
 148static struct wake_event     *wake_events;
 149
 150struct process_filter;
 151struct process_filter {
 152        char                    *name;
 153        int                     pid;
 154        struct process_filter   *next;
 155};
 156
 157static struct process_filter *process_filter;
 158
 159
 160static struct per_pid *find_create_pid(int pid)
 161{
 162        struct per_pid *cursor = all_data;
 163
 164        while (cursor) {
 165                if (cursor->pid == pid)
 166                        return cursor;
 167                cursor = cursor->next;
 168        }
 169        cursor = malloc(sizeof(struct per_pid));
 170        assert(cursor != NULL);
 171        memset(cursor, 0, sizeof(struct per_pid));
 172        cursor->pid = pid;
 173        cursor->next = all_data;
 174        all_data = cursor;
 175        return cursor;
 176}
 177
 178static void pid_set_comm(int pid, char *comm)
 179{
 180        struct per_pid *p;
 181        struct per_pidcomm *c;
 182        p = find_create_pid(pid);
 183        c = p->all;
 184        while (c) {
 185                if (c->comm && strcmp(c->comm, comm) == 0) {
 186                        p->current = c;
 187                        return;
 188                }
 189                if (!c->comm) {
 190                        c->comm = strdup(comm);
 191                        p->current = c;
 192                        return;
 193                }
 194                c = c->next;
 195        }
 196        c = malloc(sizeof(struct per_pidcomm));
 197        assert(c != NULL);
 198        memset(c, 0, sizeof(struct per_pidcomm));
 199        c->comm = strdup(comm);
 200        p->current = c;
 201        c->next = p->all;
 202        p->all = c;
 203}
 204
 205static void pid_fork(int pid, int ppid, u64 timestamp)
 206{
 207        struct per_pid *p, *pp;
 208        p = find_create_pid(pid);
 209        pp = find_create_pid(ppid);
 210        p->ppid = ppid;
 211        if (pp->current && pp->current->comm && !p->current)
 212                pid_set_comm(pid, pp->current->comm);
 213
 214        p->start_time = timestamp;
 215        if (p->current) {
 216                p->current->start_time = timestamp;
 217                p->current->state_since = timestamp;
 218        }
 219}
 220
 221static void pid_exit(int pid, u64 timestamp)
 222{
 223        struct per_pid *p;
 224        p = find_create_pid(pid);
 225        p->end_time = timestamp;
 226        if (p->current)
 227                p->current->end_time = timestamp;
 228}
 229
 230static void
 231pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
 232{
 233        struct per_pid *p;
 234        struct per_pidcomm *c;
 235        struct cpu_sample *sample;
 236
 237        p = find_create_pid(pid);
 238        c = p->current;
 239        if (!c) {
 240                c = malloc(sizeof(struct per_pidcomm));
 241                assert(c != NULL);
 242                memset(c, 0, sizeof(struct per_pidcomm));
 243                p->current = c;
 244                c->next = p->all;
 245                p->all = c;
 246        }
 247
 248        sample = malloc(sizeof(struct cpu_sample));
 249        assert(sample != NULL);
 250        memset(sample, 0, sizeof(struct cpu_sample));
 251        sample->start_time = start;
 252        sample->end_time = end;
 253        sample->type = type;
 254        sample->next = c->samples;
 255        sample->cpu = cpu;
 256        c->samples = sample;
 257
 258        if (sample->type == TYPE_RUNNING && end > start && start > 0) {
 259                c->total_time += (end-start);
 260                p->total_time += (end-start);
 261        }
 262
 263        if (c->start_time == 0 || c->start_time > start)
 264                c->start_time = start;
 265        if (p->start_time == 0 || p->start_time > start)
 266                p->start_time = start;
 267}
 268
 269#define MAX_CPUS 4096
 270
 271static u64 cpus_cstate_start_times[MAX_CPUS];
 272static int cpus_cstate_state[MAX_CPUS];
 273static u64 cpus_pstate_start_times[MAX_CPUS];
 274static u64 cpus_pstate_state[MAX_CPUS];
 275
 276static int process_comm_event(event_t *event, struct sample_data *sample __used,
 277                              struct perf_session *session __used)
 278{
 279        pid_set_comm(event->comm.tid, event->comm.comm);
 280        return 0;
 281}
 282
 283static int process_fork_event(event_t *event, struct sample_data *sample __used,
 284                              struct perf_session *session __used)
 285{
 286        pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
 287        return 0;
 288}
 289
 290static int process_exit_event(event_t *event, struct sample_data *sample __used,
 291                              struct perf_session *session __used)
 292{
 293        pid_exit(event->fork.pid, event->fork.time);
 294        return 0;
 295}
 296
 297struct trace_entry {
 298        unsigned short          type;
 299        unsigned char           flags;
 300        unsigned char           preempt_count;
 301        int                     pid;
 302        int                     lock_depth;
 303};
 304
 305#ifdef SUPPORT_OLD_POWER_EVENTS
 306static int use_old_power_events;
 307struct power_entry_old {
 308        struct trace_entry te;
 309        u64     type;
 310        u64     value;
 311        u64     cpu_id;
 312};
 313#endif
 314
 315struct power_processor_entry {
 316        struct trace_entry te;
 317        u32     state;
 318        u32     cpu_id;
 319};
 320
 321#define TASK_COMM_LEN 16
 322struct wakeup_entry {
 323        struct trace_entry te;
 324        char comm[TASK_COMM_LEN];
 325        int   pid;
 326        int   prio;
 327        int   success;
 328};
 329
 330/*
 331 * trace_flag_type is an enumeration that holds different
 332 * states when a trace occurs. These are:
 333 *  IRQS_OFF            - interrupts were disabled
 334 *  IRQS_NOSUPPORT      - arch does not support irqs_disabled_flags
 335 *  NEED_RESCED         - reschedule is requested
 336 *  HARDIRQ             - inside an interrupt handler
 337 *  SOFTIRQ             - inside a softirq handler
 338 */
 339enum trace_flag_type {
 340        TRACE_FLAG_IRQS_OFF             = 0x01,
 341        TRACE_FLAG_IRQS_NOSUPPORT       = 0x02,
 342        TRACE_FLAG_NEED_RESCHED         = 0x04,
 343        TRACE_FLAG_HARDIRQ              = 0x08,
 344        TRACE_FLAG_SOFTIRQ              = 0x10,
 345};
 346
 347
 348
 349struct sched_switch {
 350        struct trace_entry te;
 351        char prev_comm[TASK_COMM_LEN];
 352        int  prev_pid;
 353        int  prev_prio;
 354        long prev_state; /* Arjan weeps. */
 355        char next_comm[TASK_COMM_LEN];
 356        int  next_pid;
 357        int  next_prio;
 358};
 359
 360static void c_state_start(int cpu, u64 timestamp, int state)
 361{
 362        cpus_cstate_start_times[cpu] = timestamp;
 363        cpus_cstate_state[cpu] = state;
 364}
 365
 366static void c_state_end(int cpu, u64 timestamp)
 367{
 368        struct power_event *pwr;
 369        pwr = malloc(sizeof(struct power_event));
 370        if (!pwr)
 371                return;
 372        memset(pwr, 0, sizeof(struct power_event));
 373
 374        pwr->state = cpus_cstate_state[cpu];
 375        pwr->start_time = cpus_cstate_start_times[cpu];
 376        pwr->end_time = timestamp;
 377        pwr->cpu = cpu;
 378        pwr->type = CSTATE;
 379        pwr->next = power_events;
 380
 381        power_events = pwr;
 382}
 383
 384static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
 385{
 386        struct power_event *pwr;
 387        pwr = malloc(sizeof(struct power_event));
 388
 389        if (new_freq > 8000000) /* detect invalid data */
 390                return;
 391
 392        if (!pwr)
 393                return;
 394        memset(pwr, 0, sizeof(struct power_event));
 395
 396        pwr->state = cpus_pstate_state[cpu];
 397        pwr->start_time = cpus_pstate_start_times[cpu];
 398        pwr->end_time = timestamp;
 399        pwr->cpu = cpu;
 400        pwr->type = PSTATE;
 401        pwr->next = power_events;
 402
 403        if (!pwr->start_time)
 404                pwr->start_time = first_time;
 405
 406        power_events = pwr;
 407
 408        cpus_pstate_state[cpu] = new_freq;
 409        cpus_pstate_start_times[cpu] = timestamp;
 410
 411        if ((u64)new_freq > max_freq)
 412                max_freq = new_freq;
 413
 414        if (new_freq < min_freq || min_freq == 0)
 415                min_freq = new_freq;
 416
 417        if (new_freq == max_freq - 1000)
 418                        turbo_frequency = max_freq;
 419}
 420
 421static void
 422sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
 423{
 424        struct wake_event *we;
 425        struct per_pid *p;
 426        struct wakeup_entry *wake = (void *)te;
 427
 428        we = malloc(sizeof(struct wake_event));
 429        if (!we)
 430                return;
 431
 432        memset(we, 0, sizeof(struct wake_event));
 433        we->time = timestamp;
 434        we->waker = pid;
 435
 436        if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
 437                we->waker = -1;
 438
 439        we->wakee = wake->pid;
 440        we->next = wake_events;
 441        wake_events = we;
 442        p = find_create_pid(we->wakee);
 443
 444        if (p && p->current && p->current->state == TYPE_NONE) {
 445                p->current->state_since = timestamp;
 446                p->current->state = TYPE_WAITING;
 447        }
 448        if (p && p->current && p->current->state == TYPE_BLOCKED) {
 449                pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
 450                p->current->state_since = timestamp;
 451                p->current->state = TYPE_WAITING;
 452        }
 453}
 454
 455static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
 456{
 457        struct per_pid *p = NULL, *prev_p;
 458        struct sched_switch *sw = (void *)te;
 459
 460
 461        prev_p = find_create_pid(sw->prev_pid);
 462
 463        p = find_create_pid(sw->next_pid);
 464
 465        if (prev_p->current && prev_p->current->state != TYPE_NONE)
 466                pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
 467        if (p && p->current) {
 468                if (p->current->state != TYPE_NONE)
 469                        pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
 470
 471                p->current->state_since = timestamp;
 472                p->current->state = TYPE_RUNNING;
 473        }
 474
 475        if (prev_p->current) {
 476                prev_p->current->state = TYPE_NONE;
 477                prev_p->current->state_since = timestamp;
 478                if (sw->prev_state & 2)
 479                        prev_p->current->state = TYPE_BLOCKED;
 480                if (sw->prev_state == 0)
 481                        prev_p->current->state = TYPE_WAITING;
 482        }
 483}
 484
 485
 486static int process_sample_event(event_t *event __used,
 487                                struct sample_data *sample,
 488                                struct perf_session *session)
 489{
 490        struct trace_entry *te;
 491
 492        if (session->sample_type & PERF_SAMPLE_TIME) {
 493                if (!first_time || first_time > sample->time)
 494                        first_time = sample->time;
 495                if (last_time < sample->time)
 496                        last_time = sample->time;
 497        }
 498
 499        te = (void *)sample->raw_data;
 500        if (session->sample_type & PERF_SAMPLE_RAW && sample->raw_size > 0) {
 501                char *event_str;
 502#ifdef SUPPORT_OLD_POWER_EVENTS
 503                struct power_entry_old *peo;
 504                peo = (void *)te;
 505#endif
 506                event_str = perf_header__find_event(te->type);
 507
 508                if (!event_str)
 509                        return 0;
 510
 511                if (sample->cpu > numcpus)
 512                        numcpus = sample->cpu;
 513
 514                if (strcmp(event_str, "power:cpu_idle") == 0) {
 515                        struct power_processor_entry *ppe = (void *)te;
 516                        if (ppe->state == (u32)PWR_EVENT_EXIT)
 517                                c_state_end(ppe->cpu_id, sample->time);
 518                        else
 519                                c_state_start(ppe->cpu_id, sample->time,
 520                                              ppe->state);
 521                }
 522                else if (strcmp(event_str, "power:cpu_frequency") == 0) {
 523                        struct power_processor_entry *ppe = (void *)te;
 524                        p_state_change(ppe->cpu_id, sample->time, ppe->state);
 525                }
 526
 527                else if (strcmp(event_str, "sched:sched_wakeup") == 0)
 528                        sched_wakeup(sample->cpu, sample->time, sample->pid, te);
 529
 530                else if (strcmp(event_str, "sched:sched_switch") == 0)
 531                        sched_switch(sample->cpu, sample->time, te);
 532
 533#ifdef SUPPORT_OLD_POWER_EVENTS
 534                if (use_old_power_events) {
 535                        if (strcmp(event_str, "power:power_start") == 0)
 536                                c_state_start(peo->cpu_id, sample->time,
 537                                              peo->value);
 538
 539                        else if (strcmp(event_str, "power:power_end") == 0)
 540                                c_state_end(sample->cpu, sample->time);
 541
 542                        else if (strcmp(event_str,
 543                                        "power:power_frequency") == 0)
 544                                p_state_change(peo->cpu_id, sample->time,
 545                                               peo->value);
 546                }
 547#endif
 548        }
 549        return 0;
 550}
 551
 552/*
 553 * After the last sample we need to wrap up the current C/P state
 554 * and close out each CPU for these.
 555 */
 556static void end_sample_processing(void)
 557{
 558        u64 cpu;
 559        struct power_event *pwr;
 560
 561        for (cpu = 0; cpu <= numcpus; cpu++) {
 562                pwr = malloc(sizeof(struct power_event));
 563                if (!pwr)
 564                        return;
 565                memset(pwr, 0, sizeof(struct power_event));
 566
 567                /* C state */
 568#if 0
 569                pwr->state = cpus_cstate_state[cpu];
 570                pwr->start_time = cpus_cstate_start_times[cpu];
 571                pwr->end_time = last_time;
 572                pwr->cpu = cpu;
 573                pwr->type = CSTATE;
 574                pwr->next = power_events;
 575
 576                power_events = pwr;
 577#endif
 578                /* P state */
 579
 580                pwr = malloc(sizeof(struct power_event));
 581                if (!pwr)
 582                        return;
 583                memset(pwr, 0, sizeof(struct power_event));
 584
 585                pwr->state = cpus_pstate_state[cpu];
 586                pwr->start_time = cpus_pstate_start_times[cpu];
 587                pwr->end_time = last_time;
 588                pwr->cpu = cpu;
 589                pwr->type = PSTATE;
 590                pwr->next = power_events;
 591
 592                if (!pwr->start_time)
 593                        pwr->start_time = first_time;
 594                if (!pwr->state)
 595                        pwr->state = min_freq;
 596                power_events = pwr;
 597        }
 598}
 599
 600/*
 601 * Sort the pid datastructure
 602 */
 603static void sort_pids(void)
 604{
 605        struct per_pid *new_list, *p, *cursor, *prev;
 606        /* sort by ppid first, then by pid, lowest to highest */
 607
 608        new_list = NULL;
 609
 610        while (all_data) {
 611                p = all_data;
 612                all_data = p->next;
 613                p->next = NULL;
 614
 615                if (new_list == NULL) {
 616                        new_list = p;
 617                        p->next = NULL;
 618                        continue;
 619                }
 620                prev = NULL;
 621                cursor = new_list;
 622                while (cursor) {
 623                        if (cursor->ppid > p->ppid ||
 624                                (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
 625                                /* must insert before */
 626                                if (prev) {
 627                                        p->next = prev->next;
 628                                        prev->next = p;
 629                                        cursor = NULL;
 630                                        continue;
 631                                } else {
 632                                        p->next = new_list;
 633                                        new_list = p;
 634                                        cursor = NULL;
 635                                        continue;
 636                                }
 637                        }
 638
 639                        prev = cursor;
 640                        cursor = cursor->next;
 641                        if (!cursor)
 642                                prev->next = p;
 643                }
 644        }
 645        all_data = new_list;
 646}
 647
 648
 649static void draw_c_p_states(void)
 650{
 651        struct power_event *pwr;
 652        pwr = power_events;
 653
 654        /*
 655         * two pass drawing so that the P state bars are on top of the C state blocks
 656         */
 657        while (pwr) {
 658                if (pwr->type == CSTATE)
 659                        svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
 660                pwr = pwr->next;
 661        }
 662
 663        pwr = power_events;
 664        while (pwr) {
 665                if (pwr->type == PSTATE) {
 666                        if (!pwr->state)
 667                                pwr->state = min_freq;
 668                        svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
 669                }
 670                pwr = pwr->next;
 671        }
 672}
 673
 674static void draw_wakeups(void)
 675{
 676        struct wake_event *we;
 677        struct per_pid *p;
 678        struct per_pidcomm *c;
 679
 680        we = wake_events;
 681        while (we) {
 682                int from = 0, to = 0;
 683                char *task_from = NULL, *task_to = NULL;
 684
 685                /* locate the column of the waker and wakee */
 686                p = all_data;
 687                while (p) {
 688                        if (p->pid == we->waker || p->pid == we->wakee) {
 689                                c = p->all;
 690                                while (c) {
 691                                        if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
 692                                                if (p->pid == we->waker && !from) {
 693                                                        from = c->Y;
 694                                                        task_from = strdup(c->comm);
 695                                                }
 696                                                if (p->pid == we->wakee && !to) {
 697                                                        to = c->Y;
 698                                                        task_to = strdup(c->comm);
 699                                                }
 700                                        }
 701                                        c = c->next;
 702                                }
 703                                c = p->all;
 704                                while (c) {
 705                                        if (p->pid == we->waker && !from) {
 706                                                from = c->Y;
 707                                                task_from = strdup(c->comm);
 708                                        }
 709                                        if (p->pid == we->wakee && !to) {
 710                                                to = c->Y;
 711                                                task_to = strdup(c->comm);
 712                                        }
 713                                        c = c->next;
 714                                }
 715                        }
 716                        p = p->next;
 717                }
 718
 719                if (!task_from) {
 720                        task_from = malloc(40);
 721                        sprintf(task_from, "[%i]", we->waker);
 722                }
 723                if (!task_to) {
 724                        task_to = malloc(40);
 725                        sprintf(task_to, "[%i]", we->wakee);
 726                }
 727
 728                if (we->waker == -1)
 729                        svg_interrupt(we->time, to);
 730                else if (from && to && abs(from - to) == 1)
 731                        svg_wakeline(we->time, from, to);
 732                else
 733                        svg_partial_wakeline(we->time, from, task_from, to, task_to);
 734                we = we->next;
 735
 736                free(task_from);
 737                free(task_to);
 738        }
 739}
 740
 741static void draw_cpu_usage(void)
 742{
 743        struct per_pid *p;
 744        struct per_pidcomm *c;
 745        struct cpu_sample *sample;
 746        p = all_data;
 747        while (p) {
 748                c = p->all;
 749                while (c) {
 750                        sample = c->samples;
 751                        while (sample) {
 752                                if (sample->type == TYPE_RUNNING)
 753                                        svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
 754
 755                                sample = sample->next;
 756                        }
 757                        c = c->next;
 758                }
 759                p = p->next;
 760        }
 761}
 762
 763static void draw_process_bars(void)
 764{
 765        struct per_pid *p;
 766        struct per_pidcomm *c;
 767        struct cpu_sample *sample;
 768        int Y = 0;
 769
 770        Y = 2 * numcpus + 2;
 771
 772        p = all_data;
 773        while (p) {
 774                c = p->all;
 775                while (c) {
 776                        if (!c->display) {
 777                                c->Y = 0;
 778                                c = c->next;
 779                                continue;
 780                        }
 781
 782                        svg_box(Y, c->start_time, c->end_time, "process");
 783                        sample = c->samples;
 784                        while (sample) {
 785                                if (sample->type == TYPE_RUNNING)
 786                                        svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
 787                                if (sample->type == TYPE_BLOCKED)
 788                                        svg_box(Y, sample->start_time, sample->end_time, "blocked");
 789                                if (sample->type == TYPE_WAITING)
 790                                        svg_waiting(Y, sample->start_time, sample->end_time);
 791                                sample = sample->next;
 792                        }
 793
 794                        if (c->comm) {
 795                                char comm[256];
 796                                if (c->total_time > 5000000000) /* 5 seconds */
 797                                        sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
 798                                else
 799                                        sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
 800
 801                                svg_text(Y, c->start_time, comm);
 802                        }
 803                        c->Y = Y;
 804                        Y++;
 805                        c = c->next;
 806                }
 807                p = p->next;
 808        }
 809}
 810
 811static void add_process_filter(const char *string)
 812{
 813        struct process_filter *filt;
 814        int pid;
 815
 816        pid = strtoull(string, NULL, 10);
 817        filt = malloc(sizeof(struct process_filter));
 818        if (!filt)
 819                return;
 820
 821        filt->name = strdup(string);
 822        filt->pid  = pid;
 823        filt->next = process_filter;
 824
 825        process_filter = filt;
 826}
 827
 828static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
 829{
 830        struct process_filter *filt;
 831        if (!process_filter)
 832                return 1;
 833
 834        filt = process_filter;
 835        while (filt) {
 836                if (filt->pid && p->pid == filt->pid)
 837                        return 1;
 838                if (strcmp(filt->name, c->comm) == 0)
 839                        return 1;
 840                filt = filt->next;
 841        }
 842        return 0;
 843}
 844
 845static int determine_display_tasks_filtered(void)
 846{
 847        struct per_pid *p;
 848        struct per_pidcomm *c;
 849        int count = 0;
 850
 851        p = all_data;
 852        while (p) {
 853                p->display = 0;
 854                if (p->start_time == 1)
 855                        p->start_time = first_time;
 856
 857                /* no exit marker, task kept running to the end */
 858                if (p->end_time == 0)
 859                        p->end_time = last_time;
 860
 861                c = p->all;
 862
 863                while (c) {
 864                        c->display = 0;
 865
 866                        if (c->start_time == 1)
 867                                c->start_time = first_time;
 868
 869                        if (passes_filter(p, c)) {
 870                                c->display = 1;
 871                                p->display = 1;
 872                                count++;
 873                        }
 874
 875                        if (c->end_time == 0)
 876                                c->end_time = last_time;
 877
 878                        c = c->next;
 879                }
 880                p = p->next;
 881        }
 882        return count;
 883}
 884
 885static int determine_display_tasks(u64 threshold)
 886{
 887        struct per_pid *p;
 888        struct per_pidcomm *c;
 889        int count = 0;
 890
 891        if (process_filter)
 892                return determine_display_tasks_filtered();
 893
 894        p = all_data;
 895        while (p) {
 896                p->display = 0;
 897                if (p->start_time == 1)
 898                        p->start_time = first_time;
 899
 900                /* no exit marker, task kept running to the end */
 901                if (p->end_time == 0)
 902                        p->end_time = last_time;
 903                if (p->total_time >= threshold && !power_only)
 904                        p->display = 1;
 905
 906                c = p->all;
 907
 908                while (c) {
 909                        c->display = 0;
 910
 911                        if (c->start_time == 1)
 912                                c->start_time = first_time;
 913
 914                        if (c->total_time >= threshold && !power_only) {
 915                                c->display = 1;
 916                                count++;
 917                        }
 918
 919                        if (c->end_time == 0)
 920                                c->end_time = last_time;
 921
 922                        c = c->next;
 923                }
 924                p = p->next;
 925        }
 926        return count;
 927}
 928
 929
 930
 931#define TIME_THRESH 10000000
 932
 933static void write_svg_file(const char *filename)
 934{
 935        u64 i;
 936        int count;
 937
 938        numcpus++;
 939
 940
 941        count = determine_display_tasks(TIME_THRESH);
 942
 943        /* We'd like to show at least 15 tasks; be less picky if we have fewer */
 944        if (count < 15)
 945                count = determine_display_tasks(TIME_THRESH / 10);
 946
 947        open_svg(filename, numcpus, count, first_time, last_time);
 948
 949        svg_time_grid();
 950        svg_legenda();
 951
 952        for (i = 0; i < numcpus; i++)
 953                svg_cpu_box(i, max_freq, turbo_frequency);
 954
 955        draw_cpu_usage();
 956        draw_process_bars();
 957        draw_c_p_states();
 958        draw_wakeups();
 959
 960        svg_close();
 961}
 962
 963static struct perf_event_ops event_ops = {
 964        .comm                   = process_comm_event,
 965        .fork                   = process_fork_event,
 966        .exit                   = process_exit_event,
 967        .sample                 = process_sample_event,
 968        .ordered_samples        = true,
 969};
 970
 971static int __cmd_timechart(void)
 972{
 973        struct perf_session *session = perf_session__new(input_name, O_RDONLY,
 974                                                         0, false, &event_ops);
 975        int ret = -EINVAL;
 976
 977        if (session == NULL)
 978                return -ENOMEM;
 979
 980        if (!perf_session__has_traces(session, "timechart record"))
 981                goto out_delete;
 982
 983        ret = perf_session__process_events(session, &event_ops);
 984        if (ret)
 985                goto out_delete;
 986
 987        end_sample_processing();
 988
 989        sort_pids();
 990
 991        write_svg_file(output_name);
 992
 993        pr_info("Written %2.1f seconds of trace to %s.\n",
 994                (last_time - first_time) / 1000000000.0, output_name);
 995out_delete:
 996        perf_session__delete(session);
 997        return ret;
 998}
 999
1000static const char * const timechart_usage[] = {
1001        "perf timechart [<options>] {record}",
1002        NULL
1003};
1004
1005#ifdef SUPPORT_OLD_POWER_EVENTS
1006static const char * const record_old_args[] = {
1007        "record",
1008        "-a",
1009        "-R",
1010        "-f",
1011        "-c", "1",
1012        "-e", "power:power_start",
1013        "-e", "power:power_end",
1014        "-e", "power:power_frequency",
1015        "-e", "sched:sched_wakeup",
1016        "-e", "sched:sched_switch",
1017};
1018#endif
1019
1020static const char * const record_new_args[] = {
1021        "record",
1022        "-a",
1023        "-R",
1024        "-f",
1025        "-c", "1",
1026        "-e", "power:cpu_frequency",
1027        "-e", "power:cpu_idle",
1028        "-e", "sched:sched_wakeup",
1029        "-e", "sched:sched_switch",
1030};
1031
1032static int __cmd_record(int argc, const char **argv)
1033{
1034        unsigned int rec_argc, i, j;
1035        const char **rec_argv;
1036        const char * const *record_args = record_new_args;
1037        unsigned int record_elems = ARRAY_SIZE(record_new_args);
1038
1039#ifdef SUPPORT_OLD_POWER_EVENTS
1040        if (!is_valid_tracepoint("power:cpu_idle") &&
1041            is_valid_tracepoint("power:power_start")) {
1042                use_old_power_events = 1;
1043                record_args = record_old_args;
1044                record_elems = ARRAY_SIZE(record_old_args);
1045        }
1046#endif
1047
1048        rec_argc = record_elems + argc - 1;
1049        rec_argv = calloc(rec_argc + 1, sizeof(char *));
1050
1051        if (rec_argv == NULL)
1052                return -ENOMEM;
1053
1054        for (i = 0; i < record_elems; i++)
1055                rec_argv[i] = strdup(record_args[i]);
1056
1057        for (j = 1; j < (unsigned int)argc; j++, i++)
1058                rec_argv[i] = argv[j];
1059
1060        return cmd_record(i, rec_argv, NULL);
1061}
1062
1063static int
1064parse_process(const struct option *opt __used, const char *arg, int __used unset)
1065{
1066        if (arg)
1067                add_process_filter(arg);
1068        return 0;
1069}
1070
1071static const struct option options[] = {
1072        OPT_STRING('i', "input", &input_name, "file",
1073                    "input file name"),
1074        OPT_STRING('o', "output", &output_name, "file",
1075                    "output file name"),
1076        OPT_INTEGER('w', "width", &svg_page_width,
1077                    "page width"),
1078        OPT_BOOLEAN('P', "power-only", &power_only,
1079                    "output power data only"),
1080        OPT_CALLBACK('p', "process", NULL, "process",
1081                      "process selector. Pass a pid or process name.",
1082                       parse_process),
1083        OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1084                    "Look for files with symbols relative to this directory"),
1085        OPT_END()
1086};
1087
1088
1089int cmd_timechart(int argc, const char **argv, const char *prefix __used)
1090{
1091        argc = parse_options(argc, argv, options, timechart_usage,
1092                        PARSE_OPT_STOP_AT_NON_OPTION);
1093
1094        symbol__init();
1095
1096        if (argc && !strncmp(argv[0], "rec", 3))
1097                return __cmd_record(argc, argv);
1098        else if (argc)
1099                usage_with_options(timechart_usage, options);
1100
1101        setup_pager();
1102
1103        return __cmd_timechart();
1104}
1105