1
2
3
4
5
6#ifdef CONFIG_RT_GROUP_SCHED
7
8#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
9
10static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
11{
12#ifdef CONFIG_SCHED_DEBUG
13 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
14#endif
15 return container_of(rt_se, struct task_struct, rt);
16}
17
18static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
19{
20 return rt_rq->rq;
21}
22
23static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
24{
25 return rt_se->rt_rq;
26}
27
28#else
29
30#define rt_entity_is_task(rt_se) (1)
31
32static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
33{
34 return container_of(rt_se, struct task_struct, rt);
35}
36
37static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
38{
39 return container_of(rt_rq, struct rq, rt);
40}
41
42static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
43{
44 struct task_struct *p = rt_task_of(rt_se);
45 struct rq *rq = task_rq(p);
46
47 return &rq->rt;
48}
49
50#endif
51
52#ifdef CONFIG_SMP
53
54static inline int rt_overloaded(struct rq *rq)
55{
56 return atomic_read(&rq->rd->rto_count);
57}
58
59static inline void rt_set_overload(struct rq *rq)
60{
61 if (!rq->online)
62 return;
63
64 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
65
66
67
68
69
70
71
72 wmb();
73 atomic_inc(&rq->rd->rto_count);
74}
75
76static inline void rt_clear_overload(struct rq *rq)
77{
78 if (!rq->online)
79 return;
80
81
82 atomic_dec(&rq->rd->rto_count);
83 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
84}
85
86static void update_rt_migration(struct rt_rq *rt_rq)
87{
88 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
89 if (!rt_rq->overloaded) {
90 rt_set_overload(rq_of_rt_rq(rt_rq));
91 rt_rq->overloaded = 1;
92 }
93 } else if (rt_rq->overloaded) {
94 rt_clear_overload(rq_of_rt_rq(rt_rq));
95 rt_rq->overloaded = 0;
96 }
97}
98
99static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
100{
101 if (!rt_entity_is_task(rt_se))
102 return;
103
104 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
105
106 rt_rq->rt_nr_total++;
107 if (rt_se->nr_cpus_allowed > 1)
108 rt_rq->rt_nr_migratory++;
109
110 update_rt_migration(rt_rq);
111}
112
113static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
114{
115 if (!rt_entity_is_task(rt_se))
116 return;
117
118 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
119
120 rt_rq->rt_nr_total--;
121 if (rt_se->nr_cpus_allowed > 1)
122 rt_rq->rt_nr_migratory--;
123
124 update_rt_migration(rt_rq);
125}
126
127static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
128{
129 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
130 plist_node_init(&p->pushable_tasks, p->prio);
131 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
132}
133
134static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
135{
136 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
137}
138
139static inline int has_pushable_tasks(struct rq *rq)
140{
141 return !plist_head_empty(&rq->rt.pushable_tasks);
142}
143
144#else
145
146static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
147{
148}
149
150static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
151{
152}
153
154static inline
155void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
156{
157}
158
159static inline
160void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
161{
162}
163
164#endif
165
166static inline int on_rt_rq(struct sched_rt_entity *rt_se)
167{
168 return !list_empty(&rt_se->run_list);
169}
170
171#ifdef CONFIG_RT_GROUP_SCHED
172
173static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
174{
175 if (!rt_rq->tg)
176 return RUNTIME_INF;
177
178 return rt_rq->rt_runtime;
179}
180
181static inline u64 sched_rt_period(struct rt_rq *rt_rq)
182{
183 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
184}
185
186#define for_each_leaf_rt_rq(rt_rq, rq) \
187 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
188
189#define for_each_sched_rt_entity(rt_se) \
190 for (; rt_se; rt_se = rt_se->parent)
191
192static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
193{
194 return rt_se->my_q;
195}
196
197static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
198static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
199
200static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
201{
202 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
203 struct sched_rt_entity *rt_se;
204
205 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
206
207 rt_se = rt_rq->tg->rt_se[cpu];
208
209 if (rt_rq->rt_nr_running) {
210 if (rt_se && !on_rt_rq(rt_se))
211 enqueue_rt_entity(rt_se, false);
212 if (rt_rq->highest_prio.curr < curr->prio)
213 resched_task(curr);
214 }
215}
216
217static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
218{
219 struct sched_rt_entity *rt_se;
220 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
221
222 rt_se = rt_rq->tg->rt_se[cpu];
223
224 if (rt_se && on_rt_rq(rt_se))
225 dequeue_rt_entity(rt_se);
226}
227
228static inline int rt_rq_throttled(struct rt_rq *rt_rq)
229{
230 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
231}
232
233static int rt_se_boosted(struct sched_rt_entity *rt_se)
234{
235 struct rt_rq *rt_rq = group_rt_rq(rt_se);
236 struct task_struct *p;
237
238 if (rt_rq)
239 return !!rt_rq->rt_nr_boosted;
240
241 p = rt_task_of(rt_se);
242 return p->prio != p->normal_prio;
243}
244
245#ifdef CONFIG_SMP
246static inline const struct cpumask *sched_rt_period_mask(void)
247{
248 return cpu_rq(smp_processor_id())->rd->span;
249}
250#else
251static inline const struct cpumask *sched_rt_period_mask(void)
252{
253 return cpu_online_mask;
254}
255#endif
256
257static inline
258struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
259{
260 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
261}
262
263static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
264{
265 return &rt_rq->tg->rt_bandwidth;
266}
267
268#else
269
270static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
271{
272 return rt_rq->rt_runtime;
273}
274
275static inline u64 sched_rt_period(struct rt_rq *rt_rq)
276{
277 return ktime_to_ns(def_rt_bandwidth.rt_period);
278}
279
280#define for_each_leaf_rt_rq(rt_rq, rq) \
281 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
282
283#define for_each_sched_rt_entity(rt_se) \
284 for (; rt_se; rt_se = NULL)
285
286static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
287{
288 return NULL;
289}
290
291static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
292{
293 if (rt_rq->rt_nr_running)
294 resched_task(rq_of_rt_rq(rt_rq)->curr);
295}
296
297static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
298{
299}
300
301static inline int rt_rq_throttled(struct rt_rq *rt_rq)
302{
303 return rt_rq->rt_throttled;
304}
305
306static inline const struct cpumask *sched_rt_period_mask(void)
307{
308 return cpu_online_mask;
309}
310
311static inline
312struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
313{
314 return &cpu_rq(cpu)->rt;
315}
316
317static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
318{
319 return &def_rt_bandwidth;
320}
321
322#endif
323
324#ifdef CONFIG_SMP
325
326
327
328static int do_balance_runtime(struct rt_rq *rt_rq)
329{
330 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
331 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
332 int i, weight, more = 0;
333 u64 rt_period;
334
335 weight = cpumask_weight(rd->span);
336
337 raw_spin_lock(&rt_b->rt_runtime_lock);
338 rt_period = ktime_to_ns(rt_b->rt_period);
339 for_each_cpu(i, rd->span) {
340 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
341 s64 diff;
342
343 if (iter == rt_rq)
344 continue;
345
346 raw_spin_lock(&iter->rt_runtime_lock);
347
348
349
350
351
352 if (iter->rt_runtime == RUNTIME_INF)
353 goto next;
354
355
356
357
358
359 diff = iter->rt_runtime - iter->rt_time;
360 if (diff > 0) {
361 diff = div_u64((u64)diff, weight);
362 if (rt_rq->rt_runtime + diff > rt_period)
363 diff = rt_period - rt_rq->rt_runtime;
364 iter->rt_runtime -= diff;
365 rt_rq->rt_runtime += diff;
366 more = 1;
367 if (rt_rq->rt_runtime == rt_period) {
368 raw_spin_unlock(&iter->rt_runtime_lock);
369 break;
370 }
371 }
372next:
373 raw_spin_unlock(&iter->rt_runtime_lock);
374 }
375 raw_spin_unlock(&rt_b->rt_runtime_lock);
376
377 return more;
378}
379
380
381
382
383static void __disable_runtime(struct rq *rq)
384{
385 struct root_domain *rd = rq->rd;
386 struct rt_rq *rt_rq;
387
388 if (unlikely(!scheduler_running))
389 return;
390
391 for_each_leaf_rt_rq(rt_rq, rq) {
392 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
393 s64 want;
394 int i;
395
396 raw_spin_lock(&rt_b->rt_runtime_lock);
397 raw_spin_lock(&rt_rq->rt_runtime_lock);
398
399
400
401
402
403 if (rt_rq->rt_runtime == RUNTIME_INF ||
404 rt_rq->rt_runtime == rt_b->rt_runtime)
405 goto balanced;
406 raw_spin_unlock(&rt_rq->rt_runtime_lock);
407
408
409
410
411
412
413 want = rt_b->rt_runtime - rt_rq->rt_runtime;
414
415
416
417
418 for_each_cpu(i, rd->span) {
419 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
420 s64 diff;
421
422
423
424
425 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
426 continue;
427
428 raw_spin_lock(&iter->rt_runtime_lock);
429 if (want > 0) {
430 diff = min_t(s64, iter->rt_runtime, want);
431 iter->rt_runtime -= diff;
432 want -= diff;
433 } else {
434 iter->rt_runtime -= want;
435 want -= want;
436 }
437 raw_spin_unlock(&iter->rt_runtime_lock);
438
439 if (!want)
440 break;
441 }
442
443 raw_spin_lock(&rt_rq->rt_runtime_lock);
444
445
446
447
448 BUG_ON(want);
449balanced:
450
451
452
453
454 rt_rq->rt_runtime = RUNTIME_INF;
455 raw_spin_unlock(&rt_rq->rt_runtime_lock);
456 raw_spin_unlock(&rt_b->rt_runtime_lock);
457 }
458}
459
460static void disable_runtime(struct rq *rq)
461{
462 unsigned long flags;
463
464 raw_spin_lock_irqsave(&rq->lock, flags);
465 __disable_runtime(rq);
466 raw_spin_unlock_irqrestore(&rq->lock, flags);
467}
468
469static void __enable_runtime(struct rq *rq)
470{
471 struct rt_rq *rt_rq;
472
473 if (unlikely(!scheduler_running))
474 return;
475
476
477
478
479 for_each_leaf_rt_rq(rt_rq, rq) {
480 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
481
482 raw_spin_lock(&rt_b->rt_runtime_lock);
483 raw_spin_lock(&rt_rq->rt_runtime_lock);
484 rt_rq->rt_runtime = rt_b->rt_runtime;
485 rt_rq->rt_time = 0;
486 rt_rq->rt_throttled = 0;
487 raw_spin_unlock(&rt_rq->rt_runtime_lock);
488 raw_spin_unlock(&rt_b->rt_runtime_lock);
489 }
490}
491
492static void enable_runtime(struct rq *rq)
493{
494 unsigned long flags;
495
496 raw_spin_lock_irqsave(&rq->lock, flags);
497 __enable_runtime(rq);
498 raw_spin_unlock_irqrestore(&rq->lock, flags);
499}
500
501static int balance_runtime(struct rt_rq *rt_rq)
502{
503 int more = 0;
504
505 if (rt_rq->rt_time > rt_rq->rt_runtime) {
506 raw_spin_unlock(&rt_rq->rt_runtime_lock);
507 more = do_balance_runtime(rt_rq);
508 raw_spin_lock(&rt_rq->rt_runtime_lock);
509 }
510
511 return more;
512}
513#else
514static inline int balance_runtime(struct rt_rq *rt_rq)
515{
516 return 0;
517}
518#endif
519
520static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
521{
522 int i, idle = 1;
523 const struct cpumask *span;
524
525 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
526 return 1;
527
528 span = sched_rt_period_mask();
529 for_each_cpu(i, span) {
530 int enqueue = 0;
531 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
532 struct rq *rq = rq_of_rt_rq(rt_rq);
533
534 raw_spin_lock(&rq->lock);
535 if (rt_rq->rt_time) {
536 u64 runtime;
537
538 raw_spin_lock(&rt_rq->rt_runtime_lock);
539 if (rt_rq->rt_throttled)
540 balance_runtime(rt_rq);
541 runtime = rt_rq->rt_runtime;
542 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
543 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
544 rt_rq->rt_throttled = 0;
545 enqueue = 1;
546 }
547 if (rt_rq->rt_time || rt_rq->rt_nr_running)
548 idle = 0;
549 raw_spin_unlock(&rt_rq->rt_runtime_lock);
550 } else if (rt_rq->rt_nr_running) {
551 idle = 0;
552 if (!rt_rq_throttled(rt_rq))
553 enqueue = 1;
554 }
555
556 if (enqueue)
557 sched_rt_rq_enqueue(rt_rq);
558 raw_spin_unlock(&rq->lock);
559 }
560
561 return idle;
562}
563
564static inline int rt_se_prio(struct sched_rt_entity *rt_se)
565{
566#ifdef CONFIG_RT_GROUP_SCHED
567 struct rt_rq *rt_rq = group_rt_rq(rt_se);
568
569 if (rt_rq)
570 return rt_rq->highest_prio.curr;
571#endif
572
573 return rt_task_of(rt_se)->prio;
574}
575
576static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
577{
578 u64 runtime = sched_rt_runtime(rt_rq);
579
580 if (rt_rq->rt_throttled)
581 return rt_rq_throttled(rt_rq);
582
583 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
584 return 0;
585
586 balance_runtime(rt_rq);
587 runtime = sched_rt_runtime(rt_rq);
588 if (runtime == RUNTIME_INF)
589 return 0;
590
591 if (rt_rq->rt_time > runtime) {
592 rt_rq->rt_throttled = 1;
593 if (rt_rq_throttled(rt_rq)) {
594 sched_rt_rq_dequeue(rt_rq);
595 return 1;
596 }
597 }
598
599 return 0;
600}
601
602
603
604
605
606static void update_curr_rt(struct rq *rq)
607{
608 struct task_struct *curr = rq->curr;
609 struct sched_rt_entity *rt_se = &curr->rt;
610 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
611 u64 delta_exec;
612
613 if (curr->sched_class != &rt_sched_class)
614 return;
615
616 delta_exec = rq->clock_task - curr->se.exec_start;
617 if (unlikely((s64)delta_exec < 0))
618 delta_exec = 0;
619
620 schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec));
621
622 curr->se.sum_exec_runtime += delta_exec;
623 account_group_exec_runtime(curr, delta_exec);
624
625 curr->se.exec_start = rq->clock_task;
626 cpuacct_charge(curr, delta_exec);
627
628 sched_rt_avg_update(rq, delta_exec);
629
630 if (!rt_bandwidth_enabled())
631 return;
632
633 for_each_sched_rt_entity(rt_se) {
634 rt_rq = rt_rq_of_se(rt_se);
635
636 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
637 raw_spin_lock(&rt_rq->rt_runtime_lock);
638 rt_rq->rt_time += delta_exec;
639 if (sched_rt_runtime_exceeded(rt_rq))
640 resched_task(curr);
641 raw_spin_unlock(&rt_rq->rt_runtime_lock);
642 }
643 }
644}
645
646#if defined CONFIG_SMP
647
648static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);
649
650static inline int next_prio(struct rq *rq)
651{
652 struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);
653
654 if (next && rt_prio(next->prio))
655 return next->prio;
656 else
657 return MAX_RT_PRIO;
658}
659
660static void
661inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
662{
663 struct rq *rq = rq_of_rt_rq(rt_rq);
664
665 if (prio < prev_prio) {
666
667
668
669
670
671
672 rt_rq->highest_prio.next = prev_prio;
673
674 if (rq->online)
675 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
676
677 } else if (prio == rt_rq->highest_prio.curr)
678
679
680
681
682
683 rt_rq->highest_prio.next = prio;
684 else if (prio < rt_rq->highest_prio.next)
685
686
687
688 rt_rq->highest_prio.next = next_prio(rq);
689}
690
691static void
692dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
693{
694 struct rq *rq = rq_of_rt_rq(rt_rq);
695
696 if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next))
697 rt_rq->highest_prio.next = next_prio(rq);
698
699 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
700 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
701}
702
703#else
704
705static inline
706void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
707static inline
708void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
709
710#endif
711
712#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
713static void
714inc_rt_prio(struct rt_rq *rt_rq, int prio)
715{
716 int prev_prio = rt_rq->highest_prio.curr;
717
718 if (prio < prev_prio)
719 rt_rq->highest_prio.curr = prio;
720
721 inc_rt_prio_smp(rt_rq, prio, prev_prio);
722}
723
724static void
725dec_rt_prio(struct rt_rq *rt_rq, int prio)
726{
727 int prev_prio = rt_rq->highest_prio.curr;
728
729 if (rt_rq->rt_nr_running) {
730
731 WARN_ON(prio < prev_prio);
732
733
734
735
736
737 if (prio == prev_prio) {
738 struct rt_prio_array *array = &rt_rq->active;
739
740 rt_rq->highest_prio.curr =
741 sched_find_first_bit(array->bitmap);
742 }
743
744 } else
745 rt_rq->highest_prio.curr = MAX_RT_PRIO;
746
747 dec_rt_prio_smp(rt_rq, prio, prev_prio);
748}
749
750#else
751
752static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
753static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
754
755#endif
756
757#ifdef CONFIG_RT_GROUP_SCHED
758
759static void
760inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
761{
762 if (rt_se_boosted(rt_se))
763 rt_rq->rt_nr_boosted++;
764
765 if (rt_rq->tg)
766 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
767}
768
769static void
770dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
771{
772 if (rt_se_boosted(rt_se))
773 rt_rq->rt_nr_boosted--;
774
775 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
776}
777
778#else
779
780static void
781inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
782{
783 start_rt_bandwidth(&def_rt_bandwidth);
784}
785
786static inline
787void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
788
789#endif
790
791static inline
792void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
793{
794 int prio = rt_se_prio(rt_se);
795
796 WARN_ON(!rt_prio(prio));
797 rt_rq->rt_nr_running++;
798
799 inc_rt_prio(rt_rq, prio);
800 inc_rt_migration(rt_se, rt_rq);
801 inc_rt_group(rt_se, rt_rq);
802}
803
804static inline
805void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
806{
807 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
808 WARN_ON(!rt_rq->rt_nr_running);
809 rt_rq->rt_nr_running--;
810
811 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
812 dec_rt_migration(rt_se, rt_rq);
813 dec_rt_group(rt_se, rt_rq);
814}
815
816static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
817{
818 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
819 struct rt_prio_array *array = &rt_rq->active;
820 struct rt_rq *group_rq = group_rt_rq(rt_se);
821 struct list_head *queue = array->queue + rt_se_prio(rt_se);
822
823
824
825
826
827
828
829 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
830 return;
831
832 if (head)
833 list_add(&rt_se->run_list, queue);
834 else
835 list_add_tail(&rt_se->run_list, queue);
836 __set_bit(rt_se_prio(rt_se), array->bitmap);
837
838 inc_rt_tasks(rt_se, rt_rq);
839}
840
841static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
842{
843 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
844 struct rt_prio_array *array = &rt_rq->active;
845
846 list_del_init(&rt_se->run_list);
847 if (list_empty(array->queue + rt_se_prio(rt_se)))
848 __clear_bit(rt_se_prio(rt_se), array->bitmap);
849
850 dec_rt_tasks(rt_se, rt_rq);
851}
852
853
854
855
856
857static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
858{
859 struct sched_rt_entity *back = NULL;
860
861 for_each_sched_rt_entity(rt_se) {
862 rt_se->back = back;
863 back = rt_se;
864 }
865
866 for (rt_se = back; rt_se; rt_se = rt_se->back) {
867 if (on_rt_rq(rt_se))
868 __dequeue_rt_entity(rt_se);
869 }
870}
871
872static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
873{
874 dequeue_rt_stack(rt_se);
875 for_each_sched_rt_entity(rt_se)
876 __enqueue_rt_entity(rt_se, head);
877}
878
879static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
880{
881 dequeue_rt_stack(rt_se);
882
883 for_each_sched_rt_entity(rt_se) {
884 struct rt_rq *rt_rq = group_rt_rq(rt_se);
885
886 if (rt_rq && rt_rq->rt_nr_running)
887 __enqueue_rt_entity(rt_se, false);
888 }
889}
890
891
892
893
894static void
895enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
896{
897 struct sched_rt_entity *rt_se = &p->rt;
898
899 if (flags & ENQUEUE_WAKEUP)
900 rt_se->timeout = 0;
901
902 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
903
904 if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
905 enqueue_pushable_task(rq, p);
906}
907
908static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
909{
910 struct sched_rt_entity *rt_se = &p->rt;
911
912 update_curr_rt(rq);
913 dequeue_rt_entity(rt_se);
914
915 dequeue_pushable_task(rq, p);
916}
917
918
919
920
921
922static void
923requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
924{
925 if (on_rt_rq(rt_se)) {
926 struct rt_prio_array *array = &rt_rq->active;
927 struct list_head *queue = array->queue + rt_se_prio(rt_se);
928
929 if (head)
930 list_move(&rt_se->run_list, queue);
931 else
932 list_move_tail(&rt_se->run_list, queue);
933 }
934}
935
936static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
937{
938 struct sched_rt_entity *rt_se = &p->rt;
939 struct rt_rq *rt_rq;
940
941 for_each_sched_rt_entity(rt_se) {
942 rt_rq = rt_rq_of_se(rt_se);
943 requeue_rt_entity(rt_rq, rt_se, head);
944 }
945}
946
947static void yield_task_rt(struct rq *rq)
948{
949 requeue_task_rt(rq, rq->curr, 0);
950}
951
952#ifdef CONFIG_SMP
953static int find_lowest_rq(struct task_struct *task);
954
955static int
956select_task_rq_rt(struct rq *rq, struct task_struct *p, int sd_flag, int flags)
957{
958 if (sd_flag != SD_BALANCE_WAKE)
959 return smp_processor_id();
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977 if (unlikely(rt_task(rq->curr)) &&
978 (rq->curr->rt.nr_cpus_allowed < 2 ||
979 rq->curr->prio < p->prio) &&
980 (p->rt.nr_cpus_allowed > 1)) {
981 int cpu = find_lowest_rq(p);
982
983 return (cpu == -1) ? task_cpu(p) : cpu;
984 }
985
986
987
988
989
990 return task_cpu(p);
991}
992
993static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
994{
995 if (rq->curr->rt.nr_cpus_allowed == 1)
996 return;
997
998 if (p->rt.nr_cpus_allowed != 1
999 && cpupri_find(&rq->rd->cpupri, p, NULL))
1000 return;
1001
1002 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1003 return;
1004
1005
1006
1007
1008
1009
1010 requeue_task_rt(rq, p, 1);
1011 resched_task(rq->curr);
1012}
1013
1014#endif
1015
1016
1017
1018
1019static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1020{
1021 if (p->prio < rq->curr->prio) {
1022 resched_task(rq->curr);
1023 return;
1024 }
1025
1026#ifdef CONFIG_SMP
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039 if (p->prio == rq->curr->prio && !need_resched())
1040 check_preempt_equal_prio(rq, p);
1041#endif
1042}
1043
1044static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1045 struct rt_rq *rt_rq)
1046{
1047 struct rt_prio_array *array = &rt_rq->active;
1048 struct sched_rt_entity *next = NULL;
1049 struct list_head *queue;
1050 int idx;
1051
1052 idx = sched_find_first_bit(array->bitmap);
1053 BUG_ON(idx >= MAX_RT_PRIO);
1054
1055 queue = array->queue + idx;
1056 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1057
1058 return next;
1059}
1060
1061static struct task_struct *_pick_next_task_rt(struct rq *rq)
1062{
1063 struct sched_rt_entity *rt_se;
1064 struct task_struct *p;
1065 struct rt_rq *rt_rq;
1066
1067 rt_rq = &rq->rt;
1068
1069 if (unlikely(!rt_rq->rt_nr_running))
1070 return NULL;
1071
1072 if (rt_rq_throttled(rt_rq))
1073 return NULL;
1074
1075 do {
1076 rt_se = pick_next_rt_entity(rq, rt_rq);
1077 BUG_ON(!rt_se);
1078 rt_rq = group_rt_rq(rt_se);
1079 } while (rt_rq);
1080
1081 p = rt_task_of(rt_se);
1082 p->se.exec_start = rq->clock_task;
1083
1084 return p;
1085}
1086
1087static struct task_struct *pick_next_task_rt(struct rq *rq)
1088{
1089 struct task_struct *p = _pick_next_task_rt(rq);
1090
1091
1092 if (p)
1093 dequeue_pushable_task(rq, p);
1094
1095#ifdef CONFIG_SMP
1096
1097
1098
1099
1100 rq->post_schedule = has_pushable_tasks(rq);
1101#endif
1102
1103 return p;
1104}
1105
1106static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1107{
1108 update_curr_rt(rq);
1109 p->se.exec_start = 0;
1110
1111
1112
1113
1114
1115 if (p->se.on_rq && p->rt.nr_cpus_allowed > 1)
1116 enqueue_pushable_task(rq, p);
1117}
1118
1119#ifdef CONFIG_SMP
1120
1121
1122#define RT_MAX_TRIES 3
1123
1124static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
1125
1126static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1127{
1128 if (!task_running(rq, p) &&
1129 (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
1130 (p->rt.nr_cpus_allowed > 1))
1131 return 1;
1132 return 0;
1133}
1134
1135
1136static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
1137{
1138 struct task_struct *next = NULL;
1139 struct sched_rt_entity *rt_se;
1140 struct rt_prio_array *array;
1141 struct rt_rq *rt_rq;
1142 int idx;
1143
1144 for_each_leaf_rt_rq(rt_rq, rq) {
1145 array = &rt_rq->active;
1146 idx = sched_find_first_bit(array->bitmap);
1147next_idx:
1148 if (idx >= MAX_RT_PRIO)
1149 continue;
1150 if (next && next->prio < idx)
1151 continue;
1152 list_for_each_entry(rt_se, array->queue + idx, run_list) {
1153 struct task_struct *p;
1154
1155 if (!rt_entity_is_task(rt_se))
1156 continue;
1157
1158 p = rt_task_of(rt_se);
1159 if (pick_rt_task(rq, p, cpu)) {
1160 next = p;
1161 break;
1162 }
1163 }
1164 if (!next) {
1165 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1166 goto next_idx;
1167 }
1168 }
1169
1170 return next;
1171}
1172
1173static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1174
1175static int find_lowest_rq(struct task_struct *task)
1176{
1177 struct sched_domain *sd;
1178 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
1179 int this_cpu = smp_processor_id();
1180 int cpu = task_cpu(task);
1181
1182 if (task->rt.nr_cpus_allowed == 1)
1183 return -1;
1184
1185 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1186 return -1;
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196 if (cpumask_test_cpu(cpu, lowest_mask))
1197 return cpu;
1198
1199
1200
1201
1202
1203 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1204 this_cpu = -1;
1205
1206 for_each_domain(cpu, sd) {
1207 if (sd->flags & SD_WAKE_AFFINE) {
1208 int best_cpu;
1209
1210
1211
1212
1213
1214 if (this_cpu != -1 &&
1215 cpumask_test_cpu(this_cpu, sched_domain_span(sd)))
1216 return this_cpu;
1217
1218 best_cpu = cpumask_first_and(lowest_mask,
1219 sched_domain_span(sd));
1220 if (best_cpu < nr_cpu_ids)
1221 return best_cpu;
1222 }
1223 }
1224
1225
1226
1227
1228
1229
1230 if (this_cpu != -1)
1231 return this_cpu;
1232
1233 cpu = cpumask_any(lowest_mask);
1234 if (cpu < nr_cpu_ids)
1235 return cpu;
1236 return -1;
1237}
1238
1239
1240static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1241{
1242 struct rq *lowest_rq = NULL;
1243 int tries;
1244 int cpu;
1245
1246 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1247 cpu = find_lowest_rq(task);
1248
1249 if ((cpu == -1) || (cpu == rq->cpu))
1250 break;
1251
1252 lowest_rq = cpu_rq(cpu);
1253
1254
1255 if (double_lock_balance(rq, lowest_rq)) {
1256
1257
1258
1259
1260
1261
1262 if (unlikely(task_rq(task) != rq ||
1263 !cpumask_test_cpu(lowest_rq->cpu,
1264 &task->cpus_allowed) ||
1265 task_running(rq, task) ||
1266 !task->se.on_rq)) {
1267
1268 raw_spin_unlock(&lowest_rq->lock);
1269 lowest_rq = NULL;
1270 break;
1271 }
1272 }
1273
1274
1275 if (lowest_rq->rt.highest_prio.curr > task->prio)
1276 break;
1277
1278
1279 double_unlock_balance(rq, lowest_rq);
1280 lowest_rq = NULL;
1281 }
1282
1283 return lowest_rq;
1284}
1285
1286static struct task_struct *pick_next_pushable_task(struct rq *rq)
1287{
1288 struct task_struct *p;
1289
1290 if (!has_pushable_tasks(rq))
1291 return NULL;
1292
1293 p = plist_first_entry(&rq->rt.pushable_tasks,
1294 struct task_struct, pushable_tasks);
1295
1296 BUG_ON(rq->cpu != task_cpu(p));
1297 BUG_ON(task_current(rq, p));
1298 BUG_ON(p->rt.nr_cpus_allowed <= 1);
1299
1300 BUG_ON(!p->se.on_rq);
1301 BUG_ON(!rt_task(p));
1302
1303 return p;
1304}
1305
1306
1307
1308
1309
1310
1311static int push_rt_task(struct rq *rq)
1312{
1313 struct task_struct *next_task;
1314 struct rq *lowest_rq;
1315
1316 if (!rq->rt.overloaded)
1317 return 0;
1318
1319 next_task = pick_next_pushable_task(rq);
1320 if (!next_task)
1321 return 0;
1322
1323retry:
1324 if (unlikely(next_task == rq->curr)) {
1325 WARN_ON(1);
1326 return 0;
1327 }
1328
1329
1330
1331
1332
1333
1334 if (unlikely(next_task->prio < rq->curr->prio)) {
1335 resched_task(rq->curr);
1336 return 0;
1337 }
1338
1339
1340 get_task_struct(next_task);
1341
1342
1343 lowest_rq = find_lock_lowest_rq(next_task, rq);
1344 if (!lowest_rq) {
1345 struct task_struct *task;
1346
1347
1348
1349
1350
1351
1352
1353
1354 task = pick_next_pushable_task(rq);
1355 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1356
1357
1358
1359
1360
1361
1362 dequeue_pushable_task(rq, next_task);
1363 goto out;
1364 }
1365
1366 if (!task)
1367
1368 goto out;
1369
1370
1371
1372
1373 put_task_struct(next_task);
1374 next_task = task;
1375 goto retry;
1376 }
1377
1378 deactivate_task(rq, next_task, 0);
1379 set_task_cpu(next_task, lowest_rq->cpu);
1380 activate_task(lowest_rq, next_task, 0);
1381
1382 resched_task(lowest_rq->curr);
1383
1384 double_unlock_balance(rq, lowest_rq);
1385
1386out:
1387 put_task_struct(next_task);
1388
1389 return 1;
1390}
1391
1392static void push_rt_tasks(struct rq *rq)
1393{
1394
1395 while (push_rt_task(rq))
1396 ;
1397}
1398
1399static int pull_rt_task(struct rq *this_rq)
1400{
1401 int this_cpu = this_rq->cpu, ret = 0, cpu;
1402 struct task_struct *p;
1403 struct rq *src_rq;
1404
1405 if (likely(!rt_overloaded(this_rq)))
1406 return 0;
1407
1408 for_each_cpu(cpu, this_rq->rd->rto_mask) {
1409 if (this_cpu == cpu)
1410 continue;
1411
1412 src_rq = cpu_rq(cpu);
1413
1414
1415
1416
1417
1418
1419
1420
1421 if (src_rq->rt.highest_prio.next >=
1422 this_rq->rt.highest_prio.curr)
1423 continue;
1424
1425
1426
1427
1428
1429
1430 double_lock_balance(this_rq, src_rq);
1431
1432
1433
1434
1435 if (src_rq->rt.rt_nr_running <= 1)
1436 goto skip;
1437
1438 p = pick_next_highest_task_rt(src_rq, this_cpu);
1439
1440
1441
1442
1443
1444 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1445 WARN_ON(p == src_rq->curr);
1446 WARN_ON(!p->se.on_rq);
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456 if (p->prio < src_rq->curr->prio)
1457 goto skip;
1458
1459 ret = 1;
1460
1461 deactivate_task(src_rq, p, 0);
1462 set_task_cpu(p, this_cpu);
1463 activate_task(this_rq, p, 0);
1464
1465
1466
1467
1468
1469
1470 }
1471skip:
1472 double_unlock_balance(this_rq, src_rq);
1473 }
1474
1475 return ret;
1476}
1477
1478static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1479{
1480
1481 if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio)
1482 pull_rt_task(rq);
1483}
1484
1485static void post_schedule_rt(struct rq *rq)
1486{
1487 push_rt_tasks(rq);
1488}
1489
1490
1491
1492
1493
1494static void task_woken_rt(struct rq *rq, struct task_struct *p)
1495{
1496 if (!task_running(rq, p) &&
1497 !test_tsk_need_resched(rq->curr) &&
1498 has_pushable_tasks(rq) &&
1499 p->rt.nr_cpus_allowed > 1 &&
1500 rt_task(rq->curr) &&
1501 (rq->curr->rt.nr_cpus_allowed < 2 ||
1502 rq->curr->prio < p->prio))
1503 push_rt_tasks(rq);
1504}
1505
1506static void set_cpus_allowed_rt(struct task_struct *p,
1507 const struct cpumask *new_mask)
1508{
1509 int weight = cpumask_weight(new_mask);
1510
1511 BUG_ON(!rt_task(p));
1512
1513
1514
1515
1516
1517 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1518 struct rq *rq = task_rq(p);
1519
1520 if (!task_current(rq, p)) {
1521
1522
1523
1524
1525
1526
1527 if (p->rt.nr_cpus_allowed > 1)
1528 dequeue_pushable_task(rq, p);
1529
1530
1531
1532
1533 if (weight > 1)
1534 enqueue_pushable_task(rq, p);
1535
1536 }
1537
1538 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1539 rq->rt.rt_nr_migratory++;
1540 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1541 BUG_ON(!rq->rt.rt_nr_migratory);
1542 rq->rt.rt_nr_migratory--;
1543 }
1544
1545 update_rt_migration(&rq->rt);
1546 }
1547
1548 cpumask_copy(&p->cpus_allowed, new_mask);
1549 p->rt.nr_cpus_allowed = weight;
1550}
1551
1552
1553static void rq_online_rt(struct rq *rq)
1554{
1555 if (rq->rt.overloaded)
1556 rt_set_overload(rq);
1557
1558 __enable_runtime(rq);
1559
1560 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1561}
1562
1563
1564static void rq_offline_rt(struct rq *rq)
1565{
1566 if (rq->rt.overloaded)
1567 rt_clear_overload(rq);
1568
1569 __disable_runtime(rq);
1570
1571 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1572}
1573
1574
1575
1576
1577
1578static void switched_from_rt(struct rq *rq, struct task_struct *p,
1579 int running)
1580{
1581
1582
1583
1584
1585
1586
1587
1588 if (!rq->rt.rt_nr_running)
1589 pull_rt_task(rq);
1590}
1591
1592static inline void init_sched_rt_class(void)
1593{
1594 unsigned int i;
1595
1596 for_each_possible_cpu(i)
1597 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1598 GFP_KERNEL, cpu_to_node(i));
1599}
1600#endif
1601
1602
1603
1604
1605
1606
1607static void switched_to_rt(struct rq *rq, struct task_struct *p,
1608 int running)
1609{
1610 int check_resched = 1;
1611
1612
1613
1614
1615
1616
1617
1618
1619 if (!running) {
1620#ifdef CONFIG_SMP
1621 if (rq->rt.overloaded && push_rt_task(rq) &&
1622
1623 rq != task_rq(p))
1624 check_resched = 0;
1625#endif
1626 if (check_resched && p->prio < rq->curr->prio)
1627 resched_task(rq->curr);
1628 }
1629}
1630
1631
1632
1633
1634
1635static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1636 int oldprio, int running)
1637{
1638 if (running) {
1639#ifdef CONFIG_SMP
1640
1641
1642
1643
1644 if (oldprio < p->prio)
1645 pull_rt_task(rq);
1646
1647
1648
1649
1650
1651
1652 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1653 resched_task(p);
1654#else
1655
1656 if (oldprio < p->prio)
1657 resched_task(p);
1658#endif
1659 } else {
1660
1661
1662
1663
1664
1665 if (p->prio < rq->curr->prio)
1666 resched_task(rq->curr);
1667 }
1668}
1669
1670static void watchdog(struct rq *rq, struct task_struct *p)
1671{
1672 unsigned long soft, hard;
1673
1674
1675 soft = task_rlimit(p, RLIMIT_RTTIME);
1676 hard = task_rlimit_max(p, RLIMIT_RTTIME);
1677
1678 if (soft != RLIM_INFINITY) {
1679 unsigned long next;
1680
1681 p->rt.timeout++;
1682 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1683 if (p->rt.timeout > next)
1684 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1685 }
1686}
1687
1688static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1689{
1690 update_curr_rt(rq);
1691
1692 watchdog(rq, p);
1693
1694
1695
1696
1697
1698 if (p->policy != SCHED_RR)
1699 return;
1700
1701 if (--p->rt.time_slice)
1702 return;
1703
1704 p->rt.time_slice = DEF_TIMESLICE;
1705
1706
1707
1708
1709
1710 if (p->rt.run_list.prev != p->rt.run_list.next) {
1711 requeue_task_rt(rq, p, 0);
1712 set_tsk_need_resched(p);
1713 }
1714}
1715
1716static void set_curr_task_rt(struct rq *rq)
1717{
1718 struct task_struct *p = rq->curr;
1719
1720 p->se.exec_start = rq->clock_task;
1721
1722
1723 dequeue_pushable_task(rq, p);
1724}
1725
1726static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
1727{
1728
1729
1730
1731 if (task->policy == SCHED_RR)
1732 return DEF_TIMESLICE;
1733 else
1734 return 0;
1735}
1736
1737static const struct sched_class rt_sched_class = {
1738 .next = &fair_sched_class,
1739 .enqueue_task = enqueue_task_rt,
1740 .dequeue_task = dequeue_task_rt,
1741 .yield_task = yield_task_rt,
1742
1743 .check_preempt_curr = check_preempt_curr_rt,
1744
1745 .pick_next_task = pick_next_task_rt,
1746 .put_prev_task = put_prev_task_rt,
1747
1748#ifdef CONFIG_SMP
1749 .select_task_rq = select_task_rq_rt,
1750
1751 .set_cpus_allowed = set_cpus_allowed_rt,
1752 .rq_online = rq_online_rt,
1753 .rq_offline = rq_offline_rt,
1754 .pre_schedule = pre_schedule_rt,
1755 .post_schedule = post_schedule_rt,
1756 .task_woken = task_woken_rt,
1757 .switched_from = switched_from_rt,
1758#endif
1759
1760 .set_curr_task = set_curr_task_rt,
1761 .task_tick = task_tick_rt,
1762
1763 .get_rr_interval = get_rr_interval_rt,
1764
1765 .prio_changed = prio_changed_rt,
1766 .switched_to = switched_to_rt,
1767};
1768
1769#ifdef CONFIG_SCHED_DEBUG
1770extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1771
1772static void print_rt_stats(struct seq_file *m, int cpu)
1773{
1774 struct rt_rq *rt_rq;
1775
1776 rcu_read_lock();
1777 for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
1778 print_rt_rq(m, cpu, rt_rq);
1779 rcu_read_unlock();
1780}
1781#endif
1782
1783