linux/mm/truncate.c
<<
>>
Prefs
   1/*
   2 * mm/truncate.c - code for taking down pages from address_spaces
   3 *
   4 * Copyright (C) 2002, Linus Torvalds
   5 *
   6 * 10Sep2002    Andrew Morton
   7 *              Initial version.
   8 */
   9
  10#include <linux/kernel.h>
  11#include <linux/backing-dev.h>
  12#include <linux/gfp.h>
  13#include <linux/mm.h>
  14#include <linux/swap.h>
  15#include <linux/module.h>
  16#include <linux/pagemap.h>
  17#include <linux/highmem.h>
  18#include <linux/pagevec.h>
  19#include <linux/task_io_accounting_ops.h>
  20#include <linux/buffer_head.h>  /* grr. try_to_release_page,
  21                                   do_invalidatepage */
  22#include "internal.h"
  23
  24
  25/**
  26 * do_invalidatepage - invalidate part or all of a page
  27 * @page: the page which is affected
  28 * @offset: the index of the truncation point
  29 *
  30 * do_invalidatepage() is called when all or part of the page has become
  31 * invalidated by a truncate operation.
  32 *
  33 * do_invalidatepage() does not have to release all buffers, but it must
  34 * ensure that no dirty buffer is left outside @offset and that no I/O
  35 * is underway against any of the blocks which are outside the truncation
  36 * point.  Because the caller is about to free (and possibly reuse) those
  37 * blocks on-disk.
  38 */
  39void do_invalidatepage(struct page *page, unsigned long offset)
  40{
  41        void (*invalidatepage)(struct page *, unsigned long);
  42        invalidatepage = page->mapping->a_ops->invalidatepage;
  43#ifdef CONFIG_BLOCK
  44        if (!invalidatepage)
  45                invalidatepage = block_invalidatepage;
  46#endif
  47        if (invalidatepage)
  48                (*invalidatepage)(page, offset);
  49}
  50
  51static inline void truncate_partial_page(struct page *page, unsigned partial)
  52{
  53        zero_user_segment(page, partial, PAGE_CACHE_SIZE);
  54        if (page_has_private(page))
  55                do_invalidatepage(page, partial);
  56}
  57
  58/*
  59 * This cancels just the dirty bit on the kernel page itself, it
  60 * does NOT actually remove dirty bits on any mmap's that may be
  61 * around. It also leaves the page tagged dirty, so any sync
  62 * activity will still find it on the dirty lists, and in particular,
  63 * clear_page_dirty_for_io() will still look at the dirty bits in
  64 * the VM.
  65 *
  66 * Doing this should *normally* only ever be done when a page
  67 * is truncated, and is not actually mapped anywhere at all. However,
  68 * fs/buffer.c does this when it notices that somebody has cleaned
  69 * out all the buffers on a page without actually doing it through
  70 * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
  71 */
  72void cancel_dirty_page(struct page *page, unsigned int account_size)
  73{
  74        if (TestClearPageDirty(page)) {
  75                struct address_space *mapping = page->mapping;
  76                if (mapping && mapping_cap_account_dirty(mapping)) {
  77                        dec_zone_page_state(page, NR_FILE_DIRTY);
  78                        dec_bdi_stat(mapping->backing_dev_info,
  79                                        BDI_RECLAIMABLE);
  80                        if (account_size)
  81                                task_io_account_cancelled_write(account_size);
  82                }
  83        }
  84}
  85EXPORT_SYMBOL(cancel_dirty_page);
  86
  87/*
  88 * If truncate cannot remove the fs-private metadata from the page, the page
  89 * becomes orphaned.  It will be left on the LRU and may even be mapped into
  90 * user pagetables if we're racing with filemap_fault().
  91 *
  92 * We need to bale out if page->mapping is no longer equal to the original
  93 * mapping.  This happens a) when the VM reclaimed the page while we waited on
  94 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
  95 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
  96 */
  97static int
  98truncate_complete_page(struct address_space *mapping, struct page *page)
  99{
 100        if (page->mapping != mapping)
 101                return -EIO;
 102
 103        if (page_has_private(page))
 104                do_invalidatepage(page, 0);
 105
 106        cancel_dirty_page(page, PAGE_CACHE_SIZE);
 107
 108        clear_page_mlock(page);
 109        remove_from_page_cache(page);
 110        ClearPageMappedToDisk(page);
 111        page_cache_release(page);       /* pagecache ref */
 112        return 0;
 113}
 114
 115/*
 116 * This is for invalidate_mapping_pages().  That function can be called at
 117 * any time, and is not supposed to throw away dirty pages.  But pages can
 118 * be marked dirty at any time too, so use remove_mapping which safely
 119 * discards clean, unused pages.
 120 *
 121 * Returns non-zero if the page was successfully invalidated.
 122 */
 123static int
 124invalidate_complete_page(struct address_space *mapping, struct page *page)
 125{
 126        int ret;
 127
 128        if (page->mapping != mapping)
 129                return 0;
 130
 131        if (page_has_private(page) && !try_to_release_page(page, 0))
 132                return 0;
 133
 134        clear_page_mlock(page);
 135        ret = remove_mapping(mapping, page);
 136
 137        return ret;
 138}
 139
 140int truncate_inode_page(struct address_space *mapping, struct page *page)
 141{
 142        if (page_mapped(page)) {
 143                unmap_mapping_range(mapping,
 144                                   (loff_t)page->index << PAGE_CACHE_SHIFT,
 145                                   PAGE_CACHE_SIZE, 0);
 146        }
 147        return truncate_complete_page(mapping, page);
 148}
 149
 150/*
 151 * Used to get rid of pages on hardware memory corruption.
 152 */
 153int generic_error_remove_page(struct address_space *mapping, struct page *page)
 154{
 155        if (!mapping)
 156                return -EINVAL;
 157        /*
 158         * Only punch for normal data pages for now.
 159         * Handling other types like directories would need more auditing.
 160         */
 161        if (!S_ISREG(mapping->host->i_mode))
 162                return -EIO;
 163        return truncate_inode_page(mapping, page);
 164}
 165EXPORT_SYMBOL(generic_error_remove_page);
 166
 167/*
 168 * Safely invalidate one page from its pagecache mapping.
 169 * It only drops clean, unused pages. The page must be locked.
 170 *
 171 * Returns 1 if the page is successfully invalidated, otherwise 0.
 172 */
 173int invalidate_inode_page(struct page *page)
 174{
 175        struct address_space *mapping = page_mapping(page);
 176        if (!mapping)
 177                return 0;
 178        if (PageDirty(page) || PageWriteback(page))
 179                return 0;
 180        if (page_mapped(page))
 181                return 0;
 182        return invalidate_complete_page(mapping, page);
 183}
 184
 185/**
 186 * truncate_inode_pages - truncate range of pages specified by start & end byte offsets
 187 * @mapping: mapping to truncate
 188 * @lstart: offset from which to truncate
 189 * @lend: offset to which to truncate
 190 *
 191 * Truncate the page cache, removing the pages that are between
 192 * specified offsets (and zeroing out partial page
 193 * (if lstart is not page aligned)).
 194 *
 195 * Truncate takes two passes - the first pass is nonblocking.  It will not
 196 * block on page locks and it will not block on writeback.  The second pass
 197 * will wait.  This is to prevent as much IO as possible in the affected region.
 198 * The first pass will remove most pages, so the search cost of the second pass
 199 * is low.
 200 *
 201 * When looking at page->index outside the page lock we need to be careful to
 202 * copy it into a local to avoid races (it could change at any time).
 203 *
 204 * We pass down the cache-hot hint to the page freeing code.  Even if the
 205 * mapping is large, it is probably the case that the final pages are the most
 206 * recently touched, and freeing happens in ascending file offset order.
 207 */
 208void truncate_inode_pages_range(struct address_space *mapping,
 209                                loff_t lstart, loff_t lend)
 210{
 211        const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
 212        pgoff_t end;
 213        const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
 214        struct pagevec pvec;
 215        pgoff_t next;
 216        int i;
 217
 218        if (mapping->nrpages == 0)
 219                return;
 220
 221        BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
 222        end = (lend >> PAGE_CACHE_SHIFT);
 223
 224        pagevec_init(&pvec, 0);
 225        next = start;
 226        while (next <= end &&
 227               pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
 228                for (i = 0; i < pagevec_count(&pvec); i++) {
 229                        struct page *page = pvec.pages[i];
 230                        pgoff_t page_index = page->index;
 231
 232                        if (page_index > end) {
 233                                next = page_index;
 234                                break;
 235                        }
 236
 237                        if (page_index > next)
 238                                next = page_index;
 239                        next++;
 240                        if (!trylock_page(page))
 241                                continue;
 242                        if (PageWriteback(page)) {
 243                                unlock_page(page);
 244                                continue;
 245                        }
 246                        truncate_inode_page(mapping, page);
 247                        unlock_page(page);
 248                }
 249                pagevec_release(&pvec);
 250                cond_resched();
 251        }
 252
 253        if (partial) {
 254                struct page *page = find_lock_page(mapping, start - 1);
 255                if (page) {
 256                        wait_on_page_writeback(page);
 257                        truncate_partial_page(page, partial);
 258                        unlock_page(page);
 259                        page_cache_release(page);
 260                }
 261        }
 262
 263        next = start;
 264        for ( ; ; ) {
 265                cond_resched();
 266                if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
 267                        if (next == start)
 268                                break;
 269                        next = start;
 270                        continue;
 271                }
 272                if (pvec.pages[0]->index > end) {
 273                        pagevec_release(&pvec);
 274                        break;
 275                }
 276                mem_cgroup_uncharge_start();
 277                for (i = 0; i < pagevec_count(&pvec); i++) {
 278                        struct page *page = pvec.pages[i];
 279
 280                        if (page->index > end)
 281                                break;
 282                        lock_page(page);
 283                        wait_on_page_writeback(page);
 284                        truncate_inode_page(mapping, page);
 285                        if (page->index > next)
 286                                next = page->index;
 287                        next++;
 288                        unlock_page(page);
 289                }
 290                pagevec_release(&pvec);
 291                mem_cgroup_uncharge_end();
 292        }
 293}
 294EXPORT_SYMBOL(truncate_inode_pages_range);
 295
 296/**
 297 * truncate_inode_pages - truncate *all* the pages from an offset
 298 * @mapping: mapping to truncate
 299 * @lstart: offset from which to truncate
 300 *
 301 * Called under (and serialised by) inode->i_mutex.
 302 */
 303void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
 304{
 305        truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
 306}
 307EXPORT_SYMBOL(truncate_inode_pages);
 308
 309/**
 310 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
 311 * @mapping: the address_space which holds the pages to invalidate
 312 * @start: the offset 'from' which to invalidate
 313 * @end: the offset 'to' which to invalidate (inclusive)
 314 *
 315 * This function only removes the unlocked pages, if you want to
 316 * remove all the pages of one inode, you must call truncate_inode_pages.
 317 *
 318 * invalidate_mapping_pages() will not block on IO activity. It will not
 319 * invalidate pages which are dirty, locked, under writeback or mapped into
 320 * pagetables.
 321 */
 322unsigned long invalidate_mapping_pages(struct address_space *mapping,
 323                                       pgoff_t start, pgoff_t end)
 324{
 325        struct pagevec pvec;
 326        pgoff_t next = start;
 327        unsigned long ret = 0;
 328        int i;
 329
 330        pagevec_init(&pvec, 0);
 331        while (next <= end &&
 332                        pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
 333                mem_cgroup_uncharge_start();
 334                for (i = 0; i < pagevec_count(&pvec); i++) {
 335                        struct page *page = pvec.pages[i];
 336                        pgoff_t index;
 337                        int lock_failed;
 338
 339                        lock_failed = !trylock_page(page);
 340
 341                        /*
 342                         * We really shouldn't be looking at the ->index of an
 343                         * unlocked page.  But we're not allowed to lock these
 344                         * pages.  So we rely upon nobody altering the ->index
 345                         * of this (pinned-by-us) page.
 346                         */
 347                        index = page->index;
 348                        if (index > next)
 349                                next = index;
 350                        next++;
 351                        if (lock_failed)
 352                                continue;
 353
 354                        ret += invalidate_inode_page(page);
 355
 356                        unlock_page(page);
 357                        if (next > end)
 358                                break;
 359                }
 360                pagevec_release(&pvec);
 361                mem_cgroup_uncharge_end();
 362                cond_resched();
 363        }
 364        return ret;
 365}
 366EXPORT_SYMBOL(invalidate_mapping_pages);
 367
 368/*
 369 * This is like invalidate_complete_page(), except it ignores the page's
 370 * refcount.  We do this because invalidate_inode_pages2() needs stronger
 371 * invalidation guarantees, and cannot afford to leave pages behind because
 372 * shrink_page_list() has a temp ref on them, or because they're transiently
 373 * sitting in the lru_cache_add() pagevecs.
 374 */
 375static int
 376invalidate_complete_page2(struct address_space *mapping, struct page *page)
 377{
 378        if (page->mapping != mapping)
 379                return 0;
 380
 381        if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
 382                return 0;
 383
 384        spin_lock_irq(&mapping->tree_lock);
 385        if (PageDirty(page))
 386                goto failed;
 387
 388        clear_page_mlock(page);
 389        BUG_ON(page_has_private(page));
 390        __remove_from_page_cache(page);
 391        spin_unlock_irq(&mapping->tree_lock);
 392        mem_cgroup_uncharge_cache_page(page);
 393        page_cache_release(page);       /* pagecache ref */
 394        return 1;
 395failed:
 396        spin_unlock_irq(&mapping->tree_lock);
 397        return 0;
 398}
 399
 400static int do_launder_page(struct address_space *mapping, struct page *page)
 401{
 402        if (!PageDirty(page))
 403                return 0;
 404        if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
 405                return 0;
 406        return mapping->a_ops->launder_page(page);
 407}
 408
 409/**
 410 * invalidate_inode_pages2_range - remove range of pages from an address_space
 411 * @mapping: the address_space
 412 * @start: the page offset 'from' which to invalidate
 413 * @end: the page offset 'to' which to invalidate (inclusive)
 414 *
 415 * Any pages which are found to be mapped into pagetables are unmapped prior to
 416 * invalidation.
 417 *
 418 * Returns -EBUSY if any pages could not be invalidated.
 419 */
 420int invalidate_inode_pages2_range(struct address_space *mapping,
 421                                  pgoff_t start, pgoff_t end)
 422{
 423        struct pagevec pvec;
 424        pgoff_t next;
 425        int i;
 426        int ret = 0;
 427        int ret2 = 0;
 428        int did_range_unmap = 0;
 429        int wrapped = 0;
 430
 431        pagevec_init(&pvec, 0);
 432        next = start;
 433        while (next <= end && !wrapped &&
 434                pagevec_lookup(&pvec, mapping, next,
 435                        min(end - next, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
 436                mem_cgroup_uncharge_start();
 437                for (i = 0; i < pagevec_count(&pvec); i++) {
 438                        struct page *page = pvec.pages[i];
 439                        pgoff_t page_index;
 440
 441                        lock_page(page);
 442                        if (page->mapping != mapping) {
 443                                unlock_page(page);
 444                                continue;
 445                        }
 446                        page_index = page->index;
 447                        next = page_index + 1;
 448                        if (next == 0)
 449                                wrapped = 1;
 450                        if (page_index > end) {
 451                                unlock_page(page);
 452                                break;
 453                        }
 454                        wait_on_page_writeback(page);
 455                        if (page_mapped(page)) {
 456                                if (!did_range_unmap) {
 457                                        /*
 458                                         * Zap the rest of the file in one hit.
 459                                         */
 460                                        unmap_mapping_range(mapping,
 461                                           (loff_t)page_index<<PAGE_CACHE_SHIFT,
 462                                           (loff_t)(end - page_index + 1)
 463                                                        << PAGE_CACHE_SHIFT,
 464                                            0);
 465                                        did_range_unmap = 1;
 466                                } else {
 467                                        /*
 468                                         * Just zap this page
 469                                         */
 470                                        unmap_mapping_range(mapping,
 471                                          (loff_t)page_index<<PAGE_CACHE_SHIFT,
 472                                          PAGE_CACHE_SIZE, 0);
 473                                }
 474                        }
 475                        BUG_ON(page_mapped(page));
 476                        ret2 = do_launder_page(mapping, page);
 477                        if (ret2 == 0) {
 478                                if (!invalidate_complete_page2(mapping, page))
 479                                        ret2 = -EBUSY;
 480                        }
 481                        if (ret2 < 0)
 482                                ret = ret2;
 483                        unlock_page(page);
 484                }
 485                pagevec_release(&pvec);
 486                mem_cgroup_uncharge_end();
 487                cond_resched();
 488        }
 489        return ret;
 490}
 491EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
 492
 493/**
 494 * invalidate_inode_pages2 - remove all pages from an address_space
 495 * @mapping: the address_space
 496 *
 497 * Any pages which are found to be mapped into pagetables are unmapped prior to
 498 * invalidation.
 499 *
 500 * Returns -EBUSY if any pages could not be invalidated.
 501 */
 502int invalidate_inode_pages2(struct address_space *mapping)
 503{
 504        return invalidate_inode_pages2_range(mapping, 0, -1);
 505}
 506EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
 507
 508/**
 509 * truncate_pagecache - unmap and remove pagecache that has been truncated
 510 * @inode: inode
 511 * @old: old file offset
 512 * @new: new file offset
 513 *
 514 * inode's new i_size must already be written before truncate_pagecache
 515 * is called.
 516 *
 517 * This function should typically be called before the filesystem
 518 * releases resources associated with the freed range (eg. deallocates
 519 * blocks). This way, pagecache will always stay logically coherent
 520 * with on-disk format, and the filesystem would not have to deal with
 521 * situations such as writepage being called for a page that has already
 522 * had its underlying blocks deallocated.
 523 */
 524void truncate_pagecache(struct inode *inode, loff_t old, loff_t new)
 525{
 526        struct address_space *mapping = inode->i_mapping;
 527
 528        /*
 529         * unmap_mapping_range is called twice, first simply for
 530         * efficiency so that truncate_inode_pages does fewer
 531         * single-page unmaps.  However after this first call, and
 532         * before truncate_inode_pages finishes, it is possible for
 533         * private pages to be COWed, which remain after
 534         * truncate_inode_pages finishes, hence the second
 535         * unmap_mapping_range call must be made for correctness.
 536         */
 537        unmap_mapping_range(mapping, new + PAGE_SIZE - 1, 0, 1);
 538        truncate_inode_pages(mapping, new);
 539        unmap_mapping_range(mapping, new + PAGE_SIZE - 1, 0, 1);
 540}
 541EXPORT_SYMBOL(truncate_pagecache);
 542
 543/**
 544 * vmtruncate - unmap mappings "freed" by truncate() syscall
 545 * @inode: inode of the file used
 546 * @offset: file offset to start truncating
 547 *
 548 * NOTE! We have to be ready to update the memory sharing
 549 * between the file and the memory map for a potential last
 550 * incomplete page.  Ugly, but necessary.
 551 *
 552 * This function is deprecated and simple_setsize or truncate_pagecache
 553 * should be used instead.
 554 */
 555int vmtruncate(struct inode *inode, loff_t offset)
 556{
 557        int error;
 558
 559        error = simple_setsize(inode, offset);
 560        if (error)
 561                return error;
 562
 563        if (inode->i_op->truncate)
 564                inode->i_op->truncate(inode);
 565
 566        return error;
 567}
 568EXPORT_SYMBOL(vmtruncate);
 569