linux/mm/vmscan.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/vmscan.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 *
   6 *  Swap reorganised 29.12.95, Stephen Tweedie.
   7 *  kswapd added: 7.1.96  sct
   8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
   9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  11 *  Multiqueue VM started 5.8.00, Rik van Riel.
  12 */
  13
  14#include <linux/mm.h>
  15#include <linux/module.h>
  16#include <linux/gfp.h>
  17#include <linux/kernel_stat.h>
  18#include <linux/swap.h>
  19#include <linux/pagemap.h>
  20#include <linux/init.h>
  21#include <linux/highmem.h>
  22#include <linux/vmstat.h>
  23#include <linux/file.h>
  24#include <linux/writeback.h>
  25#include <linux/blkdev.h>
  26#include <linux/buffer_head.h>  /* for try_to_release_page(),
  27                                        buffer_heads_over_limit */
  28#include <linux/mm_inline.h>
  29#include <linux/pagevec.h>
  30#include <linux/backing-dev.h>
  31#include <linux/rmap.h>
  32#include <linux/topology.h>
  33#include <linux/cpu.h>
  34#include <linux/cpuset.h>
  35#include <linux/notifier.h>
  36#include <linux/rwsem.h>
  37#include <linux/delay.h>
  38#include <linux/kthread.h>
  39#include <linux/freezer.h>
  40#include <linux/memcontrol.h>
  41#include <linux/delayacct.h>
  42#include <linux/sysctl.h>
  43
  44#include <asm/tlbflush.h>
  45#include <asm/div64.h>
  46
  47#include <linux/swapops.h>
  48
  49#include "internal.h"
  50
  51struct scan_control {
  52        /* Incremented by the number of inactive pages that were scanned */
  53        unsigned long nr_scanned;
  54
  55        /* Number of pages freed so far during a call to shrink_zones() */
  56        unsigned long nr_reclaimed;
  57
  58        /* How many pages shrink_list() should reclaim */
  59        unsigned long nr_to_reclaim;
  60
  61        unsigned long hibernation_mode;
  62
  63        /* This context's GFP mask */
  64        gfp_t gfp_mask;
  65
  66        int may_writepage;
  67
  68        /* Can mapped pages be reclaimed? */
  69        int may_unmap;
  70
  71        /* Can pages be swapped as part of reclaim? */
  72        int may_swap;
  73
  74        int swappiness;
  75
  76        int order;
  77
  78        /*
  79         * Intend to reclaim enough contenious memory rather than to reclaim
  80         * enough amount memory. I.e, it's the mode for high order allocation.
  81         */
  82        bool lumpy_reclaim_mode;
  83
  84        /* Which cgroup do we reclaim from */
  85        struct mem_cgroup *mem_cgroup;
  86
  87        /*
  88         * Nodemask of nodes allowed by the caller. If NULL, all nodes
  89         * are scanned.
  90         */
  91        nodemask_t      *nodemask;
  92};
  93
  94#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
  95
  96#ifdef ARCH_HAS_PREFETCH
  97#define prefetch_prev_lru_page(_page, _base, _field)                    \
  98        do {                                                            \
  99                if ((_page)->lru.prev != _base) {                       \
 100                        struct page *prev;                              \
 101                                                                        \
 102                        prev = lru_to_page(&(_page->lru));              \
 103                        prefetch(&prev->_field);                        \
 104                }                                                       \
 105        } while (0)
 106#else
 107#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
 108#endif
 109
 110#ifdef ARCH_HAS_PREFETCHW
 111#define prefetchw_prev_lru_page(_page, _base, _field)                   \
 112        do {                                                            \
 113                if ((_page)->lru.prev != _base) {                       \
 114                        struct page *prev;                              \
 115                                                                        \
 116                        prev = lru_to_page(&(_page->lru));              \
 117                        prefetchw(&prev->_field);                       \
 118                }                                                       \
 119        } while (0)
 120#else
 121#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
 122#endif
 123
 124/*
 125 * From 0 .. 100.  Higher means more swappy.
 126 */
 127int vm_swappiness = 60;
 128long vm_total_pages;    /* The total number of pages which the VM controls */
 129
 130static LIST_HEAD(shrinker_list);
 131static DECLARE_RWSEM(shrinker_rwsem);
 132
 133#ifdef CONFIG_CGROUP_MEM_RES_CTLR
 134#define scanning_global_lru(sc) (!(sc)->mem_cgroup)
 135#else
 136#define scanning_global_lru(sc) (1)
 137#endif
 138
 139static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
 140                                                  struct scan_control *sc)
 141{
 142        if (!scanning_global_lru(sc))
 143                return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
 144
 145        return &zone->reclaim_stat;
 146}
 147
 148static unsigned long zone_nr_lru_pages(struct zone *zone,
 149                                struct scan_control *sc, enum lru_list lru)
 150{
 151        if (!scanning_global_lru(sc))
 152                return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
 153
 154        return zone_page_state(zone, NR_LRU_BASE + lru);
 155}
 156
 157
 158/*
 159 * Add a shrinker callback to be called from the vm
 160 */
 161void register_shrinker(struct shrinker *shrinker)
 162{
 163        shrinker->nr = 0;
 164        down_write(&shrinker_rwsem);
 165        list_add_tail(&shrinker->list, &shrinker_list);
 166        up_write(&shrinker_rwsem);
 167}
 168EXPORT_SYMBOL(register_shrinker);
 169
 170/*
 171 * Remove one
 172 */
 173void unregister_shrinker(struct shrinker *shrinker)
 174{
 175        down_write(&shrinker_rwsem);
 176        list_del(&shrinker->list);
 177        up_write(&shrinker_rwsem);
 178}
 179EXPORT_SYMBOL(unregister_shrinker);
 180
 181#define SHRINK_BATCH 128
 182/*
 183 * Call the shrink functions to age shrinkable caches
 184 *
 185 * Here we assume it costs one seek to replace a lru page and that it also
 186 * takes a seek to recreate a cache object.  With this in mind we age equal
 187 * percentages of the lru and ageable caches.  This should balance the seeks
 188 * generated by these structures.
 189 *
 190 * If the vm encountered mapped pages on the LRU it increase the pressure on
 191 * slab to avoid swapping.
 192 *
 193 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 194 *
 195 * `lru_pages' represents the number of on-LRU pages in all the zones which
 196 * are eligible for the caller's allocation attempt.  It is used for balancing
 197 * slab reclaim versus page reclaim.
 198 *
 199 * Returns the number of slab objects which we shrunk.
 200 */
 201unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
 202                        unsigned long lru_pages)
 203{
 204        struct shrinker *shrinker;
 205        unsigned long ret = 0;
 206
 207        if (scanned == 0)
 208                scanned = SWAP_CLUSTER_MAX;
 209
 210        if (!down_read_trylock(&shrinker_rwsem))
 211                return 1;       /* Assume we'll be able to shrink next time */
 212
 213        list_for_each_entry(shrinker, &shrinker_list, list) {
 214                unsigned long long delta;
 215                unsigned long total_scan;
 216                unsigned long max_pass;
 217
 218                max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask);
 219                delta = (4 * scanned) / shrinker->seeks;
 220                delta *= max_pass;
 221                do_div(delta, lru_pages + 1);
 222                shrinker->nr += delta;
 223                if (shrinker->nr < 0) {
 224                        printk(KERN_ERR "shrink_slab: %pF negative objects to "
 225                               "delete nr=%ld\n",
 226                               shrinker->shrink, shrinker->nr);
 227                        shrinker->nr = max_pass;
 228                }
 229
 230                /*
 231                 * Avoid risking looping forever due to too large nr value:
 232                 * never try to free more than twice the estimate number of
 233                 * freeable entries.
 234                 */
 235                if (shrinker->nr > max_pass * 2)
 236                        shrinker->nr = max_pass * 2;
 237
 238                total_scan = shrinker->nr;
 239                shrinker->nr = 0;
 240
 241                while (total_scan >= SHRINK_BATCH) {
 242                        long this_scan = SHRINK_BATCH;
 243                        int shrink_ret;
 244                        int nr_before;
 245
 246                        nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask);
 247                        shrink_ret = (*shrinker->shrink)(shrinker, this_scan,
 248                                                                gfp_mask);
 249                        if (shrink_ret == -1)
 250                                break;
 251                        if (shrink_ret < nr_before)
 252                                ret += nr_before - shrink_ret;
 253                        count_vm_events(SLABS_SCANNED, this_scan);
 254                        total_scan -= this_scan;
 255
 256                        cond_resched();
 257                }
 258
 259                shrinker->nr += total_scan;
 260        }
 261        up_read(&shrinker_rwsem);
 262        return ret;
 263}
 264
 265static inline int is_page_cache_freeable(struct page *page)
 266{
 267        /*
 268         * A freeable page cache page is referenced only by the caller
 269         * that isolated the page, the page cache radix tree and
 270         * optional buffer heads at page->private.
 271         */
 272        return page_count(page) - page_has_private(page) == 2;
 273}
 274
 275static int may_write_to_queue(struct backing_dev_info *bdi)
 276{
 277        if (current->flags & PF_SWAPWRITE)
 278                return 1;
 279        if (!bdi_write_congested(bdi))
 280                return 1;
 281        if (bdi == current->backing_dev_info)
 282                return 1;
 283        return 0;
 284}
 285
 286/*
 287 * We detected a synchronous write error writing a page out.  Probably
 288 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 289 * fsync(), msync() or close().
 290 *
 291 * The tricky part is that after writepage we cannot touch the mapping: nothing
 292 * prevents it from being freed up.  But we have a ref on the page and once
 293 * that page is locked, the mapping is pinned.
 294 *
 295 * We're allowed to run sleeping lock_page() here because we know the caller has
 296 * __GFP_FS.
 297 */
 298static void handle_write_error(struct address_space *mapping,
 299                                struct page *page, int error)
 300{
 301        lock_page_nosync(page);
 302        if (page_mapping(page) == mapping)
 303                mapping_set_error(mapping, error);
 304        unlock_page(page);
 305}
 306
 307/* Request for sync pageout. */
 308enum pageout_io {
 309        PAGEOUT_IO_ASYNC,
 310        PAGEOUT_IO_SYNC,
 311};
 312
 313/* possible outcome of pageout() */
 314typedef enum {
 315        /* failed to write page out, page is locked */
 316        PAGE_KEEP,
 317        /* move page to the active list, page is locked */
 318        PAGE_ACTIVATE,
 319        /* page has been sent to the disk successfully, page is unlocked */
 320        PAGE_SUCCESS,
 321        /* page is clean and locked */
 322        PAGE_CLEAN,
 323} pageout_t;
 324
 325/*
 326 * pageout is called by shrink_page_list() for each dirty page.
 327 * Calls ->writepage().
 328 */
 329static pageout_t pageout(struct page *page, struct address_space *mapping,
 330                                                enum pageout_io sync_writeback)
 331{
 332        /*
 333         * If the page is dirty, only perform writeback if that write
 334         * will be non-blocking.  To prevent this allocation from being
 335         * stalled by pagecache activity.  But note that there may be
 336         * stalls if we need to run get_block().  We could test
 337         * PagePrivate for that.
 338         *
 339         * If this process is currently in __generic_file_aio_write() against
 340         * this page's queue, we can perform writeback even if that
 341         * will block.
 342         *
 343         * If the page is swapcache, write it back even if that would
 344         * block, for some throttling. This happens by accident, because
 345         * swap_backing_dev_info is bust: it doesn't reflect the
 346         * congestion state of the swapdevs.  Easy to fix, if needed.
 347         */
 348        if (!is_page_cache_freeable(page))
 349                return PAGE_KEEP;
 350        if (!mapping) {
 351                /*
 352                 * Some data journaling orphaned pages can have
 353                 * page->mapping == NULL while being dirty with clean buffers.
 354                 */
 355                if (page_has_private(page)) {
 356                        if (try_to_free_buffers(page)) {
 357                                ClearPageDirty(page);
 358                                printk("%s: orphaned page\n", __func__);
 359                                return PAGE_CLEAN;
 360                        }
 361                }
 362                return PAGE_KEEP;
 363        }
 364        if (mapping->a_ops->writepage == NULL)
 365                return PAGE_ACTIVATE;
 366        if (!may_write_to_queue(mapping->backing_dev_info))
 367                return PAGE_KEEP;
 368
 369        if (clear_page_dirty_for_io(page)) {
 370                int res;
 371                struct writeback_control wbc = {
 372                        .sync_mode = WB_SYNC_NONE,
 373                        .nr_to_write = SWAP_CLUSTER_MAX,
 374                        .range_start = 0,
 375                        .range_end = LLONG_MAX,
 376                        .nonblocking = 1,
 377                        .for_reclaim = 1,
 378                };
 379
 380                SetPageReclaim(page);
 381                res = mapping->a_ops->writepage(page, &wbc);
 382                if (res < 0)
 383                        handle_write_error(mapping, page, res);
 384                if (res == AOP_WRITEPAGE_ACTIVATE) {
 385                        ClearPageReclaim(page);
 386                        return PAGE_ACTIVATE;
 387                }
 388
 389                /*
 390                 * Wait on writeback if requested to. This happens when
 391                 * direct reclaiming a large contiguous area and the
 392                 * first attempt to free a range of pages fails.
 393                 */
 394                if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
 395                        wait_on_page_writeback(page);
 396
 397                if (!PageWriteback(page)) {
 398                        /* synchronous write or broken a_ops? */
 399                        ClearPageReclaim(page);
 400                }
 401                inc_zone_page_state(page, NR_VMSCAN_WRITE);
 402                return PAGE_SUCCESS;
 403        }
 404
 405        return PAGE_CLEAN;
 406}
 407
 408/*
 409 * Same as remove_mapping, but if the page is removed from the mapping, it
 410 * gets returned with a refcount of 0.
 411 */
 412static int __remove_mapping(struct address_space *mapping, struct page *page)
 413{
 414        BUG_ON(!PageLocked(page));
 415        BUG_ON(mapping != page_mapping(page));
 416
 417        spin_lock_irq(&mapping->tree_lock);
 418        /*
 419         * The non racy check for a busy page.
 420         *
 421         * Must be careful with the order of the tests. When someone has
 422         * a ref to the page, it may be possible that they dirty it then
 423         * drop the reference. So if PageDirty is tested before page_count
 424         * here, then the following race may occur:
 425         *
 426         * get_user_pages(&page);
 427         * [user mapping goes away]
 428         * write_to(page);
 429         *                              !PageDirty(page)    [good]
 430         * SetPageDirty(page);
 431         * put_page(page);
 432         *                              !page_count(page)   [good, discard it]
 433         *
 434         * [oops, our write_to data is lost]
 435         *
 436         * Reversing the order of the tests ensures such a situation cannot
 437         * escape unnoticed. The smp_rmb is needed to ensure the page->flags
 438         * load is not satisfied before that of page->_count.
 439         *
 440         * Note that if SetPageDirty is always performed via set_page_dirty,
 441         * and thus under tree_lock, then this ordering is not required.
 442         */
 443        if (!page_freeze_refs(page, 2))
 444                goto cannot_free;
 445        /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
 446        if (unlikely(PageDirty(page))) {
 447                page_unfreeze_refs(page, 2);
 448                goto cannot_free;
 449        }
 450
 451        if (PageSwapCache(page)) {
 452                swp_entry_t swap = { .val = page_private(page) };
 453                __delete_from_swap_cache(page);
 454                spin_unlock_irq(&mapping->tree_lock);
 455                swapcache_free(swap, page);
 456        } else {
 457                __remove_from_page_cache(page);
 458                spin_unlock_irq(&mapping->tree_lock);
 459                mem_cgroup_uncharge_cache_page(page);
 460        }
 461
 462        return 1;
 463
 464cannot_free:
 465        spin_unlock_irq(&mapping->tree_lock);
 466        return 0;
 467}
 468
 469/*
 470 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 471 * someone else has a ref on the page, abort and return 0.  If it was
 472 * successfully detached, return 1.  Assumes the caller has a single ref on
 473 * this page.
 474 */
 475int remove_mapping(struct address_space *mapping, struct page *page)
 476{
 477        if (__remove_mapping(mapping, page)) {
 478                /*
 479                 * Unfreezing the refcount with 1 rather than 2 effectively
 480                 * drops the pagecache ref for us without requiring another
 481                 * atomic operation.
 482                 */
 483                page_unfreeze_refs(page, 1);
 484                return 1;
 485        }
 486        return 0;
 487}
 488
 489/**
 490 * putback_lru_page - put previously isolated page onto appropriate LRU list
 491 * @page: page to be put back to appropriate lru list
 492 *
 493 * Add previously isolated @page to appropriate LRU list.
 494 * Page may still be unevictable for other reasons.
 495 *
 496 * lru_lock must not be held, interrupts must be enabled.
 497 */
 498void putback_lru_page(struct page *page)
 499{
 500        int lru;
 501        int active = !!TestClearPageActive(page);
 502        int was_unevictable = PageUnevictable(page);
 503
 504        VM_BUG_ON(PageLRU(page));
 505
 506redo:
 507        ClearPageUnevictable(page);
 508
 509        if (page_evictable(page, NULL)) {
 510                /*
 511                 * For evictable pages, we can use the cache.
 512                 * In event of a race, worst case is we end up with an
 513                 * unevictable page on [in]active list.
 514                 * We know how to handle that.
 515                 */
 516                lru = active + page_lru_base_type(page);
 517                lru_cache_add_lru(page, lru);
 518        } else {
 519                /*
 520                 * Put unevictable pages directly on zone's unevictable
 521                 * list.
 522                 */
 523                lru = LRU_UNEVICTABLE;
 524                add_page_to_unevictable_list(page);
 525                /*
 526                 * When racing with an mlock clearing (page is
 527                 * unlocked), make sure that if the other thread does
 528                 * not observe our setting of PG_lru and fails
 529                 * isolation, we see PG_mlocked cleared below and move
 530                 * the page back to the evictable list.
 531                 *
 532                 * The other side is TestClearPageMlocked().
 533                 */
 534                smp_mb();
 535        }
 536
 537        /*
 538         * page's status can change while we move it among lru. If an evictable
 539         * page is on unevictable list, it never be freed. To avoid that,
 540         * check after we added it to the list, again.
 541         */
 542        if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
 543                if (!isolate_lru_page(page)) {
 544                        put_page(page);
 545                        goto redo;
 546                }
 547                /* This means someone else dropped this page from LRU
 548                 * So, it will be freed or putback to LRU again. There is
 549                 * nothing to do here.
 550                 */
 551        }
 552
 553        if (was_unevictable && lru != LRU_UNEVICTABLE)
 554                count_vm_event(UNEVICTABLE_PGRESCUED);
 555        else if (!was_unevictable && lru == LRU_UNEVICTABLE)
 556                count_vm_event(UNEVICTABLE_PGCULLED);
 557
 558        put_page(page);         /* drop ref from isolate */
 559}
 560
 561enum page_references {
 562        PAGEREF_RECLAIM,
 563        PAGEREF_RECLAIM_CLEAN,
 564        PAGEREF_KEEP,
 565        PAGEREF_ACTIVATE,
 566};
 567
 568static enum page_references page_check_references(struct page *page,
 569                                                  struct scan_control *sc)
 570{
 571        int referenced_ptes, referenced_page;
 572        unsigned long vm_flags;
 573
 574        referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
 575        referenced_page = TestClearPageReferenced(page);
 576
 577        /* Lumpy reclaim - ignore references */
 578        if (sc->lumpy_reclaim_mode)
 579                return PAGEREF_RECLAIM;
 580
 581        /*
 582         * Mlock lost the isolation race with us.  Let try_to_unmap()
 583         * move the page to the unevictable list.
 584         */
 585        if (vm_flags & VM_LOCKED)
 586                return PAGEREF_RECLAIM;
 587
 588        if (referenced_ptes) {
 589                if (PageAnon(page))
 590                        return PAGEREF_ACTIVATE;
 591                /*
 592                 * All mapped pages start out with page table
 593                 * references from the instantiating fault, so we need
 594                 * to look twice if a mapped file page is used more
 595                 * than once.
 596                 *
 597                 * Mark it and spare it for another trip around the
 598                 * inactive list.  Another page table reference will
 599                 * lead to its activation.
 600                 *
 601                 * Note: the mark is set for activated pages as well
 602                 * so that recently deactivated but used pages are
 603                 * quickly recovered.
 604                 */
 605                SetPageReferenced(page);
 606
 607                if (referenced_page)
 608                        return PAGEREF_ACTIVATE;
 609
 610                return PAGEREF_KEEP;
 611        }
 612
 613        /* Reclaim if clean, defer dirty pages to writeback */
 614        if (referenced_page)
 615                return PAGEREF_RECLAIM_CLEAN;
 616
 617        return PAGEREF_RECLAIM;
 618}
 619
 620/*
 621 * shrink_page_list() returns the number of reclaimed pages
 622 */
 623static unsigned long shrink_page_list(struct list_head *page_list,
 624                                        struct scan_control *sc,
 625                                        enum pageout_io sync_writeback)
 626{
 627        LIST_HEAD(ret_pages);
 628        struct pagevec freed_pvec;
 629        int pgactivate = 0;
 630        unsigned long nr_reclaimed = 0;
 631
 632        cond_resched();
 633
 634        pagevec_init(&freed_pvec, 1);
 635        while (!list_empty(page_list)) {
 636                enum page_references references;
 637                struct address_space *mapping;
 638                struct page *page;
 639                int may_enter_fs;
 640
 641                cond_resched();
 642
 643                page = lru_to_page(page_list);
 644                list_del(&page->lru);
 645
 646                if (!trylock_page(page))
 647                        goto keep;
 648
 649                VM_BUG_ON(PageActive(page));
 650
 651                sc->nr_scanned++;
 652
 653                if (unlikely(!page_evictable(page, NULL)))
 654                        goto cull_mlocked;
 655
 656                if (!sc->may_unmap && page_mapped(page))
 657                        goto keep_locked;
 658
 659                /* Double the slab pressure for mapped and swapcache pages */
 660                if (page_mapped(page) || PageSwapCache(page))
 661                        sc->nr_scanned++;
 662
 663                may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
 664                        (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
 665
 666                if (PageWriteback(page)) {
 667                        /*
 668                         * Synchronous reclaim is performed in two passes,
 669                         * first an asynchronous pass over the list to
 670                         * start parallel writeback, and a second synchronous
 671                         * pass to wait for the IO to complete.  Wait here
 672                         * for any page for which writeback has already
 673                         * started.
 674                         */
 675                        if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
 676                                wait_on_page_writeback(page);
 677                        else
 678                                goto keep_locked;
 679                }
 680
 681                references = page_check_references(page, sc);
 682                switch (references) {
 683                case PAGEREF_ACTIVATE:
 684                        goto activate_locked;
 685                case PAGEREF_KEEP:
 686                        goto keep_locked;
 687                case PAGEREF_RECLAIM:
 688                case PAGEREF_RECLAIM_CLEAN:
 689                        ; /* try to reclaim the page below */
 690                }
 691
 692                /*
 693                 * Anonymous process memory has backing store?
 694                 * Try to allocate it some swap space here.
 695                 */
 696                if (PageAnon(page) && !PageSwapCache(page)) {
 697                        if (!(sc->gfp_mask & __GFP_IO))
 698                                goto keep_locked;
 699                        if (!add_to_swap(page))
 700                                goto activate_locked;
 701                        may_enter_fs = 1;
 702                }
 703
 704                mapping = page_mapping(page);
 705
 706                /*
 707                 * The page is mapped into the page tables of one or more
 708                 * processes. Try to unmap it here.
 709                 */
 710                if (page_mapped(page) && mapping) {
 711                        switch (try_to_unmap(page, TTU_UNMAP)) {
 712                        case SWAP_FAIL:
 713                                goto activate_locked;
 714                        case SWAP_AGAIN:
 715                                goto keep_locked;
 716                        case SWAP_MLOCK:
 717                                goto cull_mlocked;
 718                        case SWAP_SUCCESS:
 719                                ; /* try to free the page below */
 720                        }
 721                }
 722
 723                if (PageDirty(page)) {
 724                        if (references == PAGEREF_RECLAIM_CLEAN)
 725                                goto keep_locked;
 726                        if (!may_enter_fs)
 727                                goto keep_locked;
 728                        if (!sc->may_writepage)
 729                                goto keep_locked;
 730
 731                        /* Page is dirty, try to write it out here */
 732                        switch (pageout(page, mapping, sync_writeback)) {
 733                        case PAGE_KEEP:
 734                                goto keep_locked;
 735                        case PAGE_ACTIVATE:
 736                                goto activate_locked;
 737                        case PAGE_SUCCESS:
 738                                if (PageWriteback(page) || PageDirty(page))
 739                                        goto keep;
 740                                /*
 741                                 * A synchronous write - probably a ramdisk.  Go
 742                                 * ahead and try to reclaim the page.
 743                                 */
 744                                if (!trylock_page(page))
 745                                        goto keep;
 746                                if (PageDirty(page) || PageWriteback(page))
 747                                        goto keep_locked;
 748                                mapping = page_mapping(page);
 749                        case PAGE_CLEAN:
 750                                ; /* try to free the page below */
 751                        }
 752                }
 753
 754                /*
 755                 * If the page has buffers, try to free the buffer mappings
 756                 * associated with this page. If we succeed we try to free
 757                 * the page as well.
 758                 *
 759                 * We do this even if the page is PageDirty().
 760                 * try_to_release_page() does not perform I/O, but it is
 761                 * possible for a page to have PageDirty set, but it is actually
 762                 * clean (all its buffers are clean).  This happens if the
 763                 * buffers were written out directly, with submit_bh(). ext3
 764                 * will do this, as well as the blockdev mapping.
 765                 * try_to_release_page() will discover that cleanness and will
 766                 * drop the buffers and mark the page clean - it can be freed.
 767                 *
 768                 * Rarely, pages can have buffers and no ->mapping.  These are
 769                 * the pages which were not successfully invalidated in
 770                 * truncate_complete_page().  We try to drop those buffers here
 771                 * and if that worked, and the page is no longer mapped into
 772                 * process address space (page_count == 1) it can be freed.
 773                 * Otherwise, leave the page on the LRU so it is swappable.
 774                 */
 775                if (page_has_private(page)) {
 776                        if (!try_to_release_page(page, sc->gfp_mask))
 777                                goto activate_locked;
 778                        if (!mapping && page_count(page) == 1) {
 779                                unlock_page(page);
 780                                if (put_page_testzero(page))
 781                                        goto free_it;
 782                                else {
 783                                        /*
 784                                         * rare race with speculative reference.
 785                                         * the speculative reference will free
 786                                         * this page shortly, so we may
 787                                         * increment nr_reclaimed here (and
 788                                         * leave it off the LRU).
 789                                         */
 790                                        nr_reclaimed++;
 791                                        continue;
 792                                }
 793                        }
 794                }
 795
 796                if (!mapping || !__remove_mapping(mapping, page))
 797                        goto keep_locked;
 798
 799                /*
 800                 * At this point, we have no other references and there is
 801                 * no way to pick any more up (removed from LRU, removed
 802                 * from pagecache). Can use non-atomic bitops now (and
 803                 * we obviously don't have to worry about waking up a process
 804                 * waiting on the page lock, because there are no references.
 805                 */
 806                __clear_page_locked(page);
 807free_it:
 808                nr_reclaimed++;
 809                if (!pagevec_add(&freed_pvec, page)) {
 810                        __pagevec_free(&freed_pvec);
 811                        pagevec_reinit(&freed_pvec);
 812                }
 813                continue;
 814
 815cull_mlocked:
 816                if (PageSwapCache(page))
 817                        try_to_free_swap(page);
 818                unlock_page(page);
 819                putback_lru_page(page);
 820                continue;
 821
 822activate_locked:
 823                /* Not a candidate for swapping, so reclaim swap space. */
 824                if (PageSwapCache(page) && vm_swap_full())
 825                        try_to_free_swap(page);
 826                VM_BUG_ON(PageActive(page));
 827                SetPageActive(page);
 828                pgactivate++;
 829keep_locked:
 830                unlock_page(page);
 831keep:
 832                list_add(&page->lru, &ret_pages);
 833                VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
 834        }
 835        list_splice(&ret_pages, page_list);
 836        if (pagevec_count(&freed_pvec))
 837                __pagevec_free(&freed_pvec);
 838        count_vm_events(PGACTIVATE, pgactivate);
 839        return nr_reclaimed;
 840}
 841
 842/*
 843 * Attempt to remove the specified page from its LRU.  Only take this page
 844 * if it is of the appropriate PageActive status.  Pages which are being
 845 * freed elsewhere are also ignored.
 846 *
 847 * page:        page to consider
 848 * mode:        one of the LRU isolation modes defined above
 849 *
 850 * returns 0 on success, -ve errno on failure.
 851 */
 852int __isolate_lru_page(struct page *page, int mode, int file)
 853{
 854        int ret = -EINVAL;
 855
 856        /* Only take pages on the LRU. */
 857        if (!PageLRU(page))
 858                return ret;
 859
 860        /*
 861         * When checking the active state, we need to be sure we are
 862         * dealing with comparible boolean values.  Take the logical not
 863         * of each.
 864         */
 865        if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
 866                return ret;
 867
 868        if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
 869                return ret;
 870
 871        /*
 872         * When this function is being called for lumpy reclaim, we
 873         * initially look into all LRU pages, active, inactive and
 874         * unevictable; only give shrink_page_list evictable pages.
 875         */
 876        if (PageUnevictable(page))
 877                return ret;
 878
 879        ret = -EBUSY;
 880
 881        if (likely(get_page_unless_zero(page))) {
 882                /*
 883                 * Be careful not to clear PageLRU until after we're
 884                 * sure the page is not being freed elsewhere -- the
 885                 * page release code relies on it.
 886                 */
 887                ClearPageLRU(page);
 888                ret = 0;
 889        }
 890
 891        return ret;
 892}
 893
 894/*
 895 * zone->lru_lock is heavily contended.  Some of the functions that
 896 * shrink the lists perform better by taking out a batch of pages
 897 * and working on them outside the LRU lock.
 898 *
 899 * For pagecache intensive workloads, this function is the hottest
 900 * spot in the kernel (apart from copy_*_user functions).
 901 *
 902 * Appropriate locks must be held before calling this function.
 903 *
 904 * @nr_to_scan: The number of pages to look through on the list.
 905 * @src:        The LRU list to pull pages off.
 906 * @dst:        The temp list to put pages on to.
 907 * @scanned:    The number of pages that were scanned.
 908 * @order:      The caller's attempted allocation order
 909 * @mode:       One of the LRU isolation modes
 910 * @file:       True [1] if isolating file [!anon] pages
 911 *
 912 * returns how many pages were moved onto *@dst.
 913 */
 914static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
 915                struct list_head *src, struct list_head *dst,
 916                unsigned long *scanned, int order, int mode, int file)
 917{
 918        unsigned long nr_taken = 0;
 919        unsigned long scan;
 920
 921        for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
 922                struct page *page;
 923                unsigned long pfn;
 924                unsigned long end_pfn;
 925                unsigned long page_pfn;
 926                int zone_id;
 927
 928                page = lru_to_page(src);
 929                prefetchw_prev_lru_page(page, src, flags);
 930
 931                VM_BUG_ON(!PageLRU(page));
 932
 933                switch (__isolate_lru_page(page, mode, file)) {
 934                case 0:
 935                        list_move(&page->lru, dst);
 936                        mem_cgroup_del_lru(page);
 937                        nr_taken++;
 938                        break;
 939
 940                case -EBUSY:
 941                        /* else it is being freed elsewhere */
 942                        list_move(&page->lru, src);
 943                        mem_cgroup_rotate_lru_list(page, page_lru(page));
 944                        continue;
 945
 946                default:
 947                        BUG();
 948                }
 949
 950                if (!order)
 951                        continue;
 952
 953                /*
 954                 * Attempt to take all pages in the order aligned region
 955                 * surrounding the tag page.  Only take those pages of
 956                 * the same active state as that tag page.  We may safely
 957                 * round the target page pfn down to the requested order
 958                 * as the mem_map is guarenteed valid out to MAX_ORDER,
 959                 * where that page is in a different zone we will detect
 960                 * it from its zone id and abort this block scan.
 961                 */
 962                zone_id = page_zone_id(page);
 963                page_pfn = page_to_pfn(page);
 964                pfn = page_pfn & ~((1 << order) - 1);
 965                end_pfn = pfn + (1 << order);
 966                for (; pfn < end_pfn; pfn++) {
 967                        struct page *cursor_page;
 968
 969                        /* The target page is in the block, ignore it. */
 970                        if (unlikely(pfn == page_pfn))
 971                                continue;
 972
 973                        /* Avoid holes within the zone. */
 974                        if (unlikely(!pfn_valid_within(pfn)))
 975                                break;
 976
 977                        cursor_page = pfn_to_page(pfn);
 978
 979                        /* Check that we have not crossed a zone boundary. */
 980                        if (unlikely(page_zone_id(cursor_page) != zone_id))
 981                                continue;
 982
 983                        /*
 984                         * If we don't have enough swap space, reclaiming of
 985                         * anon page which don't already have a swap slot is
 986                         * pointless.
 987                         */
 988                        if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
 989                                        !PageSwapCache(cursor_page))
 990                                continue;
 991
 992                        if (__isolate_lru_page(cursor_page, mode, file) == 0) {
 993                                list_move(&cursor_page->lru, dst);
 994                                mem_cgroup_del_lru(cursor_page);
 995                                nr_taken++;
 996                                scan++;
 997                        }
 998                }
 999        }
1000
1001        *scanned = scan;
1002        return nr_taken;
1003}
1004
1005static unsigned long isolate_pages_global(unsigned long nr,
1006                                        struct list_head *dst,
1007                                        unsigned long *scanned, int order,
1008                                        int mode, struct zone *z,
1009                                        int active, int file)
1010{
1011        int lru = LRU_BASE;
1012        if (active)
1013                lru += LRU_ACTIVE;
1014        if (file)
1015                lru += LRU_FILE;
1016        return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1017                                                                mode, file);
1018}
1019
1020/*
1021 * clear_active_flags() is a helper for shrink_active_list(), clearing
1022 * any active bits from the pages in the list.
1023 */
1024static unsigned long clear_active_flags(struct list_head *page_list,
1025                                        unsigned int *count)
1026{
1027        int nr_active = 0;
1028        int lru;
1029        struct page *page;
1030
1031        list_for_each_entry(page, page_list, lru) {
1032                lru = page_lru_base_type(page);
1033                if (PageActive(page)) {
1034                        lru += LRU_ACTIVE;
1035                        ClearPageActive(page);
1036                        nr_active++;
1037                }
1038                count[lru]++;
1039        }
1040
1041        return nr_active;
1042}
1043
1044/**
1045 * isolate_lru_page - tries to isolate a page from its LRU list
1046 * @page: page to isolate from its LRU list
1047 *
1048 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1049 * vmstat statistic corresponding to whatever LRU list the page was on.
1050 *
1051 * Returns 0 if the page was removed from an LRU list.
1052 * Returns -EBUSY if the page was not on an LRU list.
1053 *
1054 * The returned page will have PageLRU() cleared.  If it was found on
1055 * the active list, it will have PageActive set.  If it was found on
1056 * the unevictable list, it will have the PageUnevictable bit set. That flag
1057 * may need to be cleared by the caller before letting the page go.
1058 *
1059 * The vmstat statistic corresponding to the list on which the page was
1060 * found will be decremented.
1061 *
1062 * Restrictions:
1063 * (1) Must be called with an elevated refcount on the page. This is a
1064 *     fundamentnal difference from isolate_lru_pages (which is called
1065 *     without a stable reference).
1066 * (2) the lru_lock must not be held.
1067 * (3) interrupts must be enabled.
1068 */
1069int isolate_lru_page(struct page *page)
1070{
1071        int ret = -EBUSY;
1072
1073        if (PageLRU(page)) {
1074                struct zone *zone = page_zone(page);
1075
1076                spin_lock_irq(&zone->lru_lock);
1077                if (PageLRU(page) && get_page_unless_zero(page)) {
1078                        int lru = page_lru(page);
1079                        ret = 0;
1080                        ClearPageLRU(page);
1081
1082                        del_page_from_lru_list(zone, page, lru);
1083                }
1084                spin_unlock_irq(&zone->lru_lock);
1085        }
1086        return ret;
1087}
1088
1089/*
1090 * Are there way too many processes in the direct reclaim path already?
1091 */
1092static int too_many_isolated(struct zone *zone, int file,
1093                struct scan_control *sc)
1094{
1095        unsigned long inactive, isolated;
1096
1097        if (current_is_kswapd())
1098                return 0;
1099
1100        if (!scanning_global_lru(sc))
1101                return 0;
1102
1103        if (file) {
1104                inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1105                isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1106        } else {
1107                inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1108                isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1109        }
1110
1111        return isolated > inactive;
1112}
1113
1114/*
1115 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1116 * of reclaimed pages
1117 */
1118static unsigned long shrink_inactive_list(unsigned long max_scan,
1119                        struct zone *zone, struct scan_control *sc,
1120                        int priority, int file)
1121{
1122        LIST_HEAD(page_list);
1123        struct pagevec pvec;
1124        unsigned long nr_scanned = 0;
1125        unsigned long nr_reclaimed = 0;
1126        struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1127
1128        while (unlikely(too_many_isolated(zone, file, sc))) {
1129                congestion_wait(BLK_RW_ASYNC, HZ/10);
1130
1131                /* We are about to die and free our memory. Return now. */
1132                if (fatal_signal_pending(current))
1133                        return SWAP_CLUSTER_MAX;
1134        }
1135
1136
1137        pagevec_init(&pvec, 1);
1138
1139        lru_add_drain();
1140        spin_lock_irq(&zone->lru_lock);
1141        do {
1142                struct page *page;
1143                unsigned long nr_taken;
1144                unsigned long nr_scan;
1145                unsigned long nr_freed;
1146                unsigned long nr_active;
1147                unsigned int count[NR_LRU_LISTS] = { 0, };
1148                int mode = sc->lumpy_reclaim_mode ? ISOLATE_BOTH : ISOLATE_INACTIVE;
1149                unsigned long nr_anon;
1150                unsigned long nr_file;
1151
1152                if (scanning_global_lru(sc)) {
1153                        nr_taken = isolate_pages_global(SWAP_CLUSTER_MAX,
1154                                                        &page_list, &nr_scan,
1155                                                        sc->order, mode,
1156                                                        zone, 0, file);
1157                        zone->pages_scanned += nr_scan;
1158                        if (current_is_kswapd())
1159                                __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1160                                                       nr_scan);
1161                        else
1162                                __count_zone_vm_events(PGSCAN_DIRECT, zone,
1163                                                       nr_scan);
1164                } else {
1165                        nr_taken = mem_cgroup_isolate_pages(SWAP_CLUSTER_MAX,
1166                                                        &page_list, &nr_scan,
1167                                                        sc->order, mode,
1168                                                        zone, sc->mem_cgroup,
1169                                                        0, file);
1170                        /*
1171                         * mem_cgroup_isolate_pages() keeps track of
1172                         * scanned pages on its own.
1173                         */
1174                }
1175
1176                if (nr_taken == 0)
1177                        goto done;
1178
1179                nr_active = clear_active_flags(&page_list, count);
1180                __count_vm_events(PGDEACTIVATE, nr_active);
1181
1182                __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1183                                                -count[LRU_ACTIVE_FILE]);
1184                __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1185                                                -count[LRU_INACTIVE_FILE]);
1186                __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1187                                                -count[LRU_ACTIVE_ANON]);
1188                __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1189                                                -count[LRU_INACTIVE_ANON]);
1190
1191                nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1192                nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1193                __mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon);
1194                __mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file);
1195
1196                reclaim_stat->recent_scanned[0] += nr_anon;
1197                reclaim_stat->recent_scanned[1] += nr_file;
1198
1199                spin_unlock_irq(&zone->lru_lock);
1200
1201                nr_scanned += nr_scan;
1202                nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1203
1204                /*
1205                 * If we are direct reclaiming for contiguous pages and we do
1206                 * not reclaim everything in the list, try again and wait
1207                 * for IO to complete. This will stall high-order allocations
1208                 * but that should be acceptable to the caller
1209                 */
1210                if (nr_freed < nr_taken && !current_is_kswapd() &&
1211                    sc->lumpy_reclaim_mode) {
1212                        congestion_wait(BLK_RW_ASYNC, HZ/10);
1213
1214                        /*
1215                         * The attempt at page out may have made some
1216                         * of the pages active, mark them inactive again.
1217                         */
1218                        nr_active = clear_active_flags(&page_list, count);
1219                        count_vm_events(PGDEACTIVATE, nr_active);
1220
1221                        nr_freed += shrink_page_list(&page_list, sc,
1222                                                        PAGEOUT_IO_SYNC);
1223                }
1224
1225                nr_reclaimed += nr_freed;
1226
1227                local_irq_disable();
1228                if (current_is_kswapd())
1229                        __count_vm_events(KSWAPD_STEAL, nr_freed);
1230                __count_zone_vm_events(PGSTEAL, zone, nr_freed);
1231
1232                spin_lock(&zone->lru_lock);
1233                /*
1234                 * Put back any unfreeable pages.
1235                 */
1236                while (!list_empty(&page_list)) {
1237                        int lru;
1238                        page = lru_to_page(&page_list);
1239                        VM_BUG_ON(PageLRU(page));
1240                        list_del(&page->lru);
1241                        if (unlikely(!page_evictable(page, NULL))) {
1242                                spin_unlock_irq(&zone->lru_lock);
1243                                putback_lru_page(page);
1244                                spin_lock_irq(&zone->lru_lock);
1245                                continue;
1246                        }
1247                        SetPageLRU(page);
1248                        lru = page_lru(page);
1249                        add_page_to_lru_list(zone, page, lru);
1250                        if (is_active_lru(lru)) {
1251                                int file = is_file_lru(lru);
1252                                reclaim_stat->recent_rotated[file]++;
1253                        }
1254                        if (!pagevec_add(&pvec, page)) {
1255                                spin_unlock_irq(&zone->lru_lock);
1256                                __pagevec_release(&pvec);
1257                                spin_lock_irq(&zone->lru_lock);
1258                        }
1259                }
1260                __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1261                __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1262
1263        } while (nr_scanned < max_scan);
1264
1265done:
1266        spin_unlock_irq(&zone->lru_lock);
1267        pagevec_release(&pvec);
1268        return nr_reclaimed;
1269}
1270
1271/*
1272 * We are about to scan this zone at a certain priority level.  If that priority
1273 * level is smaller (ie: more urgent) than the previous priority, then note
1274 * that priority level within the zone.  This is done so that when the next
1275 * process comes in to scan this zone, it will immediately start out at this
1276 * priority level rather than having to build up its own scanning priority.
1277 * Here, this priority affects only the reclaim-mapped threshold.
1278 */
1279static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1280{
1281        if (priority < zone->prev_priority)
1282                zone->prev_priority = priority;
1283}
1284
1285/*
1286 * This moves pages from the active list to the inactive list.
1287 *
1288 * We move them the other way if the page is referenced by one or more
1289 * processes, from rmap.
1290 *
1291 * If the pages are mostly unmapped, the processing is fast and it is
1292 * appropriate to hold zone->lru_lock across the whole operation.  But if
1293 * the pages are mapped, the processing is slow (page_referenced()) so we
1294 * should drop zone->lru_lock around each page.  It's impossible to balance
1295 * this, so instead we remove the pages from the LRU while processing them.
1296 * It is safe to rely on PG_active against the non-LRU pages in here because
1297 * nobody will play with that bit on a non-LRU page.
1298 *
1299 * The downside is that we have to touch page->_count against each page.
1300 * But we had to alter page->flags anyway.
1301 */
1302
1303static void move_active_pages_to_lru(struct zone *zone,
1304                                     struct list_head *list,
1305                                     enum lru_list lru)
1306{
1307        unsigned long pgmoved = 0;
1308        struct pagevec pvec;
1309        struct page *page;
1310
1311        pagevec_init(&pvec, 1);
1312
1313        while (!list_empty(list)) {
1314                page = lru_to_page(list);
1315
1316                VM_BUG_ON(PageLRU(page));
1317                SetPageLRU(page);
1318
1319                list_move(&page->lru, &zone->lru[lru].list);
1320                mem_cgroup_add_lru_list(page, lru);
1321                pgmoved++;
1322
1323                if (!pagevec_add(&pvec, page) || list_empty(list)) {
1324                        spin_unlock_irq(&zone->lru_lock);
1325                        if (buffer_heads_over_limit)
1326                                pagevec_strip(&pvec);
1327                        __pagevec_release(&pvec);
1328                        spin_lock_irq(&zone->lru_lock);
1329                }
1330        }
1331        __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1332        if (!is_active_lru(lru))
1333                __count_vm_events(PGDEACTIVATE, pgmoved);
1334}
1335
1336static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1337                        struct scan_control *sc, int priority, int file)
1338{
1339        unsigned long nr_taken;
1340        unsigned long pgscanned;
1341        unsigned long vm_flags;
1342        LIST_HEAD(l_hold);      /* The pages which were snipped off */
1343        LIST_HEAD(l_active);
1344        LIST_HEAD(l_inactive);
1345        struct page *page;
1346        struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1347        unsigned long nr_rotated = 0;
1348
1349        lru_add_drain();
1350        spin_lock_irq(&zone->lru_lock);
1351        if (scanning_global_lru(sc)) {
1352                nr_taken = isolate_pages_global(nr_pages, &l_hold,
1353                                                &pgscanned, sc->order,
1354                                                ISOLATE_ACTIVE, zone,
1355                                                1, file);
1356                zone->pages_scanned += pgscanned;
1357        } else {
1358                nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1359                                                &pgscanned, sc->order,
1360                                                ISOLATE_ACTIVE, zone,
1361                                                sc->mem_cgroup, 1, file);
1362                /*
1363                 * mem_cgroup_isolate_pages() keeps track of
1364                 * scanned pages on its own.
1365                 */
1366        }
1367
1368        reclaim_stat->recent_scanned[file] += nr_taken;
1369
1370        __count_zone_vm_events(PGREFILL, zone, pgscanned);
1371        if (file)
1372                __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1373        else
1374                __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1375        __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1376        spin_unlock_irq(&zone->lru_lock);
1377
1378        while (!list_empty(&l_hold)) {
1379                cond_resched();
1380                page = lru_to_page(&l_hold);
1381                list_del(&page->lru);
1382
1383                if (unlikely(!page_evictable(page, NULL))) {
1384                        putback_lru_page(page);
1385                        continue;
1386                }
1387
1388                if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1389                        nr_rotated++;
1390                        /*
1391                         * Identify referenced, file-backed active pages and
1392                         * give them one more trip around the active list. So
1393                         * that executable code get better chances to stay in
1394                         * memory under moderate memory pressure.  Anon pages
1395                         * are not likely to be evicted by use-once streaming
1396                         * IO, plus JVM can create lots of anon VM_EXEC pages,
1397                         * so we ignore them here.
1398                         */
1399                        if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1400                                list_add(&page->lru, &l_active);
1401                                continue;
1402                        }
1403                }
1404
1405                ClearPageActive(page);  /* we are de-activating */
1406                list_add(&page->lru, &l_inactive);
1407        }
1408
1409        /*
1410         * Move pages back to the lru list.
1411         */
1412        spin_lock_irq(&zone->lru_lock);
1413        /*
1414         * Count referenced pages from currently used mappings as rotated,
1415         * even though only some of them are actually re-activated.  This
1416         * helps balance scan pressure between file and anonymous pages in
1417         * get_scan_ratio.
1418         */
1419        reclaim_stat->recent_rotated[file] += nr_rotated;
1420
1421        move_active_pages_to_lru(zone, &l_active,
1422                                                LRU_ACTIVE + file * LRU_FILE);
1423        move_active_pages_to_lru(zone, &l_inactive,
1424                                                LRU_BASE   + file * LRU_FILE);
1425        __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1426        spin_unlock_irq(&zone->lru_lock);
1427}
1428
1429static int inactive_anon_is_low_global(struct zone *zone)
1430{
1431        unsigned long active, inactive;
1432
1433        active = zone_page_state(zone, NR_ACTIVE_ANON);
1434        inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1435
1436        if (inactive * zone->inactive_ratio < active)
1437                return 1;
1438
1439        return 0;
1440}
1441
1442/**
1443 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1444 * @zone: zone to check
1445 * @sc:   scan control of this context
1446 *
1447 * Returns true if the zone does not have enough inactive anon pages,
1448 * meaning some active anon pages need to be deactivated.
1449 */
1450static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1451{
1452        int low;
1453
1454        if (scanning_global_lru(sc))
1455                low = inactive_anon_is_low_global(zone);
1456        else
1457                low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1458        return low;
1459}
1460
1461static int inactive_file_is_low_global(struct zone *zone)
1462{
1463        unsigned long active, inactive;
1464
1465        active = zone_page_state(zone, NR_ACTIVE_FILE);
1466        inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1467
1468        return (active > inactive);
1469}
1470
1471/**
1472 * inactive_file_is_low - check if file pages need to be deactivated
1473 * @zone: zone to check
1474 * @sc:   scan control of this context
1475 *
1476 * When the system is doing streaming IO, memory pressure here
1477 * ensures that active file pages get deactivated, until more
1478 * than half of the file pages are on the inactive list.
1479 *
1480 * Once we get to that situation, protect the system's working
1481 * set from being evicted by disabling active file page aging.
1482 *
1483 * This uses a different ratio than the anonymous pages, because
1484 * the page cache uses a use-once replacement algorithm.
1485 */
1486static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1487{
1488        int low;
1489
1490        if (scanning_global_lru(sc))
1491                low = inactive_file_is_low_global(zone);
1492        else
1493                low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1494        return low;
1495}
1496
1497static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1498                                int file)
1499{
1500        if (file)
1501                return inactive_file_is_low(zone, sc);
1502        else
1503                return inactive_anon_is_low(zone, sc);
1504}
1505
1506static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1507        struct zone *zone, struct scan_control *sc, int priority)
1508{
1509        int file = is_file_lru(lru);
1510
1511        if (is_active_lru(lru)) {
1512                if (inactive_list_is_low(zone, sc, file))
1513                    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1514                return 0;
1515        }
1516
1517        return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1518}
1519
1520/*
1521 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1522 * until we collected @swap_cluster_max pages to scan.
1523 */
1524static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1525                                       unsigned long *nr_saved_scan)
1526{
1527        unsigned long nr;
1528
1529        *nr_saved_scan += nr_to_scan;
1530        nr = *nr_saved_scan;
1531
1532        if (nr >= SWAP_CLUSTER_MAX)
1533                *nr_saved_scan = 0;
1534        else
1535                nr = 0;
1536
1537        return nr;
1538}
1539
1540/*
1541 * Determine how aggressively the anon and file LRU lists should be
1542 * scanned.  The relative value of each set of LRU lists is determined
1543 * by looking at the fraction of the pages scanned we did rotate back
1544 * onto the active list instead of evict.
1545 *
1546 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1547 */
1548static void get_scan_count(struct zone *zone, struct scan_control *sc,
1549                                        unsigned long *nr, int priority)
1550{
1551        unsigned long anon, file, free;
1552        unsigned long anon_prio, file_prio;
1553        unsigned long ap, fp;
1554        struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1555        u64 fraction[2], denominator;
1556        enum lru_list l;
1557        int noswap = 0;
1558
1559        /* If we have no swap space, do not bother scanning anon pages. */
1560        if (!sc->may_swap || (nr_swap_pages <= 0)) {
1561                noswap = 1;
1562                fraction[0] = 0;
1563                fraction[1] = 1;
1564                denominator = 1;
1565                goto out;
1566        }
1567
1568        anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1569                zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1570        file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1571                zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1572
1573        if (scanning_global_lru(sc)) {
1574                free  = zone_page_state(zone, NR_FREE_PAGES);
1575                /* If we have very few page cache pages,
1576                   force-scan anon pages. */
1577                if (unlikely(file + free <= high_wmark_pages(zone))) {
1578                        fraction[0] = 1;
1579                        fraction[1] = 0;
1580                        denominator = 1;
1581                        goto out;
1582                }
1583        }
1584
1585        /*
1586         * OK, so we have swap space and a fair amount of page cache
1587         * pages.  We use the recently rotated / recently scanned
1588         * ratios to determine how valuable each cache is.
1589         *
1590         * Because workloads change over time (and to avoid overflow)
1591         * we keep these statistics as a floating average, which ends
1592         * up weighing recent references more than old ones.
1593         *
1594         * anon in [0], file in [1]
1595         */
1596        if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1597                spin_lock_irq(&zone->lru_lock);
1598                reclaim_stat->recent_scanned[0] /= 2;
1599                reclaim_stat->recent_rotated[0] /= 2;
1600                spin_unlock_irq(&zone->lru_lock);
1601        }
1602
1603        if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1604                spin_lock_irq(&zone->lru_lock);
1605                reclaim_stat->recent_scanned[1] /= 2;
1606                reclaim_stat->recent_rotated[1] /= 2;
1607                spin_unlock_irq(&zone->lru_lock);
1608        }
1609
1610        /*
1611         * With swappiness at 100, anonymous and file have the same priority.
1612         * This scanning priority is essentially the inverse of IO cost.
1613         */
1614        anon_prio = sc->swappiness;
1615        file_prio = 200 - sc->swappiness;
1616
1617        /*
1618         * The amount of pressure on anon vs file pages is inversely
1619         * proportional to the fraction of recently scanned pages on
1620         * each list that were recently referenced and in active use.
1621         */
1622        ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1623        ap /= reclaim_stat->recent_rotated[0] + 1;
1624
1625        fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1626        fp /= reclaim_stat->recent_rotated[1] + 1;
1627
1628        fraction[0] = ap;
1629        fraction[1] = fp;
1630        denominator = ap + fp + 1;
1631out:
1632        for_each_evictable_lru(l) {
1633                int file = is_file_lru(l);
1634                unsigned long scan;
1635
1636                scan = zone_nr_lru_pages(zone, sc, l);
1637                if (priority || noswap) {
1638                        scan >>= priority;
1639                        scan = div64_u64(scan * fraction[file], denominator);
1640                }
1641                nr[l] = nr_scan_try_batch(scan,
1642                                          &reclaim_stat->nr_saved_scan[l]);
1643        }
1644}
1645
1646static void set_lumpy_reclaim_mode(int priority, struct scan_control *sc)
1647{
1648        /*
1649         * If we need a large contiguous chunk of memory, or have
1650         * trouble getting a small set of contiguous pages, we
1651         * will reclaim both active and inactive pages.
1652         */
1653        if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1654                sc->lumpy_reclaim_mode = 1;
1655        else if (sc->order && priority < DEF_PRIORITY - 2)
1656                sc->lumpy_reclaim_mode = 1;
1657        else
1658                sc->lumpy_reclaim_mode = 0;
1659}
1660
1661/*
1662 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1663 */
1664static void shrink_zone(int priority, struct zone *zone,
1665                                struct scan_control *sc)
1666{
1667        unsigned long nr[NR_LRU_LISTS];
1668        unsigned long nr_to_scan;
1669        enum lru_list l;
1670        unsigned long nr_reclaimed = sc->nr_reclaimed;
1671        unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1672
1673        get_scan_count(zone, sc, nr, priority);
1674
1675        set_lumpy_reclaim_mode(priority, sc);
1676
1677        while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1678                                        nr[LRU_INACTIVE_FILE]) {
1679                for_each_evictable_lru(l) {
1680                        if (nr[l]) {
1681                                nr_to_scan = min_t(unsigned long,
1682                                                   nr[l], SWAP_CLUSTER_MAX);
1683                                nr[l] -= nr_to_scan;
1684
1685                                nr_reclaimed += shrink_list(l, nr_to_scan,
1686                                                            zone, sc, priority);
1687                        }
1688                }
1689                /*
1690                 * On large memory systems, scan >> priority can become
1691                 * really large. This is fine for the starting priority;
1692                 * we want to put equal scanning pressure on each zone.
1693                 * However, if the VM has a harder time of freeing pages,
1694                 * with multiple processes reclaiming pages, the total
1695                 * freeing target can get unreasonably large.
1696                 */
1697                if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1698                        break;
1699        }
1700
1701        sc->nr_reclaimed = nr_reclaimed;
1702
1703        /*
1704         * Even if we did not try to evict anon pages at all, we want to
1705         * rebalance the anon lru active/inactive ratio.
1706         */
1707        if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
1708                shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1709
1710        throttle_vm_writeout(sc->gfp_mask);
1711}
1712
1713/*
1714 * This is the direct reclaim path, for page-allocating processes.  We only
1715 * try to reclaim pages from zones which will satisfy the caller's allocation
1716 * request.
1717 *
1718 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1719 * Because:
1720 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1721 *    allocation or
1722 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1723 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1724 *    zone defense algorithm.
1725 *
1726 * If a zone is deemed to be full of pinned pages then just give it a light
1727 * scan then give up on it.
1728 */
1729static bool shrink_zones(int priority, struct zonelist *zonelist,
1730                                        struct scan_control *sc)
1731{
1732        enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1733        struct zoneref *z;
1734        struct zone *zone;
1735        bool all_unreclaimable = true;
1736
1737        for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1738                                        sc->nodemask) {
1739                if (!populated_zone(zone))
1740                        continue;
1741                /*
1742                 * Take care memory controller reclaiming has small influence
1743                 * to global LRU.
1744                 */
1745                if (scanning_global_lru(sc)) {
1746                        if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1747                                continue;
1748                        note_zone_scanning_priority(zone, priority);
1749
1750                        if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1751                                continue;       /* Let kswapd poll it */
1752                } else {
1753                        /*
1754                         * Ignore cpuset limitation here. We just want to reduce
1755                         * # of used pages by us regardless of memory shortage.
1756                         */
1757                        mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1758                                                        priority);
1759                }
1760
1761                shrink_zone(priority, zone, sc);
1762                all_unreclaimable = false;
1763        }
1764        return all_unreclaimable;
1765}
1766
1767/*
1768 * This is the main entry point to direct page reclaim.
1769 *
1770 * If a full scan of the inactive list fails to free enough memory then we
1771 * are "out of memory" and something needs to be killed.
1772 *
1773 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1774 * high - the zone may be full of dirty or under-writeback pages, which this
1775 * caller can't do much about.  We kick the writeback threads and take explicit
1776 * naps in the hope that some of these pages can be written.  But if the
1777 * allocating task holds filesystem locks which prevent writeout this might not
1778 * work, and the allocation attempt will fail.
1779 *
1780 * returns:     0, if no pages reclaimed
1781 *              else, the number of pages reclaimed
1782 */
1783static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1784                                        struct scan_control *sc)
1785{
1786        int priority;
1787        bool all_unreclaimable;
1788        unsigned long total_scanned = 0;
1789        struct reclaim_state *reclaim_state = current->reclaim_state;
1790        unsigned long lru_pages = 0;
1791        struct zoneref *z;
1792        struct zone *zone;
1793        enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1794        unsigned long writeback_threshold;
1795
1796        get_mems_allowed();
1797        delayacct_freepages_start();
1798
1799        if (scanning_global_lru(sc))
1800                count_vm_event(ALLOCSTALL);
1801        /*
1802         * mem_cgroup will not do shrink_slab.
1803         */
1804        if (scanning_global_lru(sc)) {
1805                for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1806
1807                        if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1808                                continue;
1809
1810                        lru_pages += zone_reclaimable_pages(zone);
1811                }
1812        }
1813
1814        for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1815                sc->nr_scanned = 0;
1816                if (!priority)
1817                        disable_swap_token();
1818                all_unreclaimable = shrink_zones(priority, zonelist, sc);
1819                /*
1820                 * Don't shrink slabs when reclaiming memory from
1821                 * over limit cgroups
1822                 */
1823                if (scanning_global_lru(sc)) {
1824                        shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1825                        if (reclaim_state) {
1826                                sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1827                                reclaim_state->reclaimed_slab = 0;
1828                        }
1829                }
1830                total_scanned += sc->nr_scanned;
1831                if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1832                        goto out;
1833
1834                /*
1835                 * Try to write back as many pages as we just scanned.  This
1836                 * tends to cause slow streaming writers to write data to the
1837                 * disk smoothly, at the dirtying rate, which is nice.   But
1838                 * that's undesirable in laptop mode, where we *want* lumpy
1839                 * writeout.  So in laptop mode, write out the whole world.
1840                 */
1841                writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
1842                if (total_scanned > writeback_threshold) {
1843                        wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
1844                        sc->may_writepage = 1;
1845                }
1846
1847                /* Take a nap, wait for some writeback to complete */
1848                if (!sc->hibernation_mode && sc->nr_scanned &&
1849                    priority < DEF_PRIORITY - 2)
1850                        congestion_wait(BLK_RW_ASYNC, HZ/10);
1851        }
1852
1853out:
1854        /*
1855         * Now that we've scanned all the zones at this priority level, note
1856         * that level within the zone so that the next thread which performs
1857         * scanning of this zone will immediately start out at this priority
1858         * level.  This affects only the decision whether or not to bring
1859         * mapped pages onto the inactive list.
1860         */
1861        if (priority < 0)
1862                priority = 0;
1863
1864        if (scanning_global_lru(sc)) {
1865                for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1866
1867                        if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1868                                continue;
1869
1870                        zone->prev_priority = priority;
1871                }
1872        } else
1873                mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1874
1875        delayacct_freepages_end();
1876        put_mems_allowed();
1877
1878        if (sc->nr_reclaimed)
1879                return sc->nr_reclaimed;
1880
1881        /* top priority shrink_zones still had more to do? don't OOM, then */
1882        if (scanning_global_lru(sc) && !all_unreclaimable)
1883                return 1;
1884
1885        return 0;
1886}
1887
1888unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1889                                gfp_t gfp_mask, nodemask_t *nodemask)
1890{
1891        struct scan_control sc = {
1892                .gfp_mask = gfp_mask,
1893                .may_writepage = !laptop_mode,
1894                .nr_to_reclaim = SWAP_CLUSTER_MAX,
1895                .may_unmap = 1,
1896                .may_swap = 1,
1897                .swappiness = vm_swappiness,
1898                .order = order,
1899                .mem_cgroup = NULL,
1900                .nodemask = nodemask,
1901        };
1902
1903        return do_try_to_free_pages(zonelist, &sc);
1904}
1905
1906#ifdef CONFIG_CGROUP_MEM_RES_CTLR
1907
1908unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
1909                                                gfp_t gfp_mask, bool noswap,
1910                                                unsigned int swappiness,
1911                                                struct zone *zone, int nid)
1912{
1913        struct scan_control sc = {
1914                .may_writepage = !laptop_mode,
1915                .may_unmap = 1,
1916                .may_swap = !noswap,
1917                .swappiness = swappiness,
1918                .order = 0,
1919                .mem_cgroup = mem,
1920        };
1921        nodemask_t nm  = nodemask_of_node(nid);
1922
1923        sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1924                        (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1925        sc.nodemask = &nm;
1926        sc.nr_reclaimed = 0;
1927        sc.nr_scanned = 0;
1928        /*
1929         * NOTE: Although we can get the priority field, using it
1930         * here is not a good idea, since it limits the pages we can scan.
1931         * if we don't reclaim here, the shrink_zone from balance_pgdat
1932         * will pick up pages from other mem cgroup's as well. We hack
1933         * the priority and make it zero.
1934         */
1935        shrink_zone(0, zone, &sc);
1936        return sc.nr_reclaimed;
1937}
1938
1939unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1940                                           gfp_t gfp_mask,
1941                                           bool noswap,
1942                                           unsigned int swappiness)
1943{
1944        struct zonelist *zonelist;
1945        struct scan_control sc = {
1946                .may_writepage = !laptop_mode,
1947                .may_unmap = 1,
1948                .may_swap = !noswap,
1949                .nr_to_reclaim = SWAP_CLUSTER_MAX,
1950                .swappiness = swappiness,
1951                .order = 0,
1952                .mem_cgroup = mem_cont,
1953                .nodemask = NULL, /* we don't care the placement */
1954        };
1955
1956        sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1957                        (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1958        zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1959        return do_try_to_free_pages(zonelist, &sc);
1960}
1961#endif
1962
1963/* is kswapd sleeping prematurely? */
1964static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining)
1965{
1966        int i;
1967
1968        /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
1969        if (remaining)
1970                return 1;
1971
1972        /* If after HZ/10, a zone is below the high mark, it's premature */
1973        for (i = 0; i < pgdat->nr_zones; i++) {
1974                struct zone *zone = pgdat->node_zones + i;
1975
1976                if (!populated_zone(zone))
1977                        continue;
1978
1979                if (zone->all_unreclaimable)
1980                        continue;
1981
1982                if (!zone_watermark_ok(zone, order, high_wmark_pages(zone),
1983                                                                0, 0))
1984                        return 1;
1985        }
1986
1987        return 0;
1988}
1989
1990/*
1991 * For kswapd, balance_pgdat() will work across all this node's zones until
1992 * they are all at high_wmark_pages(zone).
1993 *
1994 * Returns the number of pages which were actually freed.
1995 *
1996 * There is special handling here for zones which are full of pinned pages.
1997 * This can happen if the pages are all mlocked, or if they are all used by
1998 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1999 * What we do is to detect the case where all pages in the zone have been
2000 * scanned twice and there has been zero successful reclaim.  Mark the zone as
2001 * dead and from now on, only perform a short scan.  Basically we're polling
2002 * the zone for when the problem goes away.
2003 *
2004 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2005 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2006 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2007 * lower zones regardless of the number of free pages in the lower zones. This
2008 * interoperates with the page allocator fallback scheme to ensure that aging
2009 * of pages is balanced across the zones.
2010 */
2011static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
2012{
2013        int all_zones_ok;
2014        int priority;
2015        int i;
2016        unsigned long total_scanned;
2017        struct reclaim_state *reclaim_state = current->reclaim_state;
2018        struct scan_control sc = {
2019                .gfp_mask = GFP_KERNEL,
2020                .may_unmap = 1,
2021                .may_swap = 1,
2022                /*
2023                 * kswapd doesn't want to be bailed out while reclaim. because
2024                 * we want to put equal scanning pressure on each zone.
2025                 */
2026                .nr_to_reclaim = ULONG_MAX,
2027                .swappiness = vm_swappiness,
2028                .order = order,
2029                .mem_cgroup = NULL,
2030        };
2031        /*
2032         * temp_priority is used to remember the scanning priority at which
2033         * this zone was successfully refilled to
2034         * free_pages == high_wmark_pages(zone).
2035         */
2036        int temp_priority[MAX_NR_ZONES];
2037
2038loop_again:
2039        total_scanned = 0;
2040        sc.nr_reclaimed = 0;
2041        sc.may_writepage = !laptop_mode;
2042        count_vm_event(PAGEOUTRUN);
2043
2044        for (i = 0; i < pgdat->nr_zones; i++)
2045                temp_priority[i] = DEF_PRIORITY;
2046
2047        for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2048                int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2049                unsigned long lru_pages = 0;
2050                int has_under_min_watermark_zone = 0;
2051
2052                /* The swap token gets in the way of swapout... */
2053                if (!priority)
2054                        disable_swap_token();
2055
2056                all_zones_ok = 1;
2057
2058                /*
2059                 * Scan in the highmem->dma direction for the highest
2060                 * zone which needs scanning
2061                 */
2062                for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2063                        struct zone *zone = pgdat->node_zones + i;
2064
2065                        if (!populated_zone(zone))
2066                                continue;
2067
2068                        if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2069                                continue;
2070
2071                        /*
2072                         * Do some background aging of the anon list, to give
2073                         * pages a chance to be referenced before reclaiming.
2074                         */
2075                        if (inactive_anon_is_low(zone, &sc))
2076                                shrink_active_list(SWAP_CLUSTER_MAX, zone,
2077                                                        &sc, priority, 0);
2078
2079                        if (!zone_watermark_ok(zone, order,
2080                                        high_wmark_pages(zone), 0, 0)) {
2081                                end_zone = i;
2082                                break;
2083                        }
2084                }
2085                if (i < 0)
2086                        goto out;
2087
2088                for (i = 0; i <= end_zone; i++) {
2089                        struct zone *zone = pgdat->node_zones + i;
2090
2091                        lru_pages += zone_reclaimable_pages(zone);
2092                }
2093
2094                /*
2095                 * Now scan the zone in the dma->highmem direction, stopping
2096                 * at the last zone which needs scanning.
2097                 *
2098                 * We do this because the page allocator works in the opposite
2099                 * direction.  This prevents the page allocator from allocating
2100                 * pages behind kswapd's direction of progress, which would
2101                 * cause too much scanning of the lower zones.
2102                 */
2103                for (i = 0; i <= end_zone; i++) {
2104                        struct zone *zone = pgdat->node_zones + i;
2105                        int nr_slab;
2106                        int nid, zid;
2107
2108                        if (!populated_zone(zone))
2109                                continue;
2110
2111                        if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2112                                continue;
2113
2114                        temp_priority[i] = priority;
2115                        sc.nr_scanned = 0;
2116                        note_zone_scanning_priority(zone, priority);
2117
2118                        nid = pgdat->node_id;
2119                        zid = zone_idx(zone);
2120                        /*
2121                         * Call soft limit reclaim before calling shrink_zone.
2122                         * For now we ignore the return value
2123                         */
2124                        mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask,
2125                                                        nid, zid);
2126                        /*
2127                         * We put equal pressure on every zone, unless one
2128                         * zone has way too many pages free already.
2129                         */
2130                        if (!zone_watermark_ok(zone, order,
2131                                        8*high_wmark_pages(zone), end_zone, 0))
2132                                shrink_zone(priority, zone, &sc);
2133                        reclaim_state->reclaimed_slab = 0;
2134                        nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2135                                                lru_pages);
2136                        sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2137                        total_scanned += sc.nr_scanned;
2138                        if (zone->all_unreclaimable)
2139                                continue;
2140                        if (nr_slab == 0 &&
2141                            zone->pages_scanned >= (zone_reclaimable_pages(zone) * 6))
2142                                zone->all_unreclaimable = 1;
2143                        /*
2144                         * If we've done a decent amount of scanning and
2145                         * the reclaim ratio is low, start doing writepage
2146                         * even in laptop mode
2147                         */
2148                        if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2149                            total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2150                                sc.may_writepage = 1;
2151
2152                        if (!zone_watermark_ok(zone, order,
2153                                        high_wmark_pages(zone), end_zone, 0)) {
2154                                all_zones_ok = 0;
2155                                /*
2156                                 * We are still under min water mark.  This
2157                                 * means that we have a GFP_ATOMIC allocation
2158                                 * failure risk. Hurry up!
2159                                 */
2160                                if (!zone_watermark_ok(zone, order,
2161                                            min_wmark_pages(zone), end_zone, 0))
2162                                        has_under_min_watermark_zone = 1;
2163                        }
2164
2165                }
2166                if (all_zones_ok)
2167                        break;          /* kswapd: all done */
2168                /*
2169                 * OK, kswapd is getting into trouble.  Take a nap, then take
2170                 * another pass across the zones.
2171                 */
2172                if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2173                        if (has_under_min_watermark_zone)
2174                                count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2175                        else
2176                                congestion_wait(BLK_RW_ASYNC, HZ/10);
2177                }
2178
2179                /*
2180                 * We do this so kswapd doesn't build up large priorities for
2181                 * example when it is freeing in parallel with allocators. It
2182                 * matches the direct reclaim path behaviour in terms of impact
2183                 * on zone->*_priority.
2184                 */
2185                if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2186                        break;
2187        }
2188out:
2189        /*
2190         * Note within each zone the priority level at which this zone was
2191         * brought into a happy state.  So that the next thread which scans this
2192         * zone will start out at that priority level.
2193         */
2194        for (i = 0; i < pgdat->nr_zones; i++) {
2195                struct zone *zone = pgdat->node_zones + i;
2196
2197                zone->prev_priority = temp_priority[i];
2198        }
2199        if (!all_zones_ok) {
2200                cond_resched();
2201
2202                try_to_freeze();
2203
2204                /*
2205                 * Fragmentation may mean that the system cannot be
2206                 * rebalanced for high-order allocations in all zones.
2207                 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2208                 * it means the zones have been fully scanned and are still
2209                 * not balanced. For high-order allocations, there is
2210                 * little point trying all over again as kswapd may
2211                 * infinite loop.
2212                 *
2213                 * Instead, recheck all watermarks at order-0 as they
2214                 * are the most important. If watermarks are ok, kswapd will go
2215                 * back to sleep. High-order users can still perform direct
2216                 * reclaim if they wish.
2217                 */
2218                if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2219                        order = sc.order = 0;
2220
2221                goto loop_again;
2222        }
2223
2224        return sc.nr_reclaimed;
2225}
2226
2227/*
2228 * The background pageout daemon, started as a kernel thread
2229 * from the init process.
2230 *
2231 * This basically trickles out pages so that we have _some_
2232 * free memory available even if there is no other activity
2233 * that frees anything up. This is needed for things like routing
2234 * etc, where we otherwise might have all activity going on in
2235 * asynchronous contexts that cannot page things out.
2236 *
2237 * If there are applications that are active memory-allocators
2238 * (most normal use), this basically shouldn't matter.
2239 */
2240static int kswapd(void *p)
2241{
2242        unsigned long order;
2243        pg_data_t *pgdat = (pg_data_t*)p;
2244        struct task_struct *tsk = current;
2245        DEFINE_WAIT(wait);
2246        struct reclaim_state reclaim_state = {
2247                .reclaimed_slab = 0,
2248        };
2249        const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2250
2251        lockdep_set_current_reclaim_state(GFP_KERNEL);
2252
2253        if (!cpumask_empty(cpumask))
2254                set_cpus_allowed_ptr(tsk, cpumask);
2255        current->reclaim_state = &reclaim_state;
2256
2257        /*
2258         * Tell the memory management that we're a "memory allocator",
2259         * and that if we need more memory we should get access to it
2260         * regardless (see "__alloc_pages()"). "kswapd" should
2261         * never get caught in the normal page freeing logic.
2262         *
2263         * (Kswapd normally doesn't need memory anyway, but sometimes
2264         * you need a small amount of memory in order to be able to
2265         * page out something else, and this flag essentially protects
2266         * us from recursively trying to free more memory as we're
2267         * trying to free the first piece of memory in the first place).
2268         */
2269        tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2270        set_freezable();
2271
2272        order = 0;
2273        for ( ; ; ) {
2274                unsigned long new_order;
2275                int ret;
2276
2277                prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2278                new_order = pgdat->kswapd_max_order;
2279                pgdat->kswapd_max_order = 0;
2280                if (order < new_order) {
2281                        /*
2282                         * Don't sleep if someone wants a larger 'order'
2283                         * allocation
2284                         */
2285                        order = new_order;
2286                } else {
2287                        if (!freezing(current) && !kthread_should_stop()) {
2288                                long remaining = 0;
2289
2290                                /* Try to sleep for a short interval */
2291                                if (!sleeping_prematurely(pgdat, order, remaining)) {
2292                                        remaining = schedule_timeout(HZ/10);
2293                                        finish_wait(&pgdat->kswapd_wait, &wait);
2294                                        prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2295                                }
2296
2297                                /*
2298                                 * After a short sleep, check if it was a
2299                                 * premature sleep. If not, then go fully
2300                                 * to sleep until explicitly woken up
2301                                 */
2302                                if (!sleeping_prematurely(pgdat, order, remaining))
2303                                        schedule();
2304                                else {
2305                                        if (remaining)
2306                                                count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2307                                        else
2308                                                count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2309                                }
2310                        }
2311
2312                        order = pgdat->kswapd_max_order;
2313                }
2314                finish_wait(&pgdat->kswapd_wait, &wait);
2315
2316                ret = try_to_freeze();
2317                if (kthread_should_stop())
2318                        break;
2319
2320                /*
2321                 * We can speed up thawing tasks if we don't call balance_pgdat
2322                 * after returning from the refrigerator
2323                 */
2324                if (!ret)
2325                        balance_pgdat(pgdat, order);
2326        }
2327        return 0;
2328}
2329
2330/*
2331 * A zone is low on free memory, so wake its kswapd task to service it.
2332 */
2333void wakeup_kswapd(struct zone *zone, int order)
2334{
2335        pg_data_t *pgdat;
2336
2337        if (!populated_zone(zone))
2338                return;
2339
2340        pgdat = zone->zone_pgdat;
2341        if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
2342                return;
2343        if (pgdat->kswapd_max_order < order)
2344                pgdat->kswapd_max_order = order;
2345        if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2346                return;
2347        if (!waitqueue_active(&pgdat->kswapd_wait))
2348                return;
2349        wake_up_interruptible(&pgdat->kswapd_wait);
2350}
2351
2352/*
2353 * The reclaimable count would be mostly accurate.
2354 * The less reclaimable pages may be
2355 * - mlocked pages, which will be moved to unevictable list when encountered
2356 * - mapped pages, which may require several travels to be reclaimed
2357 * - dirty pages, which is not "instantly" reclaimable
2358 */
2359unsigned long global_reclaimable_pages(void)
2360{
2361        int nr;
2362
2363        nr = global_page_state(NR_ACTIVE_FILE) +
2364             global_page_state(NR_INACTIVE_FILE);
2365
2366        if (nr_swap_pages > 0)
2367                nr += global_page_state(NR_ACTIVE_ANON) +
2368                      global_page_state(NR_INACTIVE_ANON);
2369
2370        return nr;
2371}
2372
2373unsigned long zone_reclaimable_pages(struct zone *zone)
2374{
2375        int nr;
2376
2377        nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2378             zone_page_state(zone, NR_INACTIVE_FILE);
2379
2380        if (nr_swap_pages > 0)
2381                nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2382                      zone_page_state(zone, NR_INACTIVE_ANON);
2383
2384        return nr;
2385}
2386
2387#ifdef CONFIG_HIBERNATION
2388/*
2389 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2390 * freed pages.
2391 *
2392 * Rather than trying to age LRUs the aim is to preserve the overall
2393 * LRU order by reclaiming preferentially
2394 * inactive > active > active referenced > active mapped
2395 */
2396unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2397{
2398        struct reclaim_state reclaim_state;
2399        struct scan_control sc = {
2400                .gfp_mask = GFP_HIGHUSER_MOVABLE,
2401                .may_swap = 1,
2402                .may_unmap = 1,
2403                .may_writepage = 1,
2404                .nr_to_reclaim = nr_to_reclaim,
2405                .hibernation_mode = 1,
2406                .swappiness = vm_swappiness,
2407                .order = 0,
2408        };
2409        struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2410        struct task_struct *p = current;
2411        unsigned long nr_reclaimed;
2412
2413        p->flags |= PF_MEMALLOC;
2414        lockdep_set_current_reclaim_state(sc.gfp_mask);
2415        reclaim_state.reclaimed_slab = 0;
2416        p->reclaim_state = &reclaim_state;
2417
2418        nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2419
2420        p->reclaim_state = NULL;
2421        lockdep_clear_current_reclaim_state();
2422        p->flags &= ~PF_MEMALLOC;
2423
2424        return nr_reclaimed;
2425}
2426#endif /* CONFIG_HIBERNATION */
2427
2428/* It's optimal to keep kswapds on the same CPUs as their memory, but
2429   not required for correctness.  So if the last cpu in a node goes
2430   away, we get changed to run anywhere: as the first one comes back,
2431   restore their cpu bindings. */
2432static int __devinit cpu_callback(struct notifier_block *nfb,
2433                                  unsigned long action, void *hcpu)
2434{
2435        int nid;
2436
2437        if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2438                for_each_node_state(nid, N_HIGH_MEMORY) {
2439                        pg_data_t *pgdat = NODE_DATA(nid);
2440                        const struct cpumask *mask;
2441
2442                        mask = cpumask_of_node(pgdat->node_id);
2443
2444                        if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2445                                /* One of our CPUs online: restore mask */
2446                                set_cpus_allowed_ptr(pgdat->kswapd, mask);
2447                }
2448        }
2449        return NOTIFY_OK;
2450}
2451
2452/*
2453 * This kswapd start function will be called by init and node-hot-add.
2454 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2455 */
2456int kswapd_run(int nid)
2457{
2458        pg_data_t *pgdat = NODE_DATA(nid);
2459        int ret = 0;
2460
2461        if (pgdat->kswapd)
2462                return 0;
2463
2464        pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2465        if (IS_ERR(pgdat->kswapd)) {
2466                /* failure at boot is fatal */
2467                BUG_ON(system_state == SYSTEM_BOOTING);
2468                printk("Failed to start kswapd on node %d\n",nid);
2469                ret = -1;
2470        }
2471        return ret;
2472}
2473
2474/*
2475 * Called by memory hotplug when all memory in a node is offlined.
2476 */
2477void kswapd_stop(int nid)
2478{
2479        struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2480
2481        if (kswapd)
2482                kthread_stop(kswapd);
2483}
2484
2485static int __init kswapd_init(void)
2486{
2487        int nid;
2488
2489        swap_setup();
2490        for_each_node_state(nid, N_HIGH_MEMORY)
2491                kswapd_run(nid);
2492        hotcpu_notifier(cpu_callback, 0);
2493        return 0;
2494}
2495
2496module_init(kswapd_init)
2497
2498#ifdef CONFIG_NUMA
2499/*
2500 * Zone reclaim mode
2501 *
2502 * If non-zero call zone_reclaim when the number of free pages falls below
2503 * the watermarks.
2504 */
2505int zone_reclaim_mode __read_mostly;
2506
2507#define RECLAIM_OFF 0
2508#define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
2509#define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
2510#define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
2511
2512/*
2513 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2514 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2515 * a zone.
2516 */
2517#define ZONE_RECLAIM_PRIORITY 4
2518
2519/*
2520 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2521 * occur.
2522 */
2523int sysctl_min_unmapped_ratio = 1;
2524
2525/*
2526 * If the number of slab pages in a zone grows beyond this percentage then
2527 * slab reclaim needs to occur.
2528 */
2529int sysctl_min_slab_ratio = 5;
2530
2531static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2532{
2533        unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2534        unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2535                zone_page_state(zone, NR_ACTIVE_FILE);
2536
2537        /*
2538         * It's possible for there to be more file mapped pages than
2539         * accounted for by the pages on the file LRU lists because
2540         * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2541         */
2542        return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2543}
2544
2545/* Work out how many page cache pages we can reclaim in this reclaim_mode */
2546static long zone_pagecache_reclaimable(struct zone *zone)
2547{
2548        long nr_pagecache_reclaimable;
2549        long delta = 0;
2550
2551        /*
2552         * If RECLAIM_SWAP is set, then all file pages are considered
2553         * potentially reclaimable. Otherwise, we have to worry about
2554         * pages like swapcache and zone_unmapped_file_pages() provides
2555         * a better estimate
2556         */
2557        if (zone_reclaim_mode & RECLAIM_SWAP)
2558                nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2559        else
2560                nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2561
2562        /* If we can't clean pages, remove dirty pages from consideration */
2563        if (!(zone_reclaim_mode & RECLAIM_WRITE))
2564                delta += zone_page_state(zone, NR_FILE_DIRTY);
2565
2566        /* Watch for any possible underflows due to delta */
2567        if (unlikely(delta > nr_pagecache_reclaimable))
2568                delta = nr_pagecache_reclaimable;
2569
2570        return nr_pagecache_reclaimable - delta;
2571}
2572
2573/*
2574 * Try to free up some pages from this zone through reclaim.
2575 */
2576static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2577{
2578        /* Minimum pages needed in order to stay on node */
2579        const unsigned long nr_pages = 1 << order;
2580        struct task_struct *p = current;
2581        struct reclaim_state reclaim_state;
2582        int priority;
2583        struct scan_control sc = {
2584                .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2585                .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2586                .may_swap = 1,
2587                .nr_to_reclaim = max_t(unsigned long, nr_pages,
2588                                       SWAP_CLUSTER_MAX),
2589                .gfp_mask = gfp_mask,
2590                .swappiness = vm_swappiness,
2591                .order = order,
2592        };
2593        unsigned long slab_reclaimable;
2594
2595        disable_swap_token();
2596        cond_resched();
2597        /*
2598         * We need to be able to allocate from the reserves for RECLAIM_SWAP
2599         * and we also need to be able to write out pages for RECLAIM_WRITE
2600         * and RECLAIM_SWAP.
2601         */
2602        p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2603        lockdep_set_current_reclaim_state(gfp_mask);
2604        reclaim_state.reclaimed_slab = 0;
2605        p->reclaim_state = &reclaim_state;
2606
2607        if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2608                /*
2609                 * Free memory by calling shrink zone with increasing
2610                 * priorities until we have enough memory freed.
2611                 */
2612                priority = ZONE_RECLAIM_PRIORITY;
2613                do {
2614                        note_zone_scanning_priority(zone, priority);
2615                        shrink_zone(priority, zone, &sc);
2616                        priority--;
2617                } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2618        }
2619
2620        slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2621        if (slab_reclaimable > zone->min_slab_pages) {
2622                /*
2623                 * shrink_slab() does not currently allow us to determine how
2624                 * many pages were freed in this zone. So we take the current
2625                 * number of slab pages and shake the slab until it is reduced
2626                 * by the same nr_pages that we used for reclaiming unmapped
2627                 * pages.
2628                 *
2629                 * Note that shrink_slab will free memory on all zones and may
2630                 * take a long time.
2631                 */
2632                while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2633                        zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2634                                slab_reclaimable - nr_pages)
2635                        ;
2636
2637                /*
2638                 * Update nr_reclaimed by the number of slab pages we
2639                 * reclaimed from this zone.
2640                 */
2641                sc.nr_reclaimed += slab_reclaimable -
2642                        zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2643        }
2644
2645        p->reclaim_state = NULL;
2646        current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2647        lockdep_clear_current_reclaim_state();
2648        return sc.nr_reclaimed >= nr_pages;
2649}
2650
2651int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2652{
2653        int node_id;
2654        int ret;
2655
2656        /*
2657         * Zone reclaim reclaims unmapped file backed pages and
2658         * slab pages if we are over the defined limits.
2659         *
2660         * A small portion of unmapped file backed pages is needed for
2661         * file I/O otherwise pages read by file I/O will be immediately
2662         * thrown out if the zone is overallocated. So we do not reclaim
2663         * if less than a specified percentage of the zone is used by
2664         * unmapped file backed pages.
2665         */
2666        if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
2667            zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
2668                return ZONE_RECLAIM_FULL;
2669
2670        if (zone->all_unreclaimable)
2671                return ZONE_RECLAIM_FULL;
2672
2673        /*
2674         * Do not scan if the allocation should not be delayed.
2675         */
2676        if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2677                return ZONE_RECLAIM_NOSCAN;
2678
2679        /*
2680         * Only run zone reclaim on the local zone or on zones that do not
2681         * have associated processors. This will favor the local processor
2682         * over remote processors and spread off node memory allocations
2683         * as wide as possible.
2684         */
2685        node_id = zone_to_nid(zone);
2686        if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2687                return ZONE_RECLAIM_NOSCAN;
2688
2689        if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2690                return ZONE_RECLAIM_NOSCAN;
2691
2692        ret = __zone_reclaim(zone, gfp_mask, order);
2693        zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2694
2695        if (!ret)
2696                count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
2697
2698        return ret;
2699}
2700#endif
2701
2702/*
2703 * page_evictable - test whether a page is evictable
2704 * @page: the page to test
2705 * @vma: the VMA in which the page is or will be mapped, may be NULL
2706 *
2707 * Test whether page is evictable--i.e., should be placed on active/inactive
2708 * lists vs unevictable list.  The vma argument is !NULL when called from the
2709 * fault path to determine how to instantate a new page.
2710 *
2711 * Reasons page might not be evictable:
2712 * (1) page's mapping marked unevictable
2713 * (2) page is part of an mlocked VMA
2714 *
2715 */
2716int page_evictable(struct page *page, struct vm_area_struct *vma)
2717{
2718
2719        if (mapping_unevictable(page_mapping(page)))
2720                return 0;
2721
2722        if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2723                return 0;
2724
2725        return 1;
2726}
2727
2728/**
2729 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2730 * @page: page to check evictability and move to appropriate lru list
2731 * @zone: zone page is in
2732 *
2733 * Checks a page for evictability and moves the page to the appropriate
2734 * zone lru list.
2735 *
2736 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2737 * have PageUnevictable set.
2738 */
2739static void check_move_unevictable_page(struct page *page, struct zone *zone)
2740{
2741        VM_BUG_ON(PageActive(page));
2742
2743retry:
2744        ClearPageUnevictable(page);
2745        if (page_evictable(page, NULL)) {
2746                enum lru_list l = page_lru_base_type(page);
2747
2748                __dec_zone_state(zone, NR_UNEVICTABLE);
2749                list_move(&page->lru, &zone->lru[l].list);
2750                mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2751                __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2752                __count_vm_event(UNEVICTABLE_PGRESCUED);
2753        } else {
2754                /*
2755                 * rotate unevictable list
2756                 */
2757                SetPageUnevictable(page);
2758                list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2759                mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2760                if (page_evictable(page, NULL))
2761                        goto retry;
2762        }
2763}
2764
2765/**
2766 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2767 * @mapping: struct address_space to scan for evictable pages
2768 *
2769 * Scan all pages in mapping.  Check unevictable pages for
2770 * evictability and move them to the appropriate zone lru list.
2771 */
2772void scan_mapping_unevictable_pages(struct address_space *mapping)
2773{
2774        pgoff_t next = 0;
2775        pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2776                         PAGE_CACHE_SHIFT;
2777        struct zone *zone;
2778        struct pagevec pvec;
2779
2780        if (mapping->nrpages == 0)
2781                return;
2782
2783        pagevec_init(&pvec, 0);
2784        while (next < end &&
2785                pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2786                int i;
2787                int pg_scanned = 0;
2788
2789                zone = NULL;
2790
2791                for (i = 0; i < pagevec_count(&pvec); i++) {
2792                        struct page *page = pvec.pages[i];
2793                        pgoff_t page_index = page->index;
2794                        struct zone *pagezone = page_zone(page);
2795
2796                        pg_scanned++;
2797                        if (page_index > next)
2798                                next = page_index;
2799                        next++;
2800
2801                        if (pagezone != zone) {
2802                                if (zone)
2803                                        spin_unlock_irq(&zone->lru_lock);
2804                                zone = pagezone;
2805                                spin_lock_irq(&zone->lru_lock);
2806                        }
2807
2808                        if (PageLRU(page) && PageUnevictable(page))
2809                                check_move_unevictable_page(page, zone);
2810                }
2811                if (zone)
2812                        spin_unlock_irq(&zone->lru_lock);
2813                pagevec_release(&pvec);
2814
2815                count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2816        }
2817
2818}
2819
2820/**
2821 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2822 * @zone - zone of which to scan the unevictable list
2823 *
2824 * Scan @zone's unevictable LRU lists to check for pages that have become
2825 * evictable.  Move those that have to @zone's inactive list where they
2826 * become candidates for reclaim, unless shrink_inactive_zone() decides
2827 * to reactivate them.  Pages that are still unevictable are rotated
2828 * back onto @zone's unevictable list.
2829 */
2830#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2831static void scan_zone_unevictable_pages(struct zone *zone)
2832{
2833        struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2834        unsigned long scan;
2835        unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2836
2837        while (nr_to_scan > 0) {
2838                unsigned long batch_size = min(nr_to_scan,
2839                                                SCAN_UNEVICTABLE_BATCH_SIZE);
2840
2841                spin_lock_irq(&zone->lru_lock);
2842                for (scan = 0;  scan < batch_size; scan++) {
2843                        struct page *page = lru_to_page(l_unevictable);
2844
2845                        if (!trylock_page(page))
2846                                continue;
2847
2848                        prefetchw_prev_lru_page(page, l_unevictable, flags);
2849
2850                        if (likely(PageLRU(page) && PageUnevictable(page)))
2851                                check_move_unevictable_page(page, zone);
2852
2853                        unlock_page(page);
2854                }
2855                spin_unlock_irq(&zone->lru_lock);
2856
2857                nr_to_scan -= batch_size;
2858        }
2859}
2860
2861
2862/**
2863 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2864 *
2865 * A really big hammer:  scan all zones' unevictable LRU lists to check for
2866 * pages that have become evictable.  Move those back to the zones'
2867 * inactive list where they become candidates for reclaim.
2868 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2869 * and we add swap to the system.  As such, it runs in the context of a task
2870 * that has possibly/probably made some previously unevictable pages
2871 * evictable.
2872 */
2873static void scan_all_zones_unevictable_pages(void)
2874{
2875        struct zone *zone;
2876
2877        for_each_zone(zone) {
2878                scan_zone_unevictable_pages(zone);
2879        }
2880}
2881
2882/*
2883 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
2884 * all nodes' unevictable lists for evictable pages
2885 */
2886unsigned long scan_unevictable_pages;
2887
2888int scan_unevictable_handler(struct ctl_table *table, int write,
2889                           void __user *buffer,
2890                           size_t *length, loff_t *ppos)
2891{
2892        proc_doulongvec_minmax(table, write, buffer, length, ppos);
2893
2894        if (write && *(unsigned long *)table->data)
2895                scan_all_zones_unevictable_pages();
2896
2897        scan_unevictable_pages = 0;
2898        return 0;
2899}
2900
2901/*
2902 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
2903 * a specified node's per zone unevictable lists for evictable pages.
2904 */
2905
2906static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2907                                          struct sysdev_attribute *attr,
2908                                          char *buf)
2909{
2910        return sprintf(buf, "0\n");     /* always zero; should fit... */
2911}
2912
2913static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2914                                           struct sysdev_attribute *attr,
2915                                        const char *buf, size_t count)
2916{
2917        struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2918        struct zone *zone;
2919        unsigned long res;
2920        unsigned long req = strict_strtoul(buf, 10, &res);
2921
2922        if (!req)
2923                return 1;       /* zero is no-op */
2924
2925        for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2926                if (!populated_zone(zone))
2927                        continue;
2928                scan_zone_unevictable_pages(zone);
2929        }
2930        return 1;
2931}
2932
2933
2934static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2935                        read_scan_unevictable_node,
2936                        write_scan_unevictable_node);
2937
2938int scan_unevictable_register_node(struct node *node)
2939{
2940        return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2941}
2942
2943void scan_unevictable_unregister_node(struct node *node)
2944{
2945        sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2946}
2947
2948