linux/mm/page_alloc.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/page_alloc.c
   3 *
   4 *  Manages the free list, the system allocates free pages here.
   5 *  Note that kmalloc() lives in slab.c
   6 *
   7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   8 *  Swap reorganised 29.12.95, Stephen Tweedie
   9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15 */
  16
  17#include <linux/stddef.h>
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/interrupt.h>
  21#include <linux/pagemap.h>
  22#include <linux/jiffies.h>
  23#include <linux/bootmem.h>
  24#include <linux/compiler.h>
  25#include <linux/kernel.h>
  26#include <linux/kmemcheck.h>
  27#include <linux/module.h>
  28#include <linux/suspend.h>
  29#include <linux/pagevec.h>
  30#include <linux/blkdev.h>
  31#include <linux/slab.h>
  32#include <linux/oom.h>
  33#include <linux/notifier.h>
  34#include <linux/topology.h>
  35#include <linux/sysctl.h>
  36#include <linux/cpu.h>
  37#include <linux/cpuset.h>
  38#include <linux/memory_hotplug.h>
  39#include <linux/nodemask.h>
  40#include <linux/vmalloc.h>
  41#include <linux/mempolicy.h>
  42#include <linux/stop_machine.h>
  43#include <linux/sort.h>
  44#include <linux/pfn.h>
  45#include <linux/backing-dev.h>
  46#include <linux/fault-inject.h>
  47#include <linux/page-isolation.h>
  48#include <linux/page_cgroup.h>
  49#include <linux/debugobjects.h>
  50#include <linux/kmemleak.h>
  51#include <linux/memory.h>
  52#include <linux/compaction.h>
  53#include <trace/events/kmem.h>
  54#include <linux/ftrace_event.h>
  55
  56#include <asm/tlbflush.h>
  57#include <asm/div64.h>
  58#include "internal.h"
  59
  60#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  61DEFINE_PER_CPU(int, numa_node);
  62EXPORT_PER_CPU_SYMBOL(numa_node);
  63#endif
  64
  65#ifdef CONFIG_HAVE_MEMORYLESS_NODES
  66/*
  67 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  68 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  69 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  70 * defined in <linux/topology.h>.
  71 */
  72DEFINE_PER_CPU(int, _numa_mem_);                /* Kernel "local memory" node */
  73EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  74#endif
  75
  76/*
  77 * Array of node states.
  78 */
  79nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  80        [N_POSSIBLE] = NODE_MASK_ALL,
  81        [N_ONLINE] = { { [0] = 1UL } },
  82#ifndef CONFIG_NUMA
  83        [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  84#ifdef CONFIG_HIGHMEM
  85        [N_HIGH_MEMORY] = { { [0] = 1UL } },
  86#endif
  87        [N_CPU] = { { [0] = 1UL } },
  88#endif  /* NUMA */
  89};
  90EXPORT_SYMBOL(node_states);
  91
  92unsigned long totalram_pages __read_mostly;
  93unsigned long totalreserve_pages __read_mostly;
  94int percpu_pagelist_fraction;
  95gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  96
  97#ifdef CONFIG_PM_SLEEP
  98/*
  99 * The following functions are used by the suspend/hibernate code to temporarily
 100 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 101 * while devices are suspended.  To avoid races with the suspend/hibernate code,
 102 * they should always be called with pm_mutex held (gfp_allowed_mask also should
 103 * only be modified with pm_mutex held, unless the suspend/hibernate code is
 104 * guaranteed not to run in parallel with that modification).
 105 */
 106void set_gfp_allowed_mask(gfp_t mask)
 107{
 108        WARN_ON(!mutex_is_locked(&pm_mutex));
 109        gfp_allowed_mask = mask;
 110}
 111
 112gfp_t clear_gfp_allowed_mask(gfp_t mask)
 113{
 114        gfp_t ret = gfp_allowed_mask;
 115
 116        WARN_ON(!mutex_is_locked(&pm_mutex));
 117        gfp_allowed_mask &= ~mask;
 118        return ret;
 119}
 120#endif /* CONFIG_PM_SLEEP */
 121
 122#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
 123int pageblock_order __read_mostly;
 124#endif
 125
 126static void __free_pages_ok(struct page *page, unsigned int order);
 127
 128/*
 129 * results with 256, 32 in the lowmem_reserve sysctl:
 130 *      1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 131 *      1G machine -> (16M dma, 784M normal, 224M high)
 132 *      NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 133 *      HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
 134 *      HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
 135 *
 136 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 137 * don't need any ZONE_NORMAL reservation
 138 */
 139int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
 140#ifdef CONFIG_ZONE_DMA
 141         256,
 142#endif
 143#ifdef CONFIG_ZONE_DMA32
 144         256,
 145#endif
 146#ifdef CONFIG_HIGHMEM
 147         32,
 148#endif
 149         32,
 150};
 151
 152EXPORT_SYMBOL(totalram_pages);
 153
 154static char * const zone_names[MAX_NR_ZONES] = {
 155#ifdef CONFIG_ZONE_DMA
 156         "DMA",
 157#endif
 158#ifdef CONFIG_ZONE_DMA32
 159         "DMA32",
 160#endif
 161         "Normal",
 162#ifdef CONFIG_HIGHMEM
 163         "HighMem",
 164#endif
 165         "Movable",
 166};
 167
 168int min_free_kbytes = 1024;
 169
 170static unsigned long __meminitdata nr_kernel_pages;
 171static unsigned long __meminitdata nr_all_pages;
 172static unsigned long __meminitdata dma_reserve;
 173
 174#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
 175  /*
 176   * MAX_ACTIVE_REGIONS determines the maximum number of distinct
 177   * ranges of memory (RAM) that may be registered with add_active_range().
 178   * Ranges passed to add_active_range() will be merged if possible
 179   * so the number of times add_active_range() can be called is
 180   * related to the number of nodes and the number of holes
 181   */
 182  #ifdef CONFIG_MAX_ACTIVE_REGIONS
 183    /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
 184    #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
 185  #else
 186    #if MAX_NUMNODES >= 32
 187      /* If there can be many nodes, allow up to 50 holes per node */
 188      #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
 189    #else
 190      /* By default, allow up to 256 distinct regions */
 191      #define MAX_ACTIVE_REGIONS 256
 192    #endif
 193  #endif
 194
 195  static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
 196  static int __meminitdata nr_nodemap_entries;
 197  static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
 198  static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
 199  static unsigned long __initdata required_kernelcore;
 200  static unsigned long __initdata required_movablecore;
 201  static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
 202
 203  /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
 204  int movable_zone;
 205  EXPORT_SYMBOL(movable_zone);
 206#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
 207
 208#if MAX_NUMNODES > 1
 209int nr_node_ids __read_mostly = MAX_NUMNODES;
 210int nr_online_nodes __read_mostly = 1;
 211EXPORT_SYMBOL(nr_node_ids);
 212EXPORT_SYMBOL(nr_online_nodes);
 213#endif
 214
 215int page_group_by_mobility_disabled __read_mostly;
 216
 217static void set_pageblock_migratetype(struct page *page, int migratetype)
 218{
 219
 220        if (unlikely(page_group_by_mobility_disabled))
 221                migratetype = MIGRATE_UNMOVABLE;
 222
 223        set_pageblock_flags_group(page, (unsigned long)migratetype,
 224                                        PB_migrate, PB_migrate_end);
 225}
 226
 227bool oom_killer_disabled __read_mostly;
 228
 229#ifdef CONFIG_DEBUG_VM
 230static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
 231{
 232        int ret = 0;
 233        unsigned seq;
 234        unsigned long pfn = page_to_pfn(page);
 235
 236        do {
 237                seq = zone_span_seqbegin(zone);
 238                if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
 239                        ret = 1;
 240                else if (pfn < zone->zone_start_pfn)
 241                        ret = 1;
 242        } while (zone_span_seqretry(zone, seq));
 243
 244        return ret;
 245}
 246
 247static int page_is_consistent(struct zone *zone, struct page *page)
 248{
 249        if (!pfn_valid_within(page_to_pfn(page)))
 250                return 0;
 251        if (zone != page_zone(page))
 252                return 0;
 253
 254        return 1;
 255}
 256/*
 257 * Temporary debugging check for pages not lying within a given zone.
 258 */
 259static int bad_range(struct zone *zone, struct page *page)
 260{
 261        if (page_outside_zone_boundaries(zone, page))
 262                return 1;
 263        if (!page_is_consistent(zone, page))
 264                return 1;
 265
 266        return 0;
 267}
 268#else
 269static inline int bad_range(struct zone *zone, struct page *page)
 270{
 271        return 0;
 272}
 273#endif
 274
 275static void bad_page(struct page *page)
 276{
 277        static unsigned long resume;
 278        static unsigned long nr_shown;
 279        static unsigned long nr_unshown;
 280
 281        /* Don't complain about poisoned pages */
 282        if (PageHWPoison(page)) {
 283                __ClearPageBuddy(page);
 284                return;
 285        }
 286
 287        /*
 288         * Allow a burst of 60 reports, then keep quiet for that minute;
 289         * or allow a steady drip of one report per second.
 290         */
 291        if (nr_shown == 60) {
 292                if (time_before(jiffies, resume)) {
 293                        nr_unshown++;
 294                        goto out;
 295                }
 296                if (nr_unshown) {
 297                        printk(KERN_ALERT
 298                              "BUG: Bad page state: %lu messages suppressed\n",
 299                                nr_unshown);
 300                        nr_unshown = 0;
 301                }
 302                nr_shown = 0;
 303        }
 304        if (nr_shown++ == 0)
 305                resume = jiffies + 60 * HZ;
 306
 307        printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
 308                current->comm, page_to_pfn(page));
 309        dump_page(page);
 310
 311        dump_stack();
 312out:
 313        /* Leave bad fields for debug, except PageBuddy could make trouble */
 314        __ClearPageBuddy(page);
 315        add_taint(TAINT_BAD_PAGE);
 316}
 317
 318/*
 319 * Higher-order pages are called "compound pages".  They are structured thusly:
 320 *
 321 * The first PAGE_SIZE page is called the "head page".
 322 *
 323 * The remaining PAGE_SIZE pages are called "tail pages".
 324 *
 325 * All pages have PG_compound set.  All pages have their ->private pointing at
 326 * the head page (even the head page has this).
 327 *
 328 * The first tail page's ->lru.next holds the address of the compound page's
 329 * put_page() function.  Its ->lru.prev holds the order of allocation.
 330 * This usage means that zero-order pages may not be compound.
 331 */
 332
 333static void free_compound_page(struct page *page)
 334{
 335        __free_pages_ok(page, compound_order(page));
 336}
 337
 338void prep_compound_page(struct page *page, unsigned long order)
 339{
 340        int i;
 341        int nr_pages = 1 << order;
 342
 343        set_compound_page_dtor(page, free_compound_page);
 344        set_compound_order(page, order);
 345        __SetPageHead(page);
 346        for (i = 1; i < nr_pages; i++) {
 347                struct page *p = page + i;
 348
 349                __SetPageTail(p);
 350                p->first_page = page;
 351        }
 352}
 353
 354static int destroy_compound_page(struct page *page, unsigned long order)
 355{
 356        int i;
 357        int nr_pages = 1 << order;
 358        int bad = 0;
 359
 360        if (unlikely(compound_order(page) != order) ||
 361            unlikely(!PageHead(page))) {
 362                bad_page(page);
 363                bad++;
 364        }
 365
 366        __ClearPageHead(page);
 367
 368        for (i = 1; i < nr_pages; i++) {
 369                struct page *p = page + i;
 370
 371                if (unlikely(!PageTail(p) || (p->first_page != page))) {
 372                        bad_page(page);
 373                        bad++;
 374                }
 375                __ClearPageTail(p);
 376        }
 377
 378        return bad;
 379}
 380
 381static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
 382{
 383        int i;
 384
 385        /*
 386         * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
 387         * and __GFP_HIGHMEM from hard or soft interrupt context.
 388         */
 389        VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
 390        for (i = 0; i < (1 << order); i++)
 391                clear_highpage(page + i);
 392}
 393
 394static inline void set_page_order(struct page *page, int order)
 395{
 396        set_page_private(page, order);
 397        __SetPageBuddy(page);
 398}
 399
 400static inline void rmv_page_order(struct page *page)
 401{
 402        __ClearPageBuddy(page);
 403        set_page_private(page, 0);
 404}
 405
 406/*
 407 * Locate the struct page for both the matching buddy in our
 408 * pair (buddy1) and the combined O(n+1) page they form (page).
 409 *
 410 * 1) Any buddy B1 will have an order O twin B2 which satisfies
 411 * the following equation:
 412 *     B2 = B1 ^ (1 << O)
 413 * For example, if the starting buddy (buddy2) is #8 its order
 414 * 1 buddy is #10:
 415 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
 416 *
 417 * 2) Any buddy B will have an order O+1 parent P which
 418 * satisfies the following equation:
 419 *     P = B & ~(1 << O)
 420 *
 421 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
 422 */
 423static inline struct page *
 424__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
 425{
 426        unsigned long buddy_idx = page_idx ^ (1 << order);
 427
 428        return page + (buddy_idx - page_idx);
 429}
 430
 431static inline unsigned long
 432__find_combined_index(unsigned long page_idx, unsigned int order)
 433{
 434        return (page_idx & ~(1 << order));
 435}
 436
 437/*
 438 * This function checks whether a page is free && is the buddy
 439 * we can do coalesce a page and its buddy if
 440 * (a) the buddy is not in a hole &&
 441 * (b) the buddy is in the buddy system &&
 442 * (c) a page and its buddy have the same order &&
 443 * (d) a page and its buddy are in the same zone.
 444 *
 445 * For recording whether a page is in the buddy system, we use PG_buddy.
 446 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
 447 *
 448 * For recording page's order, we use page_private(page).
 449 */
 450static inline int page_is_buddy(struct page *page, struct page *buddy,
 451                                                                int order)
 452{
 453        if (!pfn_valid_within(page_to_pfn(buddy)))
 454                return 0;
 455
 456        if (page_zone_id(page) != page_zone_id(buddy))
 457                return 0;
 458
 459        if (PageBuddy(buddy) && page_order(buddy) == order) {
 460                VM_BUG_ON(page_count(buddy) != 0);
 461                return 1;
 462        }
 463        return 0;
 464}
 465
 466/*
 467 * Freeing function for a buddy system allocator.
 468 *
 469 * The concept of a buddy system is to maintain direct-mapped table
 470 * (containing bit values) for memory blocks of various "orders".
 471 * The bottom level table contains the map for the smallest allocatable
 472 * units of memory (here, pages), and each level above it describes
 473 * pairs of units from the levels below, hence, "buddies".
 474 * At a high level, all that happens here is marking the table entry
 475 * at the bottom level available, and propagating the changes upward
 476 * as necessary, plus some accounting needed to play nicely with other
 477 * parts of the VM system.
 478 * At each level, we keep a list of pages, which are heads of continuous
 479 * free pages of length of (1 << order) and marked with PG_buddy. Page's
 480 * order is recorded in page_private(page) field.
 481 * So when we are allocating or freeing one, we can derive the state of the
 482 * other.  That is, if we allocate a small block, and both were   
 483 * free, the remainder of the region must be split into blocks.   
 484 * If a block is freed, and its buddy is also free, then this
 485 * triggers coalescing into a block of larger size.            
 486 *
 487 * -- wli
 488 */
 489
 490static inline void __free_one_page(struct page *page,
 491                struct zone *zone, unsigned int order,
 492                int migratetype)
 493{
 494        unsigned long page_idx;
 495        unsigned long combined_idx;
 496        struct page *buddy;
 497
 498        if (unlikely(PageCompound(page)))
 499                if (unlikely(destroy_compound_page(page, order)))
 500                        return;
 501
 502        VM_BUG_ON(migratetype == -1);
 503
 504        page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
 505
 506        VM_BUG_ON(page_idx & ((1 << order) - 1));
 507        VM_BUG_ON(bad_range(zone, page));
 508
 509        while (order < MAX_ORDER-1) {
 510                buddy = __page_find_buddy(page, page_idx, order);
 511                if (!page_is_buddy(page, buddy, order))
 512                        break;
 513
 514                /* Our buddy is free, merge with it and move up one order. */
 515                list_del(&buddy->lru);
 516                zone->free_area[order].nr_free--;
 517                rmv_page_order(buddy);
 518                combined_idx = __find_combined_index(page_idx, order);
 519                page = page + (combined_idx - page_idx);
 520                page_idx = combined_idx;
 521                order++;
 522        }
 523        set_page_order(page, order);
 524
 525        /*
 526         * If this is not the largest possible page, check if the buddy
 527         * of the next-highest order is free. If it is, it's possible
 528         * that pages are being freed that will coalesce soon. In case,
 529         * that is happening, add the free page to the tail of the list
 530         * so it's less likely to be used soon and more likely to be merged
 531         * as a higher order page
 532         */
 533        if ((order < MAX_ORDER-1) && pfn_valid_within(page_to_pfn(buddy))) {
 534                struct page *higher_page, *higher_buddy;
 535                combined_idx = __find_combined_index(page_idx, order);
 536                higher_page = page + combined_idx - page_idx;
 537                higher_buddy = __page_find_buddy(higher_page, combined_idx, order + 1);
 538                if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
 539                        list_add_tail(&page->lru,
 540                                &zone->free_area[order].free_list[migratetype]);
 541                        goto out;
 542                }
 543        }
 544
 545        list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
 546out:
 547        zone->free_area[order].nr_free++;
 548}
 549
 550/*
 551 * free_page_mlock() -- clean up attempts to free and mlocked() page.
 552 * Page should not be on lru, so no need to fix that up.
 553 * free_pages_check() will verify...
 554 */
 555static inline void free_page_mlock(struct page *page)
 556{
 557        __dec_zone_page_state(page, NR_MLOCK);
 558        __count_vm_event(UNEVICTABLE_MLOCKFREED);
 559}
 560
 561static inline int free_pages_check(struct page *page)
 562{
 563        if (unlikely(page_mapcount(page) |
 564                (page->mapping != NULL)  |
 565                (atomic_read(&page->_count) != 0) |
 566                (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
 567                bad_page(page);
 568                return 1;
 569        }
 570        if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
 571                page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
 572        return 0;
 573}
 574
 575/*
 576 * Frees a number of pages from the PCP lists
 577 * Assumes all pages on list are in same zone, and of same order.
 578 * count is the number of pages to free.
 579 *
 580 * If the zone was previously in an "all pages pinned" state then look to
 581 * see if this freeing clears that state.
 582 *
 583 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 584 * pinned" detection logic.
 585 */
 586static void free_pcppages_bulk(struct zone *zone, int count,
 587                                        struct per_cpu_pages *pcp)
 588{
 589        int migratetype = 0;
 590        int batch_free = 0;
 591
 592        spin_lock(&zone->lock);
 593        zone->all_unreclaimable = 0;
 594        zone->pages_scanned = 0;
 595
 596        __mod_zone_page_state(zone, NR_FREE_PAGES, count);
 597        while (count) {
 598                struct page *page;
 599                struct list_head *list;
 600
 601                /*
 602                 * Remove pages from lists in a round-robin fashion. A
 603                 * batch_free count is maintained that is incremented when an
 604                 * empty list is encountered.  This is so more pages are freed
 605                 * off fuller lists instead of spinning excessively around empty
 606                 * lists
 607                 */
 608                do {
 609                        batch_free++;
 610                        if (++migratetype == MIGRATE_PCPTYPES)
 611                                migratetype = 0;
 612                        list = &pcp->lists[migratetype];
 613                } while (list_empty(list));
 614
 615                do {
 616                        page = list_entry(list->prev, struct page, lru);
 617                        /* must delete as __free_one_page list manipulates */
 618                        list_del(&page->lru);
 619                        /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
 620                        __free_one_page(page, zone, 0, page_private(page));
 621                        trace_mm_page_pcpu_drain(page, 0, page_private(page));
 622                } while (--count && --batch_free && !list_empty(list));
 623        }
 624        spin_unlock(&zone->lock);
 625}
 626
 627static void free_one_page(struct zone *zone, struct page *page, int order,
 628                                int migratetype)
 629{
 630        spin_lock(&zone->lock);
 631        zone->all_unreclaimable = 0;
 632        zone->pages_scanned = 0;
 633
 634        __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
 635        __free_one_page(page, zone, order, migratetype);
 636        spin_unlock(&zone->lock);
 637}
 638
 639static bool free_pages_prepare(struct page *page, unsigned int order)
 640{
 641        int i;
 642        int bad = 0;
 643
 644        trace_mm_page_free_direct(page, order);
 645        kmemcheck_free_shadow(page, order);
 646
 647        for (i = 0; i < (1 << order); i++) {
 648                struct page *pg = page + i;
 649
 650                if (PageAnon(pg))
 651                        pg->mapping = NULL;
 652                bad += free_pages_check(pg);
 653        }
 654        if (bad)
 655                return false;
 656
 657        if (!PageHighMem(page)) {
 658                debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
 659                debug_check_no_obj_freed(page_address(page),
 660                                           PAGE_SIZE << order);
 661        }
 662        arch_free_page(page, order);
 663        kernel_map_pages(page, 1 << order, 0);
 664
 665        return true;
 666}
 667
 668static void __free_pages_ok(struct page *page, unsigned int order)
 669{
 670        unsigned long flags;
 671        int wasMlocked = __TestClearPageMlocked(page);
 672
 673        if (!free_pages_prepare(page, order))
 674                return;
 675
 676        local_irq_save(flags);
 677        if (unlikely(wasMlocked))
 678                free_page_mlock(page);
 679        __count_vm_events(PGFREE, 1 << order);
 680        free_one_page(page_zone(page), page, order,
 681                                        get_pageblock_migratetype(page));
 682        local_irq_restore(flags);
 683}
 684
 685/*
 686 * permit the bootmem allocator to evade page validation on high-order frees
 687 */
 688void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
 689{
 690        if (order == 0) {
 691                __ClearPageReserved(page);
 692                set_page_count(page, 0);
 693                set_page_refcounted(page);
 694                __free_page(page);
 695        } else {
 696                int loop;
 697
 698                prefetchw(page);
 699                for (loop = 0; loop < BITS_PER_LONG; loop++) {
 700                        struct page *p = &page[loop];
 701
 702                        if (loop + 1 < BITS_PER_LONG)
 703                                prefetchw(p + 1);
 704                        __ClearPageReserved(p);
 705                        set_page_count(p, 0);
 706                }
 707
 708                set_page_refcounted(page);
 709                __free_pages(page, order);
 710        }
 711}
 712
 713
 714/*
 715 * The order of subdivision here is critical for the IO subsystem.
 716 * Please do not alter this order without good reasons and regression
 717 * testing. Specifically, as large blocks of memory are subdivided,
 718 * the order in which smaller blocks are delivered depends on the order
 719 * they're subdivided in this function. This is the primary factor
 720 * influencing the order in which pages are delivered to the IO
 721 * subsystem according to empirical testing, and this is also justified
 722 * by considering the behavior of a buddy system containing a single
 723 * large block of memory acted on by a series of small allocations.
 724 * This behavior is a critical factor in sglist merging's success.
 725 *
 726 * -- wli
 727 */
 728static inline void expand(struct zone *zone, struct page *page,
 729        int low, int high, struct free_area *area,
 730        int migratetype)
 731{
 732        unsigned long size = 1 << high;
 733
 734        while (high > low) {
 735                area--;
 736                high--;
 737                size >>= 1;
 738                VM_BUG_ON(bad_range(zone, &page[size]));
 739                list_add(&page[size].lru, &area->free_list[migratetype]);
 740                area->nr_free++;
 741                set_page_order(&page[size], high);
 742        }
 743}
 744
 745/*
 746 * This page is about to be returned from the page allocator
 747 */
 748static inline int check_new_page(struct page *page)
 749{
 750        if (unlikely(page_mapcount(page) |
 751                (page->mapping != NULL)  |
 752                (atomic_read(&page->_count) != 0)  |
 753                (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
 754                bad_page(page);
 755                return 1;
 756        }
 757        return 0;
 758}
 759
 760static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
 761{
 762        int i;
 763
 764        for (i = 0; i < (1 << order); i++) {
 765                struct page *p = page + i;
 766                if (unlikely(check_new_page(p)))
 767                        return 1;
 768        }
 769
 770        set_page_private(page, 0);
 771        set_page_refcounted(page);
 772
 773        arch_alloc_page(page, order);
 774        kernel_map_pages(page, 1 << order, 1);
 775
 776        if (gfp_flags & __GFP_ZERO)
 777                prep_zero_page(page, order, gfp_flags);
 778
 779        if (order && (gfp_flags & __GFP_COMP))
 780                prep_compound_page(page, order);
 781
 782        return 0;
 783}
 784
 785/*
 786 * Go through the free lists for the given migratetype and remove
 787 * the smallest available page from the freelists
 788 */
 789static inline
 790struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
 791                                                int migratetype)
 792{
 793        unsigned int current_order;
 794        struct free_area * area;
 795        struct page *page;
 796
 797        /* Find a page of the appropriate size in the preferred list */
 798        for (current_order = order; current_order < MAX_ORDER; ++current_order) {
 799                area = &(zone->free_area[current_order]);
 800                if (list_empty(&area->free_list[migratetype]))
 801                        continue;
 802
 803                page = list_entry(area->free_list[migratetype].next,
 804                                                        struct page, lru);
 805                list_del(&page->lru);
 806                rmv_page_order(page);
 807                area->nr_free--;
 808                expand(zone, page, order, current_order, area, migratetype);
 809                return page;
 810        }
 811
 812        return NULL;
 813}
 814
 815
 816/*
 817 * This array describes the order lists are fallen back to when
 818 * the free lists for the desirable migrate type are depleted
 819 */
 820static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
 821        [MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
 822        [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
 823        [MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
 824        [MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
 825};
 826
 827/*
 828 * Move the free pages in a range to the free lists of the requested type.
 829 * Note that start_page and end_pages are not aligned on a pageblock
 830 * boundary. If alignment is required, use move_freepages_block()
 831 */
 832static int move_freepages(struct zone *zone,
 833                          struct page *start_page, struct page *end_page,
 834                          int migratetype)
 835{
 836        struct page *page;
 837        unsigned long order;
 838        int pages_moved = 0;
 839
 840#ifndef CONFIG_HOLES_IN_ZONE
 841        /*
 842         * page_zone is not safe to call in this context when
 843         * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
 844         * anyway as we check zone boundaries in move_freepages_block().
 845         * Remove at a later date when no bug reports exist related to
 846         * grouping pages by mobility
 847         */
 848        BUG_ON(page_zone(start_page) != page_zone(end_page));
 849#endif
 850
 851        for (page = start_page; page <= end_page;) {
 852                /* Make sure we are not inadvertently changing nodes */
 853                VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
 854
 855                if (!pfn_valid_within(page_to_pfn(page))) {
 856                        page++;
 857                        continue;
 858                }
 859
 860                if (!PageBuddy(page)) {
 861                        page++;
 862                        continue;
 863                }
 864
 865                order = page_order(page);
 866                list_del(&page->lru);
 867                list_add(&page->lru,
 868                        &zone->free_area[order].free_list[migratetype]);
 869                page += 1 << order;
 870                pages_moved += 1 << order;
 871        }
 872
 873        return pages_moved;
 874}
 875
 876static int move_freepages_block(struct zone *zone, struct page *page,
 877                                int migratetype)
 878{
 879        unsigned long start_pfn, end_pfn;
 880        struct page *start_page, *end_page;
 881
 882        start_pfn = page_to_pfn(page);
 883        start_pfn = start_pfn & ~(pageblock_nr_pages-1);
 884        start_page = pfn_to_page(start_pfn);
 885        end_page = start_page + pageblock_nr_pages - 1;
 886        end_pfn = start_pfn + pageblock_nr_pages - 1;
 887
 888        /* Do not cross zone boundaries */
 889        if (start_pfn < zone->zone_start_pfn)
 890                start_page = page;
 891        if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
 892                return 0;
 893
 894        return move_freepages(zone, start_page, end_page, migratetype);
 895}
 896
 897static void change_pageblock_range(struct page *pageblock_page,
 898                                        int start_order, int migratetype)
 899{
 900        int nr_pageblocks = 1 << (start_order - pageblock_order);
 901
 902        while (nr_pageblocks--) {
 903                set_pageblock_migratetype(pageblock_page, migratetype);
 904                pageblock_page += pageblock_nr_pages;
 905        }
 906}
 907
 908/* Remove an element from the buddy allocator from the fallback list */
 909static inline struct page *
 910__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
 911{
 912        struct free_area * area;
 913        int current_order;
 914        struct page *page;
 915        int migratetype, i;
 916
 917        /* Find the largest possible block of pages in the other list */
 918        for (current_order = MAX_ORDER-1; current_order >= order;
 919                                                --current_order) {
 920                for (i = 0; i < MIGRATE_TYPES - 1; i++) {
 921                        migratetype = fallbacks[start_migratetype][i];
 922
 923                        /* MIGRATE_RESERVE handled later if necessary */
 924                        if (migratetype == MIGRATE_RESERVE)
 925                                continue;
 926
 927                        area = &(zone->free_area[current_order]);
 928                        if (list_empty(&area->free_list[migratetype]))
 929                                continue;
 930
 931                        page = list_entry(area->free_list[migratetype].next,
 932                                        struct page, lru);
 933                        area->nr_free--;
 934
 935                        /*
 936                         * If breaking a large block of pages, move all free
 937                         * pages to the preferred allocation list. If falling
 938                         * back for a reclaimable kernel allocation, be more
 939                         * agressive about taking ownership of free pages
 940                         */
 941                        if (unlikely(current_order >= (pageblock_order >> 1)) ||
 942                                        start_migratetype == MIGRATE_RECLAIMABLE ||
 943                                        page_group_by_mobility_disabled) {
 944                                unsigned long pages;
 945                                pages = move_freepages_block(zone, page,
 946                                                                start_migratetype);
 947
 948                                /* Claim the whole block if over half of it is free */
 949                                if (pages >= (1 << (pageblock_order-1)) ||
 950                                                page_group_by_mobility_disabled)
 951                                        set_pageblock_migratetype(page,
 952                                                                start_migratetype);
 953
 954                                migratetype = start_migratetype;
 955                        }
 956
 957                        /* Remove the page from the freelists */
 958                        list_del(&page->lru);
 959                        rmv_page_order(page);
 960
 961                        /* Take ownership for orders >= pageblock_order */
 962                        if (current_order >= pageblock_order)
 963                                change_pageblock_range(page, current_order,
 964                                                        start_migratetype);
 965
 966                        expand(zone, page, order, current_order, area, migratetype);
 967
 968                        trace_mm_page_alloc_extfrag(page, order, current_order,
 969                                start_migratetype, migratetype);
 970
 971                        return page;
 972                }
 973        }
 974
 975        return NULL;
 976}
 977
 978/*
 979 * Do the hard work of removing an element from the buddy allocator.
 980 * Call me with the zone->lock already held.
 981 */
 982static struct page *__rmqueue(struct zone *zone, unsigned int order,
 983                                                int migratetype)
 984{
 985        struct page *page;
 986
 987retry_reserve:
 988        page = __rmqueue_smallest(zone, order, migratetype);
 989
 990        if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
 991                page = __rmqueue_fallback(zone, order, migratetype);
 992
 993                /*
 994                 * Use MIGRATE_RESERVE rather than fail an allocation. goto
 995                 * is used because __rmqueue_smallest is an inline function
 996                 * and we want just one call site
 997                 */
 998                if (!page) {
 999                        migratetype = MIGRATE_RESERVE;
1000                        goto retry_reserve;
1001                }
1002        }
1003
1004        trace_mm_page_alloc_zone_locked(page, order, migratetype);
1005        return page;
1006}
1007
1008/* 
1009 * Obtain a specified number of elements from the buddy allocator, all under
1010 * a single hold of the lock, for efficiency.  Add them to the supplied list.
1011 * Returns the number of new pages which were placed at *list.
1012 */
1013static int rmqueue_bulk(struct zone *zone, unsigned int order, 
1014                        unsigned long count, struct list_head *list,
1015                        int migratetype, int cold)
1016{
1017        int i;
1018        
1019        spin_lock(&zone->lock);
1020        for (i = 0; i < count; ++i) {
1021                struct page *page = __rmqueue(zone, order, migratetype);
1022                if (unlikely(page == NULL))
1023                        break;
1024
1025                /*
1026                 * Split buddy pages returned by expand() are received here
1027                 * in physical page order. The page is added to the callers and
1028                 * list and the list head then moves forward. From the callers
1029                 * perspective, the linked list is ordered by page number in
1030                 * some conditions. This is useful for IO devices that can
1031                 * merge IO requests if the physical pages are ordered
1032                 * properly.
1033                 */
1034                if (likely(cold == 0))
1035                        list_add(&page->lru, list);
1036                else
1037                        list_add_tail(&page->lru, list);
1038                set_page_private(page, migratetype);
1039                list = &page->lru;
1040        }
1041        __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1042        spin_unlock(&zone->lock);
1043        return i;
1044}
1045
1046#ifdef CONFIG_NUMA
1047/*
1048 * Called from the vmstat counter updater to drain pagesets of this
1049 * currently executing processor on remote nodes after they have
1050 * expired.
1051 *
1052 * Note that this function must be called with the thread pinned to
1053 * a single processor.
1054 */
1055void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1056{
1057        unsigned long flags;
1058        int to_drain;
1059
1060        local_irq_save(flags);
1061        if (pcp->count >= pcp->batch)
1062                to_drain = pcp->batch;
1063        else
1064                to_drain = pcp->count;
1065        free_pcppages_bulk(zone, to_drain, pcp);
1066        pcp->count -= to_drain;
1067        local_irq_restore(flags);
1068}
1069#endif
1070
1071/*
1072 * Drain pages of the indicated processor.
1073 *
1074 * The processor must either be the current processor and the
1075 * thread pinned to the current processor or a processor that
1076 * is not online.
1077 */
1078static void drain_pages(unsigned int cpu)
1079{
1080        unsigned long flags;
1081        struct zone *zone;
1082
1083        for_each_populated_zone(zone) {
1084                struct per_cpu_pageset *pset;
1085                struct per_cpu_pages *pcp;
1086
1087                local_irq_save(flags);
1088                pset = per_cpu_ptr(zone->pageset, cpu);
1089
1090                pcp = &pset->pcp;
1091                free_pcppages_bulk(zone, pcp->count, pcp);
1092                pcp->count = 0;
1093                local_irq_restore(flags);
1094        }
1095}
1096
1097/*
1098 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1099 */
1100void drain_local_pages(void *arg)
1101{
1102        drain_pages(smp_processor_id());
1103}
1104
1105/*
1106 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1107 */
1108void drain_all_pages(void)
1109{
1110        on_each_cpu(drain_local_pages, NULL, 1);
1111}
1112
1113#ifdef CONFIG_HIBERNATION
1114
1115void mark_free_pages(struct zone *zone)
1116{
1117        unsigned long pfn, max_zone_pfn;
1118        unsigned long flags;
1119        int order, t;
1120        struct list_head *curr;
1121
1122        if (!zone->spanned_pages)
1123                return;
1124
1125        spin_lock_irqsave(&zone->lock, flags);
1126
1127        max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1128        for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1129                if (pfn_valid(pfn)) {
1130                        struct page *page = pfn_to_page(pfn);
1131
1132                        if (!swsusp_page_is_forbidden(page))
1133                                swsusp_unset_page_free(page);
1134                }
1135
1136        for_each_migratetype_order(order, t) {
1137                list_for_each(curr, &zone->free_area[order].free_list[t]) {
1138                        unsigned long i;
1139
1140                        pfn = page_to_pfn(list_entry(curr, struct page, lru));
1141                        for (i = 0; i < (1UL << order); i++)
1142                                swsusp_set_page_free(pfn_to_page(pfn + i));
1143                }
1144        }
1145        spin_unlock_irqrestore(&zone->lock, flags);
1146}
1147#endif /* CONFIG_PM */
1148
1149/*
1150 * Free a 0-order page
1151 * cold == 1 ? free a cold page : free a hot page
1152 */
1153void free_hot_cold_page(struct page *page, int cold)
1154{
1155        struct zone *zone = page_zone(page);
1156        struct per_cpu_pages *pcp;
1157        unsigned long flags;
1158        int migratetype;
1159        int wasMlocked = __TestClearPageMlocked(page);
1160
1161        if (!free_pages_prepare(page, 0))
1162                return;
1163
1164        migratetype = get_pageblock_migratetype(page);
1165        set_page_private(page, migratetype);
1166        local_irq_save(flags);
1167        if (unlikely(wasMlocked))
1168                free_page_mlock(page);
1169        __count_vm_event(PGFREE);
1170
1171        /*
1172         * We only track unmovable, reclaimable and movable on pcp lists.
1173         * Free ISOLATE pages back to the allocator because they are being
1174         * offlined but treat RESERVE as movable pages so we can get those
1175         * areas back if necessary. Otherwise, we may have to free
1176         * excessively into the page allocator
1177         */
1178        if (migratetype >= MIGRATE_PCPTYPES) {
1179                if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1180                        free_one_page(zone, page, 0, migratetype);
1181                        goto out;
1182                }
1183                migratetype = MIGRATE_MOVABLE;
1184        }
1185
1186        pcp = &this_cpu_ptr(zone->pageset)->pcp;
1187        if (cold)
1188                list_add_tail(&page->lru, &pcp->lists[migratetype]);
1189        else
1190                list_add(&page->lru, &pcp->lists[migratetype]);
1191        pcp->count++;
1192        if (pcp->count >= pcp->high) {
1193                free_pcppages_bulk(zone, pcp->batch, pcp);
1194                pcp->count -= pcp->batch;
1195        }
1196
1197out:
1198        local_irq_restore(flags);
1199}
1200
1201/*
1202 * split_page takes a non-compound higher-order page, and splits it into
1203 * n (1<<order) sub-pages: page[0..n]
1204 * Each sub-page must be freed individually.
1205 *
1206 * Note: this is probably too low level an operation for use in drivers.
1207 * Please consult with lkml before using this in your driver.
1208 */
1209void split_page(struct page *page, unsigned int order)
1210{
1211        int i;
1212
1213        VM_BUG_ON(PageCompound(page));
1214        VM_BUG_ON(!page_count(page));
1215
1216#ifdef CONFIG_KMEMCHECK
1217        /*
1218         * Split shadow pages too, because free(page[0]) would
1219         * otherwise free the whole shadow.
1220         */
1221        if (kmemcheck_page_is_tracked(page))
1222                split_page(virt_to_page(page[0].shadow), order);
1223#endif
1224
1225        for (i = 1; i < (1 << order); i++)
1226                set_page_refcounted(page + i);
1227}
1228
1229/*
1230 * Similar to split_page except the page is already free. As this is only
1231 * being used for migration, the migratetype of the block also changes.
1232 * As this is called with interrupts disabled, the caller is responsible
1233 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1234 * are enabled.
1235 *
1236 * Note: this is probably too low level an operation for use in drivers.
1237 * Please consult with lkml before using this in your driver.
1238 */
1239int split_free_page(struct page *page)
1240{
1241        unsigned int order;
1242        unsigned long watermark;
1243        struct zone *zone;
1244
1245        BUG_ON(!PageBuddy(page));
1246
1247        zone = page_zone(page);
1248        order = page_order(page);
1249
1250        /* Obey watermarks as if the page was being allocated */
1251        watermark = low_wmark_pages(zone) + (1 << order);
1252        if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1253                return 0;
1254
1255        /* Remove page from free list */
1256        list_del(&page->lru);
1257        zone->free_area[order].nr_free--;
1258        rmv_page_order(page);
1259        __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1260
1261        /* Split into individual pages */
1262        set_page_refcounted(page);
1263        split_page(page, order);
1264
1265        if (order >= pageblock_order - 1) {
1266                struct page *endpage = page + (1 << order) - 1;
1267                for (; page < endpage; page += pageblock_nr_pages)
1268                        set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1269        }
1270
1271        return 1 << order;
1272}
1273
1274/*
1275 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1276 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1277 * or two.
1278 */
1279static inline
1280struct page *buffered_rmqueue(struct zone *preferred_zone,
1281                        struct zone *zone, int order, gfp_t gfp_flags,
1282                        int migratetype)
1283{
1284        unsigned long flags;
1285        struct page *page;
1286        int cold = !!(gfp_flags & __GFP_COLD);
1287
1288again:
1289        if (likely(order == 0)) {
1290                struct per_cpu_pages *pcp;
1291                struct list_head *list;
1292
1293                local_irq_save(flags);
1294                pcp = &this_cpu_ptr(zone->pageset)->pcp;
1295                list = &pcp->lists[migratetype];
1296                if (list_empty(list)) {
1297                        pcp->count += rmqueue_bulk(zone, 0,
1298                                        pcp->batch, list,
1299                                        migratetype, cold);
1300                        if (unlikely(list_empty(list)))
1301                                goto failed;
1302                }
1303
1304                if (cold)
1305                        page = list_entry(list->prev, struct page, lru);
1306                else
1307                        page = list_entry(list->next, struct page, lru);
1308
1309                list_del(&page->lru);
1310                pcp->count--;
1311        } else {
1312                if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1313                        /*
1314                         * __GFP_NOFAIL is not to be used in new code.
1315                         *
1316                         * All __GFP_NOFAIL callers should be fixed so that they
1317                         * properly detect and handle allocation failures.
1318                         *
1319                         * We most definitely don't want callers attempting to
1320                         * allocate greater than order-1 page units with
1321                         * __GFP_NOFAIL.
1322                         */
1323                        WARN_ON_ONCE(order > 1);
1324                }
1325                spin_lock_irqsave(&zone->lock, flags);
1326                page = __rmqueue(zone, order, migratetype);
1327                spin_unlock(&zone->lock);
1328                if (!page)
1329                        goto failed;
1330                __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1331        }
1332
1333        __count_zone_vm_events(PGALLOC, zone, 1 << order);
1334        zone_statistics(preferred_zone, zone);
1335        local_irq_restore(flags);
1336
1337        VM_BUG_ON(bad_range(zone, page));
1338        if (prep_new_page(page, order, gfp_flags))
1339                goto again;
1340        return page;
1341
1342failed:
1343        local_irq_restore(flags);
1344        return NULL;
1345}
1346
1347/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1348#define ALLOC_WMARK_MIN         WMARK_MIN
1349#define ALLOC_WMARK_LOW         WMARK_LOW
1350#define ALLOC_WMARK_HIGH        WMARK_HIGH
1351#define ALLOC_NO_WATERMARKS     0x04 /* don't check watermarks at all */
1352
1353/* Mask to get the watermark bits */
1354#define ALLOC_WMARK_MASK        (ALLOC_NO_WATERMARKS-1)
1355
1356#define ALLOC_HARDER            0x10 /* try to alloc harder */
1357#define ALLOC_HIGH              0x20 /* __GFP_HIGH set */
1358#define ALLOC_CPUSET            0x40 /* check for correct cpuset */
1359
1360#ifdef CONFIG_FAIL_PAGE_ALLOC
1361
1362static struct fail_page_alloc_attr {
1363        struct fault_attr attr;
1364
1365        u32 ignore_gfp_highmem;
1366        u32 ignore_gfp_wait;
1367        u32 min_order;
1368
1369#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1370
1371        struct dentry *ignore_gfp_highmem_file;
1372        struct dentry *ignore_gfp_wait_file;
1373        struct dentry *min_order_file;
1374
1375#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1376
1377} fail_page_alloc = {
1378        .attr = FAULT_ATTR_INITIALIZER,
1379        .ignore_gfp_wait = 1,
1380        .ignore_gfp_highmem = 1,
1381        .min_order = 1,
1382};
1383
1384static int __init setup_fail_page_alloc(char *str)
1385{
1386        return setup_fault_attr(&fail_page_alloc.attr, str);
1387}
1388__setup("fail_page_alloc=", setup_fail_page_alloc);
1389
1390static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1391{
1392        if (order < fail_page_alloc.min_order)
1393                return 0;
1394        if (gfp_mask & __GFP_NOFAIL)
1395                return 0;
1396        if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1397                return 0;
1398        if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1399                return 0;
1400
1401        return should_fail(&fail_page_alloc.attr, 1 << order);
1402}
1403
1404#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1405
1406static int __init fail_page_alloc_debugfs(void)
1407{
1408        mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1409        struct dentry *dir;
1410        int err;
1411
1412        err = init_fault_attr_dentries(&fail_page_alloc.attr,
1413                                       "fail_page_alloc");
1414        if (err)
1415                return err;
1416        dir = fail_page_alloc.attr.dentries.dir;
1417
1418        fail_page_alloc.ignore_gfp_wait_file =
1419                debugfs_create_bool("ignore-gfp-wait", mode, dir,
1420                                      &fail_page_alloc.ignore_gfp_wait);
1421
1422        fail_page_alloc.ignore_gfp_highmem_file =
1423                debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1424                                      &fail_page_alloc.ignore_gfp_highmem);
1425        fail_page_alloc.min_order_file =
1426                debugfs_create_u32("min-order", mode, dir,
1427                                   &fail_page_alloc.min_order);
1428
1429        if (!fail_page_alloc.ignore_gfp_wait_file ||
1430            !fail_page_alloc.ignore_gfp_highmem_file ||
1431            !fail_page_alloc.min_order_file) {
1432                err = -ENOMEM;
1433                debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1434                debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1435                debugfs_remove(fail_page_alloc.min_order_file);
1436                cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1437        }
1438
1439        return err;
1440}
1441
1442late_initcall(fail_page_alloc_debugfs);
1443
1444#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1445
1446#else /* CONFIG_FAIL_PAGE_ALLOC */
1447
1448static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1449{
1450        return 0;
1451}
1452
1453#endif /* CONFIG_FAIL_PAGE_ALLOC */
1454
1455/*
1456 * Return 1 if free pages are above 'mark'. This takes into account the order
1457 * of the allocation.
1458 */
1459int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1460                      int classzone_idx, int alloc_flags)
1461{
1462        /* free_pages my go negative - that's OK */
1463        long min = mark;
1464        long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1465        int o;
1466
1467        if (alloc_flags & ALLOC_HIGH)
1468                min -= min / 2;
1469        if (alloc_flags & ALLOC_HARDER)
1470                min -= min / 4;
1471
1472        if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1473                return 0;
1474        for (o = 0; o < order; o++) {
1475                /* At the next order, this order's pages become unavailable */
1476                free_pages -= z->free_area[o].nr_free << o;
1477
1478                /* Require fewer higher order pages to be free */
1479                min >>= 1;
1480
1481                if (free_pages <= min)
1482                        return 0;
1483        }
1484        return 1;
1485}
1486
1487#ifdef CONFIG_NUMA
1488/*
1489 * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1490 * skip over zones that are not allowed by the cpuset, or that have
1491 * been recently (in last second) found to be nearly full.  See further
1492 * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1493 * that have to skip over a lot of full or unallowed zones.
1494 *
1495 * If the zonelist cache is present in the passed in zonelist, then
1496 * returns a pointer to the allowed node mask (either the current
1497 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1498 *
1499 * If the zonelist cache is not available for this zonelist, does
1500 * nothing and returns NULL.
1501 *
1502 * If the fullzones BITMAP in the zonelist cache is stale (more than
1503 * a second since last zap'd) then we zap it out (clear its bits.)
1504 *
1505 * We hold off even calling zlc_setup, until after we've checked the
1506 * first zone in the zonelist, on the theory that most allocations will
1507 * be satisfied from that first zone, so best to examine that zone as
1508 * quickly as we can.
1509 */
1510static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1511{
1512        struct zonelist_cache *zlc;     /* cached zonelist speedup info */
1513        nodemask_t *allowednodes;       /* zonelist_cache approximation */
1514
1515        zlc = zonelist->zlcache_ptr;
1516        if (!zlc)
1517                return NULL;
1518
1519        if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1520                bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1521                zlc->last_full_zap = jiffies;
1522        }
1523
1524        allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1525                                        &cpuset_current_mems_allowed :
1526                                        &node_states[N_HIGH_MEMORY];
1527        return allowednodes;
1528}
1529
1530/*
1531 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1532 * if it is worth looking at further for free memory:
1533 *  1) Check that the zone isn't thought to be full (doesn't have its
1534 *     bit set in the zonelist_cache fullzones BITMAP).
1535 *  2) Check that the zones node (obtained from the zonelist_cache
1536 *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1537 * Return true (non-zero) if zone is worth looking at further, or
1538 * else return false (zero) if it is not.
1539 *
1540 * This check -ignores- the distinction between various watermarks,
1541 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1542 * found to be full for any variation of these watermarks, it will
1543 * be considered full for up to one second by all requests, unless
1544 * we are so low on memory on all allowed nodes that we are forced
1545 * into the second scan of the zonelist.
1546 *
1547 * In the second scan we ignore this zonelist cache and exactly
1548 * apply the watermarks to all zones, even it is slower to do so.
1549 * We are low on memory in the second scan, and should leave no stone
1550 * unturned looking for a free page.
1551 */
1552static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1553                                                nodemask_t *allowednodes)
1554{
1555        struct zonelist_cache *zlc;     /* cached zonelist speedup info */
1556        int i;                          /* index of *z in zonelist zones */
1557        int n;                          /* node that zone *z is on */
1558
1559        zlc = zonelist->zlcache_ptr;
1560        if (!zlc)
1561                return 1;
1562
1563        i = z - zonelist->_zonerefs;
1564        n = zlc->z_to_n[i];
1565
1566        /* This zone is worth trying if it is allowed but not full */
1567        return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1568}
1569
1570/*
1571 * Given 'z' scanning a zonelist, set the corresponding bit in
1572 * zlc->fullzones, so that subsequent attempts to allocate a page
1573 * from that zone don't waste time re-examining it.
1574 */
1575static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1576{
1577        struct zonelist_cache *zlc;     /* cached zonelist speedup info */
1578        int i;                          /* index of *z in zonelist zones */
1579
1580        zlc = zonelist->zlcache_ptr;
1581        if (!zlc)
1582                return;
1583
1584        i = z - zonelist->_zonerefs;
1585
1586        set_bit(i, zlc->fullzones);
1587}
1588
1589#else   /* CONFIG_NUMA */
1590
1591static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1592{
1593        return NULL;
1594}
1595
1596static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1597                                nodemask_t *allowednodes)
1598{
1599        return 1;
1600}
1601
1602static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1603{
1604}
1605#endif  /* CONFIG_NUMA */
1606
1607/*
1608 * get_page_from_freelist goes through the zonelist trying to allocate
1609 * a page.
1610 */
1611static struct page *
1612get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1613                struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1614                struct zone *preferred_zone, int migratetype)
1615{
1616        struct zoneref *z;
1617        struct page *page = NULL;
1618        int classzone_idx;
1619        struct zone *zone;
1620        nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1621        int zlc_active = 0;             /* set if using zonelist_cache */
1622        int did_zlc_setup = 0;          /* just call zlc_setup() one time */
1623
1624        classzone_idx = zone_idx(preferred_zone);
1625zonelist_scan:
1626        /*
1627         * Scan zonelist, looking for a zone with enough free.
1628         * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1629         */
1630        for_each_zone_zonelist_nodemask(zone, z, zonelist,
1631                                                high_zoneidx, nodemask) {
1632                if (NUMA_BUILD && zlc_active &&
1633                        !zlc_zone_worth_trying(zonelist, z, allowednodes))
1634                                continue;
1635                if ((alloc_flags & ALLOC_CPUSET) &&
1636                        !cpuset_zone_allowed_softwall(zone, gfp_mask))
1637                                goto try_next_zone;
1638
1639                BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1640                if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1641                        unsigned long mark;
1642                        int ret;
1643
1644                        mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1645                        if (zone_watermark_ok(zone, order, mark,
1646                                    classzone_idx, alloc_flags))
1647                                goto try_this_zone;
1648
1649                        if (zone_reclaim_mode == 0)
1650                                goto this_zone_full;
1651
1652                        ret = zone_reclaim(zone, gfp_mask, order);
1653                        switch (ret) {
1654                        case ZONE_RECLAIM_NOSCAN:
1655                                /* did not scan */
1656                                goto try_next_zone;
1657                        case ZONE_RECLAIM_FULL:
1658                                /* scanned but unreclaimable */
1659                                goto this_zone_full;
1660                        default:
1661                                /* did we reclaim enough */
1662                                if (!zone_watermark_ok(zone, order, mark,
1663                                                classzone_idx, alloc_flags))
1664                                        goto this_zone_full;
1665                        }
1666                }
1667
1668try_this_zone:
1669                page = buffered_rmqueue(preferred_zone, zone, order,
1670                                                gfp_mask, migratetype);
1671                if (page)
1672                        break;
1673this_zone_full:
1674                if (NUMA_BUILD)
1675                        zlc_mark_zone_full(zonelist, z);
1676try_next_zone:
1677                if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1678                        /*
1679                         * we do zlc_setup after the first zone is tried but only
1680                         * if there are multiple nodes make it worthwhile
1681                         */
1682                        allowednodes = zlc_setup(zonelist, alloc_flags);
1683                        zlc_active = 1;
1684                        did_zlc_setup = 1;
1685                }
1686        }
1687
1688        if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1689                /* Disable zlc cache for second zonelist scan */
1690                zlc_active = 0;
1691                goto zonelist_scan;
1692        }
1693        return page;
1694}
1695
1696static inline int
1697should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1698                                unsigned long pages_reclaimed)
1699{
1700        /* Do not loop if specifically requested */
1701        if (gfp_mask & __GFP_NORETRY)
1702                return 0;
1703
1704        /*
1705         * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1706         * means __GFP_NOFAIL, but that may not be true in other
1707         * implementations.
1708         */
1709        if (order <= PAGE_ALLOC_COSTLY_ORDER)
1710                return 1;
1711
1712        /*
1713         * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1714         * specified, then we retry until we no longer reclaim any pages
1715         * (above), or we've reclaimed an order of pages at least as
1716         * large as the allocation's order. In both cases, if the
1717         * allocation still fails, we stop retrying.
1718         */
1719        if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1720                return 1;
1721
1722        /*
1723         * Don't let big-order allocations loop unless the caller
1724         * explicitly requests that.
1725         */
1726        if (gfp_mask & __GFP_NOFAIL)
1727                return 1;
1728
1729        return 0;
1730}
1731
1732static inline struct page *
1733__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1734        struct zonelist *zonelist, enum zone_type high_zoneidx,
1735        nodemask_t *nodemask, struct zone *preferred_zone,
1736        int migratetype)
1737{
1738        struct page *page;
1739
1740        /* Acquire the OOM killer lock for the zones in zonelist */
1741        if (!try_set_zone_oom(zonelist, gfp_mask)) {
1742                schedule_timeout_uninterruptible(1);
1743                return NULL;
1744        }
1745
1746        /*
1747         * Go through the zonelist yet one more time, keep very high watermark
1748         * here, this is only to catch a parallel oom killing, we must fail if
1749         * we're still under heavy pressure.
1750         */
1751        page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1752                order, zonelist, high_zoneidx,
1753                ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1754                preferred_zone, migratetype);
1755        if (page)
1756                goto out;
1757
1758        if (!(gfp_mask & __GFP_NOFAIL)) {
1759                /* The OOM killer will not help higher order allocs */
1760                if (order > PAGE_ALLOC_COSTLY_ORDER)
1761                        goto out;
1762                /*
1763                 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1764                 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1765                 * The caller should handle page allocation failure by itself if
1766                 * it specifies __GFP_THISNODE.
1767                 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1768                 */
1769                if (gfp_mask & __GFP_THISNODE)
1770                        goto out;
1771        }
1772        /* Exhausted what can be done so it's blamo time */
1773        out_of_memory(zonelist, gfp_mask, order, nodemask);
1774
1775out:
1776        clear_zonelist_oom(zonelist, gfp_mask);
1777        return page;
1778}
1779
1780#ifdef CONFIG_COMPACTION
1781/* Try memory compaction for high-order allocations before reclaim */
1782static struct page *
1783__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1784        struct zonelist *zonelist, enum zone_type high_zoneidx,
1785        nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1786        int migratetype, unsigned long *did_some_progress)
1787{
1788        struct page *page;
1789
1790        if (!order || compaction_deferred(preferred_zone))
1791                return NULL;
1792
1793        *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1794                                                                nodemask);
1795        if (*did_some_progress != COMPACT_SKIPPED) {
1796
1797                /* Page migration frees to the PCP lists but we want merging */
1798                drain_pages(get_cpu());
1799                put_cpu();
1800
1801                page = get_page_from_freelist(gfp_mask, nodemask,
1802                                order, zonelist, high_zoneidx,
1803                                alloc_flags, preferred_zone,
1804                                migratetype);
1805                if (page) {
1806                        preferred_zone->compact_considered = 0;
1807                        preferred_zone->compact_defer_shift = 0;
1808                        count_vm_event(COMPACTSUCCESS);
1809                        return page;
1810                }
1811
1812                /*
1813                 * It's bad if compaction run occurs and fails.
1814                 * The most likely reason is that pages exist,
1815                 * but not enough to satisfy watermarks.
1816                 */
1817                count_vm_event(COMPACTFAIL);
1818                defer_compaction(preferred_zone);
1819
1820                cond_resched();
1821        }
1822
1823        return NULL;
1824}
1825#else
1826static inline struct page *
1827__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1828        struct zonelist *zonelist, enum zone_type high_zoneidx,
1829        nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1830        int migratetype, unsigned long *did_some_progress)
1831{
1832        return NULL;
1833}
1834#endif /* CONFIG_COMPACTION */
1835
1836/* The really slow allocator path where we enter direct reclaim */
1837static inline struct page *
1838__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1839        struct zonelist *zonelist, enum zone_type high_zoneidx,
1840        nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1841        int migratetype, unsigned long *did_some_progress)
1842{
1843        struct page *page = NULL;
1844        struct reclaim_state reclaim_state;
1845        struct task_struct *p = current;
1846
1847        cond_resched();
1848
1849        /* We now go into synchronous reclaim */
1850        cpuset_memory_pressure_bump();
1851        p->flags |= PF_MEMALLOC;
1852        lockdep_set_current_reclaim_state(gfp_mask);
1853        reclaim_state.reclaimed_slab = 0;
1854        p->reclaim_state = &reclaim_state;
1855
1856        *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1857
1858        p->reclaim_state = NULL;
1859        lockdep_clear_current_reclaim_state();
1860        p->flags &= ~PF_MEMALLOC;
1861
1862        cond_resched();
1863
1864        if (order != 0)
1865                drain_all_pages();
1866
1867        if (likely(*did_some_progress))
1868                page = get_page_from_freelist(gfp_mask, nodemask, order,
1869                                        zonelist, high_zoneidx,
1870                                        alloc_flags, preferred_zone,
1871                                        migratetype);
1872        return page;
1873}
1874
1875/*
1876 * This is called in the allocator slow-path if the allocation request is of
1877 * sufficient urgency to ignore watermarks and take other desperate measures
1878 */
1879static inline struct page *
1880__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1881        struct zonelist *zonelist, enum zone_type high_zoneidx,
1882        nodemask_t *nodemask, struct zone *preferred_zone,
1883        int migratetype)
1884{
1885        struct page *page;
1886
1887        do {
1888                page = get_page_from_freelist(gfp_mask, nodemask, order,
1889                        zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1890                        preferred_zone, migratetype);
1891
1892                if (!page && gfp_mask & __GFP_NOFAIL)
1893                        congestion_wait(BLK_RW_ASYNC, HZ/50);
1894        } while (!page && (gfp_mask & __GFP_NOFAIL));
1895
1896        return page;
1897}
1898
1899static inline
1900void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1901                                                enum zone_type high_zoneidx)
1902{
1903        struct zoneref *z;
1904        struct zone *zone;
1905
1906        for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1907                wakeup_kswapd(zone, order);
1908}
1909
1910static inline int
1911gfp_to_alloc_flags(gfp_t gfp_mask)
1912{
1913        struct task_struct *p = current;
1914        int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1915        const gfp_t wait = gfp_mask & __GFP_WAIT;
1916
1917        /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1918        BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1919
1920        /*
1921         * The caller may dip into page reserves a bit more if the caller
1922         * cannot run direct reclaim, or if the caller has realtime scheduling
1923         * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1924         * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1925         */
1926        alloc_flags |= (gfp_mask & __GFP_HIGH);
1927
1928        if (!wait) {
1929                alloc_flags |= ALLOC_HARDER;
1930                /*
1931                 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1932                 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1933                 */
1934                alloc_flags &= ~ALLOC_CPUSET;
1935        } else if (unlikely(rt_task(p)) && !in_interrupt())
1936                alloc_flags |= ALLOC_HARDER;
1937
1938        if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1939                if (!in_interrupt() &&
1940                    ((p->flags & PF_MEMALLOC) ||
1941                     unlikely(test_thread_flag(TIF_MEMDIE))))
1942                        alloc_flags |= ALLOC_NO_WATERMARKS;
1943        }
1944
1945        return alloc_flags;
1946}
1947
1948static inline struct page *
1949__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1950        struct zonelist *zonelist, enum zone_type high_zoneidx,
1951        nodemask_t *nodemask, struct zone *preferred_zone,
1952        int migratetype)
1953{
1954        const gfp_t wait = gfp_mask & __GFP_WAIT;
1955        struct page *page = NULL;
1956        int alloc_flags;
1957        unsigned long pages_reclaimed = 0;
1958        unsigned long did_some_progress;
1959        struct task_struct *p = current;
1960
1961        /*
1962         * In the slowpath, we sanity check order to avoid ever trying to
1963         * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1964         * be using allocators in order of preference for an area that is
1965         * too large.
1966         */
1967        if (order >= MAX_ORDER) {
1968                WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1969                return NULL;
1970        }
1971
1972        /*
1973         * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1974         * __GFP_NOWARN set) should not cause reclaim since the subsystem
1975         * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1976         * using a larger set of nodes after it has established that the
1977         * allowed per node queues are empty and that nodes are
1978         * over allocated.
1979         */
1980        if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1981                goto nopage;
1982
1983restart:
1984        wake_all_kswapd(order, zonelist, high_zoneidx);
1985
1986        /*
1987         * OK, we're below the kswapd watermark and have kicked background
1988         * reclaim. Now things get more complex, so set up alloc_flags according
1989         * to how we want to proceed.
1990         */
1991        alloc_flags = gfp_to_alloc_flags(gfp_mask);
1992
1993        /* This is the last chance, in general, before the goto nopage. */
1994        page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1995                        high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1996                        preferred_zone, migratetype);
1997        if (page)
1998                goto got_pg;
1999
2000rebalance:
2001        /* Allocate without watermarks if the context allows */
2002        if (alloc_flags & ALLOC_NO_WATERMARKS) {
2003                page = __alloc_pages_high_priority(gfp_mask, order,
2004                                zonelist, high_zoneidx, nodemask,
2005                                preferred_zone, migratetype);
2006                if (page)
2007                        goto got_pg;
2008        }
2009
2010        /* Atomic allocations - we can't balance anything */
2011        if (!wait)
2012                goto nopage;
2013
2014        /* Avoid recursion of direct reclaim */
2015        if (p->flags & PF_MEMALLOC)
2016                goto nopage;
2017
2018        /* Avoid allocations with no watermarks from looping endlessly */
2019        if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2020                goto nopage;
2021
2022        /* Try direct compaction */
2023        page = __alloc_pages_direct_compact(gfp_mask, order,
2024                                        zonelist, high_zoneidx,
2025                                        nodemask,
2026                                        alloc_flags, preferred_zone,
2027                                        migratetype, &did_some_progress);
2028        if (page)
2029                goto got_pg;
2030
2031        /* Try direct reclaim and then allocating */
2032        page = __alloc_pages_direct_reclaim(gfp_mask, order,
2033                                        zonelist, high_zoneidx,
2034                                        nodemask,
2035                                        alloc_flags, preferred_zone,
2036                                        migratetype, &did_some_progress);
2037        if (page)
2038                goto got_pg;
2039
2040        /*
2041         * If we failed to make any progress reclaiming, then we are
2042         * running out of options and have to consider going OOM
2043         */
2044        if (!did_some_progress) {
2045                if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2046                        if (oom_killer_disabled)
2047                                goto nopage;
2048                        page = __alloc_pages_may_oom(gfp_mask, order,
2049                                        zonelist, high_zoneidx,
2050                                        nodemask, preferred_zone,
2051                                        migratetype);
2052                        if (page)
2053                                goto got_pg;
2054
2055                        /*
2056                         * The OOM killer does not trigger for high-order
2057                         * ~__GFP_NOFAIL allocations so if no progress is being
2058                         * made, there are no other options and retrying is
2059                         * unlikely to help.
2060                         */
2061                        if (order > PAGE_ALLOC_COSTLY_ORDER &&
2062                                                !(gfp_mask & __GFP_NOFAIL))
2063                                goto nopage;
2064
2065                        goto restart;
2066                }
2067        }
2068
2069        /* Check if we should retry the allocation */
2070        pages_reclaimed += did_some_progress;
2071        if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2072                /* Wait for some write requests to complete then retry */
2073                congestion_wait(BLK_RW_ASYNC, HZ/50);
2074                goto rebalance;
2075        }
2076
2077nopage:
2078        if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
2079                printk(KERN_WARNING "%s: page allocation failure."
2080                        " order:%d, mode:0x%x\n",
2081                        p->comm, order, gfp_mask);
2082                dump_stack();
2083                show_mem();
2084        }
2085        return page;
2086got_pg:
2087        if (kmemcheck_enabled)
2088                kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2089        return page;
2090
2091}
2092
2093/*
2094 * This is the 'heart' of the zoned buddy allocator.
2095 */
2096struct page *
2097__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2098                        struct zonelist *zonelist, nodemask_t *nodemask)
2099{
2100        enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2101        struct zone *preferred_zone;
2102        struct page *page;
2103        int migratetype = allocflags_to_migratetype(gfp_mask);
2104
2105        gfp_mask &= gfp_allowed_mask;
2106
2107        lockdep_trace_alloc(gfp_mask);
2108
2109        might_sleep_if(gfp_mask & __GFP_WAIT);
2110
2111        if (should_fail_alloc_page(gfp_mask, order))
2112                return NULL;
2113
2114        /*
2115         * Check the zones suitable for the gfp_mask contain at least one
2116         * valid zone. It's possible to have an empty zonelist as a result
2117         * of GFP_THISNODE and a memoryless node
2118         */
2119        if (unlikely(!zonelist->_zonerefs->zone))
2120                return NULL;
2121
2122        get_mems_allowed();
2123        /* The preferred zone is used for statistics later */
2124        first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
2125        if (!preferred_zone) {
2126                put_mems_allowed();
2127                return NULL;
2128        }
2129
2130        /* First allocation attempt */
2131        page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2132                        zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2133                        preferred_zone, migratetype);
2134        if (unlikely(!page))
2135                page = __alloc_pages_slowpath(gfp_mask, order,
2136                                zonelist, high_zoneidx, nodemask,
2137                                preferred_zone, migratetype);
2138        put_mems_allowed();
2139
2140        trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2141        return page;
2142}
2143EXPORT_SYMBOL(__alloc_pages_nodemask);
2144
2145/*
2146 * Common helper functions.
2147 */
2148unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2149{
2150        struct page *page;
2151
2152        /*
2153         * __get_free_pages() returns a 32-bit address, which cannot represent
2154         * a highmem page
2155         */
2156        VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2157
2158        page = alloc_pages(gfp_mask, order);
2159        if (!page)
2160                return 0;
2161        return (unsigned long) page_address(page);
2162}
2163EXPORT_SYMBOL(__get_free_pages);
2164
2165unsigned long get_zeroed_page(gfp_t gfp_mask)
2166{
2167        return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2168}
2169EXPORT_SYMBOL(get_zeroed_page);
2170
2171void __pagevec_free(struct pagevec *pvec)
2172{
2173        int i = pagevec_count(pvec);
2174
2175        while (--i >= 0) {
2176                trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2177                free_hot_cold_page(pvec->pages[i], pvec->cold);
2178        }
2179}
2180
2181void __free_pages(struct page *page, unsigned int order)
2182{
2183        if (put_page_testzero(page)) {
2184                if (order == 0)
2185                        free_hot_cold_page(page, 0);
2186                else
2187                        __free_pages_ok(page, order);
2188        }
2189}
2190
2191EXPORT_SYMBOL(__free_pages);
2192
2193void free_pages(unsigned long addr, unsigned int order)
2194{
2195        if (addr != 0) {
2196                VM_BUG_ON(!virt_addr_valid((void *)addr));
2197                __free_pages(virt_to_page((void *)addr), order);
2198        }
2199}
2200
2201EXPORT_SYMBOL(free_pages);
2202
2203/**
2204 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2205 * @size: the number of bytes to allocate
2206 * @gfp_mask: GFP flags for the allocation
2207 *
2208 * This function is similar to alloc_pages(), except that it allocates the
2209 * minimum number of pages to satisfy the request.  alloc_pages() can only
2210 * allocate memory in power-of-two pages.
2211 *
2212 * This function is also limited by MAX_ORDER.
2213 *
2214 * Memory allocated by this function must be released by free_pages_exact().
2215 */
2216void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2217{
2218        unsigned int order = get_order(size);
2219        unsigned long addr;
2220
2221        addr = __get_free_pages(gfp_mask, order);
2222        if (addr) {
2223                unsigned long alloc_end = addr + (PAGE_SIZE << order);
2224                unsigned long used = addr + PAGE_ALIGN(size);
2225
2226                split_page(virt_to_page((void *)addr), order);
2227                while (used < alloc_end) {
2228                        free_page(used);
2229                        used += PAGE_SIZE;
2230                }
2231        }
2232
2233        return (void *)addr;
2234}
2235EXPORT_SYMBOL(alloc_pages_exact);
2236
2237/**
2238 * free_pages_exact - release memory allocated via alloc_pages_exact()
2239 * @virt: the value returned by alloc_pages_exact.
2240 * @size: size of allocation, same value as passed to alloc_pages_exact().
2241 *
2242 * Release the memory allocated by a previous call to alloc_pages_exact.
2243 */
2244void free_pages_exact(void *virt, size_t size)
2245{
2246        unsigned long addr = (unsigned long)virt;
2247        unsigned long end = addr + PAGE_ALIGN(size);
2248
2249        while (addr < end) {
2250                free_page(addr);
2251                addr += PAGE_SIZE;
2252        }
2253}
2254EXPORT_SYMBOL(free_pages_exact);
2255
2256static unsigned int nr_free_zone_pages(int offset)
2257{
2258        struct zoneref *z;
2259        struct zone *zone;
2260
2261        /* Just pick one node, since fallback list is circular */
2262        unsigned int sum = 0;
2263
2264        struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2265
2266        for_each_zone_zonelist(zone, z, zonelist, offset) {
2267                unsigned long size = zone->present_pages;
2268                unsigned long high = high_wmark_pages(zone);
2269                if (size > high)
2270                        sum += size - high;
2271        }
2272
2273        return sum;
2274}
2275
2276/*
2277 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2278 */
2279unsigned int nr_free_buffer_pages(void)
2280{
2281        return nr_free_zone_pages(gfp_zone(GFP_USER));
2282}
2283EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2284
2285/*
2286 * Amount of free RAM allocatable within all zones
2287 */
2288unsigned int nr_free_pagecache_pages(void)
2289{
2290        return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2291}
2292
2293static inline void show_node(struct zone *zone)
2294{
2295        if (NUMA_BUILD)
2296                printk("Node %d ", zone_to_nid(zone));
2297}
2298
2299void si_meminfo(struct sysinfo *val)
2300{
2301        val->totalram = totalram_pages;
2302        val->sharedram = 0;
2303        val->freeram = global_page_state(NR_FREE_PAGES);
2304        val->bufferram = nr_blockdev_pages();
2305        val->totalhigh = totalhigh_pages;
2306        val->freehigh = nr_free_highpages();
2307        val->mem_unit = PAGE_SIZE;
2308}
2309
2310EXPORT_SYMBOL(si_meminfo);
2311
2312#ifdef CONFIG_NUMA
2313void si_meminfo_node(struct sysinfo *val, int nid)
2314{
2315        pg_data_t *pgdat = NODE_DATA(nid);
2316
2317        val->totalram = pgdat->node_present_pages;
2318        val->freeram = node_page_state(nid, NR_FREE_PAGES);
2319#ifdef CONFIG_HIGHMEM
2320        val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2321        val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2322                        NR_FREE_PAGES);
2323#else
2324        val->totalhigh = 0;
2325        val->freehigh = 0;
2326#endif
2327        val->mem_unit = PAGE_SIZE;
2328}
2329#endif
2330
2331#define K(x) ((x) << (PAGE_SHIFT-10))
2332
2333/*
2334 * Show free area list (used inside shift_scroll-lock stuff)
2335 * We also calculate the percentage fragmentation. We do this by counting the
2336 * memory on each free list with the exception of the first item on the list.
2337 */
2338void show_free_areas(void)
2339{
2340        int cpu;
2341        struct zone *zone;
2342
2343        for_each_populated_zone(zone) {
2344                show_node(zone);
2345                printk("%s per-cpu:\n", zone->name);
2346
2347                for_each_online_cpu(cpu) {
2348                        struct per_cpu_pageset *pageset;
2349
2350                        pageset = per_cpu_ptr(zone->pageset, cpu);
2351
2352                        printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2353                               cpu, pageset->pcp.high,
2354                               pageset->pcp.batch, pageset->pcp.count);
2355                }
2356        }
2357
2358        printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2359                " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2360                " unevictable:%lu"
2361                " dirty:%lu writeback:%lu unstable:%lu\n"
2362                " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2363                " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2364                global_page_state(NR_ACTIVE_ANON),
2365                global_page_state(NR_INACTIVE_ANON),
2366                global_page_state(NR_ISOLATED_ANON),
2367                global_page_state(NR_ACTIVE_FILE),
2368                global_page_state(NR_INACTIVE_FILE),
2369                global_page_state(NR_ISOLATED_FILE),
2370                global_page_state(NR_UNEVICTABLE),
2371                global_page_state(NR_FILE_DIRTY),
2372                global_page_state(NR_WRITEBACK),
2373                global_page_state(NR_UNSTABLE_NFS),
2374                global_page_state(NR_FREE_PAGES),
2375                global_page_state(NR_SLAB_RECLAIMABLE),
2376                global_page_state(NR_SLAB_UNRECLAIMABLE),
2377                global_page_state(NR_FILE_MAPPED),
2378                global_page_state(NR_SHMEM),
2379                global_page_state(NR_PAGETABLE),
2380                global_page_state(NR_BOUNCE));
2381
2382        for_each_populated_zone(zone) {
2383                int i;
2384
2385                show_node(zone);
2386                printk("%s"
2387                        " free:%lukB"
2388                        " min:%lukB"
2389                        " low:%lukB"
2390                        " high:%lukB"
2391                        " active_anon:%lukB"
2392                        " inactive_anon:%lukB"
2393                        " active_file:%lukB"
2394                        " inactive_file:%lukB"
2395                        " unevictable:%lukB"
2396                        " isolated(anon):%lukB"
2397                        " isolated(file):%lukB"
2398                        " present:%lukB"
2399                        " mlocked:%lukB"
2400                        " dirty:%lukB"
2401                        " writeback:%lukB"
2402                        " mapped:%lukB"
2403                        " shmem:%lukB"
2404                        " slab_reclaimable:%lukB"
2405                        " slab_unreclaimable:%lukB"
2406                        " kernel_stack:%lukB"
2407                        " pagetables:%lukB"
2408                        " unstable:%lukB"
2409                        " bounce:%lukB"
2410                        " writeback_tmp:%lukB"
2411                        " pages_scanned:%lu"
2412                        " all_unreclaimable? %s"
2413                        "\n",
2414                        zone->name,
2415                        K(zone_page_state(zone, NR_FREE_PAGES)),
2416                        K(min_wmark_pages(zone)),
2417                        K(low_wmark_pages(zone)),
2418                        K(high_wmark_pages(zone)),
2419                        K(zone_page_state(zone, NR_ACTIVE_ANON)),
2420                        K(zone_page_state(zone, NR_INACTIVE_ANON)),
2421                        K(zone_page_state(zone, NR_ACTIVE_FILE)),
2422                        K(zone_page_state(zone, NR_INACTIVE_FILE)),
2423                        K(zone_page_state(zone, NR_UNEVICTABLE)),
2424                        K(zone_page_state(zone, NR_ISOLATED_ANON)),
2425                        K(zone_page_state(zone, NR_ISOLATED_FILE)),
2426                        K(zone->present_pages),
2427                        K(zone_page_state(zone, NR_MLOCK)),
2428                        K(zone_page_state(zone, NR_FILE_DIRTY)),
2429                        K(zone_page_state(zone, NR_WRITEBACK)),
2430                        K(zone_page_state(zone, NR_FILE_MAPPED)),
2431                        K(zone_page_state(zone, NR_SHMEM)),
2432                        K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2433                        K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2434                        zone_page_state(zone, NR_KERNEL_STACK) *
2435                                THREAD_SIZE / 1024,
2436                        K(zone_page_state(zone, NR_PAGETABLE)),
2437                        K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2438                        K(zone_page_state(zone, NR_BOUNCE)),
2439                        K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2440                        zone->pages_scanned,
2441                        (zone->all_unreclaimable ? "yes" : "no")
2442                        );
2443                printk("lowmem_reserve[]:");
2444                for (i = 0; i < MAX_NR_ZONES; i++)
2445                        printk(" %lu", zone->lowmem_reserve[i]);
2446                printk("\n");
2447        }
2448
2449        for_each_populated_zone(zone) {
2450                unsigned long nr[MAX_ORDER], flags, order, total = 0;
2451
2452                show_node(zone);
2453                printk("%s: ", zone->name);
2454
2455                spin_lock_irqsave(&zone->lock, flags);
2456                for (order = 0; order < MAX_ORDER; order++) {
2457                        nr[order] = zone->free_area[order].nr_free;
2458                        total += nr[order] << order;
2459                }
2460                spin_unlock_irqrestore(&zone->lock, flags);
2461                for (order = 0; order < MAX_ORDER; order++)
2462                        printk("%lu*%lukB ", nr[order], K(1UL) << order);
2463                printk("= %lukB\n", K(total));
2464        }
2465
2466        printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2467
2468        show_swap_cache_info();
2469}
2470
2471static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2472{
2473        zoneref->zone = zone;
2474        zoneref->zone_idx = zone_idx(zone);
2475}
2476
2477/*
2478 * Builds allocation fallback zone lists.
2479 *
2480 * Add all populated zones of a node to the zonelist.
2481 */
2482static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2483                                int nr_zones, enum zone_type zone_type)
2484{
2485        struct zone *zone;
2486
2487        BUG_ON(zone_type >= MAX_NR_ZONES);
2488        zone_type++;
2489
2490        do {
2491                zone_type--;
2492                zone = pgdat->node_zones + zone_type;
2493                if (populated_zone(zone)) {
2494                        zoneref_set_zone(zone,
2495                                &zonelist->_zonerefs[nr_zones++]);
2496                        check_highest_zone(zone_type);
2497                }
2498
2499        } while (zone_type);
2500        return nr_zones;
2501}
2502
2503
2504/*
2505 *  zonelist_order:
2506 *  0 = automatic detection of better ordering.
2507 *  1 = order by ([node] distance, -zonetype)
2508 *  2 = order by (-zonetype, [node] distance)
2509 *
2510 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2511 *  the same zonelist. So only NUMA can configure this param.
2512 */
2513#define ZONELIST_ORDER_DEFAULT  0
2514#define ZONELIST_ORDER_NODE     1
2515#define ZONELIST_ORDER_ZONE     2
2516
2517/* zonelist order in the kernel.
2518 * set_zonelist_order() will set this to NODE or ZONE.
2519 */
2520static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2521static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2522
2523
2524#ifdef CONFIG_NUMA
2525/* The value user specified ....changed by config */
2526static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2527/* string for sysctl */
2528#define NUMA_ZONELIST_ORDER_LEN 16
2529char numa_zonelist_order[16] = "default";
2530
2531/*
2532 * interface for configure zonelist ordering.
2533 * command line option "numa_zonelist_order"
2534 *      = "[dD]efault   - default, automatic configuration.
2535 *      = "[nN]ode      - order by node locality, then by zone within node
2536 *      = "[zZ]one      - order by zone, then by locality within zone
2537 */
2538
2539static int __parse_numa_zonelist_order(char *s)
2540{
2541        if (*s == 'd' || *s == 'D') {
2542                user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2543        } else if (*s == 'n' || *s == 'N') {
2544                user_zonelist_order = ZONELIST_ORDER_NODE;
2545        } else if (*s == 'z' || *s == 'Z') {
2546                user_zonelist_order = ZONELIST_ORDER_ZONE;
2547        } else {
2548                printk(KERN_WARNING
2549                        "Ignoring invalid numa_zonelist_order value:  "
2550                        "%s\n", s);
2551                return -EINVAL;
2552        }
2553        return 0;
2554}
2555
2556static __init int setup_numa_zonelist_order(char *s)
2557{
2558        if (s)
2559                return __parse_numa_zonelist_order(s);
2560        return 0;
2561}
2562early_param("numa_zonelist_order", setup_numa_zonelist_order);
2563
2564/*
2565 * sysctl handler for numa_zonelist_order
2566 */
2567int numa_zonelist_order_handler(ctl_table *table, int write,
2568                void __user *buffer, size_t *length,
2569                loff_t *ppos)
2570{
2571        char saved_string[NUMA_ZONELIST_ORDER_LEN];
2572        int ret;
2573        static DEFINE_MUTEX(zl_order_mutex);
2574
2575        mutex_lock(&zl_order_mutex);
2576        if (write)
2577                strcpy(saved_string, (char*)table->data);
2578        ret = proc_dostring(table, write, buffer, length, ppos);
2579        if (ret)
2580                goto out;
2581        if (write) {
2582                int oldval = user_zonelist_order;
2583                if (__parse_numa_zonelist_order((char*)table->data)) {
2584                        /*
2585                         * bogus value.  restore saved string
2586                         */
2587                        strncpy((char*)table->data, saved_string,
2588                                NUMA_ZONELIST_ORDER_LEN);
2589                        user_zonelist_order = oldval;
2590                } else if (oldval != user_zonelist_order) {
2591                        mutex_lock(&zonelists_mutex);
2592                        build_all_zonelists(NULL);
2593                        mutex_unlock(&zonelists_mutex);
2594                }
2595        }
2596out:
2597        mutex_unlock(&zl_order_mutex);
2598        return ret;
2599}
2600
2601
2602#define MAX_NODE_LOAD (nr_online_nodes)
2603static int node_load[MAX_NUMNODES];
2604
2605/**
2606 * find_next_best_node - find the next node that should appear in a given node's fallback list
2607 * @node: node whose fallback list we're appending
2608 * @used_node_mask: nodemask_t of already used nodes
2609 *
2610 * We use a number of factors to determine which is the next node that should
2611 * appear on a given node's fallback list.  The node should not have appeared
2612 * already in @node's fallback list, and it should be the next closest node
2613 * according to the distance array (which contains arbitrary distance values
2614 * from each node to each node in the system), and should also prefer nodes
2615 * with no CPUs, since presumably they'll have very little allocation pressure
2616 * on them otherwise.
2617 * It returns -1 if no node is found.
2618 */
2619static int find_next_best_node(int node, nodemask_t *used_node_mask)
2620{
2621        int n, val;
2622        int min_val = INT_MAX;
2623        int best_node = -1;
2624        const struct cpumask *tmp = cpumask_of_node(0);
2625
2626        /* Use the local node if we haven't already */
2627        if (!node_isset(node, *used_node_mask)) {
2628                node_set(node, *used_node_mask);
2629                return node;
2630        }
2631
2632        for_each_node_state(n, N_HIGH_MEMORY) {
2633
2634                /* Don't want a node to appear more than once */
2635                if (node_isset(n, *used_node_mask))
2636                        continue;
2637
2638                /* Use the distance array to find the distance */
2639                val = node_distance(node, n);
2640
2641                /* Penalize nodes under us ("prefer the next node") */
2642                val += (n < node);
2643
2644                /* Give preference to headless and unused nodes */
2645                tmp = cpumask_of_node(n);
2646                if (!cpumask_empty(tmp))
2647                        val += PENALTY_FOR_NODE_WITH_CPUS;
2648
2649                /* Slight preference for less loaded node */
2650                val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2651                val += node_load[n];
2652
2653                if (val < min_val) {
2654                        min_val = val;
2655                        best_node = n;
2656                }
2657        }
2658
2659        if (best_node >= 0)
2660                node_set(best_node, *used_node_mask);
2661
2662        return best_node;
2663}
2664
2665
2666/*
2667 * Build zonelists ordered by node and zones within node.
2668 * This results in maximum locality--normal zone overflows into local
2669 * DMA zone, if any--but risks exhausting DMA zone.
2670 */
2671static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2672{
2673        int j;
2674        struct zonelist *zonelist;
2675
2676        zonelist = &pgdat->node_zonelists[0];
2677        for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2678                ;
2679        j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2680                                                        MAX_NR_ZONES - 1);
2681        zonelist->_zonerefs[j].zone = NULL;
2682        zonelist->_zonerefs[j].zone_idx = 0;
2683}
2684
2685/*
2686 * Build gfp_thisnode zonelists
2687 */
2688static void build_thisnode_zonelists(pg_data_t *pgdat)
2689{
2690        int j;
2691        struct zonelist *zonelist;
2692
2693        zonelist = &pgdat->node_zonelists[1];
2694        j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2695        zonelist->_zonerefs[j].zone = NULL;
2696        zonelist->_zonerefs[j].zone_idx = 0;
2697}
2698
2699/*
2700 * Build zonelists ordered by zone and nodes within zones.
2701 * This results in conserving DMA zone[s] until all Normal memory is
2702 * exhausted, but results in overflowing to remote node while memory
2703 * may still exist in local DMA zone.
2704 */
2705static int node_order[MAX_NUMNODES];
2706
2707static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2708{
2709        int pos, j, node;
2710        int zone_type;          /* needs to be signed */
2711        struct zone *z;
2712        struct zonelist *zonelist;
2713
2714        zonelist = &pgdat->node_zonelists[0];
2715        pos = 0;
2716        for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2717                for (j = 0; j < nr_nodes; j++) {
2718                        node = node_order[j];
2719                        z = &NODE_DATA(node)->node_zones[zone_type];
2720                        if (populated_zone(z)) {
2721                                zoneref_set_zone(z,
2722                                        &zonelist->_zonerefs[pos++]);
2723                                check_highest_zone(zone_type);
2724                        }
2725                }
2726        }
2727        zonelist->_zonerefs[pos].zone = NULL;
2728        zonelist->_zonerefs[pos].zone_idx = 0;
2729}
2730
2731static int default_zonelist_order(void)
2732{
2733        int nid, zone_type;
2734        unsigned long low_kmem_size,total_size;
2735        struct zone *z;
2736        int average_size;
2737        /*
2738         * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2739         * If they are really small and used heavily, the system can fall
2740         * into OOM very easily.
2741         * This function detect ZONE_DMA/DMA32 size and configures zone order.
2742         */
2743        /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2744        low_kmem_size = 0;
2745        total_size = 0;
2746        for_each_online_node(nid) {
2747                for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2748                        z = &NODE_DATA(nid)->node_zones[zone_type];
2749                        if (populated_zone(z)) {
2750                                if (zone_type < ZONE_NORMAL)
2751                                        low_kmem_size += z->present_pages;
2752                                total_size += z->present_pages;
2753                        } else if (zone_type == ZONE_NORMAL) {
2754                                /*
2755                                 * If any node has only lowmem, then node order
2756                                 * is preferred to allow kernel allocations
2757                                 * locally; otherwise, they can easily infringe
2758                                 * on other nodes when there is an abundance of
2759                                 * lowmem available to allocate from.
2760                                 */
2761                                return ZONELIST_ORDER_NODE;
2762                        }
2763                }
2764        }
2765        if (!low_kmem_size ||  /* there are no DMA area. */
2766            low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2767                return ZONELIST_ORDER_NODE;
2768        /*
2769         * look into each node's config.
2770         * If there is a node whose DMA/DMA32 memory is very big area on
2771         * local memory, NODE_ORDER may be suitable.
2772         */
2773        average_size = total_size /
2774                                (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2775        for_each_online_node(nid) {
2776                low_kmem_size = 0;
2777                total_size = 0;
2778                for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2779                        z = &NODE_DATA(nid)->node_zones[zone_type];
2780                        if (populated_zone(z)) {
2781                                if (zone_type < ZONE_NORMAL)
2782                                        low_kmem_size += z->present_pages;
2783                                total_size += z->present_pages;
2784                        }
2785                }
2786                if (low_kmem_size &&
2787                    total_size > average_size && /* ignore small node */
2788                    low_kmem_size > total_size * 70/100)
2789                        return ZONELIST_ORDER_NODE;
2790        }
2791        return ZONELIST_ORDER_ZONE;
2792}
2793
2794static void set_zonelist_order(void)
2795{
2796        if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2797                current_zonelist_order = default_zonelist_order();
2798        else
2799                current_zonelist_order = user_zonelist_order;
2800}
2801
2802static void build_zonelists(pg_data_t *pgdat)
2803{
2804        int j, node, load;
2805        enum zone_type i;
2806        nodemask_t used_mask;
2807        int local_node, prev_node;
2808        struct zonelist *zonelist;
2809        int order = current_zonelist_order;
2810
2811        /* initialize zonelists */
2812        for (i = 0; i < MAX_ZONELISTS; i++) {
2813                zonelist = pgdat->node_zonelists + i;
2814                zonelist->_zonerefs[0].zone = NULL;
2815                zonelist->_zonerefs[0].zone_idx = 0;
2816        }
2817
2818        /* NUMA-aware ordering of nodes */
2819        local_node = pgdat->node_id;
2820        load = nr_online_nodes;
2821        prev_node = local_node;
2822        nodes_clear(used_mask);
2823
2824        memset(node_order, 0, sizeof(node_order));
2825        j = 0;
2826
2827        while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2828                int distance = node_distance(local_node, node);
2829
2830                /*
2831                 * If another node is sufficiently far away then it is better
2832                 * to reclaim pages in a zone before going off node.
2833                 */
2834                if (distance > RECLAIM_DISTANCE)
2835                        zone_reclaim_mode = 1;
2836
2837                /*
2838                 * We don't want to pressure a particular node.
2839                 * So adding penalty to the first node in same
2840                 * distance group to make it round-robin.
2841                 */
2842                if (distance != node_distance(local_node, prev_node))
2843                        node_load[node] = load;
2844
2845                prev_node = node;
2846                load--;
2847                if (order == ZONELIST_ORDER_NODE)
2848                        build_zonelists_in_node_order(pgdat, node);
2849                else
2850                        node_order[j++] = node; /* remember order */
2851        }
2852
2853        if (order == ZONELIST_ORDER_ZONE) {
2854                /* calculate node order -- i.e., DMA last! */
2855                build_zonelists_in_zone_order(pgdat, j);
2856        }
2857
2858        build_thisnode_zonelists(pgdat);
2859}
2860
2861/* Construct the zonelist performance cache - see further mmzone.h */
2862static void build_zonelist_cache(pg_data_t *pgdat)
2863{
2864        struct zonelist *zonelist;
2865        struct zonelist_cache *zlc;
2866        struct zoneref *z;
2867
2868        zonelist = &pgdat->node_zonelists[0];
2869        zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2870        bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2871        for (z = zonelist->_zonerefs; z->zone; z++)
2872                zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2873}
2874
2875#ifdef CONFIG_HAVE_MEMORYLESS_NODES
2876/*
2877 * Return node id of node used for "local" allocations.
2878 * I.e., first node id of first zone in arg node's generic zonelist.
2879 * Used for initializing percpu 'numa_mem', which is used primarily
2880 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
2881 */
2882int local_memory_node(int node)
2883{
2884        struct zone *zone;
2885
2886        (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
2887                                   gfp_zone(GFP_KERNEL),
2888                                   NULL,
2889                                   &zone);
2890        return zone->node;
2891}
2892#endif
2893
2894#else   /* CONFIG_NUMA */
2895
2896static void set_zonelist_order(void)
2897{
2898        current_zonelist_order = ZONELIST_ORDER_ZONE;
2899}
2900
2901static void build_zonelists(pg_data_t *pgdat)
2902{
2903        int node, local_node;
2904        enum zone_type j;
2905        struct zonelist *zonelist;
2906
2907        local_node = pgdat->node_id;
2908
2909        zonelist = &pgdat->node_zonelists[0];
2910        j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2911
2912        /*
2913         * Now we build the zonelist so that it contains the zones
2914         * of all the other nodes.
2915         * We don't want to pressure a particular node, so when
2916         * building the zones for node N, we make sure that the
2917         * zones coming right after the local ones are those from
2918         * node N+1 (modulo N)
2919         */
2920        for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2921                if (!node_online(node))
2922                        continue;
2923                j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2924                                                        MAX_NR_ZONES - 1);
2925        }
2926        for (node = 0; node < local_node; node++) {
2927                if (!node_online(node))
2928                        continue;
2929                j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2930                                                        MAX_NR_ZONES - 1);
2931        }
2932
2933        zonelist->_zonerefs[j].zone = NULL;
2934        zonelist->_zonerefs[j].zone_idx = 0;
2935}
2936
2937/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2938static void build_zonelist_cache(pg_data_t *pgdat)
2939{
2940        pgdat->node_zonelists[0].zlcache_ptr = NULL;
2941}
2942
2943#endif  /* CONFIG_NUMA */
2944
2945/*
2946 * Boot pageset table. One per cpu which is going to be used for all
2947 * zones and all nodes. The parameters will be set in such a way
2948 * that an item put on a list will immediately be handed over to
2949 * the buddy list. This is safe since pageset manipulation is done
2950 * with interrupts disabled.
2951 *
2952 * The boot_pagesets must be kept even after bootup is complete for
2953 * unused processors and/or zones. They do play a role for bootstrapping
2954 * hotplugged processors.
2955 *
2956 * zoneinfo_show() and maybe other functions do
2957 * not check if the processor is online before following the pageset pointer.
2958 * Other parts of the kernel may not check if the zone is available.
2959 */
2960static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
2961static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
2962static void setup_zone_pageset(struct zone *zone);
2963
2964/*
2965 * Global mutex to protect against size modification of zonelists
2966 * as well as to serialize pageset setup for the new populated zone.
2967 */
2968DEFINE_MUTEX(zonelists_mutex);
2969
2970/* return values int ....just for stop_machine() */
2971static __init_refok int __build_all_zonelists(void *data)
2972{
2973        int nid;
2974        int cpu;
2975
2976#ifdef CONFIG_NUMA
2977        memset(node_load, 0, sizeof(node_load));
2978#endif
2979        for_each_online_node(nid) {
2980                pg_data_t *pgdat = NODE_DATA(nid);
2981
2982                build_zonelists(pgdat);
2983                build_zonelist_cache(pgdat);
2984        }
2985
2986#ifdef CONFIG_MEMORY_HOTPLUG
2987        /* Setup real pagesets for the new zone */
2988        if (data) {
2989                struct zone *zone = data;
2990                setup_zone_pageset(zone);
2991        }
2992#endif
2993
2994        /*
2995         * Initialize the boot_pagesets that are going to be used
2996         * for bootstrapping processors. The real pagesets for
2997         * each zone will be allocated later when the per cpu
2998         * allocator is available.
2999         *
3000         * boot_pagesets are used also for bootstrapping offline
3001         * cpus if the system is already booted because the pagesets
3002         * are needed to initialize allocators on a specific cpu too.
3003         * F.e. the percpu allocator needs the page allocator which
3004         * needs the percpu allocator in order to allocate its pagesets
3005         * (a chicken-egg dilemma).
3006         */
3007        for_each_possible_cpu(cpu) {
3008                setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3009
3010#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3011                /*
3012                 * We now know the "local memory node" for each node--
3013                 * i.e., the node of the first zone in the generic zonelist.
3014                 * Set up numa_mem percpu variable for on-line cpus.  During
3015                 * boot, only the boot cpu should be on-line;  we'll init the
3016                 * secondary cpus' numa_mem as they come on-line.  During
3017                 * node/memory hotplug, we'll fixup all on-line cpus.
3018                 */
3019                if (cpu_online(cpu))
3020                        set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3021#endif
3022        }
3023
3024        return 0;
3025}
3026
3027/*
3028 * Called with zonelists_mutex held always
3029 * unless system_state == SYSTEM_BOOTING.
3030 */
3031void build_all_zonelists(void *data)
3032{
3033        set_zonelist_order();
3034
3035        if (system_state == SYSTEM_BOOTING) {
3036                __build_all_zonelists(NULL);
3037                mminit_verify_zonelist();
3038                cpuset_init_current_mems_allowed();
3039        } else {
3040                /* we have to stop all cpus to guarantee there is no user
3041                   of zonelist */
3042                stop_machine(__build_all_zonelists, data, NULL);
3043                /* cpuset refresh routine should be here */
3044        }
3045        vm_total_pages = nr_free_pagecache_pages();
3046        /*
3047         * Disable grouping by mobility if the number of pages in the
3048         * system is too low to allow the mechanism to work. It would be
3049         * more accurate, but expensive to check per-zone. This check is
3050         * made on memory-hotadd so a system can start with mobility
3051         * disabled and enable it later
3052         */
3053        if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3054                page_group_by_mobility_disabled = 1;
3055        else
3056                page_group_by_mobility_disabled = 0;
3057
3058        printk("Built %i zonelists in %s order, mobility grouping %s.  "
3059                "Total pages: %ld\n",
3060                        nr_online_nodes,
3061                        zonelist_order_name[current_zonelist_order],
3062                        page_group_by_mobility_disabled ? "off" : "on",
3063                        vm_total_pages);
3064#ifdef CONFIG_NUMA
3065        printk("Policy zone: %s\n", zone_names[policy_zone]);
3066#endif
3067}
3068
3069/*
3070 * Helper functions to size the waitqueue hash table.
3071 * Essentially these want to choose hash table sizes sufficiently
3072 * large so that collisions trying to wait on pages are rare.
3073 * But in fact, the number of active page waitqueues on typical
3074 * systems is ridiculously low, less than 200. So this is even
3075 * conservative, even though it seems large.
3076 *
3077 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3078 * waitqueues, i.e. the size of the waitq table given the number of pages.
3079 */
3080#define PAGES_PER_WAITQUEUE     256
3081
3082#ifndef CONFIG_MEMORY_HOTPLUG
3083static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3084{
3085        unsigned long size = 1;
3086
3087        pages /= PAGES_PER_WAITQUEUE;
3088
3089        while (size < pages)
3090                size <<= 1;
3091
3092        /*
3093         * Once we have dozens or even hundreds of threads sleeping
3094         * on IO we've got bigger problems than wait queue collision.
3095         * Limit the size of the wait table to a reasonable size.
3096         */
3097        size = min(size, 4096UL);
3098
3099        return max(size, 4UL);
3100}
3101#else
3102/*
3103 * A zone's size might be changed by hot-add, so it is not possible to determine
3104 * a suitable size for its wait_table.  So we use the maximum size now.
3105 *
3106 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3107 *
3108 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3109 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3110 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3111 *
3112 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3113 * or more by the traditional way. (See above).  It equals:
3114 *
3115 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3116 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3117 *    powerpc (64K page size)             : =  (32G +16M)byte.
3118 */
3119static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3120{
3121        return 4096UL;
3122}
3123#endif
3124
3125/*
3126 * This is an integer logarithm so that shifts can be used later
3127 * to extract the more random high bits from the multiplicative
3128 * hash function before the remainder is taken.
3129 */
3130static inline unsigned long wait_table_bits(unsigned long size)
3131{
3132        return ffz(~size);
3133}
3134
3135#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3136
3137/*
3138 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3139 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3140 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3141 * higher will lead to a bigger reserve which will get freed as contiguous
3142 * blocks as reclaim kicks in
3143 */
3144static void setup_zone_migrate_reserve(struct zone *zone)
3145{
3146        unsigned long start_pfn, pfn, end_pfn;
3147        struct page *page;
3148        unsigned long block_migratetype;
3149        int reserve;
3150
3151        /* Get the start pfn, end pfn and the number of blocks to reserve */
3152        start_pfn = zone->zone_start_pfn;
3153        end_pfn = start_pfn + zone->spanned_pages;
3154        reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3155                                                        pageblock_order;
3156
3157        /*
3158         * Reserve blocks are generally in place to help high-order atomic
3159         * allocations that are short-lived. A min_free_kbytes value that
3160         * would result in more than 2 reserve blocks for atomic allocations
3161         * is assumed to be in place to help anti-fragmentation for the
3162         * future allocation of hugepages at runtime.
3163         */
3164        reserve = min(2, reserve);
3165
3166        for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3167                if (!pfn_valid(pfn))
3168                        continue;
3169                page = pfn_to_page(pfn);
3170
3171                /* Watch out for overlapping nodes */
3172                if (page_to_nid(page) != zone_to_nid(zone))
3173                        continue;
3174
3175                /* Blocks with reserved pages will never free, skip them. */
3176                if (PageReserved(page))
3177                        continue;
3178
3179                block_migratetype = get_pageblock_migratetype(page);
3180
3181                /* If this block is reserved, account for it */
3182                if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3183                        reserve--;
3184                        continue;
3185                }
3186
3187                /* Suitable for reserving if this block is movable */
3188                if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3189                        set_pageblock_migratetype(page, MIGRATE_RESERVE);
3190                        move_freepages_block(zone, page, MIGRATE_RESERVE);
3191                        reserve--;
3192                        continue;
3193                }
3194
3195                /*
3196                 * If the reserve is met and this is a previous reserved block,
3197                 * take it back
3198                 */
3199                if (block_migratetype == MIGRATE_RESERVE) {
3200                        set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3201                        move_freepages_block(zone, page, MIGRATE_MOVABLE);
3202                }
3203        }
3204}
3205
3206/*
3207 * Initially all pages are reserved - free ones are freed
3208 * up by free_all_bootmem() once the early boot process is
3209 * done. Non-atomic initialization, single-pass.
3210 */
3211void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3212                unsigned long start_pfn, enum memmap_context context)
3213{
3214        struct page *page;
3215        unsigned long end_pfn = start_pfn + size;
3216        unsigned long pfn;
3217        struct zone *z;
3218
3219        if (highest_memmap_pfn < end_pfn - 1)
3220                highest_memmap_pfn = end_pfn - 1;
3221
3222        z = &NODE_DATA(nid)->node_zones[zone];
3223        for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3224                /*
3225                 * There can be holes in boot-time mem_map[]s
3226                 * handed to this function.  They do not
3227                 * exist on hotplugged memory.
3228                 */
3229                if (context == MEMMAP_EARLY) {
3230                        if (!early_pfn_valid(pfn))
3231                                continue;
3232                        if (!early_pfn_in_nid(pfn, nid))
3233                                continue;
3234                }
3235                page = pfn_to_page(pfn);
3236                set_page_links(page, zone, nid, pfn);
3237                mminit_verify_page_links(page, zone, nid, pfn);
3238                init_page_count(page);
3239                reset_page_mapcount(page);
3240                SetPageReserved(page);
3241                /*
3242                 * Mark the block movable so that blocks are reserved for
3243                 * movable at startup. This will force kernel allocations
3244                 * to reserve their blocks rather than leaking throughout
3245                 * the address space during boot when many long-lived
3246                 * kernel allocations are made. Later some blocks near
3247                 * the start are marked MIGRATE_RESERVE by
3248                 * setup_zone_migrate_reserve()
3249                 *
3250                 * bitmap is created for zone's valid pfn range. but memmap
3251                 * can be created for invalid pages (for alignment)
3252                 * check here not to call set_pageblock_migratetype() against
3253                 * pfn out of zone.
3254                 */
3255                if ((z->zone_start_pfn <= pfn)
3256                    && (pfn < z->zone_start_pfn + z->spanned_pages)
3257                    && !(pfn & (pageblock_nr_pages - 1)))
3258                        set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3259
3260                INIT_LIST_HEAD(&page->lru);
3261#ifdef WANT_PAGE_VIRTUAL
3262                /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3263                if (!is_highmem_idx(zone))
3264                        set_page_address(page, __va(pfn << PAGE_SHIFT));
3265#endif
3266        }
3267}
3268
3269static void __meminit zone_init_free_lists(struct zone *zone)
3270{
3271        int order, t;
3272        for_each_migratetype_order(order, t) {
3273                INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3274                zone->free_area[order].nr_free = 0;
3275        }
3276}
3277
3278#ifndef __HAVE_ARCH_MEMMAP_INIT
3279#define memmap_init(size, nid, zone, start_pfn) \
3280        memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3281#endif
3282
3283static int zone_batchsize(struct zone *zone)
3284{
3285#ifdef CONFIG_MMU
3286        int batch;
3287
3288        /*
3289         * The per-cpu-pages pools are set to around 1000th of the
3290         * size of the zone.  But no more than 1/2 of a meg.
3291         *
3292         * OK, so we don't know how big the cache is.  So guess.
3293         */
3294        batch = zone->present_pages / 1024;
3295        if (batch * PAGE_SIZE > 512 * 1024)
3296                batch = (512 * 1024) / PAGE_SIZE;
3297        batch /= 4;             /* We effectively *= 4 below */
3298        if (batch < 1)
3299                batch = 1;
3300
3301        /*
3302         * Clamp the batch to a 2^n - 1 value. Having a power
3303         * of 2 value was found to be more likely to have
3304         * suboptimal cache aliasing properties in some cases.
3305         *
3306         * For example if 2 tasks are alternately allocating
3307         * batches of pages, one task can end up with a lot
3308         * of pages of one half of the possible page colors
3309         * and the other with pages of the other colors.
3310         */
3311        batch = rounddown_pow_of_two(batch + batch/2) - 1;
3312
3313        return batch;
3314
3315#else
3316        /* The deferral and batching of frees should be suppressed under NOMMU
3317         * conditions.
3318         *
3319         * The problem is that NOMMU needs to be able to allocate large chunks
3320         * of contiguous memory as there's no hardware page translation to
3321         * assemble apparent contiguous memory from discontiguous pages.
3322         *
3323         * Queueing large contiguous runs of pages for batching, however,
3324         * causes the pages to actually be freed in smaller chunks.  As there
3325         * can be a significant delay between the individual batches being
3326         * recycled, this leads to the once large chunks of space being
3327         * fragmented and becoming unavailable for high-order allocations.
3328         */
3329        return 0;
3330#endif
3331}
3332
3333static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3334{
3335        struct per_cpu_pages *pcp;
3336        int migratetype;
3337
3338        memset(p, 0, sizeof(*p));
3339
3340        pcp = &p->pcp;
3341        pcp->count = 0;
3342        pcp->high = 6 * batch;
3343        pcp->batch = max(1UL, 1 * batch);
3344        for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3345                INIT_LIST_HEAD(&pcp->lists[migratetype]);
3346}
3347
3348/*
3349 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3350 * to the value high for the pageset p.
3351 */
3352
3353static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3354                                unsigned long high)
3355{
3356        struct per_cpu_pages *pcp;
3357
3358        pcp = &p->pcp;
3359        pcp->high = high;
3360        pcp->batch = max(1UL, high/4);
3361        if ((high/4) > (PAGE_SHIFT * 8))
3362                pcp->batch = PAGE_SHIFT * 8;
3363}
3364
3365static __meminit void setup_zone_pageset(struct zone *zone)
3366{
3367        int cpu;
3368
3369        zone->pageset = alloc_percpu(struct per_cpu_pageset);
3370
3371        for_each_possible_cpu(cpu) {
3372                struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3373
3374                setup_pageset(pcp, zone_batchsize(zone));
3375
3376                if (percpu_pagelist_fraction)
3377                        setup_pagelist_highmark(pcp,
3378                                (zone->present_pages /
3379                                        percpu_pagelist_fraction));
3380        }
3381}
3382
3383/*
3384 * Allocate per cpu pagesets and initialize them.
3385 * Before this call only boot pagesets were available.
3386 */
3387void __init setup_per_cpu_pageset(void)
3388{
3389        struct zone *zone;
3390
3391        for_each_populated_zone(zone)
3392                setup_zone_pageset(zone);
3393}
3394
3395static noinline __init_refok
3396int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3397{
3398        int i;
3399        struct pglist_data *pgdat = zone->zone_pgdat;
3400        size_t alloc_size;
3401
3402        /*
3403         * The per-page waitqueue mechanism uses hashed waitqueues
3404         * per zone.
3405         */
3406        zone->wait_table_hash_nr_entries =
3407                 wait_table_hash_nr_entries(zone_size_pages);
3408        zone->wait_table_bits =
3409                wait_table_bits(zone->wait_table_hash_nr_entries);
3410        alloc_size = zone->wait_table_hash_nr_entries
3411                                        * sizeof(wait_queue_head_t);
3412
3413        if (!slab_is_available()) {
3414                zone->wait_table = (wait_queue_head_t *)
3415                        alloc_bootmem_node(pgdat, alloc_size);
3416        } else {
3417                /*
3418                 * This case means that a zone whose size was 0 gets new memory
3419                 * via memory hot-add.
3420                 * But it may be the case that a new node was hot-added.  In
3421                 * this case vmalloc() will not be able to use this new node's
3422                 * memory - this wait_table must be initialized to use this new
3423                 * node itself as well.
3424                 * To use this new node's memory, further consideration will be
3425                 * necessary.
3426                 */
3427                zone->wait_table = vmalloc(alloc_size);
3428        }
3429        if (!zone->wait_table)
3430                return -ENOMEM;
3431
3432        for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3433                init_waitqueue_head(zone->wait_table + i);
3434
3435        return 0;
3436}
3437
3438static int __zone_pcp_update(void *data)
3439{
3440        struct zone *zone = data;
3441        int cpu;
3442        unsigned long batch = zone_batchsize(zone), flags;
3443
3444        for_each_possible_cpu(cpu) {
3445                struct per_cpu_pageset *pset;
3446                struct per_cpu_pages *pcp;
3447
3448                pset = per_cpu_ptr(zone->pageset, cpu);
3449                pcp = &pset->pcp;
3450
3451                local_irq_save(flags);
3452                free_pcppages_bulk(zone, pcp->count, pcp);
3453                setup_pageset(pset, batch);
3454                local_irq_restore(flags);
3455        }
3456        return 0;
3457}
3458
3459void zone_pcp_update(struct zone *zone)
3460{
3461        stop_machine(__zone_pcp_update, zone, NULL);
3462}
3463
3464static __meminit void zone_pcp_init(struct zone *zone)
3465{
3466        /*
3467         * per cpu subsystem is not up at this point. The following code
3468         * relies on the ability of the linker to provide the
3469         * offset of a (static) per cpu variable into the per cpu area.
3470         */
3471        zone->pageset = &boot_pageset;
3472
3473        if (zone->present_pages)
3474                printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
3475                        zone->name, zone->present_pages,
3476                                         zone_batchsize(zone));
3477}
3478
3479__meminit int init_currently_empty_zone(struct zone *zone,
3480                                        unsigned long zone_start_pfn,
3481                                        unsigned long size,
3482                                        enum memmap_context context)
3483{
3484        struct pglist_data *pgdat = zone->zone_pgdat;
3485        int ret;
3486        ret = zone_wait_table_init(zone, size);
3487        if (ret)
3488                return ret;
3489        pgdat->nr_zones = zone_idx(zone) + 1;
3490
3491        zone->zone_start_pfn = zone_start_pfn;
3492
3493        mminit_dprintk(MMINIT_TRACE, "memmap_init",
3494                        "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3495                        pgdat->node_id,
3496                        (unsigned long)zone_idx(zone),
3497                        zone_start_pfn, (zone_start_pfn + size));
3498
3499        zone_init_free_lists(zone);
3500
3501        return 0;
3502}
3503
3504#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3505/*
3506 * Basic iterator support. Return the first range of PFNs for a node
3507 * Note: nid == MAX_NUMNODES returns first region regardless of node
3508 */
3509static int __meminit first_active_region_index_in_nid(int nid)
3510{
3511        int i;
3512
3513        for (i = 0; i < nr_nodemap_entries; i++)
3514                if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3515                        return i;
3516
3517        return -1;
3518}
3519
3520/*
3521 * Basic iterator support. Return the next active range of PFNs for a node
3522 * Note: nid == MAX_NUMNODES returns next region regardless of node
3523 */
3524static int __meminit next_active_region_index_in_nid(int index, int nid)
3525{
3526        for (index = index + 1; index < nr_nodemap_entries; index++)
3527                if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3528                        return index;
3529
3530        return -1;
3531}
3532
3533#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3534/*
3535 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3536 * Architectures may implement their own version but if add_active_range()
3537 * was used and there are no special requirements, this is a convenient
3538 * alternative
3539 */
3540int __meminit __early_pfn_to_nid(unsigned long pfn)
3541{
3542        int i;
3543
3544        for (i = 0; i < nr_nodemap_entries; i++) {
3545                unsigned long start_pfn = early_node_map[i].start_pfn;
3546                unsigned long end_pfn = early_node_map[i].end_pfn;
3547
3548                if (start_pfn <= pfn && pfn < end_pfn)
3549                        return early_node_map[i].nid;
3550        }
3551        /* This is a memory hole */
3552        return -1;
3553}
3554#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3555
3556int __meminit early_pfn_to_nid(unsigned long pfn)
3557{
3558        int nid;
3559
3560        nid = __early_pfn_to_nid(pfn);
3561        if (nid >= 0)
3562                return nid;
3563        /* just returns 0 */
3564        return 0;
3565}
3566
3567#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3568bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3569{
3570        int nid;
3571
3572        nid = __early_pfn_to_nid(pfn);
3573        if (nid >= 0 && nid != node)
3574                return false;
3575        return true;
3576}
3577#endif
3578
3579/* Basic iterator support to walk early_node_map[] */
3580#define for_each_active_range_index_in_nid(i, nid) \
3581        for (i = first_active_region_index_in_nid(nid); i != -1; \
3582                                i = next_active_region_index_in_nid(i, nid))
3583
3584/**
3585 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3586 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3587 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3588 *
3589 * If an architecture guarantees that all ranges registered with
3590 * add_active_ranges() contain no holes and may be freed, this
3591 * this function may be used instead of calling free_bootmem() manually.
3592 */
3593void __init free_bootmem_with_active_regions(int nid,
3594                                                unsigned long max_low_pfn)
3595{
3596        int i;
3597
3598        for_each_active_range_index_in_nid(i, nid) {
3599                unsigned long size_pages = 0;
3600                unsigned long end_pfn = early_node_map[i].end_pfn;
3601
3602                if (early_node_map[i].start_pfn >= max_low_pfn)
3603                        continue;
3604
3605                if (end_pfn > max_low_pfn)
3606                        end_pfn = max_low_pfn;
3607
3608                size_pages = end_pfn - early_node_map[i].start_pfn;
3609                free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3610                                PFN_PHYS(early_node_map[i].start_pfn),
3611                                size_pages << PAGE_SHIFT);
3612        }
3613}
3614
3615int __init add_from_early_node_map(struct range *range, int az,
3616                                   int nr_range, int nid)
3617{
3618        int i;
3619        u64 start, end;
3620
3621        /* need to go over early_node_map to find out good range for node */
3622        for_each_active_range_index_in_nid(i, nid) {
3623                start = early_node_map[i].start_pfn;
3624                end = early_node_map[i].end_pfn;
3625                nr_range = add_range(range, az, nr_range, start, end);
3626        }
3627        return nr_range;
3628}
3629
3630#ifdef CONFIG_NO_BOOTMEM
3631void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3632                                        u64 goal, u64 limit)
3633{
3634        int i;
3635        void *ptr;
3636
3637        if (limit > get_max_mapped())
3638                limit = get_max_mapped();
3639
3640        /* need to go over early_node_map to find out good range for node */
3641        for_each_active_range_index_in_nid(i, nid) {
3642                u64 addr;
3643                u64 ei_start, ei_last;
3644
3645                ei_last = early_node_map[i].end_pfn;
3646                ei_last <<= PAGE_SHIFT;
3647                ei_start = early_node_map[i].start_pfn;
3648                ei_start <<= PAGE_SHIFT;
3649                addr = find_early_area(ei_start, ei_last,
3650                                         goal, limit, size, align);
3651
3652                if (addr == -1ULL)
3653                        continue;
3654
3655#if 0
3656                printk(KERN_DEBUG "alloc (nid=%d %llx - %llx) (%llx - %llx) %llx %llx => %llx\n",
3657                                nid,
3658                                ei_start, ei_last, goal, limit, size,
3659                                align, addr);
3660#endif
3661
3662                ptr = phys_to_virt(addr);
3663                memset(ptr, 0, size);
3664                reserve_early_without_check(addr, addr + size, "BOOTMEM");
3665                /*
3666                 * The min_count is set to 0 so that bootmem allocated blocks
3667                 * are never reported as leaks.
3668                 */
3669                kmemleak_alloc(ptr, size, 0, 0);
3670                return ptr;
3671        }
3672
3673        return NULL;
3674}
3675#endif
3676
3677
3678void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3679{
3680        int i;
3681        int ret;
3682
3683        for_each_active_range_index_in_nid(i, nid) {
3684                ret = work_fn(early_node_map[i].start_pfn,
3685                              early_node_map[i].end_pfn, data);
3686                if (ret)
3687                        break;
3688        }
3689}
3690/**
3691 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3692 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3693 *
3694 * If an architecture guarantees that all ranges registered with
3695 * add_active_ranges() contain no holes and may be freed, this
3696 * function may be used instead of calling memory_present() manually.
3697 */
3698void __init sparse_memory_present_with_active_regions(int nid)
3699{
3700        int i;
3701
3702        for_each_active_range_index_in_nid(i, nid)
3703                memory_present(early_node_map[i].nid,
3704                                early_node_map[i].start_pfn,
3705                                early_node_map[i].end_pfn);
3706}
3707
3708/**
3709 * get_pfn_range_for_nid - Return the start and end page frames for a node
3710 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3711 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3712 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3713 *
3714 * It returns the start and end page frame of a node based on information
3715 * provided by an arch calling add_active_range(). If called for a node
3716 * with no available memory, a warning is printed and the start and end
3717 * PFNs will be 0.
3718 */
3719void __meminit get_pfn_range_for_nid(unsigned int nid,
3720                        unsigned long *start_pfn, unsigned long *end_pfn)
3721{
3722        int i;
3723        *start_pfn = -1UL;
3724        *end_pfn = 0;
3725
3726        for_each_active_range_index_in_nid(i, nid) {
3727                *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3728                *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3729        }
3730
3731        if (*start_pfn == -1UL)
3732                *start_pfn = 0;
3733}
3734
3735/*
3736 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3737 * assumption is made that zones within a node are ordered in monotonic
3738 * increasing memory addresses so that the "highest" populated zone is used
3739 */
3740static void __init find_usable_zone_for_movable(void)
3741{
3742        int zone_index;
3743        for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3744                if (zone_index == ZONE_MOVABLE)
3745                        continue;
3746
3747                if (arch_zone_highest_possible_pfn[zone_index] >
3748                                arch_zone_lowest_possible_pfn[zone_index])
3749                        break;
3750        }
3751
3752        VM_BUG_ON(zone_index == -1);
3753        movable_zone = zone_index;
3754}
3755
3756/*
3757 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3758 * because it is sized independant of architecture. Unlike the other zones,
3759 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3760 * in each node depending on the size of each node and how evenly kernelcore
3761 * is distributed. This helper function adjusts the zone ranges
3762 * provided by the architecture for a given node by using the end of the
3763 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3764 * zones within a node are in order of monotonic increases memory addresses
3765 */
3766static void __meminit adjust_zone_range_for_zone_movable(int nid,
3767                                        unsigned long zone_type,
3768                                        unsigned long node_start_pfn,
3769                                        unsigned long node_end_pfn,
3770                                        unsigned long *zone_start_pfn,
3771                                        unsigned long *zone_end_pfn)
3772{
3773        /* Only adjust if ZONE_MOVABLE is on this node */
3774        if (zone_movable_pfn[nid]) {
3775                /* Size ZONE_MOVABLE */
3776                if (zone_type == ZONE_MOVABLE) {
3777                        *zone_start_pfn = zone_movable_pfn[nid];
3778                        *zone_end_pfn = min(node_end_pfn,
3779                                arch_zone_highest_possible_pfn[movable_zone]);
3780
3781                /* Adjust for ZONE_MOVABLE starting within this range */
3782                } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3783                                *zone_end_pfn > zone_movable_pfn[nid]) {
3784                        *zone_end_pfn = zone_movable_pfn[nid];
3785
3786                /* Check if this whole range is within ZONE_MOVABLE */
3787                } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3788                        *zone_start_pfn = *zone_end_pfn;
3789        }
3790}
3791
3792/*
3793 * Return the number of pages a zone spans in a node, including holes
3794 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3795 */
3796static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3797                                        unsigned long zone_type,
3798                                        unsigned long *ignored)
3799{
3800        unsigned long node_start_pfn, node_end_pfn;
3801        unsigned long zone_start_pfn, zone_end_pfn;
3802
3803        /* Get the start and end of the node and zone */
3804        get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3805        zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3806        zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3807        adjust_zone_range_for_zone_movable(nid, zone_type,
3808                                node_start_pfn, node_end_pfn,
3809                                &zone_start_pfn, &zone_end_pfn);
3810
3811        /* Check that this node has pages within the zone's required range */
3812        if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3813                return 0;
3814
3815        /* Move the zone boundaries inside the node if necessary */
3816        zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3817        zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3818
3819        /* Return the spanned pages */
3820        return zone_end_pfn - zone_start_pfn;
3821}
3822
3823/*
3824 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3825 * then all holes in the requested range will be accounted for.
3826 */
3827unsigned long __meminit __absent_pages_in_range(int nid,
3828                                unsigned long range_start_pfn,
3829                                unsigned long range_end_pfn)
3830{
3831        int i = 0;
3832        unsigned long prev_end_pfn = 0, hole_pages = 0;
3833        unsigned long start_pfn;
3834
3835        /* Find the end_pfn of the first active range of pfns in the node */
3836        i = first_active_region_index_in_nid(nid);
3837        if (i == -1)
3838                return 0;
3839
3840        prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3841
3842        /* Account for ranges before physical memory on this node */
3843        if (early_node_map[i].start_pfn > range_start_pfn)
3844                hole_pages = prev_end_pfn - range_start_pfn;
3845
3846        /* Find all holes for the zone within the node */
3847        for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3848
3849                /* No need to continue if prev_end_pfn is outside the zone */
3850                if (prev_end_pfn >= range_end_pfn)
3851                        break;
3852
3853                /* Make sure the end of the zone is not within the hole */
3854                start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3855                prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3856
3857                /* Update the hole size cound and move on */
3858                if (start_pfn > range_start_pfn) {
3859                        BUG_ON(prev_end_pfn > start_pfn);
3860                        hole_pages += start_pfn - prev_end_pfn;
3861                }
3862                prev_end_pfn = early_node_map[i].end_pfn;
3863        }
3864
3865        /* Account for ranges past physical memory on this node */
3866        if (range_end_pfn > prev_end_pfn)
3867                hole_pages += range_end_pfn -
3868                                max(range_start_pfn, prev_end_pfn);
3869
3870        return hole_pages;
3871}
3872
3873/**
3874 * absent_pages_in_range - Return number of page frames in holes within a range
3875 * @start_pfn: The start PFN to start searching for holes
3876 * @end_pfn: The end PFN to stop searching for holes
3877 *
3878 * It returns the number of pages frames in memory holes within a range.
3879 */
3880unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3881                                                        unsigned long end_pfn)
3882{
3883        return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3884}
3885
3886/* Return the number of page frames in holes in a zone on a node */
3887static unsigned long __meminit zone_absent_pages_in_node(int nid,
3888                                        unsigned long zone_type,
3889                                        unsigned long *ignored)
3890{
3891        unsigned long node_start_pfn, node_end_pfn;
3892        unsigned long zone_start_pfn, zone_end_pfn;
3893
3894        get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3895        zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3896                                                        node_start_pfn);
3897        zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3898                                                        node_end_pfn);
3899
3900        adjust_zone_range_for_zone_movable(nid, zone_type,
3901                        node_start_pfn, node_end_pfn,
3902                        &zone_start_pfn, &zone_end_pfn);
3903        return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3904}
3905
3906#else
3907static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3908                                        unsigned long zone_type,
3909                                        unsigned long *zones_size)
3910{
3911        return zones_size[zone_type];
3912}
3913
3914static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3915                                                unsigned long zone_type,
3916                                                unsigned long *zholes_size)
3917{
3918        if (!zholes_size)
3919                return 0;
3920
3921        return zholes_size[zone_type];
3922}
3923
3924#endif
3925
3926static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3927                unsigned long *zones_size, unsigned long *zholes_size)
3928{
3929        unsigned long realtotalpages, totalpages = 0;
3930        enum zone_type i;
3931
3932        for (i = 0; i < MAX_NR_ZONES; i++)
3933                totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3934                                                                zones_size);
3935        pgdat->node_spanned_pages = totalpages;
3936
3937        realtotalpages = totalpages;
3938        for (i = 0; i < MAX_NR_ZONES; i++)
3939                realtotalpages -=
3940                        zone_absent_pages_in_node(pgdat->node_id, i,
3941                                                                zholes_size);
3942        pgdat->node_present_pages = realtotalpages;
3943        printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3944                                                        realtotalpages);
3945}
3946
3947#ifndef CONFIG_SPARSEMEM
3948/*
3949 * Calculate the size of the zone->blockflags rounded to an unsigned long
3950 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3951 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3952 * round what is now in bits to nearest long in bits, then return it in
3953 * bytes.
3954 */
3955static unsigned long __init usemap_size(unsigned long zonesize)
3956{
3957        unsigned long usemapsize;
3958
3959        usemapsize = roundup(zonesize, pageblock_nr_pages);
3960        usemapsize = usemapsize >> pageblock_order;
3961        usemapsize *= NR_PAGEBLOCK_BITS;
3962        usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3963
3964        return usemapsize / 8;
3965}
3966
3967static void __init setup_usemap(struct pglist_data *pgdat,
3968                                struct zone *zone, unsigned long zonesize)
3969{
3970        unsigned long usemapsize = usemap_size(zonesize);
3971        zone->pageblock_flags = NULL;
3972        if (usemapsize)
3973                zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3974}
3975#else
3976static void inline setup_usemap(struct pglist_data *pgdat,
3977                                struct zone *zone, unsigned long zonesize) {}
3978#endif /* CONFIG_SPARSEMEM */
3979
3980#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3981
3982/* Return a sensible default order for the pageblock size. */
3983static inline int pageblock_default_order(void)
3984{
3985        if (HPAGE_SHIFT > PAGE_SHIFT)
3986                return HUGETLB_PAGE_ORDER;
3987
3988        return MAX_ORDER-1;
3989}
3990
3991/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3992static inline void __init set_pageblock_order(unsigned int order)
3993{
3994        /* Check that pageblock_nr_pages has not already been setup */
3995        if (pageblock_order)
3996                return;
3997
3998        /*
3999         * Assume the largest contiguous order of interest is a huge page.
4000         * This value may be variable depending on boot parameters on IA64
4001         */
4002        pageblock_order = order;
4003}
4004#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4005
4006/*
4007 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4008 * and pageblock_default_order() are unused as pageblock_order is set
4009 * at compile-time. See include/linux/pageblock-flags.h for the values of
4010 * pageblock_order based on the kernel config
4011 */
4012static inline int pageblock_default_order(unsigned int order)
4013{
4014        return MAX_ORDER-1;
4015}
4016#define set_pageblock_order(x)  do {} while (0)
4017
4018#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4019
4020/*
4021 * Set up the zone data structures:
4022 *   - mark all pages reserved
4023 *   - mark all memory queues empty
4024 *   - clear the memory bitmaps
4025 */
4026static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4027                unsigned long *zones_size, unsigned long *zholes_size)
4028{
4029        enum zone_type j;
4030        int nid = pgdat->node_id;
4031        unsigned long zone_start_pfn = pgdat->node_start_pfn;
4032        int ret;
4033
4034        pgdat_resize_init(pgdat);
4035        pgdat->nr_zones = 0;
4036        init_waitqueue_head(&pgdat->kswapd_wait);
4037        pgdat->kswapd_max_order = 0;
4038        pgdat_page_cgroup_init(pgdat);
4039        
4040        for (j = 0; j < MAX_NR_ZONES; j++) {
4041                struct zone *zone = pgdat->node_zones + j;
4042                unsigned long size, realsize, memmap_pages;
4043                enum lru_list l;
4044
4045                size = zone_spanned_pages_in_node(nid, j, zones_size);
4046                realsize = size - zone_absent_pages_in_node(nid, j,
4047                                                                zholes_size);
4048
4049                /*
4050                 * Adjust realsize so that it accounts for how much memory
4051                 * is used by this zone for memmap. This affects the watermark
4052                 * and per-cpu initialisations
4053                 */
4054                memmap_pages =
4055                        PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4056                if (realsize >= memmap_pages) {
4057                        realsize -= memmap_pages;
4058                        if (memmap_pages)
4059                                printk(KERN_DEBUG
4060                                       "  %s zone: %lu pages used for memmap\n",
4061                                       zone_names[j], memmap_pages);
4062                } else
4063                        printk(KERN_WARNING
4064                                "  %s zone: %lu pages exceeds realsize %lu\n",
4065                                zone_names[j], memmap_pages, realsize);
4066
4067                /* Account for reserved pages */
4068                if (j == 0 && realsize > dma_reserve) {
4069                        realsize -= dma_reserve;
4070                        printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4071                                        zone_names[0], dma_reserve);
4072                }
4073
4074                if (!is_highmem_idx(j))
4075                        nr_kernel_pages += realsize;
4076                nr_all_pages += realsize;
4077
4078                zone->spanned_pages = size;
4079                zone->present_pages = realsize;
4080#ifdef CONFIG_NUMA
4081                zone->node = nid;
4082                zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4083                                                / 100;
4084                zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4085#endif
4086                zone->name = zone_names[j];
4087                spin_lock_init(&zone->lock);
4088                spin_lock_init(&zone->lru_lock);
4089                zone_seqlock_init(zone);
4090                zone->zone_pgdat = pgdat;
4091
4092                zone->prev_priority = DEF_PRIORITY;
4093
4094                zone_pcp_init(zone);
4095                for_each_lru(l) {
4096                        INIT_LIST_HEAD(&zone->lru[l].list);
4097                        zone->reclaim_stat.nr_saved_scan[l] = 0;
4098                }
4099                zone->reclaim_stat.recent_rotated[0] = 0;
4100                zone->reclaim_stat.recent_rotated[1] = 0;
4101                zone->reclaim_stat.recent_scanned[0] = 0;
4102                zone->reclaim_stat.recent_scanned[1] = 0;
4103                zap_zone_vm_stats(zone);
4104                zone->flags = 0;
4105                if (!size)
4106                        continue;
4107
4108                set_pageblock_order(pageblock_default_order());
4109                setup_usemap(pgdat, zone, size);
4110                ret = init_currently_empty_zone(zone, zone_start_pfn,
4111                                                size, MEMMAP_EARLY);
4112                BUG_ON(ret);
4113                memmap_init(size, nid, j, zone_start_pfn);
4114                zone_start_pfn += size;
4115        }
4116}
4117
4118static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4119{
4120        /* Skip empty nodes */
4121        if (!pgdat->node_spanned_pages)
4122                return;
4123
4124#ifdef CONFIG_FLAT_NODE_MEM_MAP
4125        /* ia64 gets its own node_mem_map, before this, without bootmem */
4126        if (!pgdat->node_mem_map) {
4127                unsigned long size, start, end;
4128                struct page *map;
4129
4130                /*
4131                 * The zone's endpoints aren't required to be MAX_ORDER
4132                 * aligned but the node_mem_map endpoints must be in order
4133                 * for the buddy allocator to function correctly.
4134                 */
4135                start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4136                end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4137                end = ALIGN(end, MAX_ORDER_NR_PAGES);
4138                size =  (end - start) * sizeof(struct page);
4139                map = alloc_remap(pgdat->node_id, size);
4140                if (!map)
4141                        map = alloc_bootmem_node(pgdat, size);
4142                pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4143        }
4144#ifndef CONFIG_NEED_MULTIPLE_NODES
4145        /*
4146         * With no DISCONTIG, the global mem_map is just set as node 0's
4147         */
4148        if (pgdat == NODE_DATA(0)) {
4149                mem_map = NODE_DATA(0)->node_mem_map;
4150#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4151                if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4152                        mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4153#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4154        }
4155#endif
4156#endif /* CONFIG_FLAT_NODE_MEM_MAP */
4157}
4158
4159void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4160                unsigned long node_start_pfn, unsigned long *zholes_size)
4161{
4162        pg_data_t *pgdat = NODE_DATA(nid);
4163
4164        pgdat->node_id = nid;
4165        pgdat->node_start_pfn = node_start_pfn;
4166        calculate_node_totalpages(pgdat, zones_size, zholes_size);
4167
4168        alloc_node_mem_map(pgdat);
4169#ifdef CONFIG_FLAT_NODE_MEM_MAP
4170        printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4171                nid, (unsigned long)pgdat,
4172                (unsigned long)pgdat->node_mem_map);
4173#endif
4174
4175        free_area_init_core(pgdat, zones_size, zholes_size);
4176}
4177
4178#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4179
4180#if MAX_NUMNODES > 1
4181/*
4182 * Figure out the number of possible node ids.
4183 */
4184static void __init setup_nr_node_ids(void)
4185{
4186        unsigned int node;
4187        unsigned int highest = 0;
4188
4189        for_each_node_mask(node, node_possible_map)
4190                highest = node;
4191        nr_node_ids = highest + 1;
4192}
4193#else
4194static inline void setup_nr_node_ids(void)
4195{
4196}
4197#endif
4198
4199/**
4200 * add_active_range - Register a range of PFNs backed by physical memory
4201 * @nid: The node ID the range resides on
4202 * @start_pfn: The start PFN of the available physical memory
4203 * @end_pfn: The end PFN of the available physical memory
4204 *
4205 * These ranges are stored in an early_node_map[] and later used by
4206 * free_area_init_nodes() to calculate zone sizes and holes. If the
4207 * range spans a memory hole, it is up to the architecture to ensure
4208 * the memory is not freed by the bootmem allocator. If possible
4209 * the range being registered will be merged with existing ranges.
4210 */
4211void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4212                                                unsigned long end_pfn)
4213{
4214        int i;
4215
4216        mminit_dprintk(MMINIT_TRACE, "memory_register",
4217                        "Entering add_active_range(%d, %#lx, %#lx) "
4218                        "%d entries of %d used\n",
4219                        nid, start_pfn, end_pfn,
4220                        nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4221
4222        mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4223
4224        /* Merge with existing active regions if possible */
4225        for (i = 0; i < nr_nodemap_entries; i++) {
4226                if (early_node_map[i].nid != nid)
4227                        continue;
4228
4229                /* Skip if an existing region covers this new one */
4230                if (start_pfn >= early_node_map[i].start_pfn &&
4231                                end_pfn <= early_node_map[i].end_pfn)
4232                        return;
4233
4234                /* Merge forward if suitable */
4235                if (start_pfn <= early_node_map[i].end_pfn &&
4236                                end_pfn > early_node_map[i].end_pfn) {
4237                        early_node_map[i].end_pfn = end_pfn;
4238                        return;
4239                }
4240
4241                /* Merge backward if suitable */
4242                if (start_pfn < early_node_map[i].start_pfn &&
4243                                end_pfn >= early_node_map[i].start_pfn) {
4244                        early_node_map[i].start_pfn = start_pfn;
4245                        return;
4246                }
4247        }
4248
4249        /* Check that early_node_map is large enough */
4250        if (i >= MAX_ACTIVE_REGIONS) {
4251                printk(KERN_CRIT "More than %d memory regions, truncating\n",
4252                                                        MAX_ACTIVE_REGIONS);
4253                return;
4254        }
4255
4256        early_node_map[i].nid = nid;
4257        early_node_map[i].start_pfn = start_pfn;
4258        early_node_map[i].end_pfn = end_pfn;
4259        nr_nodemap_entries = i + 1;
4260}
4261
4262/**
4263 * remove_active_range - Shrink an existing registered range of PFNs
4264 * @nid: The node id the range is on that should be shrunk
4265 * @start_pfn: The new PFN of the range
4266 * @end_pfn: The new PFN of the range
4267 *
4268 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4269 * The map is kept near the end physical page range that has already been
4270 * registered. This function allows an arch to shrink an existing registered
4271 * range.
4272 */
4273void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4274                                unsigned long end_pfn)
4275{
4276        int i, j;
4277        int removed = 0;
4278
4279        printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4280                          nid, start_pfn, end_pfn);
4281
4282        /* Find the old active region end and shrink */
4283        for_each_active_range_index_in_nid(i, nid) {
4284                if (early_node_map[i].start_pfn >= start_pfn &&
4285                    early_node_map[i].end_pfn <= end_pfn) {
4286                        /* clear it */
4287                        early_node_map[i].start_pfn = 0;
4288                        early_node_map[i].end_pfn = 0;
4289                        removed = 1;
4290                        continue;
4291                }
4292                if (early_node_map[i].start_pfn < start_pfn &&
4293                    early_node_map[i].end_pfn > start_pfn) {
4294                        unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4295                        early_node_map[i].end_pfn = start_pfn;
4296                        if (temp_end_pfn > end_pfn)
4297                                add_active_range(nid, end_pfn, temp_end_pfn);
4298                        continue;
4299                }
4300                if (early_node_map[i].start_pfn >= start_pfn &&
4301                    early_node_map[i].end_pfn > end_pfn &&
4302                    early_node_map[i].start_pfn < end_pfn) {
4303                        early_node_map[i].start_pfn = end_pfn;
4304                        continue;
4305                }
4306        }
4307
4308        if (!removed)
4309                return;
4310
4311        /* remove the blank ones */
4312        for (i = nr_nodemap_entries - 1; i > 0; i--) {
4313                if (early_node_map[i].nid != nid)
4314                        continue;
4315                if (early_node_map[i].end_pfn)
4316                        continue;
4317                /* we found it, get rid of it */
4318                for (j = i; j < nr_nodemap_entries - 1; j++)
4319                        memcpy(&early_node_map[j], &early_node_map[j+1],
4320                                sizeof(early_node_map[j]));
4321                j = nr_nodemap_entries - 1;
4322                memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4323                nr_nodemap_entries--;
4324        }
4325}
4326
4327/**
4328 * remove_all_active_ranges - Remove all currently registered regions
4329 *
4330 * During discovery, it may be found that a table like SRAT is invalid
4331 * and an alternative discovery method must be used. This function removes
4332 * all currently registered regions.
4333 */
4334void __init remove_all_active_ranges(void)
4335{
4336        memset(early_node_map, 0, sizeof(early_node_map));
4337        nr_nodemap_entries = 0;
4338}
4339
4340/* Compare two active node_active_regions */
4341static int __init cmp_node_active_region(const void *a, const void *b)
4342{
4343        struct node_active_region *arange = (struct node_active_region *)a;
4344        struct node_active_region *brange = (struct node_active_region *)b;
4345
4346        /* Done this way to avoid overflows */
4347        if (arange->start_pfn > brange->start_pfn)
4348                return 1;
4349        if (arange->start_pfn < brange->start_pfn)
4350                return -1;
4351
4352        return 0;
4353}
4354
4355/* sort the node_map by start_pfn */
4356void __init sort_node_map(void)
4357{
4358        sort(early_node_map, (size_t)nr_nodemap_entries,
4359                        sizeof(struct node_active_region),
4360                        cmp_node_active_region, NULL);
4361}
4362
4363/* Find the lowest pfn for a node */
4364static unsigned long __init find_min_pfn_for_node(int nid)
4365{
4366        int i;
4367        unsigned long min_pfn = ULONG_MAX;
4368
4369        /* Assuming a sorted map, the first range found has the starting pfn */
4370        for_each_active_range_index_in_nid(i, nid)
4371                min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4372
4373        if (min_pfn == ULONG_MAX) {
4374                printk(KERN_WARNING
4375                        "Could not find start_pfn for node %d\n", nid);
4376                return 0;
4377        }
4378
4379        return min_pfn;
4380}
4381
4382/**
4383 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4384 *
4385 * It returns the minimum PFN based on information provided via
4386 * add_active_range().
4387 */
4388unsigned long __init find_min_pfn_with_active_regions(void)
4389{
4390        return find_min_pfn_for_node(MAX_NUMNODES);
4391}
4392
4393/*
4394 * early_calculate_totalpages()
4395 * Sum pages in active regions for movable zone.
4396 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4397 */
4398static unsigned long __init early_calculate_totalpages(void)
4399{
4400        int i;
4401        unsigned long totalpages = 0;
4402
4403        for (i = 0; i < nr_nodemap_entries; i++) {
4404                unsigned long pages = early_node_map[i].end_pfn -
4405                                                early_node_map[i].start_pfn;
4406                totalpages += pages;
4407                if (pages)
4408                        node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4409        }
4410        return totalpages;
4411}
4412
4413/*
4414 * Find the PFN the Movable zone begins in each node. Kernel memory
4415 * is spread evenly between nodes as long as the nodes have enough
4416 * memory. When they don't, some nodes will have more kernelcore than
4417 * others
4418 */
4419static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4420{
4421        int i, nid;
4422        unsigned long usable_startpfn;
4423        unsigned long kernelcore_node, kernelcore_remaining;
4424        /* save the state before borrow the nodemask */
4425        nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4426        unsigned long totalpages = early_calculate_totalpages();
4427        int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4428
4429        /*
4430         * If movablecore was specified, calculate what size of
4431         * kernelcore that corresponds so that memory usable for
4432         * any allocation type is evenly spread. If both kernelcore
4433         * and movablecore are specified, then the value of kernelcore
4434         * will be used for required_kernelcore if it's greater than
4435         * what movablecore would have allowed.
4436         */
4437        if (required_movablecore) {
4438                unsigned long corepages;
4439
4440                /*
4441                 * Round-up so that ZONE_MOVABLE is at least as large as what
4442                 * was requested by the user
4443                 */
4444                required_movablecore =
4445                        roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4446                corepages = totalpages - required_movablecore;
4447
4448                required_kernelcore = max(required_kernelcore, corepages);
4449        }
4450
4451        /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4452        if (!required_kernelcore)
4453                goto out;
4454
4455        /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4456        find_usable_zone_for_movable();
4457        usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4458
4459restart:
4460        /* Spread kernelcore memory as evenly as possible throughout nodes */
4461        kernelcore_node = required_kernelcore / usable_nodes;
4462        for_each_node_state(nid, N_HIGH_MEMORY) {
4463                /*
4464                 * Recalculate kernelcore_node if the division per node
4465                 * now exceeds what is necessary to satisfy the requested
4466                 * amount of memory for the kernel
4467                 */
4468                if (required_kernelcore < kernelcore_node)
4469                        kernelcore_node = required_kernelcore / usable_nodes;
4470
4471                /*
4472                 * As the map is walked, we track how much memory is usable
4473                 * by the kernel using kernelcore_remaining. When it is
4474                 * 0, the rest of the node is usable by ZONE_MOVABLE
4475                 */
4476                kernelcore_remaining = kernelcore_node;
4477
4478                /* Go through each range of PFNs within this node */
4479                for_each_active_range_index_in_nid(i, nid) {
4480                        unsigned long start_pfn, end_pfn;
4481                        unsigned long size_pages;
4482
4483                        start_pfn = max(early_node_map[i].start_pfn,
4484                                                zone_movable_pfn[nid]);
4485                        end_pfn = early_node_map[i].end_pfn;
4486                        if (start_pfn >= end_pfn)
4487                                continue;
4488
4489                        /* Account for what is only usable for kernelcore */
4490                        if (start_pfn < usable_startpfn) {
4491                                unsigned long kernel_pages;
4492                                kernel_pages = min(end_pfn, usable_startpfn)
4493                                                                - start_pfn;
4494
4495                                kernelcore_remaining -= min(kernel_pages,
4496                                                        kernelcore_remaining);
4497                                required_kernelcore -= min(kernel_pages,
4498                                                        required_kernelcore);
4499
4500                                /* Continue if range is now fully accounted */
4501                                if (end_pfn <= usable_startpfn) {
4502
4503                                        /*
4504                                         * Push zone_movable_pfn to the end so
4505                                         * that if we have to rebalance
4506                                         * kernelcore across nodes, we will
4507                                         * not double account here
4508                                         */
4509                                        zone_movable_pfn[nid] = end_pfn;
4510                                        continue;
4511                                }
4512                                start_pfn = usable_startpfn;
4513                        }
4514
4515                        /*
4516                         * The usable PFN range for ZONE_MOVABLE is from
4517                         * start_pfn->end_pfn. Calculate size_pages as the
4518                         * number of pages used as kernelcore
4519                         */
4520                        size_pages = end_pfn - start_pfn;
4521                        if (size_pages > kernelcore_remaining)
4522                                size_pages = kernelcore_remaining;
4523                        zone_movable_pfn[nid] = start_pfn + size_pages;
4524
4525                        /*
4526                         * Some kernelcore has been met, update counts and
4527                         * break if the kernelcore for this node has been
4528                         * satisified
4529                         */
4530                        required_kernelcore -= min(required_kernelcore,
4531                                                                size_pages);
4532                        kernelcore_remaining -= size_pages;
4533                        if (!kernelcore_remaining)
4534                                break;
4535                }
4536        }
4537
4538        /*
4539         * If there is still required_kernelcore, we do another pass with one
4540         * less node in the count. This will push zone_movable_pfn[nid] further
4541         * along on the nodes that still have memory until kernelcore is
4542         * satisified
4543         */
4544        usable_nodes--;
4545        if (usable_nodes && required_kernelcore > usable_nodes)
4546                goto restart;
4547
4548        /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4549        for (nid = 0; nid < MAX_NUMNODES; nid++)
4550                zone_movable_pfn[nid] =
4551                        roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4552
4553out:
4554        /* restore the node_state */
4555        node_states[N_HIGH_MEMORY] = saved_node_state;
4556}
4557
4558/* Any regular memory on that node ? */
4559static void check_for_regular_memory(pg_data_t *pgdat)
4560{
4561#ifdef CONFIG_HIGHMEM
4562        enum zone_type zone_type;
4563
4564        for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4565                struct zone *zone = &pgdat->node_zones[zone_type];
4566                if (zone->present_pages)
4567                        node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4568        }
4569#endif
4570}
4571
4572/**
4573 * free_area_init_nodes - Initialise all pg_data_t and zone data
4574 * @max_zone_pfn: an array of max PFNs for each zone
4575 *
4576 * This will call free_area_init_node() for each active node in the system.
4577 * Using the page ranges provided by add_active_range(), the size of each
4578 * zone in each node and their holes is calculated. If the maximum PFN
4579 * between two adjacent zones match, it is assumed that the zone is empty.
4580 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4581 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4582 * starts where the previous one ended. For example, ZONE_DMA32 starts
4583 * at arch_max_dma_pfn.
4584 */
4585void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4586{
4587        unsigned long nid;
4588        int i;
4589
4590        /* Sort early_node_map as initialisation assumes it is sorted */
4591        sort_node_map();
4592
4593        /* Record where the zone boundaries are */
4594        memset(arch_zone_lowest_possible_pfn, 0,
4595                                sizeof(arch_zone_lowest_possible_pfn));
4596        memset(arch_zone_highest_possible_pfn, 0,
4597                                sizeof(arch_zone_highest_possible_pfn));
4598        arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4599        arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4600        for (i = 1; i < MAX_NR_ZONES; i++) {
4601                if (i == ZONE_MOVABLE)
4602                        continue;
4603                arch_zone_lowest_possible_pfn[i] =
4604                        arch_zone_highest_possible_pfn[i-1];
4605                arch_zone_highest_possible_pfn[i] =
4606                        max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4607        }
4608        arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4609        arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4610
4611        /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4612        memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4613        find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4614
4615        /* Print out the zone ranges */
4616        printk("Zone PFN ranges:\n");
4617        for (i = 0; i < MAX_NR_ZONES; i++) {
4618                if (i == ZONE_MOVABLE)
4619                        continue;
4620                printk("  %-8s ", zone_names[i]);
4621                if (arch_zone_lowest_possible_pfn[i] ==
4622                                arch_zone_highest_possible_pfn[i])
4623                        printk("empty\n");
4624                else
4625                        printk("%0#10lx -> %0#10lx\n",
4626                                arch_zone_lowest_possible_pfn[i],
4627                                arch_zone_highest_possible_pfn[i]);
4628        }
4629
4630        /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4631        printk("Movable zone start PFN for each node\n");
4632        for (i = 0; i < MAX_NUMNODES; i++) {
4633                if (zone_movable_pfn[i])
4634                        printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4635        }
4636
4637        /* Print out the early_node_map[] */
4638        printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4639        for (i = 0; i < nr_nodemap_entries; i++)
4640                printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4641                                                early_node_map[i].start_pfn,
4642                                                early_node_map[i].end_pfn);
4643
4644        /* Initialise every node */
4645        mminit_verify_pageflags_layout();
4646        setup_nr_node_ids();
4647        for_each_online_node(nid) {
4648                pg_data_t *pgdat = NODE_DATA(nid);
4649                free_area_init_node(nid, NULL,
4650                                find_min_pfn_for_node(nid), NULL);
4651
4652                /* Any memory on that node */
4653                if (pgdat->node_present_pages)
4654                        node_set_state(nid, N_HIGH_MEMORY);
4655                check_for_regular_memory(pgdat);
4656        }
4657}
4658
4659static int __init cmdline_parse_core(char *p, unsigned long *core)
4660{
4661        unsigned long long coremem;
4662        if (!p)
4663                return -EINVAL;
4664
4665        coremem = memparse(p, &p);
4666        *core = coremem >> PAGE_SHIFT;
4667
4668        /* Paranoid check that UL is enough for the coremem value */
4669        WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4670
4671        return 0;
4672}
4673
4674/*
4675 * kernelcore=size sets the amount of memory for use for allocations that
4676 * cannot be reclaimed or migrated.
4677 */
4678static int __init cmdline_parse_kernelcore(char *p)
4679{
4680        return cmdline_parse_core(p, &required_kernelcore);
4681}
4682
4683/*
4684 * movablecore=size sets the amount of memory for use for allocations that
4685 * can be reclaimed or migrated.
4686 */
4687static int __init cmdline_parse_movablecore(char *p)
4688{
4689        return cmdline_parse_core(p, &required_movablecore);
4690}
4691
4692early_param("kernelcore", cmdline_parse_kernelcore);
4693early_param("movablecore", cmdline_parse_movablecore);
4694
4695#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4696
4697/**
4698 * set_dma_reserve - set the specified number of pages reserved in the first zone
4699 * @new_dma_reserve: The number of pages to mark reserved
4700 *
4701 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4702 * In the DMA zone, a significant percentage may be consumed by kernel image
4703 * and other unfreeable allocations which can skew the watermarks badly. This
4704 * function may optionally be used to account for unfreeable pages in the
4705 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4706 * smaller per-cpu batchsize.
4707 */
4708void __init set_dma_reserve(unsigned long new_dma_reserve)
4709{
4710        dma_reserve = new_dma_reserve;
4711}
4712
4713#ifndef CONFIG_NEED_MULTIPLE_NODES
4714struct pglist_data __refdata contig_page_data = {
4715#ifndef CONFIG_NO_BOOTMEM
4716 .bdata = &bootmem_node_data[0]
4717#endif
4718 };
4719EXPORT_SYMBOL(contig_page_data);
4720#endif
4721
4722void __init free_area_init(unsigned long *zones_size)
4723{
4724        free_area_init_node(0, zones_size,
4725                        __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4726}
4727
4728static int page_alloc_cpu_notify(struct notifier_block *self,
4729                                 unsigned long action, void *hcpu)
4730{
4731        int cpu = (unsigned long)hcpu;
4732
4733        if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4734                drain_pages(cpu);
4735
4736                /*
4737                 * Spill the event counters of the dead processor
4738                 * into the current processors event counters.
4739                 * This artificially elevates the count of the current
4740                 * processor.
4741                 */
4742                vm_events_fold_cpu(cpu);
4743
4744                /*
4745                 * Zero the differential counters of the dead processor
4746                 * so that the vm statistics are consistent.
4747                 *
4748                 * This is only okay since the processor is dead and cannot
4749                 * race with what we are doing.
4750                 */
4751                refresh_cpu_vm_stats(cpu);
4752        }
4753        return NOTIFY_OK;
4754}
4755
4756void __init page_alloc_init(void)
4757{
4758        hotcpu_notifier(page_alloc_cpu_notify, 0);
4759}
4760
4761/*
4762 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4763 *      or min_free_kbytes changes.
4764 */
4765static void calculate_totalreserve_pages(void)
4766{
4767        struct pglist_data *pgdat;
4768        unsigned long reserve_pages = 0;
4769        enum zone_type i, j;
4770
4771        for_each_online_pgdat(pgdat) {
4772                for (i = 0; i < MAX_NR_ZONES; i++) {
4773                        struct zone *zone = pgdat->node_zones + i;
4774                        unsigned long max = 0;
4775
4776                        /* Find valid and maximum lowmem_reserve in the zone */
4777                        for (j = i; j < MAX_NR_ZONES; j++) {
4778                                if (zone->lowmem_reserve[j] > max)
4779                                        max = zone->lowmem_reserve[j];
4780                        }
4781
4782                        /* we treat the high watermark as reserved pages. */
4783                        max += high_wmark_pages(zone);
4784
4785                        if (max > zone->present_pages)
4786                                max = zone->present_pages;
4787                        reserve_pages += max;
4788                }
4789        }
4790        totalreserve_pages = reserve_pages;
4791}
4792
4793/*
4794 * setup_per_zone_lowmem_reserve - called whenever
4795 *      sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4796 *      has a correct pages reserved value, so an adequate number of
4797 *      pages are left in the zone after a successful __alloc_pages().
4798 */
4799static void setup_per_zone_lowmem_reserve(void)
4800{
4801        struct pglist_data *pgdat;
4802        enum zone_type j, idx;
4803
4804        for_each_online_pgdat(pgdat) {
4805                for (j = 0; j < MAX_NR_ZONES; j++) {
4806                        struct zone *zone = pgdat->node_zones + j;
4807                        unsigned long present_pages = zone->present_pages;
4808
4809                        zone->lowmem_reserve[j] = 0;
4810
4811                        idx = j;
4812                        while (idx) {
4813                                struct zone *lower_zone;
4814
4815                                idx--;
4816
4817                                if (sysctl_lowmem_reserve_ratio[idx] < 1)
4818                                        sysctl_lowmem_reserve_ratio[idx] = 1;
4819
4820                                lower_zone = pgdat->node_zones + idx;
4821                                lower_zone->lowmem_reserve[j] = present_pages /
4822                                        sysctl_lowmem_reserve_ratio[idx];
4823                                present_pages += lower_zone->present_pages;
4824                        }
4825                }
4826        }
4827
4828        /* update totalreserve_pages */
4829        calculate_totalreserve_pages();
4830}
4831
4832/**
4833 * setup_per_zone_wmarks - called when min_free_kbytes changes
4834 * or when memory is hot-{added|removed}
4835 *
4836 * Ensures that the watermark[min,low,high] values for each zone are set
4837 * correctly with respect to min_free_kbytes.
4838 */
4839void setup_per_zone_wmarks(void)
4840{
4841        unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4842        unsigned long lowmem_pages = 0;
4843        struct zone *zone;
4844        unsigned long flags;
4845
4846        /* Calculate total number of !ZONE_HIGHMEM pages */
4847        for_each_zone(zone) {
4848                if (!is_highmem(zone