linux/mm/mempolicy.c
<<
>>
Prefs
   1/*
   2 * Simple NUMA memory policy for the Linux kernel.
   3 *
   4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
   5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
   6 * Subject to the GNU Public License, version 2.
   7 *
   8 * NUMA policy allows the user to give hints in which node(s) memory should
   9 * be allocated.
  10 *
  11 * Support four policies per VMA and per process:
  12 *
  13 * The VMA policy has priority over the process policy for a page fault.
  14 *
  15 * interleave     Allocate memory interleaved over a set of nodes,
  16 *                with normal fallback if it fails.
  17 *                For VMA based allocations this interleaves based on the
  18 *                offset into the backing object or offset into the mapping
  19 *                for anonymous memory. For process policy an process counter
  20 *                is used.
  21 *
  22 * bind           Only allocate memory on a specific set of nodes,
  23 *                no fallback.
  24 *                FIXME: memory is allocated starting with the first node
  25 *                to the last. It would be better if bind would truly restrict
  26 *                the allocation to memory nodes instead
  27 *
  28 * preferred       Try a specific node first before normal fallback.
  29 *                As a special case node -1 here means do the allocation
  30 *                on the local CPU. This is normally identical to default,
  31 *                but useful to set in a VMA when you have a non default
  32 *                process policy.
  33 *
  34 * default        Allocate on the local node first, or when on a VMA
  35 *                use the process policy. This is what Linux always did
  36 *                in a NUMA aware kernel and still does by, ahem, default.
  37 *
  38 * The process policy is applied for most non interrupt memory allocations
  39 * in that process' context. Interrupts ignore the policies and always
  40 * try to allocate on the local CPU. The VMA policy is only applied for memory
  41 * allocations for a VMA in the VM.
  42 *
  43 * Currently there are a few corner cases in swapping where the policy
  44 * is not applied, but the majority should be handled. When process policy
  45 * is used it is not remembered over swap outs/swap ins.
  46 *
  47 * Only the highest zone in the zone hierarchy gets policied. Allocations
  48 * requesting a lower zone just use default policy. This implies that
  49 * on systems with highmem kernel lowmem allocation don't get policied.
  50 * Same with GFP_DMA allocations.
  51 *
  52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
  53 * all users and remembered even when nobody has memory mapped.
  54 */
  55
  56/* Notebook:
  57   fix mmap readahead to honour policy and enable policy for any page cache
  58   object
  59   statistics for bigpages
  60   global policy for page cache? currently it uses process policy. Requires
  61   first item above.
  62   handle mremap for shared memory (currently ignored for the policy)
  63   grows down?
  64   make bind policy root only? It can trigger oom much faster and the
  65   kernel is not always grateful with that.
  66*/
  67
  68#include <linux/mempolicy.h>
  69#include <linux/mm.h>
  70#include <linux/highmem.h>
  71#include <linux/hugetlb.h>
  72#include <linux/kernel.h>
  73#include <linux/sched.h>
  74#include <linux/nodemask.h>
  75#include <linux/cpuset.h>
  76#include <linux/slab.h>
  77#include <linux/string.h>
  78#include <linux/module.h>
  79#include <linux/nsproxy.h>
  80#include <linux/interrupt.h>
  81#include <linux/init.h>
  82#include <linux/compat.h>
  83#include <linux/swap.h>
  84#include <linux/seq_file.h>
  85#include <linux/proc_fs.h>
  86#include <linux/migrate.h>
  87#include <linux/ksm.h>
  88#include <linux/rmap.h>
  89#include <linux/security.h>
  90#include <linux/syscalls.h>
  91#include <linux/ctype.h>
  92#include <linux/mm_inline.h>
  93
  94#include <asm/tlbflush.h>
  95#include <asm/uaccess.h>
  96
  97#include "internal.h"
  98
  99/* Internal flags */
 100#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)    /* Skip checks for continuous vmas */
 101#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)          /* Invert check for nodemask */
 102#define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2)           /* Gather statistics */
 103
 104static struct kmem_cache *policy_cache;
 105static struct kmem_cache *sn_cache;
 106
 107/* Highest zone. An specific allocation for a zone below that is not
 108   policied. */
 109enum zone_type policy_zone = 0;
 110
 111/*
 112 * run-time system-wide default policy => local allocation
 113 */
 114struct mempolicy default_policy = {
 115        .refcnt = ATOMIC_INIT(1), /* never free it */
 116        .mode = MPOL_PREFERRED,
 117        .flags = MPOL_F_LOCAL,
 118};
 119
 120static const struct mempolicy_operations {
 121        int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
 122        /*
 123         * If read-side task has no lock to protect task->mempolicy, write-side
 124         * task will rebind the task->mempolicy by two step. The first step is
 125         * setting all the newly nodes, and the second step is cleaning all the
 126         * disallowed nodes. In this way, we can avoid finding no node to alloc
 127         * page.
 128         * If we have a lock to protect task->mempolicy in read-side, we do
 129         * rebind directly.
 130         *
 131         * step:
 132         *      MPOL_REBIND_ONCE - do rebind work at once
 133         *      MPOL_REBIND_STEP1 - set all the newly nodes
 134         *      MPOL_REBIND_STEP2 - clean all the disallowed nodes
 135         */
 136        void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
 137                        enum mpol_rebind_step step);
 138} mpol_ops[MPOL_MAX];
 139
 140/* Check that the nodemask contains at least one populated zone */
 141static int is_valid_nodemask(const nodemask_t *nodemask)
 142{
 143        int nd, k;
 144
 145        for_each_node_mask(nd, *nodemask) {
 146                struct zone *z;
 147
 148                for (k = 0; k <= policy_zone; k++) {
 149                        z = &NODE_DATA(nd)->node_zones[k];
 150                        if (z->present_pages > 0)
 151                                return 1;
 152                }
 153        }
 154
 155        return 0;
 156}
 157
 158static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
 159{
 160        return pol->flags & MPOL_MODE_FLAGS;
 161}
 162
 163static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
 164                                   const nodemask_t *rel)
 165{
 166        nodemask_t tmp;
 167        nodes_fold(tmp, *orig, nodes_weight(*rel));
 168        nodes_onto(*ret, tmp, *rel);
 169}
 170
 171static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
 172{
 173        if (nodes_empty(*nodes))
 174                return -EINVAL;
 175        pol->v.nodes = *nodes;
 176        return 0;
 177}
 178
 179static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
 180{
 181        if (!nodes)
 182                pol->flags |= MPOL_F_LOCAL;     /* local allocation */
 183        else if (nodes_empty(*nodes))
 184                return -EINVAL;                 /*  no allowed nodes */
 185        else
 186                pol->v.preferred_node = first_node(*nodes);
 187        return 0;
 188}
 189
 190static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
 191{
 192        if (!is_valid_nodemask(nodes))
 193                return -EINVAL;
 194        pol->v.nodes = *nodes;
 195        return 0;
 196}
 197
 198/*
 199 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
 200 * any, for the new policy.  mpol_new() has already validated the nodes
 201 * parameter with respect to the policy mode and flags.  But, we need to
 202 * handle an empty nodemask with MPOL_PREFERRED here.
 203 *
 204 * Must be called holding task's alloc_lock to protect task's mems_allowed
 205 * and mempolicy.  May also be called holding the mmap_semaphore for write.
 206 */
 207static int mpol_set_nodemask(struct mempolicy *pol,
 208                     const nodemask_t *nodes, struct nodemask_scratch *nsc)
 209{
 210        int ret;
 211
 212        /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
 213        if (pol == NULL)
 214                return 0;
 215        /* Check N_HIGH_MEMORY */
 216        nodes_and(nsc->mask1,
 217                  cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]);
 218
 219        VM_BUG_ON(!nodes);
 220        if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
 221                nodes = NULL;   /* explicit local allocation */
 222        else {
 223                if (pol->flags & MPOL_F_RELATIVE_NODES)
 224                        mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
 225                else
 226                        nodes_and(nsc->mask2, *nodes, nsc->mask1);
 227
 228                if (mpol_store_user_nodemask(pol))
 229                        pol->w.user_nodemask = *nodes;
 230                else
 231                        pol->w.cpuset_mems_allowed =
 232                                                cpuset_current_mems_allowed;
 233        }
 234
 235        if (nodes)
 236                ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
 237        else
 238                ret = mpol_ops[pol->mode].create(pol, NULL);
 239        return ret;
 240}
 241
 242/*
 243 * This function just creates a new policy, does some check and simple
 244 * initialization. You must invoke mpol_set_nodemask() to set nodes.
 245 */
 246static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
 247                                  nodemask_t *nodes)
 248{
 249        struct mempolicy *policy;
 250
 251        pr_debug("setting mode %d flags %d nodes[0] %lx\n",
 252                 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
 253
 254        if (mode == MPOL_DEFAULT) {
 255                if (nodes && !nodes_empty(*nodes))
 256                        return ERR_PTR(-EINVAL);
 257                return NULL;    /* simply delete any existing policy */
 258        }
 259        VM_BUG_ON(!nodes);
 260
 261        /*
 262         * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
 263         * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
 264         * All other modes require a valid pointer to a non-empty nodemask.
 265         */
 266        if (mode == MPOL_PREFERRED) {
 267                if (nodes_empty(*nodes)) {
 268                        if (((flags & MPOL_F_STATIC_NODES) ||
 269                             (flags & MPOL_F_RELATIVE_NODES)))
 270                                return ERR_PTR(-EINVAL);
 271                }
 272        } else if (nodes_empty(*nodes))
 273                return ERR_PTR(-EINVAL);
 274        policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 275        if (!policy)
 276                return ERR_PTR(-ENOMEM);
 277        atomic_set(&policy->refcnt, 1);
 278        policy->mode = mode;
 279        policy->flags = flags;
 280
 281        return policy;
 282}
 283
 284/* Slow path of a mpol destructor. */
 285void __mpol_put(struct mempolicy *p)
 286{
 287        if (!atomic_dec_and_test(&p->refcnt))
 288                return;
 289        kmem_cache_free(policy_cache, p);
 290}
 291
 292static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
 293                                enum mpol_rebind_step step)
 294{
 295}
 296
 297/*
 298 * step:
 299 *      MPOL_REBIND_ONCE  - do rebind work at once
 300 *      MPOL_REBIND_STEP1 - set all the newly nodes
 301 *      MPOL_REBIND_STEP2 - clean all the disallowed nodes
 302 */
 303static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
 304                                 enum mpol_rebind_step step)
 305{
 306        nodemask_t tmp;
 307
 308        if (pol->flags & MPOL_F_STATIC_NODES)
 309                nodes_and(tmp, pol->w.user_nodemask, *nodes);
 310        else if (pol->flags & MPOL_F_RELATIVE_NODES)
 311                mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 312        else {
 313                /*
 314                 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
 315                 * result
 316                 */
 317                if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
 318                        nodes_remap(tmp, pol->v.nodes,
 319                                        pol->w.cpuset_mems_allowed, *nodes);
 320                        pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
 321                } else if (step == MPOL_REBIND_STEP2) {
 322                        tmp = pol->w.cpuset_mems_allowed;
 323                        pol->w.cpuset_mems_allowed = *nodes;
 324                } else
 325                        BUG();
 326        }
 327
 328        if (nodes_empty(tmp))
 329                tmp = *nodes;
 330
 331        if (step == MPOL_REBIND_STEP1)
 332                nodes_or(pol->v.nodes, pol->v.nodes, tmp);
 333        else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
 334                pol->v.nodes = tmp;
 335        else
 336                BUG();
 337
 338        if (!node_isset(current->il_next, tmp)) {
 339                current->il_next = next_node(current->il_next, tmp);
 340                if (current->il_next >= MAX_NUMNODES)
 341                        current->il_next = first_node(tmp);
 342                if (current->il_next >= MAX_NUMNODES)
 343                        current->il_next = numa_node_id();
 344        }
 345}
 346
 347static void mpol_rebind_preferred(struct mempolicy *pol,
 348                                  const nodemask_t *nodes,
 349                                  enum mpol_rebind_step step)
 350{
 351        nodemask_t tmp;
 352
 353        if (pol->flags & MPOL_F_STATIC_NODES) {
 354                int node = first_node(pol->w.user_nodemask);
 355
 356                if (node_isset(node, *nodes)) {
 357                        pol->v.preferred_node = node;
 358                        pol->flags &= ~MPOL_F_LOCAL;
 359                } else
 360                        pol->flags |= MPOL_F_LOCAL;
 361        } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
 362                mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 363                pol->v.preferred_node = first_node(tmp);
 364        } else if (!(pol->flags & MPOL_F_LOCAL)) {
 365                pol->v.preferred_node = node_remap(pol->v.preferred_node,
 366                                                   pol->w.cpuset_mems_allowed,
 367                                                   *nodes);
 368                pol->w.cpuset_mems_allowed = *nodes;
 369        }
 370}
 371
 372/*
 373 * mpol_rebind_policy - Migrate a policy to a different set of nodes
 374 *
 375 * If read-side task has no lock to protect task->mempolicy, write-side
 376 * task will rebind the task->mempolicy by two step. The first step is
 377 * setting all the newly nodes, and the second step is cleaning all the
 378 * disallowed nodes. In this way, we can avoid finding no node to alloc
 379 * page.
 380 * If we have a lock to protect task->mempolicy in read-side, we do
 381 * rebind directly.
 382 *
 383 * step:
 384 *      MPOL_REBIND_ONCE  - do rebind work at once
 385 *      MPOL_REBIND_STEP1 - set all the newly nodes
 386 *      MPOL_REBIND_STEP2 - clean all the disallowed nodes
 387 */
 388static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
 389                                enum mpol_rebind_step step)
 390{
 391        if (!pol)
 392                return;
 393        if (!mpol_store_user_nodemask(pol) && step == 0 &&
 394            nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
 395                return;
 396
 397        if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
 398                return;
 399
 400        if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
 401                BUG();
 402
 403        if (step == MPOL_REBIND_STEP1)
 404                pol->flags |= MPOL_F_REBINDING;
 405        else if (step == MPOL_REBIND_STEP2)
 406                pol->flags &= ~MPOL_F_REBINDING;
 407        else if (step >= MPOL_REBIND_NSTEP)
 408                BUG();
 409
 410        mpol_ops[pol->mode].rebind(pol, newmask, step);
 411}
 412
 413/*
 414 * Wrapper for mpol_rebind_policy() that just requires task
 415 * pointer, and updates task mempolicy.
 416 *
 417 * Called with task's alloc_lock held.
 418 */
 419
 420void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
 421                        enum mpol_rebind_step step)
 422{
 423        mpol_rebind_policy(tsk->mempolicy, new, step);
 424}
 425
 426/*
 427 * Rebind each vma in mm to new nodemask.
 428 *
 429 * Call holding a reference to mm.  Takes mm->mmap_sem during call.
 430 */
 431
 432void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
 433{
 434        struct vm_area_struct *vma;
 435
 436        down_write(&mm->mmap_sem);
 437        for (vma = mm->mmap; vma; vma = vma->vm_next)
 438                mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
 439        up_write(&mm->mmap_sem);
 440}
 441
 442static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
 443        [MPOL_DEFAULT] = {
 444                .rebind = mpol_rebind_default,
 445        },
 446        [MPOL_INTERLEAVE] = {
 447                .create = mpol_new_interleave,
 448                .rebind = mpol_rebind_nodemask,
 449        },
 450        [MPOL_PREFERRED] = {
 451                .create = mpol_new_preferred,
 452                .rebind = mpol_rebind_preferred,
 453        },
 454        [MPOL_BIND] = {
 455                .create = mpol_new_bind,
 456                .rebind = mpol_rebind_nodemask,
 457        },
 458};
 459
 460static void gather_stats(struct page *, void *, int pte_dirty);
 461static void migrate_page_add(struct page *page, struct list_head *pagelist,
 462                                unsigned long flags);
 463
 464/* Scan through pages checking if pages follow certain conditions. */
 465static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
 466                unsigned long addr, unsigned long end,
 467                const nodemask_t *nodes, unsigned long flags,
 468                void *private)
 469{
 470        pte_t *orig_pte;
 471        pte_t *pte;
 472        spinlock_t *ptl;
 473
 474        orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 475        do {
 476                struct page *page;
 477                int nid;
 478
 479                if (!pte_present(*pte))
 480                        continue;
 481                page = vm_normal_page(vma, addr, *pte);
 482                if (!page)
 483                        continue;
 484                /*
 485                 * vm_normal_page() filters out zero pages, but there might
 486                 * still be PageReserved pages to skip, perhaps in a VDSO.
 487                 * And we cannot move PageKsm pages sensibly or safely yet.
 488                 */
 489                if (PageReserved(page) || PageKsm(page))
 490                        continue;
 491                nid = page_to_nid(page);
 492                if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
 493                        continue;
 494
 495                if (flags & MPOL_MF_STATS)
 496                        gather_stats(page, private, pte_dirty(*pte));
 497                else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
 498                        migrate_page_add(page, private, flags);
 499                else
 500                        break;
 501        } while (pte++, addr += PAGE_SIZE, addr != end);
 502        pte_unmap_unlock(orig_pte, ptl);
 503        return addr != end;
 504}
 505
 506static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
 507                unsigned long addr, unsigned long end,
 508                const nodemask_t *nodes, unsigned long flags,
 509                void *private)
 510{
 511        pmd_t *pmd;
 512        unsigned long next;
 513
 514        pmd = pmd_offset(pud, addr);
 515        do {
 516                next = pmd_addr_end(addr, end);
 517                if (pmd_none_or_clear_bad(pmd))
 518                        continue;
 519                if (check_pte_range(vma, pmd, addr, next, nodes,
 520                                    flags, private))
 521                        return -EIO;
 522        } while (pmd++, addr = next, addr != end);
 523        return 0;
 524}
 525
 526static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
 527                unsigned long addr, unsigned long end,
 528                const nodemask_t *nodes, unsigned long flags,
 529                void *private)
 530{
 531        pud_t *pud;
 532        unsigned long next;
 533
 534        pud = pud_offset(pgd, addr);
 535        do {
 536                next = pud_addr_end(addr, end);
 537                if (pud_none_or_clear_bad(pud))
 538                        continue;
 539                if (check_pmd_range(vma, pud, addr, next, nodes,
 540                                    flags, private))
 541                        return -EIO;
 542        } while (pud++, addr = next, addr != end);
 543        return 0;
 544}
 545
 546static inline int check_pgd_range(struct vm_area_struct *vma,
 547                unsigned long addr, unsigned long end,
 548                const nodemask_t *nodes, unsigned long flags,
 549                void *private)
 550{
 551        pgd_t *pgd;
 552        unsigned long next;
 553
 554        pgd = pgd_offset(vma->vm_mm, addr);
 555        do {
 556                next = pgd_addr_end(addr, end);
 557                if (pgd_none_or_clear_bad(pgd))
 558                        continue;
 559                if (check_pud_range(vma, pgd, addr, next, nodes,
 560                                    flags, private))
 561                        return -EIO;
 562        } while (pgd++, addr = next, addr != end);
 563        return 0;
 564}
 565
 566/*
 567 * Check if all pages in a range are on a set of nodes.
 568 * If pagelist != NULL then isolate pages from the LRU and
 569 * put them on the pagelist.
 570 */
 571static struct vm_area_struct *
 572check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
 573                const nodemask_t *nodes, unsigned long flags, void *private)
 574{
 575        int err;
 576        struct vm_area_struct *first, *vma, *prev;
 577
 578
 579        first = find_vma(mm, start);
 580        if (!first)
 581                return ERR_PTR(-EFAULT);
 582        prev = NULL;
 583        for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
 584                if (!(flags & MPOL_MF_DISCONTIG_OK)) {
 585                        if (!vma->vm_next && vma->vm_end < end)
 586                                return ERR_PTR(-EFAULT);
 587                        if (prev && prev->vm_end < vma->vm_start)
 588                                return ERR_PTR(-EFAULT);
 589                }
 590                if (!is_vm_hugetlb_page(vma) &&
 591                    ((flags & MPOL_MF_STRICT) ||
 592                     ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
 593                                vma_migratable(vma)))) {
 594                        unsigned long endvma = vma->vm_end;
 595
 596                        if (endvma > end)
 597                                endvma = end;
 598                        if (vma->vm_start > start)
 599                                start = vma->vm_start;
 600                        err = check_pgd_range(vma, start, endvma, nodes,
 601                                                flags, private);
 602                        if (err) {
 603                                first = ERR_PTR(err);
 604                                break;
 605                        }
 606                }
 607                prev = vma;
 608        }
 609        return first;
 610}
 611
 612/* Apply policy to a single VMA */
 613static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
 614{
 615        int err = 0;
 616        struct mempolicy *old = vma->vm_policy;
 617
 618        pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
 619                 vma->vm_start, vma->vm_end, vma->vm_pgoff,
 620                 vma->vm_ops, vma->vm_file,
 621                 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
 622
 623        if (vma->vm_ops && vma->vm_ops->set_policy)
 624                err = vma->vm_ops->set_policy(vma, new);
 625        if (!err) {
 626                mpol_get(new);
 627                vma->vm_policy = new;
 628                mpol_put(old);
 629        }
 630        return err;
 631}
 632
 633/* Step 2: apply policy to a range and do splits. */
 634static int mbind_range(struct mm_struct *mm, unsigned long start,
 635                       unsigned long end, struct mempolicy *new_pol)
 636{
 637        struct vm_area_struct *next;
 638        struct vm_area_struct *prev;
 639        struct vm_area_struct *vma;
 640        int err = 0;
 641        pgoff_t pgoff;
 642        unsigned long vmstart;
 643        unsigned long vmend;
 644
 645        vma = find_vma_prev(mm, start, &prev);
 646        if (!vma || vma->vm_start > start)
 647                return -EFAULT;
 648
 649        for (; vma && vma->vm_start < end; prev = vma, vma = next) {
 650                next = vma->vm_next;
 651                vmstart = max(start, vma->vm_start);
 652                vmend   = min(end, vma->vm_end);
 653
 654                pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
 655                prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
 656                                  vma->anon_vma, vma->vm_file, pgoff, new_pol);
 657                if (prev) {
 658                        vma = prev;
 659                        next = vma->vm_next;
 660                        continue;
 661                }
 662                if (vma->vm_start != vmstart) {
 663                        err = split_vma(vma->vm_mm, vma, vmstart, 1);
 664                        if (err)
 665                                goto out;
 666                }
 667                if (vma->vm_end != vmend) {
 668                        err = split_vma(vma->vm_mm, vma, vmend, 0);
 669                        if (err)
 670                                goto out;
 671                }
 672                err = policy_vma(vma, new_pol);
 673                if (err)
 674                        goto out;
 675        }
 676
 677 out:
 678        return err;
 679}
 680
 681/*
 682 * Update task->flags PF_MEMPOLICY bit: set iff non-default
 683 * mempolicy.  Allows more rapid checking of this (combined perhaps
 684 * with other PF_* flag bits) on memory allocation hot code paths.
 685 *
 686 * If called from outside this file, the task 'p' should -only- be
 687 * a newly forked child not yet visible on the task list, because
 688 * manipulating the task flags of a visible task is not safe.
 689 *
 690 * The above limitation is why this routine has the funny name
 691 * mpol_fix_fork_child_flag().
 692 *
 693 * It is also safe to call this with a task pointer of current,
 694 * which the static wrapper mpol_set_task_struct_flag() does,
 695 * for use within this file.
 696 */
 697
 698void mpol_fix_fork_child_flag(struct task_struct *p)
 699{
 700        if (p->mempolicy)
 701                p->flags |= PF_MEMPOLICY;
 702        else
 703                p->flags &= ~PF_MEMPOLICY;
 704}
 705
 706static void mpol_set_task_struct_flag(void)
 707{
 708        mpol_fix_fork_child_flag(current);
 709}
 710
 711/* Set the process memory policy */
 712static long do_set_mempolicy(unsigned short mode, unsigned short flags,
 713                             nodemask_t *nodes)
 714{
 715        struct mempolicy *new, *old;
 716        struct mm_struct *mm = current->mm;
 717        NODEMASK_SCRATCH(scratch);
 718        int ret;
 719
 720        if (!scratch)
 721                return -ENOMEM;
 722
 723        new = mpol_new(mode, flags, nodes);
 724        if (IS_ERR(new)) {
 725                ret = PTR_ERR(new);
 726                goto out;
 727        }
 728        /*
 729         * prevent changing our mempolicy while show_numa_maps()
 730         * is using it.
 731         * Note:  do_set_mempolicy() can be called at init time
 732         * with no 'mm'.
 733         */
 734        if (mm)
 735                down_write(&mm->mmap_sem);
 736        task_lock(current);
 737        ret = mpol_set_nodemask(new, nodes, scratch);
 738        if (ret) {
 739                task_unlock(current);
 740                if (mm)
 741                        up_write(&mm->mmap_sem);
 742                mpol_put(new);
 743                goto out;
 744        }
 745        old = current->mempolicy;
 746        current->mempolicy = new;
 747        mpol_set_task_struct_flag();
 748        if (new && new->mode == MPOL_INTERLEAVE &&
 749            nodes_weight(new->v.nodes))
 750                current->il_next = first_node(new->v.nodes);
 751        task_unlock(current);
 752        if (mm)
 753                up_write(&mm->mmap_sem);
 754
 755        mpol_put(old);
 756        ret = 0;
 757out:
 758        NODEMASK_SCRATCH_FREE(scratch);
 759        return ret;
 760}
 761
 762/*
 763 * Return nodemask for policy for get_mempolicy() query
 764 *
 765 * Called with task's alloc_lock held
 766 */
 767static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
 768{
 769        nodes_clear(*nodes);
 770        if (p == &default_policy)
 771                return;
 772
 773        switch (p->mode) {
 774        case MPOL_BIND:
 775                /* Fall through */
 776        case MPOL_INTERLEAVE:
 777                *nodes = p->v.nodes;
 778                break;
 779        case MPOL_PREFERRED:
 780                if (!(p->flags & MPOL_F_LOCAL))
 781                        node_set(p->v.preferred_node, *nodes);
 782                /* else return empty node mask for local allocation */
 783                break;
 784        default:
 785                BUG();
 786        }
 787}
 788
 789static int lookup_node(struct mm_struct *mm, unsigned long addr)
 790{
 791        struct page *p;
 792        int err;
 793
 794        err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
 795        if (err >= 0) {
 796                err = page_to_nid(p);
 797                put_page(p);
 798        }
 799        return err;
 800}
 801
 802/* Retrieve NUMA policy */
 803static long do_get_mempolicy(int *policy, nodemask_t *nmask,
 804                             unsigned long addr, unsigned long flags)
 805{
 806        int err;
 807        struct mm_struct *mm = current->mm;
 808        struct vm_area_struct *vma = NULL;
 809        struct mempolicy *pol = current->mempolicy;
 810
 811        if (flags &
 812                ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
 813                return -EINVAL;
 814
 815        if (flags & MPOL_F_MEMS_ALLOWED) {
 816                if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
 817                        return -EINVAL;
 818                *policy = 0;    /* just so it's initialized */
 819                task_lock(current);
 820                *nmask  = cpuset_current_mems_allowed;
 821                task_unlock(current);
 822                return 0;
 823        }
 824
 825        if (flags & MPOL_F_ADDR) {
 826                /*
 827                 * Do NOT fall back to task policy if the
 828                 * vma/shared policy at addr is NULL.  We
 829                 * want to return MPOL_DEFAULT in this case.
 830                 */
 831                down_read(&mm->mmap_sem);
 832                vma = find_vma_intersection(mm, addr, addr+1);
 833                if (!vma) {
 834                        up_read(&mm->mmap_sem);
 835                        return -EFAULT;
 836                }
 837                if (vma->vm_ops && vma->vm_ops->get_policy)
 838                        pol = vma->vm_ops->get_policy(vma, addr);
 839                else
 840                        pol = vma->vm_policy;
 841        } else if (addr)
 842                return -EINVAL;
 843
 844        if (!pol)
 845                pol = &default_policy;  /* indicates default behavior */
 846
 847        if (flags & MPOL_F_NODE) {
 848                if (flags & MPOL_F_ADDR) {
 849                        err = lookup_node(mm, addr);
 850                        if (err < 0)
 851                                goto out;
 852                        *policy = err;
 853                } else if (pol == current->mempolicy &&
 854                                pol->mode == MPOL_INTERLEAVE) {
 855                        *policy = current->il_next;
 856                } else {
 857                        err = -EINVAL;
 858                        goto out;
 859                }
 860        } else {
 861                *policy = pol == &default_policy ? MPOL_DEFAULT :
 862                                                pol->mode;
 863                /*
 864                 * Internal mempolicy flags must be masked off before exposing
 865                 * the policy to userspace.
 866                 */
 867                *policy |= (pol->flags & MPOL_MODE_FLAGS);
 868        }
 869
 870        if (vma) {
 871                up_read(&current->mm->mmap_sem);
 872                vma = NULL;
 873        }
 874
 875        err = 0;
 876        if (nmask) {
 877                if (mpol_store_user_nodemask(pol)) {
 878                        *nmask = pol->w.user_nodemask;
 879                } else {
 880                        task_lock(current);
 881                        get_policy_nodemask(pol, nmask);
 882                        task_unlock(current);
 883                }
 884        }
 885
 886 out:
 887        mpol_cond_put(pol);
 888        if (vma)
 889                up_read(&current->mm->mmap_sem);
 890        return err;
 891}
 892
 893#ifdef CONFIG_MIGRATION
 894/*
 895 * page migration
 896 */
 897static void migrate_page_add(struct page *page, struct list_head *pagelist,
 898                                unsigned long flags)
 899{
 900        /*
 901         * Avoid migrating a page that is shared with others.
 902         */
 903        if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
 904                if (!isolate_lru_page(page)) {
 905                        list_add_tail(&page->lru, pagelist);
 906                        inc_zone_page_state(page, NR_ISOLATED_ANON +
 907                                            page_is_file_cache(page));
 908                }
 909        }
 910}
 911
 912static struct page *new_node_page(struct page *page, unsigned long node, int **x)
 913{
 914        return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
 915}
 916
 917/*
 918 * Migrate pages from one node to a target node.
 919 * Returns error or the number of pages not migrated.
 920 */
 921static int migrate_to_node(struct mm_struct *mm, int source, int dest,
 922                           int flags)
 923{
 924        nodemask_t nmask;
 925        LIST_HEAD(pagelist);
 926        int err = 0;
 927
 928        nodes_clear(nmask);
 929        node_set(source, nmask);
 930
 931        check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
 932                        flags | MPOL_MF_DISCONTIG_OK, &pagelist);
 933
 934        if (!list_empty(&pagelist))
 935                err = migrate_pages(&pagelist, new_node_page, dest, 0);
 936
 937        return err;
 938}
 939
 940/*
 941 * Move pages between the two nodesets so as to preserve the physical
 942 * layout as much as possible.
 943 *
 944 * Returns the number of page that could not be moved.
 945 */
 946int do_migrate_pages(struct mm_struct *mm,
 947        const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
 948{
 949        int busy = 0;
 950        int err;
 951        nodemask_t tmp;
 952
 953        err = migrate_prep();
 954        if (err)
 955                return err;
 956
 957        down_read(&mm->mmap_sem);
 958
 959        err = migrate_vmas(mm, from_nodes, to_nodes, flags);
 960        if (err)
 961                goto out;
 962
 963        /*
 964         * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
 965         * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
 966         * bit in 'tmp', and return that <source, dest> pair for migration.
 967         * The pair of nodemasks 'to' and 'from' define the map.
 968         *
 969         * If no pair of bits is found that way, fallback to picking some
 970         * pair of 'source' and 'dest' bits that are not the same.  If the
 971         * 'source' and 'dest' bits are the same, this represents a node
 972         * that will be migrating to itself, so no pages need move.
 973         *
 974         * If no bits are left in 'tmp', or if all remaining bits left
 975         * in 'tmp' correspond to the same bit in 'to', return false
 976         * (nothing left to migrate).
 977         *
 978         * This lets us pick a pair of nodes to migrate between, such that
 979         * if possible the dest node is not already occupied by some other
 980         * source node, minimizing the risk of overloading the memory on a
 981         * node that would happen if we migrated incoming memory to a node
 982         * before migrating outgoing memory source that same node.
 983         *
 984         * A single scan of tmp is sufficient.  As we go, we remember the
 985         * most recent <s, d> pair that moved (s != d).  If we find a pair
 986         * that not only moved, but what's better, moved to an empty slot
 987         * (d is not set in tmp), then we break out then, with that pair.
 988         * Otherwise when we finish scannng from_tmp, we at least have the
 989         * most recent <s, d> pair that moved.  If we get all the way through
 990         * the scan of tmp without finding any node that moved, much less
 991         * moved to an empty node, then there is nothing left worth migrating.
 992         */
 993
 994        tmp = *from_nodes;
 995        while (!nodes_empty(tmp)) {
 996                int s,d;
 997                int source = -1;
 998                int dest = 0;
 999
1000                for_each_node_mask(s, tmp) {
1001                        d = node_remap(s, *from_nodes, *to_nodes);
1002                        if (s == d)
1003                                continue;
1004
1005                        source = s;     /* Node moved. Memorize */
1006                        dest = d;
1007
1008                        /* dest not in remaining from nodes? */
1009                        if (!node_isset(dest, tmp))
1010                                break;
1011                }
1012                if (source == -1)
1013                        break;
1014
1015                node_clear(source, tmp);
1016                err = migrate_to_node(mm, source, dest, flags);
1017                if (err > 0)
1018                        busy += err;
1019                if (err < 0)
1020                        break;
1021        }
1022out:
1023        up_read(&mm->mmap_sem);
1024        if (err < 0)
1025                return err;
1026        return busy;
1027
1028}
1029
1030/*
1031 * Allocate a new page for page migration based on vma policy.
1032 * Start assuming that page is mapped by vma pointed to by @private.
1033 * Search forward from there, if not.  N.B., this assumes that the
1034 * list of pages handed to migrate_pages()--which is how we get here--
1035 * is in virtual address order.
1036 */
1037static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1038{
1039        struct vm_area_struct *vma = (struct vm_area_struct *)private;
1040        unsigned long uninitialized_var(address);
1041
1042        while (vma) {
1043                address = page_address_in_vma(page, vma);
1044                if (address != -EFAULT)
1045                        break;
1046                vma = vma->vm_next;
1047        }
1048
1049        /*
1050         * if !vma, alloc_page_vma() will use task or system default policy
1051         */
1052        return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1053}
1054#else
1055
1056static void migrate_page_add(struct page *page, struct list_head *pagelist,
1057                                unsigned long flags)
1058{
1059}
1060
1061int do_migrate_pages(struct mm_struct *mm,
1062        const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
1063{
1064        return -ENOSYS;
1065}
1066
1067static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1068{
1069        return NULL;
1070}
1071#endif
1072
1073static long do_mbind(unsigned long start, unsigned long len,
1074                     unsigned short mode, unsigned short mode_flags,
1075                     nodemask_t *nmask, unsigned long flags)
1076{
1077        struct vm_area_struct *vma;
1078        struct mm_struct *mm = current->mm;
1079        struct mempolicy *new;
1080        unsigned long end;
1081        int err;
1082        LIST_HEAD(pagelist);
1083
1084        if (flags & ~(unsigned long)(MPOL_MF_STRICT |
1085                                     MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1086                return -EINVAL;
1087        if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1088                return -EPERM;
1089
1090        if (start & ~PAGE_MASK)
1091                return -EINVAL;
1092
1093        if (mode == MPOL_DEFAULT)
1094                flags &= ~MPOL_MF_STRICT;
1095
1096        len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1097        end = start + len;
1098
1099        if (end < start)
1100                return -EINVAL;
1101        if (end == start)
1102                return 0;
1103
1104        new = mpol_new(mode, mode_flags, nmask);
1105        if (IS_ERR(new))
1106                return PTR_ERR(new);
1107
1108        /*
1109         * If we are using the default policy then operation
1110         * on discontinuous address spaces is okay after all
1111         */
1112        if (!new)
1113                flags |= MPOL_MF_DISCONTIG_OK;
1114
1115        pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1116                 start, start + len, mode, mode_flags,
1117                 nmask ? nodes_addr(*nmask)[0] : -1);
1118
1119        if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1120
1121                err = migrate_prep();
1122                if (err)
1123                        goto mpol_out;
1124        }
1125        {
1126                NODEMASK_SCRATCH(scratch);
1127                if (scratch) {
1128                        down_write(&mm->mmap_sem);
1129                        task_lock(current);
1130                        err = mpol_set_nodemask(new, nmask, scratch);
1131                        task_unlock(current);
1132                        if (err)
1133                                up_write(&mm->mmap_sem);
1134                } else
1135                        err = -ENOMEM;
1136                NODEMASK_SCRATCH_FREE(scratch);
1137        }
1138        if (err)
1139                goto mpol_out;
1140
1141        vma = check_range(mm, start, end, nmask,
1142                          flags | MPOL_MF_INVERT, &pagelist);
1143
1144        err = PTR_ERR(vma);
1145        if (!IS_ERR(vma)) {
1146                int nr_failed = 0;
1147
1148                err = mbind_range(mm, start, end, new);
1149
1150                if (!list_empty(&pagelist))
1151                        nr_failed = migrate_pages(&pagelist, new_vma_page,
1152                                                (unsigned long)vma, 0);
1153
1154                if (!err && nr_failed && (flags & MPOL_MF_STRICT))
1155                        err = -EIO;
1156        } else
1157                putback_lru_pages(&pagelist);
1158
1159        up_write(&mm->mmap_sem);
1160 mpol_out:
1161        mpol_put(new);
1162        return err;
1163}
1164
1165/*
1166 * User space interface with variable sized bitmaps for nodelists.
1167 */
1168
1169/* Copy a node mask from user space. */
1170static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1171                     unsigned long maxnode)
1172{
1173        unsigned long k;
1174        unsigned long nlongs;
1175        unsigned long endmask;
1176
1177        --maxnode;
1178        nodes_clear(*nodes);
1179        if (maxnode == 0 || !nmask)
1180                return 0;
1181        if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1182                return -EINVAL;
1183
1184        nlongs = BITS_TO_LONGS(maxnode);
1185        if ((maxnode % BITS_PER_LONG) == 0)
1186                endmask = ~0UL;
1187        else
1188                endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1189
1190        /* When the user specified more nodes than supported just check
1191           if the non supported part is all zero. */
1192        if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1193                if (nlongs > PAGE_SIZE/sizeof(long))
1194                        return -EINVAL;
1195                for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1196                        unsigned long t;
1197                        if (get_user(t, nmask + k))
1198                                return -EFAULT;
1199                        if (k == nlongs - 1) {
1200                                if (t & endmask)
1201                                        return -EINVAL;
1202                        } else if (t)
1203                                return -EINVAL;
1204                }
1205                nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1206                endmask = ~0UL;
1207        }
1208
1209        if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1210                return -EFAULT;
1211        nodes_addr(*nodes)[nlongs-1] &= endmask;
1212        return 0;
1213}
1214
1215/* Copy a kernel node mask to user space */
1216static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1217                              nodemask_t *nodes)
1218{
1219        unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1220        const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1221
1222        if (copy > nbytes) {
1223                if (copy > PAGE_SIZE)
1224                        return -EINVAL;
1225                if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1226                        return -EFAULT;
1227                copy = nbytes;
1228        }
1229        return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1230}
1231
1232SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1233                unsigned long, mode, unsigned long __user *, nmask,
1234                unsigned long, maxnode, unsigned, flags)
1235{
1236        nodemask_t nodes;
1237        int err;
1238        unsigned short mode_flags;
1239
1240        mode_flags = mode & MPOL_MODE_FLAGS;
1241        mode &= ~MPOL_MODE_FLAGS;
1242        if (mode >= MPOL_MAX)
1243                return -EINVAL;
1244        if ((mode_flags & MPOL_F_STATIC_NODES) &&
1245            (mode_flags & MPOL_F_RELATIVE_NODES))
1246                return -EINVAL;
1247        err = get_nodes(&nodes, nmask, maxnode);
1248        if (err)
1249                return err;
1250        return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1251}
1252
1253/* Set the process memory policy */
1254SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1255                unsigned long, maxnode)
1256{
1257        int err;
1258        nodemask_t nodes;
1259        unsigned short flags;
1260
1261        flags = mode & MPOL_MODE_FLAGS;
1262        mode &= ~MPOL_MODE_FLAGS;
1263        if ((unsigned int)mode >= MPOL_MAX)
1264                return -EINVAL;
1265        if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1266                return -EINVAL;
1267        err = get_nodes(&nodes, nmask, maxnode);
1268        if (err)
1269                return err;
1270        return do_set_mempolicy(mode, flags, &nodes);
1271}
1272
1273SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1274                const unsigned long __user *, old_nodes,
1275                const unsigned long __user *, new_nodes)
1276{
1277        const struct cred *cred = current_cred(), *tcred;
1278        struct mm_struct *mm;
1279        struct task_struct *task;
1280        nodemask_t old;
1281        nodemask_t new;
1282        nodemask_t task_nodes;
1283        int err;
1284
1285        err = get_nodes(&old, old_nodes, maxnode);
1286        if (err)
1287                return err;
1288
1289        err = get_nodes(&new, new_nodes, maxnode);
1290        if (err)
1291                return err;
1292
1293        /* Find the mm_struct */
1294        read_lock(&tasklist_lock);
1295        task = pid ? find_task_by_vpid(pid) : current;
1296        if (!task) {
1297                read_unlock(&tasklist_lock);
1298                return -ESRCH;
1299        }
1300        mm = get_task_mm(task);
1301        read_unlock(&tasklist_lock);
1302
1303        if (!mm)
1304                return -EINVAL;
1305
1306        /*
1307         * Check if this process has the right to modify the specified
1308         * process. The right exists if the process has administrative
1309         * capabilities, superuser privileges or the same
1310         * userid as the target process.
1311         */
1312        rcu_read_lock();
1313        tcred = __task_cred(task);
1314        if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1315            cred->uid  != tcred->suid && cred->uid  != tcred->uid &&
1316            !capable(CAP_SYS_NICE)) {
1317                rcu_read_unlock();
1318                err = -EPERM;
1319                goto out;
1320        }
1321        rcu_read_unlock();
1322
1323        task_nodes = cpuset_mems_allowed(task);
1324        /* Is the user allowed to access the target nodes? */
1325        if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) {
1326                err = -EPERM;
1327                goto out;
1328        }
1329
1330        if (!nodes_subset(new, node_states[N_HIGH_MEMORY])) {
1331                err = -EINVAL;
1332                goto out;
1333        }
1334
1335        err = security_task_movememory(task);
1336        if (err)
1337                goto out;
1338
1339        err = do_migrate_pages(mm, &old, &new,
1340                capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1341out:
1342        mmput(mm);
1343        return err;
1344}
1345
1346
1347/* Retrieve NUMA policy */
1348SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1349                unsigned long __user *, nmask, unsigned long, maxnode,
1350                unsigned long, addr, unsigned long, flags)
1351{
1352        int err;
1353        int uninitialized_var(pval);
1354        nodemask_t nodes;
1355
1356        if (nmask != NULL && maxnode < MAX_NUMNODES)
1357                return -EINVAL;
1358
1359        err = do_get_mempolicy(&pval, &nodes, addr, flags);
1360
1361        if (err)
1362                return err;
1363
1364        if (policy && put_user(pval, policy))
1365                return -EFAULT;
1366
1367        if (nmask)
1368                err = copy_nodes_to_user(nmask, maxnode, &nodes);
1369
1370        return err;
1371}
1372
1373#ifdef CONFIG_COMPAT
1374
1375asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1376                                     compat_ulong_t __user *nmask,
1377                                     compat_ulong_t maxnode,
1378                                     compat_ulong_t addr, compat_ulong_t flags)
1379{
1380        long err;
1381        unsigned long __user *nm = NULL;
1382        unsigned long nr_bits, alloc_size;
1383        DECLARE_BITMAP(bm, MAX_NUMNODES);
1384
1385        nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1386        alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1387
1388        if (nmask)
1389                nm = compat_alloc_user_space(alloc_size);
1390
1391        err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1392
1393        if (!err && nmask) {
1394                err = copy_from_user(bm, nm, alloc_size);
1395                /* ensure entire bitmap is zeroed */
1396                err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1397                err |= compat_put_bitmap(nmask, bm, nr_bits);
1398        }
1399
1400        return err;
1401}
1402
1403asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1404                                     compat_ulong_t maxnode)
1405{
1406        long err = 0;
1407        unsigned long __user *nm = NULL;
1408        unsigned long nr_bits, alloc_size;
1409        DECLARE_BITMAP(bm, MAX_NUMNODES);
1410
1411        nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1412        alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1413
1414        if (nmask) {
1415                err = compat_get_bitmap(bm, nmask, nr_bits);
1416                nm = compat_alloc_user_space(alloc_size);
1417                err |= copy_to_user(nm, bm, alloc_size);
1418        }
1419
1420        if (err)
1421                return -EFAULT;
1422
1423        return sys_set_mempolicy(mode, nm, nr_bits+1);
1424}
1425
1426asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1427                             compat_ulong_t mode, compat_ulong_t __user *nmask,
1428                             compat_ulong_t maxnode, compat_ulong_t flags)
1429{
1430        long err = 0;
1431        unsigned long __user *nm = NULL;
1432        unsigned long nr_bits, alloc_size;
1433        nodemask_t bm;
1434
1435        nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1436        alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1437
1438        if (nmask) {
1439                err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1440                nm = compat_alloc_user_space(alloc_size);
1441                err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1442        }
1443
1444        if (err)
1445                return -EFAULT;
1446
1447        return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1448}
1449
1450#endif
1451
1452/*
1453 * get_vma_policy(@task, @vma, @addr)
1454 * @task - task for fallback if vma policy == default
1455 * @vma   - virtual memory area whose policy is sought
1456 * @addr  - address in @vma for shared policy lookup
1457 *
1458 * Returns effective policy for a VMA at specified address.
1459 * Falls back to @task or system default policy, as necessary.
1460 * Current or other task's task mempolicy and non-shared vma policies
1461 * are protected by the task's mmap_sem, which must be held for read by
1462 * the caller.
1463 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1464 * count--added by the get_policy() vm_op, as appropriate--to protect against
1465 * freeing by another task.  It is the caller's responsibility to free the
1466 * extra reference for shared policies.
1467 */
1468static struct mempolicy *get_vma_policy(struct task_struct *task,
1469                struct vm_area_struct *vma, unsigned long addr)
1470{
1471        struct mempolicy *pol = task->mempolicy;
1472
1473        if (vma) {
1474                if (vma->vm_ops && vma->vm_ops->get_policy) {
1475                        struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1476                                                                        addr);
1477                        if (vpol)
1478                                pol = vpol;
1479                } else if (vma->vm_policy)
1480                        pol = vma->vm_policy;
1481        }
1482        if (!pol)
1483                pol = &default_policy;
1484        return pol;
1485}
1486
1487/*
1488 * Return a nodemask representing a mempolicy for filtering nodes for
1489 * page allocation
1490 */
1491static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1492{
1493        /* Lower zones don't get a nodemask applied for MPOL_BIND */
1494        if (unlikely(policy->mode == MPOL_BIND) &&
1495                        gfp_zone(gfp) >= policy_zone &&
1496                        cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1497                return &policy->v.nodes;
1498
1499        return NULL;
1500}
1501
1502/* Return a zonelist indicated by gfp for node representing a mempolicy */
1503static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy)
1504{
1505        int nd = numa_node_id();
1506
1507        switch (policy->mode) {
1508        case MPOL_PREFERRED:
1509                if (!(policy->flags & MPOL_F_LOCAL))
1510                        nd = policy->v.preferred_node;
1511                break;
1512        case MPOL_BIND:
1513                /*
1514                 * Normally, MPOL_BIND allocations are node-local within the
1515                 * allowed nodemask.  However, if __GFP_THISNODE is set and the
1516                 * current node isn't part of the mask, we use the zonelist for
1517                 * the first node in the mask instead.
1518                 */
1519                if (unlikely(gfp & __GFP_THISNODE) &&
1520                                unlikely(!node_isset(nd, policy->v.nodes)))
1521                        nd = first_node(policy->v.nodes);
1522                break;
1523        default:
1524                BUG();
1525        }
1526        return node_zonelist(nd, gfp);
1527}
1528
1529/* Do dynamic interleaving for a process */
1530static unsigned interleave_nodes(struct mempolicy *policy)
1531{
1532        unsigned nid, next;
1533        struct task_struct *me = current;
1534
1535        nid = me->il_next;
1536        next = next_node(nid, policy->v.nodes);
1537        if (next >= MAX_NUMNODES)
1538                next = first_node(policy->v.nodes);
1539        if (next < MAX_NUMNODES)
1540                me->il_next = next;
1541        return nid;
1542}
1543
1544/*
1545 * Depending on the memory policy provide a node from which to allocate the
1546 * next slab entry.
1547 * @policy must be protected by freeing by the caller.  If @policy is
1548 * the current task's mempolicy, this protection is implicit, as only the
1549 * task can change it's policy.  The system default policy requires no
1550 * such protection.
1551 */
1552unsigned slab_node(struct mempolicy *policy)
1553{
1554        if (!policy || policy->flags & MPOL_F_LOCAL)
1555                return numa_node_id();
1556
1557        switch (policy->mode) {
1558        case MPOL_PREFERRED:
1559                /*
1560                 * handled MPOL_F_LOCAL above
1561                 */
1562                return policy->v.preferred_node;
1563
1564        case MPOL_INTERLEAVE:
1565                return interleave_nodes(policy);
1566
1567        case MPOL_BIND: {
1568                /*
1569                 * Follow bind policy behavior and start allocation at the
1570                 * first node.
1571                 */
1572                struct zonelist *zonelist;
1573                struct zone *zone;
1574                enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1575                zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1576                (void)first_zones_zonelist(zonelist, highest_zoneidx,
1577                                                        &policy->v.nodes,
1578                                                        &zone);
1579                return zone->node;
1580        }
1581
1582        default:
1583                BUG();
1584        }
1585}
1586
1587/* Do static interleaving for a VMA with known offset. */
1588static unsigned offset_il_node(struct mempolicy *pol,
1589                struct vm_area_struct *vma, unsigned long off)
1590{
1591        unsigned nnodes = nodes_weight(pol->v.nodes);
1592        unsigned target;
1593        int c;
1594        int nid = -1;
1595
1596        if (!nnodes)
1597                return numa_node_id();
1598        target = (unsigned int)off % nnodes;
1599        c = 0;
1600        do {
1601                nid = next_node(nid, pol->v.nodes);
1602                c++;
1603        } while (c <= target);
1604        return nid;
1605}
1606
1607/* Determine a node number for interleave */
1608static inline unsigned interleave_nid(struct mempolicy *pol,
1609                 struct vm_area_struct *vma, unsigned long addr, int shift)
1610{
1611        if (vma) {
1612                unsigned long off;
1613
1614                /*
1615                 * for small pages, there is no difference between
1616                 * shift and PAGE_SHIFT, so the bit-shift is safe.
1617                 * for huge pages, since vm_pgoff is in units of small
1618                 * pages, we need to shift off the always 0 bits to get
1619                 * a useful offset.
1620                 */
1621                BUG_ON(shift < PAGE_SHIFT);
1622                off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1623                off += (addr - vma->vm_start) >> shift;
1624                return offset_il_node(pol, vma, off);
1625        } else
1626                return interleave_nodes(pol);
1627}
1628
1629#ifdef CONFIG_HUGETLBFS
1630/*
1631 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1632 * @vma = virtual memory area whose policy is sought
1633 * @addr = address in @vma for shared policy lookup and interleave policy
1634 * @gfp_flags = for requested zone
1635 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1636 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1637 *
1638 * Returns a zonelist suitable for a huge page allocation and a pointer
1639 * to the struct mempolicy for conditional unref after allocation.
1640 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1641 * @nodemask for filtering the zonelist.
1642 *
1643 * Must be protected by get_mems_allowed()
1644 */
1645struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1646                                gfp_t gfp_flags, struct mempolicy **mpol,
1647                                nodemask_t **nodemask)
1648{
1649        struct zonelist *zl;
1650
1651        *mpol = get_vma_policy(current, vma, addr);
1652        *nodemask = NULL;       /* assume !MPOL_BIND */
1653
1654        if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1655                zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1656                                huge_page_shift(hstate_vma(vma))), gfp_flags);
1657        } else {
1658                zl = policy_zonelist(gfp_flags, *mpol);
1659                if ((*mpol)->mode == MPOL_BIND)
1660                        *nodemask = &(*mpol)->v.nodes;
1661        }
1662        return zl;
1663}
1664
1665/*
1666 * init_nodemask_of_mempolicy
1667 *
1668 * If the current task's mempolicy is "default" [NULL], return 'false'
1669 * to indicate default policy.  Otherwise, extract the policy nodemask
1670 * for 'bind' or 'interleave' policy into the argument nodemask, or
1671 * initialize the argument nodemask to contain the single node for
1672 * 'preferred' or 'local' policy and return 'true' to indicate presence
1673 * of non-default mempolicy.
1674 *
1675 * We don't bother with reference counting the mempolicy [mpol_get/put]
1676 * because the current task is examining it's own mempolicy and a task's
1677 * mempolicy is only ever changed by the task itself.
1678 *
1679 * N.B., it is the caller's responsibility to free a returned nodemask.
1680 */
1681bool init_nodemask_of_mempolicy(nodemask_t *mask)
1682{
1683        struct mempolicy *mempolicy;
1684        int nid;
1685
1686        if (!(mask && current->mempolicy))
1687                return false;
1688
1689        task_lock(current);
1690        mempolicy = current->mempolicy;
1691        switch (mempolicy->mode) {
1692        case MPOL_PREFERRED:
1693                if (mempolicy->flags & MPOL_F_LOCAL)
1694                        nid = numa_node_id();
1695                else
1696                        nid = mempolicy->v.preferred_node;
1697                init_nodemask_of_node(mask, nid);
1698                break;
1699
1700        case MPOL_BIND:
1701                /* Fall through */
1702        case MPOL_INTERLEAVE:
1703                *mask =  mempolicy->v.nodes;
1704                break;
1705
1706        default:
1707                BUG();
1708        }
1709        task_unlock(current);
1710
1711        return true;
1712}
1713#endif
1714
1715/* Allocate a page in interleaved policy.
1716   Own path because it needs to do special accounting. */
1717static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1718                                        unsigned nid)
1719{
1720        struct zonelist *zl;
1721        struct page *page;
1722
1723        zl = node_zonelist(nid, gfp);
1724        page = __alloc_pages(gfp, order, zl);
1725        if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1726                inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1727        return page;
1728}
1729
1730/**
1731 *      alloc_page_vma  - Allocate a page for a VMA.
1732 *
1733 *      @gfp:
1734 *      %GFP_USER    user allocation.
1735 *      %GFP_KERNEL  kernel allocations,
1736 *      %GFP_HIGHMEM highmem/user allocations,
1737 *      %GFP_FS      allocation should not call back into a file system.
1738 *      %GFP_ATOMIC  don't sleep.
1739 *
1740 *      @vma:  Pointer to VMA or NULL if not available.
1741 *      @addr: Virtual Address of the allocation. Must be inside the VMA.
1742 *
1743 *      This function allocates a page from the kernel page pool and applies
1744 *      a NUMA policy associated with the VMA or the current process.
1745 *      When VMA is not NULL caller must hold down_read on the mmap_sem of the
1746 *      mm_struct of the VMA to prevent it from going away. Should be used for
1747 *      all allocations for pages that will be mapped into
1748 *      user space. Returns NULL when no page can be allocated.
1749 *
1750 *      Should be called with the mm_sem of the vma hold.
1751 */
1752struct page *
1753alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
1754{
1755        struct mempolicy *pol = get_vma_policy(current, vma, addr);
1756        struct zonelist *zl;
1757        struct page *page;
1758
1759        get_mems_allowed();
1760        if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1761                unsigned nid;
1762
1763                nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
1764                mpol_cond_put(pol);
1765                page = alloc_page_interleave(gfp, 0, nid);
1766                put_mems_allowed();
1767                return page;
1768        }
1769        zl = policy_zonelist(gfp, pol);
1770        if (unlikely(mpol_needs_cond_ref(pol))) {
1771                /*
1772                 * slow path: ref counted shared policy
1773                 */
1774                struct page *page =  __alloc_pages_nodemask(gfp, 0,
1775                                                zl, policy_nodemask(gfp, pol));
1776                __mpol_put(pol);
1777                put_mems_allowed();
1778                return page;
1779        }
1780        /*
1781         * fast path:  default or task policy
1782         */
1783        page = __alloc_pages_nodemask(gfp, 0, zl, policy_nodemask(gfp, pol));
1784        put_mems_allowed();
1785        return page;
1786}
1787
1788/**
1789 *      alloc_pages_current - Allocate pages.
1790 *
1791 *      @gfp:
1792 *              %GFP_USER   user allocation,
1793 *              %GFP_KERNEL kernel allocation,
1794 *              %GFP_HIGHMEM highmem allocation,
1795 *              %GFP_FS     don't call back into a file system.
1796 *              %GFP_ATOMIC don't sleep.
1797 *      @order: Power of two of allocation size in pages. 0 is a single page.
1798 *
1799 *      Allocate a page from the kernel page pool.  When not in
1800 *      interrupt context and apply the current process NUMA policy.
1801 *      Returns NULL when no page can be allocated.
1802 *
1803 *      Don't call cpuset_update_task_memory_state() unless
1804 *      1) it's ok to take cpuset_sem (can WAIT), and
1805 *      2) allocating for current task (not interrupt).
1806 */
1807struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1808{
1809        struct mempolicy *pol = current->mempolicy;
1810        struct page *page;
1811
1812        if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1813                pol = &default_policy;
1814
1815        get_mems_allowed();
1816        /*
1817         * No reference counting needed for current->mempolicy
1818         * nor system default_policy
1819         */
1820        if (pol->mode == MPOL_INTERLEAVE)
1821                page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
1822        else
1823                page = __alloc_pages_nodemask(gfp, order,
1824                        policy_zonelist(gfp, pol), policy_nodemask(gfp, pol));
1825        put_mems_allowed();
1826        return page;
1827}
1828EXPORT_SYMBOL(alloc_pages_current);
1829
1830/*
1831 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1832 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1833 * with the mems_allowed returned by cpuset_mems_allowed().  This
1834 * keeps mempolicies cpuset relative after its cpuset moves.  See
1835 * further kernel/cpuset.c update_nodemask().
1836 *
1837 * current's mempolicy may be rebinded by the other task(the task that changes
1838 * cpuset's mems), so we needn't do rebind work for current task.
1839 */
1840
1841/* Slow path of a mempolicy duplicate */
1842struct mempolicy *__mpol_dup(struct mempolicy *old)
1843{
1844        struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1845
1846        if (!new)
1847                return ERR_PTR(-ENOMEM);
1848
1849        /* task's mempolicy is protected by alloc_lock */
1850        if (old == current->mempolicy) {
1851                task_lock(current);
1852                *new = *old;
1853                task_unlock(current);
1854        } else
1855                *new = *old;
1856
1857        rcu_read_lock();
1858        if (current_cpuset_is_being_rebound()) {
1859                nodemask_t mems = cpuset_mems_allowed(current);
1860                if (new->flags & MPOL_F_REBINDING)
1861                        mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
1862                else
1863                        mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
1864        }
1865        rcu_read_unlock();
1866        atomic_set(&new->refcnt, 1);
1867        return new;
1868}
1869
1870/*
1871 * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
1872 * eliminate the * MPOL_F_* flags that require conditional ref and
1873 * [NOTE!!!] drop the extra ref.  Not safe to reference *frompol directly
1874 * after return.  Use the returned value.
1875 *
1876 * Allows use of a mempolicy for, e.g., multiple allocations with a single
1877 * policy lookup, even if the policy needs/has extra ref on lookup.
1878 * shmem_readahead needs this.
1879 */
1880struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
1881                                                struct mempolicy *frompol)
1882{
1883        if (!mpol_needs_cond_ref(frompol))
1884                return frompol;
1885
1886        *tompol = *frompol;
1887        tompol->flags &= ~MPOL_F_SHARED;        /* copy doesn't need unref */
1888        __mpol_put(frompol);
1889        return tompol;
1890}
1891
1892/* Slow path of a mempolicy comparison */
1893int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1894{
1895        if (!a || !b)
1896                return 0;
1897        if (a->mode != b->mode)
1898                return 0;
1899        if (a->flags != b->flags)
1900                return 0;
1901        if (mpol_store_user_nodemask(a))
1902                if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
1903                        return 0;
1904
1905        switch (a->mode) {
1906        case MPOL_BIND:
1907                /* Fall through */
1908        case MPOL_INTERLEAVE:
1909                return nodes_equal(a->v.nodes, b->v.nodes);
1910        case MPOL_PREFERRED:
1911                return a->v.preferred_node == b->v.preferred_node &&
1912                        a->flags == b->flags;
1913        default:
1914                BUG();
1915                return 0;
1916        }
1917}
1918
1919/*
1920 * Shared memory backing store policy support.
1921 *
1922 * Remember policies even when nobody has shared memory mapped.
1923 * The policies are kept in Red-Black tree linked from the inode.
1924 * They are protected by the sp->lock spinlock, which should be held
1925 * for any accesses to the tree.
1926 */
1927
1928/* lookup first element intersecting start-end */
1929/* Caller holds sp->lock */
1930static struct sp_node *
1931sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
1932{
1933        struct rb_node *n = sp->root.rb_node;
1934
1935        while (n) {
1936                struct sp_node *p = rb_entry(n, struct sp_node, nd);
1937
1938                if (start >= p->end)
1939                        n = n->rb_right;
1940                else if (end <= p->start)
1941                        n = n->rb_left;
1942                else
1943                        break;
1944        }
1945        if (!n)
1946                return NULL;
1947        for (;;) {
1948                struct sp_node *w = NULL;
1949                struct rb_node *prev = rb_prev(n);
1950                if (!prev)
1951                        break;
1952                w = rb_entry(prev, struct sp_node, nd);
1953                if (w->end <= start)
1954                        break;
1955                n = prev;
1956        }
1957        return rb_entry(n, struct sp_node, nd);
1958}
1959
1960/* Insert a new shared policy into the list. */
1961/* Caller holds sp->lock */
1962static void sp_insert(struct shared_policy *sp, struct sp_node *new)
1963{
1964        struct rb_node **p = &sp->root.rb_node;
1965        struct rb_node *parent = NULL;
1966        struct sp_node *nd;
1967
1968        while (*p) {
1969                parent = *p;
1970                nd = rb_entry(parent, struct sp_node, nd);
1971                if (new->start < nd->start)
1972                        p = &(*p)->rb_left;
1973                else if (new->end > nd->end)
1974                        p = &(*p)->rb_right;
1975                else
1976                        BUG();
1977        }
1978        rb_link_node(&new->nd, parent, p);
1979        rb_insert_color(&new->nd, &sp->root);
1980        pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
1981                 new->policy ? new->policy->mode : 0);
1982}
1983
1984/* Find shared policy intersecting idx */
1985struct mempolicy *
1986mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
1987{
1988        struct mempolicy *pol = NULL;
1989        struct sp_node *sn;
1990
1991        if (!sp->root.rb_node)
1992                return NULL;
1993        spin_lock(&sp->lock);
1994        sn = sp_lookup(sp, idx, idx+1);
1995        if (sn) {
1996                mpol_get(sn->policy);
1997                pol = sn->policy;
1998        }
1999        spin_unlock(&sp->lock);
2000        return pol;
2001}
2002
2003static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2004{
2005        pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2006        rb_erase(&n->nd, &sp->root);
2007        mpol_put(n->policy);
2008        kmem_cache_free(sn_cache, n);
2009}
2010
2011static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2012                                struct mempolicy *pol)
2013{
2014        struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2015
2016        if (!n)
2017                return NULL;
2018        n->start = start;
2019        n->end = end;
2020        mpol_get(pol);
2021        pol->flags |= MPOL_F_SHARED;    /* for unref */
2022        n->policy = pol;
2023        return n;
2024}
2025
2026/* Replace a policy range. */
2027static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2028                                 unsigned long end, struct sp_node *new)
2029{
2030        struct sp_node *n, *new2 = NULL;
2031
2032restart:
2033        spin_lock(&sp->lock);
2034        n = sp_lookup(sp, start, end);
2035        /* Take care of old policies in the same range. */
2036        while (n && n->start < end) {
2037                struct rb_node *next = rb_next(&n->nd);
2038                if (n->start >= start) {
2039                        if (n->end <= end)
2040                                sp_delete(sp, n);
2041                        else
2042                                n->start = end;
2043                } else {
2044                        /* Old policy spanning whole new range. */
2045                        if (n->end > end) {
2046                                if (!new2) {
2047                                        spin_unlock(&sp->lock);
2048                                        new2 = sp_alloc(end, n->end, n->policy);
2049                                        if (!new2)
2050                                                return -ENOMEM;
2051                                        goto restart;
2052                                }
2053                                n->end = start;
2054                                sp_insert(sp, new2);
2055                                new2 = NULL;
2056                                break;
2057                        } else
2058                                n->end = start;
2059                }
2060                if (!next)
2061                        break;
2062                n = rb_entry(next, struct sp_node, nd);
2063        }
2064        if (new)
2065                sp_insert(sp, new);
2066        spin_unlock(&sp->lock);
2067        if (new2) {
2068                mpol_put(new2->policy);
2069                kmem_cache_free(sn_cache, new2);
2070        }
2071        return 0;
2072}
2073
2074/**
2075 * mpol_shared_policy_init - initialize shared policy for inode
2076 * @sp: pointer to inode shared policy
2077 * @mpol:  struct mempolicy to install
2078 *
2079 * Install non-NULL @mpol in inode's shared policy rb-tree.
2080 * On entry, the current task has a reference on a non-NULL @mpol.
2081 * This must be released on exit.
2082 * This is called at get_inode() calls and we can use GFP_KERNEL.
2083 */
2084void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2085{
2086        int ret;
2087
2088        sp->root = RB_ROOT;             /* empty tree == default mempolicy */
2089        spin_lock_init(&sp->lock);
2090
2091        if (mpol) {
2092                struct vm_area_struct pvma;
2093                struct mempolicy *new;
2094                NODEMASK_SCRATCH(scratch);
2095
2096                if (!scratch)
2097                        goto put_mpol;
2098                /* contextualize the tmpfs mount point mempolicy */
2099                new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2100                if (IS_ERR(new))
2101                        goto free_scratch; /* no valid nodemask intersection */
2102
2103                task_lock(current);
2104                ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2105                task_unlock(current);
2106                if (ret)
2107                        goto put_new;
2108
2109                /* Create pseudo-vma that contains just the policy */
2110                memset(&pvma, 0, sizeof(struct vm_area_struct));
2111                pvma.vm_end = TASK_SIZE;        /* policy covers entire file */
2112                mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2113
2114put_new:
2115                mpol_put(new);                  /* drop initial ref */
2116free_scratch:
2117                NODEMASK_SCRATCH_FREE(scratch);
2118put_mpol:
2119                mpol_put(mpol); /* drop our incoming ref on sb mpol */
2120        }
2121}
2122
2123int mpol_set_shared_policy(struct shared_policy *info,
2124                        struct vm_area_struct *vma, struct mempolicy *npol)
2125{
2126        int err;
2127        struct sp_node *new = NULL;
2128        unsigned long sz = vma_pages(vma);
2129
2130        pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2131                 vma->vm_pgoff,
2132                 sz, npol ? npol->mode : -1,
2133                 npol ? npol->flags : -1,
2134                 npol ? nodes_addr(npol->v.nodes)[0] : -1);
2135
2136        if (npol) {
2137                new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2138                if (!new)
2139                        return -ENOMEM;
2140        }
2141        err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2142        if (err && new)
2143                kmem_cache_free(sn_cache, new);
2144        return err;
2145}
2146
2147/* Free a backing policy store on inode delete. */
2148void mpol_free_shared_policy(struct shared_policy *p)
2149{
2150        struct sp_node *n;
2151        struct rb_node *next;
2152
2153        if (!p->root.rb_node)
2154                return;
2155        spin_lock(&p->lock);
2156        next = rb_first(&p->root);
2157        while (next) {
2158                n = rb_entry(next, struct sp_node, nd);
2159                next = rb_next(&n->nd);
2160                rb_erase(&n->nd, &p->root);
2161                mpol_put(n->policy);
2162                kmem_cache_free(sn_cache, n);
2163        }
2164        spin_unlock(&p->lock);
2165}
2166
2167/* assumes fs == KERNEL_DS */
2168void __init numa_policy_init(void)
2169{
2170        nodemask_t interleave_nodes;
2171        unsigned long largest = 0;
2172        int nid, prefer = 0;
2173
2174        policy_cache = kmem_cache_create("numa_policy",
2175                                         sizeof(struct mempolicy),
2176                                         0, SLAB_PANIC, NULL);
2177
2178        sn_cache = kmem_cache_create("shared_policy_node",
2179                                     sizeof(struct sp_node),
2180                                     0, SLAB_PANIC, NULL);
2181
2182        /*
2183         * Set interleaving policy for system init. Interleaving is only
2184         * enabled across suitably sized nodes (default is >= 16MB), or
2185         * fall back to the largest node if they're all smaller.
2186         */
2187        nodes_clear(interleave_nodes);
2188        for_each_node_state(nid, N_HIGH_MEMORY) {
2189                unsigned long total_pages = node_present_pages(nid);
2190
2191                /* Preserve the largest node */
2192                if (largest < total_pages) {
2193                        largest = total_pages;
2194                        prefer = nid;
2195                }
2196
2197                /* Interleave this node? */
2198                if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2199                        node_set(nid, interleave_nodes);
2200        }
2201
2202        /* All too small, use the largest */
2203        if (unlikely(nodes_empty(interleave_nodes)))
2204                node_set(prefer, interleave_nodes);
2205
2206        if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2207                printk("numa_policy_init: interleaving failed\n");
2208}
2209
2210/* Reset policy of current process to default */
2211void numa_default_policy(void)
2212{
2213        do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2214}
2215
2216/*
2217 * Parse and format mempolicy from/to strings
2218 */
2219
2220/*
2221 * "local" is pseudo-policy:  MPOL_PREFERRED with MPOL_F_LOCAL flag
2222 * Used only for mpol_parse_str() and mpol_to_str()
2223 */
2224#define MPOL_LOCAL MPOL_MAX
2225static const char * const policy_modes[] =
2226{
2227        [MPOL_DEFAULT]    = "default",
2228        [MPOL_PREFERRED]  = "prefer",
2229        [MPOL_BIND]       = "bind",
2230        [MPOL_INTERLEAVE] = "interleave",
2231        [MPOL_LOCAL]      = "local"
2232};
2233
2234
2235#ifdef CONFIG_TMPFS
2236/**
2237 * mpol_parse_str - parse string to mempolicy
2238 * @str:  string containing mempolicy to parse
2239 * @mpol:  pointer to struct mempolicy pointer, returned on success.
2240 * @no_context:  flag whether to "contextualize" the mempolicy
2241 *
2242 * Format of input:
2243 *      <mode>[=<flags>][:<nodelist>]
2244 *
2245 * if @no_context is true, save the input nodemask in w.user_nodemask in
2246 * the returned mempolicy.  This will be used to "clone" the mempolicy in
2247 * a specific context [cpuset] at a later time.  Used to parse tmpfs mpol
2248 * mount option.  Note that if 'static' or 'relative' mode flags were
2249 * specified, the input nodemask will already have been saved.  Saving
2250 * it again is redundant, but safe.
2251 *
2252 * On success, returns 0, else 1
2253 */
2254int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2255{
2256        struct mempolicy *new = NULL;
2257        unsigned short mode;
2258        unsigned short uninitialized_var(mode_flags);
2259        nodemask_t nodes;
2260        char *nodelist = strchr(str, ':');
2261        char *flags = strchr(str, '=');
2262        int err = 1;
2263
2264        if (nodelist) {
2265                /* NUL-terminate mode or flags string */
2266                *nodelist++ = '\0';
2267                if (nodelist_parse(nodelist, nodes))
2268                        goto out;
2269                if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2270                        goto out;
2271        } else
2272                nodes_clear(nodes);
2273
2274        if (flags)
2275                *flags++ = '\0';        /* terminate mode string */
2276
2277        for (mode = 0; mode <= MPOL_LOCAL; mode++) {
2278                if (!strcmp(str, policy_modes[mode])) {
2279                        break;
2280                }
2281        }
2282        if (mode > MPOL_LOCAL)
2283                goto out;
2284
2285        switch (mode) {
2286        case MPOL_PREFERRED:
2287                /*
2288                 * Insist on a nodelist of one node only
2289                 */
2290                if (nodelist) {
2291                        char *rest = nodelist;
2292                        while (isdigit(*rest))
2293                                rest++;
2294                        if (*rest)
2295                                goto out;
2296                }
2297                break;
2298        case MPOL_INTERLEAVE:
2299                /*
2300                 * Default to online nodes with memory if no nodelist
2301                 */
2302                if (!nodelist)
2303                        nodes = node_states[N_HIGH_MEMORY];
2304                break;
2305        case MPOL_LOCAL:
2306                /*
2307                 * Don't allow a nodelist;  mpol_new() checks flags
2308                 */
2309                if (nodelist)
2310                        goto out;
2311                mode = MPOL_PREFERRED;
2312                break;
2313        case MPOL_DEFAULT:
2314                /*
2315                 * Insist on a empty nodelist
2316                 */
2317                if (!nodelist)
2318                        err = 0;
2319                goto out;
2320        case MPOL_BIND:
2321                /*
2322                 * Insist on a nodelist
2323                 */
2324                if (!nodelist)
2325                        goto out;
2326        }
2327
2328        mode_flags = 0;
2329        if (flags) {
2330                /*
2331                 * Currently, we only support two mutually exclusive
2332                 * mode flags.
2333                 */
2334                if (!strcmp(flags, "static"))
2335                        mode_flags |= MPOL_F_STATIC_NODES;
2336                else if (!strcmp(flags, "relative"))
2337                        mode_flags |= MPOL_F_RELATIVE_NODES;
2338                else
2339                        goto out;
2340        }
2341
2342        new = mpol_new(mode, mode_flags, &nodes);
2343        if (IS_ERR(new))
2344                goto out;
2345
2346        if (no_context) {
2347                /* save for contextualization */
2348                new->w.user_nodemask = nodes;
2349        } else {
2350                int ret;
2351                NODEMASK_SCRATCH(scratch);
2352                if (scratch) {
2353                        task_lock(current);
2354                        ret = mpol_set_nodemask(new, &nodes, scratch);
2355                        task_unlock(current);
2356                } else
2357                        ret = -ENOMEM;
2358                NODEMASK_SCRATCH_FREE(scratch);
2359                if (ret) {
2360                        mpol_put(new);
2361                        goto out;
2362                }
2363        }
2364        err = 0;
2365
2366out:
2367        /* Restore string for error message */
2368        if (nodelist)
2369                *--nodelist = ':';
2370        if (flags)
2371                *--flags = '=';
2372        if (!err)
2373                *mpol = new;
2374        return err;
2375}
2376#endif /* CONFIG_TMPFS */
2377
2378/**
2379 * mpol_to_str - format a mempolicy structure for printing
2380 * @buffer:  to contain formatted mempolicy string
2381 * @maxlen:  length of @buffer
2382 * @pol:  pointer to mempolicy to be formatted
2383 * @no_context:  "context free" mempolicy - use nodemask in w.user_nodemask
2384 *
2385 * Convert a mempolicy into a string.
2386 * Returns the number of characters in buffer (if positive)
2387 * or an error (negative)
2388 */
2389int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2390{
2391        char *p = buffer;
2392        int l;
2393        nodemask_t nodes;
2394        unsigned short mode;
2395        unsigned short flags = pol ? pol->flags : 0;
2396
2397        /*
2398         * Sanity check:  room for longest mode, flag and some nodes
2399         */
2400        VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2401
2402        if (!pol || pol == &default_policy)
2403                mode = MPOL_DEFAULT;
2404        else
2405                mode = pol->mode;
2406
2407        switch (mode) {
2408        case MPOL_DEFAULT:
2409                nodes_clear(nodes);
2410                break;
2411
2412        case MPOL_PREFERRED:
2413                nodes_clear(nodes);
2414                if (flags & MPOL_F_LOCAL)
2415                        mode = MPOL_LOCAL;      /* pseudo-policy */
2416                else
2417                        node_set(pol->v.preferred_node, nodes);
2418                break;
2419
2420        case MPOL_BIND:
2421                /* Fall through */
2422        case MPOL_INTERLEAVE:
2423                if (no_context)
2424                        nodes = pol->w.user_nodemask;
2425                else
2426                        nodes = pol->v.nodes;
2427                break;
2428
2429        default:
2430                BUG();
2431        }
2432
2433        l = strlen(policy_modes[mode]);
2434        if (buffer + maxlen < p + l + 1)
2435                return -ENOSPC;
2436
2437        strcpy(p, policy_modes[mode]);
2438        p += l;
2439
2440        if (flags & MPOL_MODE_FLAGS) {
2441                if (buffer + maxlen < p + 2)
2442                        return -ENOSPC;
2443                *p++ = '=';
2444
2445                /*
2446                 * Currently, the only defined flags are mutually exclusive
2447                 */
2448                if (flags & MPOL_F_STATIC_NODES)
2449                        p += snprintf(p, buffer + maxlen - p, "static");
2450                else if (flags & MPOL_F_RELATIVE_NODES)
2451                        p += snprintf(p, buffer + maxlen - p, "relative");
2452        }
2453
2454        if (!nodes_empty(nodes)) {
2455                if (buffer + maxlen < p + 2)
2456                        return -ENOSPC;
2457                *p++ = ':';
2458                p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2459        }
2460        return p - buffer;
2461}
2462
2463struct numa_maps {
2464        unsigned long pages;
2465        unsigned long anon;
2466        unsigned long active;
2467        unsigned long writeback;
2468        unsigned long mapcount_max;
2469        unsigned long dirty;
2470        unsigned long swapcache;
2471        unsigned long node[MAX_NUMNODES];
2472};
2473
2474static void gather_stats(struct page *page, void *private, int pte_dirty)
2475{
2476        struct numa_maps *md = private;
2477        int count = page_mapcount(page);
2478
2479        md->pages++;
2480        if (pte_dirty || PageDirty(page))
2481                md->dirty++;
2482
2483        if (PageSwapCache(page))
2484                md->swapcache++;
2485
2486        if (PageActive(page) || PageUnevictable(page))
2487                md->active++;
2488
2489        if (PageWriteback(page))
2490                md->writeback++;
2491
2492        if (PageAnon(page))
2493                md->anon++;
2494
2495        if (count > md->mapcount_max)
2496                md->mapcount_max = count;
2497
2498        md->node[page_to_nid(page)]++;
2499}
2500
2501#ifdef CONFIG_HUGETLB_PAGE
2502static void check_huge_range(struct vm_area_struct *vma,
2503                unsigned long start, unsigned long end,
2504                struct numa_maps *md)
2505{
2506        unsigned long addr;
2507        struct page *page;
2508        struct hstate *h = hstate_vma(vma);
2509        unsigned long sz = huge_page_size(h);
2510
2511        for (addr = start; addr < end; addr += sz) {
2512                pte_t *ptep = huge_pte_offset(vma->vm_mm,
2513                                                addr & huge_page_mask(h));
2514                pte_t pte;
2515
2516                if (!ptep)
2517                        continue;
2518
2519                pte = *ptep;
2520                if (pte_none(pte))
2521                        continue;
2522
2523                page = pte_page(pte);
2524                if (!page)
2525                        continue;
2526
2527                gather_stats(page, md, pte_dirty(*ptep));
2528        }
2529}
2530#else
2531static inline void check_huge_range(struct vm_area_struct *vma,
2532                unsigned long start, unsigned long end,
2533                struct numa_maps *md)
2534{
2535}
2536#endif
2537
2538/*
2539 * Display pages allocated per node and memory policy via /proc.
2540 */
2541int show_numa_map(struct seq_file *m, void *v)
2542{
2543        struct proc_maps_private *priv = m->private;
2544        struct vm_area_struct *vma = v;
2545        struct numa_maps *md;
2546        struct file *file = vma->vm_file;
2547        struct mm_struct *mm = vma->vm_mm;
2548        struct mempolicy *pol;
2549        int n;
2550        char buffer[50];
2551
2552        if (!mm)
2553                return 0;
2554
2555        md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
2556        if (!md)
2557                return 0;
2558
2559        pol = get_vma_policy(priv->task, vma, vma->vm_start);
2560        mpol_to_str(buffer, sizeof(buffer), pol, 0);
2561        mpol_cond_put(pol);
2562
2563        seq_printf(m, "%08lx %s", vma->vm_start, buffer);
2564
2565        if (file) {
2566                seq_printf(m, " file=");
2567                seq_path(m, &file->f_path, "\n\t= ");
2568        } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
2569                seq_printf(m, " heap");
2570        } else if (vma->vm_start <= mm->start_stack &&
2571                        vma->vm_end >= mm->start_stack) {
2572                seq_printf(m, " stack");
2573        }
2574
2575        if (is_vm_hugetlb_page(vma)) {
2576                check_huge_range(vma, vma->vm_start, vma->vm_end, md);
2577                seq_printf(m, " huge");
2578        } else {
2579                check_pgd_range(vma, vma->vm_start, vma->vm_end,
2580                        &node_states[N_HIGH_MEMORY], MPOL_MF_STATS, md);
2581        }
2582
2583        if (!md->pages)
2584                goto out;
2585
2586        if (md->anon)
2587                seq_printf(m," anon=%lu",md->anon);
2588
2589        if (md->dirty)
2590                seq_printf(m," dirty=%lu",md->dirty);
2591
2592        if (md->pages != md->anon && md->pages != md->dirty)
2593                seq_printf(m, " mapped=%lu", md->pages);
2594
2595        if (md->mapcount_max > 1)
2596                seq_printf(m, " mapmax=%lu", md->mapcount_max);
2597
2598        if (md->swapcache)
2599                seq_printf(m," swapcache=%lu", md->swapcache);
2600
2601        if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2602                seq_printf(m," active=%lu", md->active);
2603
2604        if (md->writeback)
2605                seq_printf(m," writeback=%lu", md->writeback);
2606
2607        for_each_node_state(n, N_HIGH_MEMORY)
2608                if (md->node[n])
2609                        seq_printf(m, " N%d=%lu", n, md->node[n]);
2610out:
2611        seq_putc(m, '\n');
2612        kfree(md);
2613
2614        if (m->count < m->size)
2615                m->version = (vma != priv->tail_vma) ? vma->vm_start : 0;
2616        return 0;
2617}
2618