linux/mm/mlock.c
<<
>>
Prefs
   1/*
   2 *      linux/mm/mlock.c
   3 *
   4 *  (C) Copyright 1995 Linus Torvalds
   5 *  (C) Copyright 2002 Christoph Hellwig
   6 */
   7
   8#include <linux/capability.h>
   9#include <linux/mman.h>
  10#include <linux/mm.h>
  11#include <linux/swap.h>
  12#include <linux/swapops.h>
  13#include <linux/pagemap.h>
  14#include <linux/mempolicy.h>
  15#include <linux/syscalls.h>
  16#include <linux/sched.h>
  17#include <linux/module.h>
  18#include <linux/rmap.h>
  19#include <linux/mmzone.h>
  20#include <linux/hugetlb.h>
  21
  22#include "internal.h"
  23
  24int can_do_mlock(void)
  25{
  26        if (capable(CAP_IPC_LOCK))
  27                return 1;
  28        if (rlimit(RLIMIT_MEMLOCK) != 0)
  29                return 1;
  30        return 0;
  31}
  32EXPORT_SYMBOL(can_do_mlock);
  33
  34/*
  35 * Mlocked pages are marked with PageMlocked() flag for efficient testing
  36 * in vmscan and, possibly, the fault path; and to support semi-accurate
  37 * statistics.
  38 *
  39 * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
  40 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
  41 * The unevictable list is an LRU sibling list to the [in]active lists.
  42 * PageUnevictable is set to indicate the unevictable state.
  43 *
  44 * When lazy mlocking via vmscan, it is important to ensure that the
  45 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
  46 * may have mlocked a page that is being munlocked. So lazy mlock must take
  47 * the mmap_sem for read, and verify that the vma really is locked
  48 * (see mm/rmap.c).
  49 */
  50
  51/*
  52 *  LRU accounting for clear_page_mlock()
  53 */
  54void __clear_page_mlock(struct page *page)
  55{
  56        VM_BUG_ON(!PageLocked(page));
  57
  58        if (!page->mapping) {   /* truncated ? */
  59                return;
  60        }
  61
  62        dec_zone_page_state(page, NR_MLOCK);
  63        count_vm_event(UNEVICTABLE_PGCLEARED);
  64        if (!isolate_lru_page(page)) {
  65                putback_lru_page(page);
  66        } else {
  67                /*
  68                 * We lost the race. the page already moved to evictable list.
  69                 */
  70                if (PageUnevictable(page))
  71                        count_vm_event(UNEVICTABLE_PGSTRANDED);
  72        }
  73}
  74
  75/*
  76 * Mark page as mlocked if not already.
  77 * If page on LRU, isolate and putback to move to unevictable list.
  78 */
  79void mlock_vma_page(struct page *page)
  80{
  81        BUG_ON(!PageLocked(page));
  82
  83        if (!TestSetPageMlocked(page)) {
  84                inc_zone_page_state(page, NR_MLOCK);
  85                count_vm_event(UNEVICTABLE_PGMLOCKED);
  86                if (!isolate_lru_page(page))
  87                        putback_lru_page(page);
  88        }
  89}
  90
  91/**
  92 * munlock_vma_page - munlock a vma page
  93 * @page - page to be unlocked
  94 *
  95 * called from munlock()/munmap() path with page supposedly on the LRU.
  96 * When we munlock a page, because the vma where we found the page is being
  97 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
  98 * page locked so that we can leave it on the unevictable lru list and not
  99 * bother vmscan with it.  However, to walk the page's rmap list in
 100 * try_to_munlock() we must isolate the page from the LRU.  If some other
 101 * task has removed the page from the LRU, we won't be able to do that.
 102 * So we clear the PageMlocked as we might not get another chance.  If we
 103 * can't isolate the page, we leave it for putback_lru_page() and vmscan
 104 * [page_referenced()/try_to_unmap()] to deal with.
 105 */
 106void munlock_vma_page(struct page *page)
 107{
 108        BUG_ON(!PageLocked(page));
 109
 110        if (TestClearPageMlocked(page)) {
 111                dec_zone_page_state(page, NR_MLOCK);
 112                if (!isolate_lru_page(page)) {
 113                        int ret = try_to_munlock(page);
 114                        /*
 115                         * did try_to_unlock() succeed or punt?
 116                         */
 117                        if (ret != SWAP_MLOCK)
 118                                count_vm_event(UNEVICTABLE_PGMUNLOCKED);
 119
 120                        putback_lru_page(page);
 121                } else {
 122                        /*
 123                         * Some other task has removed the page from the LRU.
 124                         * putback_lru_page() will take care of removing the
 125                         * page from the unevictable list, if necessary.
 126                         * vmscan [page_referenced()] will move the page back
 127                         * to the unevictable list if some other vma has it
 128                         * mlocked.
 129                         */
 130                        if (PageUnevictable(page))
 131                                count_vm_event(UNEVICTABLE_PGSTRANDED);
 132                        else
 133                                count_vm_event(UNEVICTABLE_PGMUNLOCKED);
 134                }
 135        }
 136}
 137
 138/**
 139 * __mlock_vma_pages_range() -  mlock a range of pages in the vma.
 140 * @vma:   target vma
 141 * @start: start address
 142 * @end:   end address
 143 *
 144 * This takes care of making the pages present too.
 145 *
 146 * return 0 on success, negative error code on error.
 147 *
 148 * vma->vm_mm->mmap_sem must be held for at least read.
 149 */
 150static long __mlock_vma_pages_range(struct vm_area_struct *vma,
 151                                    unsigned long start, unsigned long end)
 152{
 153        struct mm_struct *mm = vma->vm_mm;
 154        unsigned long addr = start;
 155        struct page *pages[16]; /* 16 gives a reasonable batch */
 156        int nr_pages = (end - start) / PAGE_SIZE;
 157        int ret = 0;
 158        int gup_flags;
 159
 160        VM_BUG_ON(start & ~PAGE_MASK);
 161        VM_BUG_ON(end   & ~PAGE_MASK);
 162        VM_BUG_ON(start < vma->vm_start);
 163        VM_BUG_ON(end   > vma->vm_end);
 164        VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
 165
 166        gup_flags = FOLL_TOUCH | FOLL_GET;
 167        if (vma->vm_flags & VM_WRITE)
 168                gup_flags |= FOLL_WRITE;
 169
 170        while (nr_pages > 0) {
 171                int i;
 172
 173                cond_resched();
 174
 175                /*
 176                 * get_user_pages makes pages present if we are
 177                 * setting mlock. and this extra reference count will
 178                 * disable migration of this page.  However, page may
 179                 * still be truncated out from under us.
 180                 */
 181                ret = __get_user_pages(current, mm, addr,
 182                                min_t(int, nr_pages, ARRAY_SIZE(pages)),
 183                                gup_flags, pages, NULL);
 184                /*
 185                 * This can happen for, e.g., VM_NONLINEAR regions before
 186                 * a page has been allocated and mapped at a given offset,
 187                 * or for addresses that map beyond end of a file.
 188                 * We'll mlock the pages if/when they get faulted in.
 189                 */
 190                if (ret < 0)
 191                        break;
 192
 193                lru_add_drain();        /* push cached pages to LRU */
 194
 195                for (i = 0; i < ret; i++) {
 196                        struct page *page = pages[i];
 197
 198                        if (page->mapping) {
 199                                /*
 200                                 * That preliminary check is mainly to avoid
 201                                 * the pointless overhead of lock_page on the
 202                                 * ZERO_PAGE: which might bounce very badly if
 203                                 * there is contention.  However, we're still
 204                                 * dirtying its cacheline with get/put_page:
 205                                 * we'll add another __get_user_pages flag to
 206                                 * avoid it if that case turns out to matter.
 207                                 */
 208                                lock_page(page);
 209                                /*
 210                                 * Because we lock page here and migration is
 211                                 * blocked by the elevated reference, we need
 212                                 * only check for file-cache page truncation.
 213                                 */
 214                                if (page->mapping)
 215                                        mlock_vma_page(page);
 216                                unlock_page(page);
 217                        }
 218                        put_page(page); /* ref from get_user_pages() */
 219                }
 220
 221                addr += ret * PAGE_SIZE;
 222                nr_pages -= ret;
 223                ret = 0;
 224        }
 225
 226        return ret;     /* 0 or negative error code */
 227}
 228
 229/*
 230 * convert get_user_pages() return value to posix mlock() error
 231 */
 232static int __mlock_posix_error_return(long retval)
 233{
 234        if (retval == -EFAULT)
 235                retval = -ENOMEM;
 236        else if (retval == -ENOMEM)
 237                retval = -EAGAIN;
 238        return retval;
 239}
 240
 241/**
 242 * mlock_vma_pages_range() - mlock pages in specified vma range.
 243 * @vma - the vma containing the specfied address range
 244 * @start - starting address in @vma to mlock
 245 * @end   - end address [+1] in @vma to mlock
 246 *
 247 * For mmap()/mremap()/expansion of mlocked vma.
 248 *
 249 * return 0 on success for "normal" vmas.
 250 *
 251 * return number of pages [> 0] to be removed from locked_vm on success
 252 * of "special" vmas.
 253 */
 254long mlock_vma_pages_range(struct vm_area_struct *vma,
 255                        unsigned long start, unsigned long end)
 256{
 257        int nr_pages = (end - start) / PAGE_SIZE;
 258        BUG_ON(!(vma->vm_flags & VM_LOCKED));
 259
 260        /*
 261         * filter unlockable vmas
 262         */
 263        if (vma->vm_flags & (VM_IO | VM_PFNMAP))
 264                goto no_mlock;
 265
 266        if (!((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
 267                        is_vm_hugetlb_page(vma) ||
 268                        vma == get_gate_vma(current))) {
 269
 270                __mlock_vma_pages_range(vma, start, end);
 271
 272                /* Hide errors from mmap() and other callers */
 273                return 0;
 274        }
 275
 276        /*
 277         * User mapped kernel pages or huge pages:
 278         * make these pages present to populate the ptes, but
 279         * fall thru' to reset VM_LOCKED--no need to unlock, and
 280         * return nr_pages so these don't get counted against task's
 281         * locked limit.  huge pages are already counted against
 282         * locked vm limit.
 283         */
 284        make_pages_present(start, end);
 285
 286no_mlock:
 287        vma->vm_flags &= ~VM_LOCKED;    /* and don't come back! */
 288        return nr_pages;                /* error or pages NOT mlocked */
 289}
 290
 291/*
 292 * munlock_vma_pages_range() - munlock all pages in the vma range.'
 293 * @vma - vma containing range to be munlock()ed.
 294 * @start - start address in @vma of the range
 295 * @end - end of range in @vma.
 296 *
 297 *  For mremap(), munmap() and exit().
 298 *
 299 * Called with @vma VM_LOCKED.
 300 *
 301 * Returns with VM_LOCKED cleared.  Callers must be prepared to
 302 * deal with this.
 303 *
 304 * We don't save and restore VM_LOCKED here because pages are
 305 * still on lru.  In unmap path, pages might be scanned by reclaim
 306 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
 307 * free them.  This will result in freeing mlocked pages.
 308 */
 309void munlock_vma_pages_range(struct vm_area_struct *vma,
 310                             unsigned long start, unsigned long end)
 311{
 312        unsigned long addr;
 313
 314        lru_add_drain();
 315        vma->vm_flags &= ~VM_LOCKED;
 316
 317        for (addr = start; addr < end; addr += PAGE_SIZE) {
 318                struct page *page;
 319                /*
 320                 * Although FOLL_DUMP is intended for get_dump_page(),
 321                 * it just so happens that its special treatment of the
 322                 * ZERO_PAGE (returning an error instead of doing get_page)
 323                 * suits munlock very well (and if somehow an abnormal page
 324                 * has sneaked into the range, we won't oops here: great).
 325                 */
 326                page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
 327                if (page && !IS_ERR(page)) {
 328                        lock_page(page);
 329                        /*
 330                         * Like in __mlock_vma_pages_range(),
 331                         * because we lock page here and migration is
 332                         * blocked by the elevated reference, we need
 333                         * only check for file-cache page truncation.
 334                         */
 335                        if (page->mapping)
 336                                munlock_vma_page(page);
 337                        unlock_page(page);
 338                        put_page(page);
 339                }
 340                cond_resched();
 341        }
 342}
 343
 344/*
 345 * mlock_fixup  - handle mlock[all]/munlock[all] requests.
 346 *
 347 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
 348 * munlock is a no-op.  However, for some special vmas, we go ahead and
 349 * populate the ptes via make_pages_present().
 350 *
 351 * For vmas that pass the filters, merge/split as appropriate.
 352 */
 353static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
 354        unsigned long start, unsigned long end, unsigned int newflags)
 355{
 356        struct mm_struct *mm = vma->vm_mm;
 357        pgoff_t pgoff;
 358        int nr_pages;
 359        int ret = 0;
 360        int lock = newflags & VM_LOCKED;
 361
 362        if (newflags == vma->vm_flags ||
 363                        (vma->vm_flags & (VM_IO | VM_PFNMAP)))
 364                goto out;       /* don't set VM_LOCKED,  don't count */
 365
 366        if ((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
 367                        is_vm_hugetlb_page(vma) ||
 368                        vma == get_gate_vma(current)) {
 369                if (lock)
 370                        make_pages_present(start, end);
 371                goto out;       /* don't set VM_LOCKED,  don't count */
 372        }
 373
 374        pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
 375        *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
 376                          vma->vm_file, pgoff, vma_policy(vma));
 377        if (*prev) {
 378                vma = *prev;
 379                goto success;
 380        }
 381
 382        if (start != vma->vm_start) {
 383                ret = split_vma(mm, vma, start, 1);
 384                if (ret)
 385                        goto out;
 386        }
 387
 388        if (end != vma->vm_end) {
 389                ret = split_vma(mm, vma, end, 0);
 390                if (ret)
 391                        goto out;
 392        }
 393
 394success:
 395        /*
 396         * Keep track of amount of locked VM.
 397         */
 398        nr_pages = (end - start) >> PAGE_SHIFT;
 399        if (!lock)
 400                nr_pages = -nr_pages;
 401        mm->locked_vm += nr_pages;
 402
 403        /*
 404         * vm_flags is protected by the mmap_sem held in write mode.
 405         * It's okay if try_to_unmap_one unmaps a page just after we
 406         * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
 407         */
 408
 409        if (lock) {
 410                vma->vm_flags = newflags;
 411                ret = __mlock_vma_pages_range(vma, start, end);
 412                if (ret < 0)
 413                        ret = __mlock_posix_error_return(ret);
 414        } else {
 415                munlock_vma_pages_range(vma, start, end);
 416        }
 417
 418out:
 419        *prev = vma;
 420        return ret;
 421}
 422
 423static int do_mlock(unsigned long start, size_t len, int on)
 424{
 425        unsigned long nstart, end, tmp;
 426        struct vm_area_struct * vma, * prev;
 427        int error;
 428
 429        len = PAGE_ALIGN(len);
 430        end = start + len;
 431        if (end < start)
 432                return -EINVAL;
 433        if (end == start)
 434                return 0;
 435        vma = find_vma_prev(current->mm, start, &prev);
 436        if (!vma || vma->vm_start > start)
 437                return -ENOMEM;
 438
 439        if (start > vma->vm_start)
 440                prev = vma;
 441
 442        for (nstart = start ; ; ) {
 443                unsigned int newflags;
 444
 445                /* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
 446
 447                newflags = vma->vm_flags | VM_LOCKED;
 448                if (!on)
 449                        newflags &= ~VM_LOCKED;
 450
 451                tmp = vma->vm_end;
 452                if (tmp > end)
 453                        tmp = end;
 454                error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
 455                if (error)
 456                        break;
 457                nstart = tmp;
 458                if (nstart < prev->vm_end)
 459                        nstart = prev->vm_end;
 460                if (nstart >= end)
 461                        break;
 462
 463                vma = prev->vm_next;
 464                if (!vma || vma->vm_start != nstart) {
 465                        error = -ENOMEM;
 466                        break;
 467                }
 468        }
 469        return error;
 470}
 471
 472SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
 473{
 474        unsigned long locked;
 475        unsigned long lock_limit;
 476        int error = -ENOMEM;
 477
 478        if (!can_do_mlock())
 479                return -EPERM;
 480
 481        lru_add_drain_all();    /* flush pagevec */
 482
 483        down_write(&current->mm->mmap_sem);
 484        len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
 485        start &= PAGE_MASK;
 486
 487        locked = len >> PAGE_SHIFT;
 488        locked += current->mm->locked_vm;
 489
 490        lock_limit = rlimit(RLIMIT_MEMLOCK);
 491        lock_limit >>= PAGE_SHIFT;
 492
 493        /* check against resource limits */
 494        if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
 495                error = do_mlock(start, len, 1);
 496        up_write(&current->mm->mmap_sem);
 497        return error;
 498}
 499
 500SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
 501{
 502        int ret;
 503
 504        down_write(&current->mm->mmap_sem);
 505        len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
 506        start &= PAGE_MASK;
 507        ret = do_mlock(start, len, 0);
 508        up_write(&current->mm->mmap_sem);
 509        return ret;
 510}
 511
 512static int do_mlockall(int flags)
 513{
 514        struct vm_area_struct * vma, * prev = NULL;
 515        unsigned int def_flags = 0;
 516
 517        if (flags & MCL_FUTURE)
 518                def_flags = VM_LOCKED;
 519        current->mm->def_flags = def_flags;
 520        if (flags == MCL_FUTURE)
 521                goto out;
 522
 523        for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
 524                unsigned int newflags;
 525
 526                newflags = vma->vm_flags | VM_LOCKED;
 527                if (!(flags & MCL_CURRENT))
 528                        newflags &= ~VM_LOCKED;
 529
 530                /* Ignore errors */
 531                mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
 532        }
 533out:
 534        return 0;
 535}
 536
 537SYSCALL_DEFINE1(mlockall, int, flags)
 538{
 539        unsigned long lock_limit;
 540        int ret = -EINVAL;
 541
 542        if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
 543                goto out;
 544
 545        ret = -EPERM;
 546        if (!can_do_mlock())
 547                goto out;
 548
 549        lru_add_drain_all();    /* flush pagevec */
 550
 551        down_write(&current->mm->mmap_sem);
 552
 553        lock_limit = rlimit(RLIMIT_MEMLOCK);
 554        lock_limit >>= PAGE_SHIFT;
 555
 556        ret = -ENOMEM;
 557        if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
 558            capable(CAP_IPC_LOCK))
 559                ret = do_mlockall(flags);
 560        up_write(&current->mm->mmap_sem);
 561out:
 562        return ret;
 563}
 564
 565SYSCALL_DEFINE0(munlockall)
 566{
 567        int ret;
 568
 569        down_write(&current->mm->mmap_sem);
 570        ret = do_mlockall(0);
 571        up_write(&current->mm->mmap_sem);
 572        return ret;
 573}
 574
 575/*
 576 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
 577 * shm segments) get accounted against the user_struct instead.
 578 */
 579static DEFINE_SPINLOCK(shmlock_user_lock);
 580
 581int user_shm_lock(size_t size, struct user_struct *user)
 582{
 583        unsigned long lock_limit, locked;
 584        int allowed = 0;
 585
 586        locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 587        lock_limit = rlimit(RLIMIT_MEMLOCK);
 588        if (lock_limit == RLIM_INFINITY)
 589                allowed = 1;
 590        lock_limit >>= PAGE_SHIFT;
 591        spin_lock(&shmlock_user_lock);
 592        if (!allowed &&
 593            locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
 594                goto out;
 595        get_uid(user);
 596        user->locked_shm += locked;
 597        allowed = 1;
 598out:
 599        spin_unlock(&shmlock_user_lock);
 600        return allowed;
 601}
 602
 603void user_shm_unlock(size_t size, struct user_struct *user)
 604{
 605        spin_lock(&shmlock_user_lock);
 606        user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 607        spin_unlock(&shmlock_user_lock);
 608        free_uid(user);
 609}
 610