linux/net/sched/sch_tbf.c
<<
>>
Prefs
   1/*
   2 * net/sched/sch_tbf.c  Token Bucket Filter queue.
   3 *
   4 *              This program is free software; you can redistribute it and/or
   5 *              modify it under the terms of the GNU General Public License
   6 *              as published by the Free Software Foundation; either version
   7 *              2 of the License, or (at your option) any later version.
   8 *
   9 * Authors:     Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  10 *              Dmitry Torokhov <dtor@mail.ru> - allow attaching inner qdiscs -
  11 *                                               original idea by Martin Devera
  12 *
  13 */
  14
  15#include <linux/module.h>
  16#include <linux/types.h>
  17#include <linux/kernel.h>
  18#include <linux/string.h>
  19#include <linux/errno.h>
  20#include <linux/skbuff.h>
  21#include <net/netlink.h>
  22#include <net/pkt_sched.h>
  23
  24
  25/*      Simple Token Bucket Filter.
  26        =======================================
  27
  28        SOURCE.
  29        -------
  30
  31        None.
  32
  33        Description.
  34        ------------
  35
  36        A data flow obeys TBF with rate R and depth B, if for any
  37        time interval t_i...t_f the number of transmitted bits
  38        does not exceed B + R*(t_f-t_i).
  39
  40        Packetized version of this definition:
  41        The sequence of packets of sizes s_i served at moments t_i
  42        obeys TBF, if for any i<=k:
  43
  44        s_i+....+s_k <= B + R*(t_k - t_i)
  45
  46        Algorithm.
  47        ----------
  48
  49        Let N(t_i) be B/R initially and N(t) grow continuously with time as:
  50
  51        N(t+delta) = min{B/R, N(t) + delta}
  52
  53        If the first packet in queue has length S, it may be
  54        transmitted only at the time t_* when S/R <= N(t_*),
  55        and in this case N(t) jumps:
  56
  57        N(t_* + 0) = N(t_* - 0) - S/R.
  58
  59
  60
  61        Actually, QoS requires two TBF to be applied to a data stream.
  62        One of them controls steady state burst size, another
  63        one with rate P (peak rate) and depth M (equal to link MTU)
  64        limits bursts at a smaller time scale.
  65
  66        It is easy to see that P>R, and B>M. If P is infinity, this double
  67        TBF is equivalent to a single one.
  68
  69        When TBF works in reshaping mode, latency is estimated as:
  70
  71        lat = max ((L-B)/R, (L-M)/P)
  72
  73
  74        NOTES.
  75        ------
  76
  77        If TBF throttles, it starts a watchdog timer, which will wake it up
  78        when it is ready to transmit.
  79        Note that the minimal timer resolution is 1/HZ.
  80        If no new packets arrive during this period,
  81        or if the device is not awaken by EOI for some previous packet,
  82        TBF can stop its activity for 1/HZ.
  83
  84
  85        This means, that with depth B, the maximal rate is
  86
  87        R_crit = B*HZ
  88
  89        F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes.
  90
  91        Note that the peak rate TBF is much more tough: with MTU 1500
  92        P_crit = 150Kbytes/sec. So, if you need greater peak
  93        rates, use alpha with HZ=1000 :-)
  94
  95        With classful TBF, limit is just kept for backwards compatibility.
  96        It is passed to the default bfifo qdisc - if the inner qdisc is
  97        changed the limit is not effective anymore.
  98*/
  99
 100struct tbf_sched_data
 101{
 102/* Parameters */
 103        u32             limit;          /* Maximal length of backlog: bytes */
 104        u32             buffer;         /* Token bucket depth/rate: MUST BE >= MTU/B */
 105        u32             mtu;
 106        u32             max_size;
 107        struct qdisc_rate_table *R_tab;
 108        struct qdisc_rate_table *P_tab;
 109
 110/* Variables */
 111        long    tokens;                 /* Current number of B tokens */
 112        long    ptokens;                /* Current number of P tokens */
 113        psched_time_t   t_c;            /* Time check-point */
 114        struct Qdisc    *qdisc;         /* Inner qdisc, default - bfifo queue */
 115        struct qdisc_watchdog watchdog; /* Watchdog timer */
 116};
 117
 118#define L2T(q,L)   qdisc_l2t((q)->R_tab,L)
 119#define L2T_P(q,L) qdisc_l2t((q)->P_tab,L)
 120
 121static int tbf_enqueue(struct sk_buff *skb, struct Qdisc* sch)
 122{
 123        struct tbf_sched_data *q = qdisc_priv(sch);
 124        int ret;
 125
 126        if (qdisc_pkt_len(skb) > q->max_size)
 127                return qdisc_reshape_fail(skb, sch);
 128
 129        ret = qdisc_enqueue(skb, q->qdisc);
 130        if (ret != NET_XMIT_SUCCESS) {
 131                if (net_xmit_drop_count(ret))
 132                        sch->qstats.drops++;
 133                return ret;
 134        }
 135
 136        sch->q.qlen++;
 137        sch->bstats.bytes += qdisc_pkt_len(skb);
 138        sch->bstats.packets++;
 139        return NET_XMIT_SUCCESS;
 140}
 141
 142static unsigned int tbf_drop(struct Qdisc* sch)
 143{
 144        struct tbf_sched_data *q = qdisc_priv(sch);
 145        unsigned int len = 0;
 146
 147        if (q->qdisc->ops->drop && (len = q->qdisc->ops->drop(q->qdisc)) != 0) {
 148                sch->q.qlen--;
 149                sch->qstats.drops++;
 150        }
 151        return len;
 152}
 153
 154static struct sk_buff *tbf_dequeue(struct Qdisc* sch)
 155{
 156        struct tbf_sched_data *q = qdisc_priv(sch);
 157        struct sk_buff *skb;
 158
 159        skb = q->qdisc->ops->peek(q->qdisc);
 160
 161        if (skb) {
 162                psched_time_t now;
 163                long toks;
 164                long ptoks = 0;
 165                unsigned int len = qdisc_pkt_len(skb);
 166
 167                now = psched_get_time();
 168                toks = psched_tdiff_bounded(now, q->t_c, q->buffer);
 169
 170                if (q->P_tab) {
 171                        ptoks = toks + q->ptokens;
 172                        if (ptoks > (long)q->mtu)
 173                                ptoks = q->mtu;
 174                        ptoks -= L2T_P(q, len);
 175                }
 176                toks += q->tokens;
 177                if (toks > (long)q->buffer)
 178                        toks = q->buffer;
 179                toks -= L2T(q, len);
 180
 181                if ((toks|ptoks) >= 0) {
 182                        skb = qdisc_dequeue_peeked(q->qdisc);
 183                        if (unlikely(!skb))
 184                                return NULL;
 185
 186                        q->t_c = now;
 187                        q->tokens = toks;
 188                        q->ptokens = ptoks;
 189                        sch->q.qlen--;
 190                        sch->flags &= ~TCQ_F_THROTTLED;
 191                        return skb;
 192                }
 193
 194                qdisc_watchdog_schedule(&q->watchdog,
 195                                        now + max_t(long, -toks, -ptoks));
 196
 197                /* Maybe we have a shorter packet in the queue,
 198                   which can be sent now. It sounds cool,
 199                   but, however, this is wrong in principle.
 200                   We MUST NOT reorder packets under these circumstances.
 201
 202                   Really, if we split the flow into independent
 203                   subflows, it would be a very good solution.
 204                   This is the main idea of all FQ algorithms
 205                   (cf. CSZ, HPFQ, HFSC)
 206                 */
 207
 208                sch->qstats.overlimits++;
 209        }
 210        return NULL;
 211}
 212
 213static void tbf_reset(struct Qdisc* sch)
 214{
 215        struct tbf_sched_data *q = qdisc_priv(sch);
 216
 217        qdisc_reset(q->qdisc);
 218        sch->q.qlen = 0;
 219        q->t_c = psched_get_time();
 220        q->tokens = q->buffer;
 221        q->ptokens = q->mtu;
 222        qdisc_watchdog_cancel(&q->watchdog);
 223}
 224
 225static const struct nla_policy tbf_policy[TCA_TBF_MAX + 1] = {
 226        [TCA_TBF_PARMS] = { .len = sizeof(struct tc_tbf_qopt) },
 227        [TCA_TBF_RTAB]  = { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
 228        [TCA_TBF_PTAB]  = { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
 229};
 230
 231static int tbf_change(struct Qdisc* sch, struct nlattr *opt)
 232{
 233        int err;
 234        struct tbf_sched_data *q = qdisc_priv(sch);
 235        struct nlattr *tb[TCA_TBF_PTAB + 1];
 236        struct tc_tbf_qopt *qopt;
 237        struct qdisc_rate_table *rtab = NULL;
 238        struct qdisc_rate_table *ptab = NULL;
 239        struct Qdisc *child = NULL;
 240        int max_size,n;
 241
 242        err = nla_parse_nested(tb, TCA_TBF_PTAB, opt, tbf_policy);
 243        if (err < 0)
 244                return err;
 245
 246        err = -EINVAL;
 247        if (tb[TCA_TBF_PARMS] == NULL)
 248                goto done;
 249
 250        qopt = nla_data(tb[TCA_TBF_PARMS]);
 251        rtab = qdisc_get_rtab(&qopt->rate, tb[TCA_TBF_RTAB]);
 252        if (rtab == NULL)
 253                goto done;
 254
 255        if (qopt->peakrate.rate) {
 256                if (qopt->peakrate.rate > qopt->rate.rate)
 257                        ptab = qdisc_get_rtab(&qopt->peakrate, tb[TCA_TBF_PTAB]);
 258                if (ptab == NULL)
 259                        goto done;
 260        }
 261
 262        for (n = 0; n < 256; n++)
 263                if (rtab->data[n] > qopt->buffer) break;
 264        max_size = (n << qopt->rate.cell_log)-1;
 265        if (ptab) {
 266                int size;
 267
 268                for (n = 0; n < 256; n++)
 269                        if (ptab->data[n] > qopt->mtu) break;
 270                size = (n << qopt->peakrate.cell_log)-1;
 271                if (size < max_size) max_size = size;
 272        }
 273        if (max_size < 0)
 274                goto done;
 275
 276        if (q->qdisc != &noop_qdisc) {
 277                err = fifo_set_limit(q->qdisc, qopt->limit);
 278                if (err)
 279                        goto done;
 280        } else if (qopt->limit > 0) {
 281                child = fifo_create_dflt(sch, &bfifo_qdisc_ops, qopt->limit);
 282                if (IS_ERR(child)) {
 283                        err = PTR_ERR(child);
 284                        goto done;
 285                }
 286        }
 287
 288        sch_tree_lock(sch);
 289        if (child) {
 290                qdisc_tree_decrease_qlen(q->qdisc, q->qdisc->q.qlen);
 291                qdisc_destroy(q->qdisc);
 292                q->qdisc = child;
 293        }
 294        q->limit = qopt->limit;
 295        q->mtu = qopt->mtu;
 296        q->max_size = max_size;
 297        q->buffer = qopt->buffer;
 298        q->tokens = q->buffer;
 299        q->ptokens = q->mtu;
 300
 301        swap(q->R_tab, rtab);
 302        swap(q->P_tab, ptab);
 303
 304        sch_tree_unlock(sch);
 305        err = 0;
 306done:
 307        if (rtab)
 308                qdisc_put_rtab(rtab);
 309        if (ptab)
 310                qdisc_put_rtab(ptab);
 311        return err;
 312}
 313
 314static int tbf_init(struct Qdisc* sch, struct nlattr *opt)
 315{
 316        struct tbf_sched_data *q = qdisc_priv(sch);
 317
 318        if (opt == NULL)
 319                return -EINVAL;
 320
 321        q->t_c = psched_get_time();
 322        qdisc_watchdog_init(&q->watchdog, sch);
 323        q->qdisc = &noop_qdisc;
 324
 325        return tbf_change(sch, opt);
 326}
 327
 328static void tbf_destroy(struct Qdisc *sch)
 329{
 330        struct tbf_sched_data *q = qdisc_priv(sch);
 331
 332        qdisc_watchdog_cancel(&q->watchdog);
 333
 334        if (q->P_tab)
 335                qdisc_put_rtab(q->P_tab);
 336        if (q->R_tab)
 337                qdisc_put_rtab(q->R_tab);
 338
 339        qdisc_destroy(q->qdisc);
 340}
 341
 342static int tbf_dump(struct Qdisc *sch, struct sk_buff *skb)
 343{
 344        struct tbf_sched_data *q = qdisc_priv(sch);
 345        struct nlattr *nest;
 346        struct tc_tbf_qopt opt;
 347
 348        nest = nla_nest_start(skb, TCA_OPTIONS);
 349        if (nest == NULL)
 350                goto nla_put_failure;
 351
 352        opt.limit = q->limit;
 353        opt.rate = q->R_tab->rate;
 354        if (q->P_tab)
 355                opt.peakrate = q->P_tab->rate;
 356        else
 357                memset(&opt.peakrate, 0, sizeof(opt.peakrate));
 358        opt.mtu = q->mtu;
 359        opt.buffer = q->buffer;
 360        NLA_PUT(skb, TCA_TBF_PARMS, sizeof(opt), &opt);
 361
 362        nla_nest_end(skb, nest);
 363        return skb->len;
 364
 365nla_put_failure:
 366        nla_nest_cancel(skb, nest);
 367        return -1;
 368}
 369
 370static int tbf_dump_class(struct Qdisc *sch, unsigned long cl,
 371                          struct sk_buff *skb, struct tcmsg *tcm)
 372{
 373        struct tbf_sched_data *q = qdisc_priv(sch);
 374
 375        tcm->tcm_handle |= TC_H_MIN(1);
 376        tcm->tcm_info = q->qdisc->handle;
 377
 378        return 0;
 379}
 380
 381static int tbf_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
 382                     struct Qdisc **old)
 383{
 384        struct tbf_sched_data *q = qdisc_priv(sch);
 385
 386        if (new == NULL)
 387                new = &noop_qdisc;
 388
 389        sch_tree_lock(sch);
 390        *old = q->qdisc;
 391        q->qdisc = new;
 392        qdisc_tree_decrease_qlen(*old, (*old)->q.qlen);
 393        qdisc_reset(*old);
 394        sch_tree_unlock(sch);
 395
 396        return 0;
 397}
 398
 399static struct Qdisc *tbf_leaf(struct Qdisc *sch, unsigned long arg)
 400{
 401        struct tbf_sched_data *q = qdisc_priv(sch);
 402        return q->qdisc;
 403}
 404
 405static unsigned long tbf_get(struct Qdisc *sch, u32 classid)
 406{
 407        return 1;
 408}
 409
 410static void tbf_put(struct Qdisc *sch, unsigned long arg)
 411{
 412}
 413
 414static void tbf_walk(struct Qdisc *sch, struct qdisc_walker *walker)
 415{
 416        if (!walker->stop) {
 417                if (walker->count >= walker->skip)
 418                        if (walker->fn(sch, 1, walker) < 0) {
 419                                walker->stop = 1;
 420                                return;
 421                        }
 422                walker->count++;
 423        }
 424}
 425
 426static const struct Qdisc_class_ops tbf_class_ops =
 427{
 428        .graft          =       tbf_graft,
 429        .leaf           =       tbf_leaf,
 430        .get            =       tbf_get,
 431        .put            =       tbf_put,
 432        .walk           =       tbf_walk,
 433        .dump           =       tbf_dump_class,
 434};
 435
 436static struct Qdisc_ops tbf_qdisc_ops __read_mostly = {
 437        .next           =       NULL,
 438        .cl_ops         =       &tbf_class_ops,
 439        .id             =       "tbf",
 440        .priv_size      =       sizeof(struct tbf_sched_data),
 441        .enqueue        =       tbf_enqueue,
 442        .dequeue        =       tbf_dequeue,
 443        .peek           =       qdisc_peek_dequeued,
 444        .drop           =       tbf_drop,
 445        .init           =       tbf_init,
 446        .reset          =       tbf_reset,
 447        .destroy        =       tbf_destroy,
 448        .change         =       tbf_change,
 449        .dump           =       tbf_dump,
 450        .owner          =       THIS_MODULE,
 451};
 452
 453static int __init tbf_module_init(void)
 454{
 455        return register_qdisc(&tbf_qdisc_ops);
 456}
 457
 458static void __exit tbf_module_exit(void)
 459{
 460        unregister_qdisc(&tbf_qdisc_ops);
 461}
 462module_init(tbf_module_init)
 463module_exit(tbf_module_exit)
 464MODULE_LICENSE("GPL");
 465