linux/mm/memcontrol.c
<<
>>
Prefs
   1/* memcontrol.c - Memory Controller
   2 *
   3 * Copyright IBM Corporation, 2007
   4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
   5 *
   6 * Copyright 2007 OpenVZ SWsoft Inc
   7 * Author: Pavel Emelianov <xemul@openvz.org>
   8 *
   9 * Memory thresholds
  10 * Copyright (C) 2009 Nokia Corporation
  11 * Author: Kirill A. Shutemov
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License as published by
  15 * the Free Software Foundation; either version 2 of the License, or
  16 * (at your option) any later version.
  17 *
  18 * This program is distributed in the hope that it will be useful,
  19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  21 * GNU General Public License for more details.
  22 */
  23
  24#include <linux/res_counter.h>
  25#include <linux/memcontrol.h>
  26#include <linux/cgroup.h>
  27#include <linux/mm.h>
  28#include <linux/hugetlb.h>
  29#include <linux/pagemap.h>
  30#include <linux/smp.h>
  31#include <linux/page-flags.h>
  32#include <linux/backing-dev.h>
  33#include <linux/bit_spinlock.h>
  34#include <linux/rcupdate.h>
  35#include <linux/limits.h>
  36#include <linux/mutex.h>
  37#include <linux/rbtree.h>
  38#include <linux/slab.h>
  39#include <linux/swap.h>
  40#include <linux/swapops.h>
  41#include <linux/spinlock.h>
  42#include <linux/eventfd.h>
  43#include <linux/sort.h>
  44#include <linux/fs.h>
  45#include <linux/seq_file.h>
  46#include <linux/vmalloc.h>
  47#include <linux/mm_inline.h>
  48#include <linux/page_cgroup.h>
  49#include <linux/cpu.h>
  50#include "internal.h"
  51
  52#include <asm/uaccess.h>
  53
  54struct cgroup_subsys mem_cgroup_subsys __read_mostly;
  55#define MEM_CGROUP_RECLAIM_RETRIES      5
  56struct mem_cgroup *root_mem_cgroup __read_mostly;
  57
  58#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
  59/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
  60int do_swap_account __read_mostly;
  61static int really_do_swap_account __initdata = 1; /* for remember boot option*/
  62#else
  63#define do_swap_account         (0)
  64#endif
  65
  66/*
  67 * Per memcg event counter is incremented at every pagein/pageout. This counter
  68 * is used for trigger some periodic events. This is straightforward and better
  69 * than using jiffies etc. to handle periodic memcg event.
  70 *
  71 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
  72 */
  73#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
  74#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
  75
  76/*
  77 * Statistics for memory cgroup.
  78 */
  79enum mem_cgroup_stat_index {
  80        /*
  81         * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
  82         */
  83        MEM_CGROUP_STAT_CACHE,     /* # of pages charged as cache */
  84        MEM_CGROUP_STAT_RSS,       /* # of pages charged as anon rss */
  85        MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
  86        MEM_CGROUP_STAT_PGPGIN_COUNT,   /* # of pages paged in */
  87        MEM_CGROUP_STAT_PGPGOUT_COUNT,  /* # of pages paged out */
  88        MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
  89        MEM_CGROUP_EVENTS,      /* incremented at every  pagein/pageout */
  90
  91        MEM_CGROUP_STAT_NSTATS,
  92};
  93
  94struct mem_cgroup_stat_cpu {
  95        s64 count[MEM_CGROUP_STAT_NSTATS];
  96};
  97
  98/*
  99 * per-zone information in memory controller.
 100 */
 101struct mem_cgroup_per_zone {
 102        /*
 103         * spin_lock to protect the per cgroup LRU
 104         */
 105        struct list_head        lists[NR_LRU_LISTS];
 106        unsigned long           count[NR_LRU_LISTS];
 107
 108        struct zone_reclaim_stat reclaim_stat;
 109        struct rb_node          tree_node;      /* RB tree node */
 110        unsigned long long      usage_in_excess;/* Set to the value by which */
 111                                                /* the soft limit is exceeded*/
 112        bool                    on_tree;
 113        struct mem_cgroup       *mem;           /* Back pointer, we cannot */
 114                                                /* use container_of        */
 115};
 116/* Macro for accessing counter */
 117#define MEM_CGROUP_ZSTAT(mz, idx)       ((mz)->count[(idx)])
 118
 119struct mem_cgroup_per_node {
 120        struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
 121};
 122
 123struct mem_cgroup_lru_info {
 124        struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
 125};
 126
 127/*
 128 * Cgroups above their limits are maintained in a RB-Tree, independent of
 129 * their hierarchy representation
 130 */
 131
 132struct mem_cgroup_tree_per_zone {
 133        struct rb_root rb_root;
 134        spinlock_t lock;
 135};
 136
 137struct mem_cgroup_tree_per_node {
 138        struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
 139};
 140
 141struct mem_cgroup_tree {
 142        struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
 143};
 144
 145static struct mem_cgroup_tree soft_limit_tree __read_mostly;
 146
 147struct mem_cgroup_threshold {
 148        struct eventfd_ctx *eventfd;
 149        u64 threshold;
 150};
 151
 152/* For threshold */
 153struct mem_cgroup_threshold_ary {
 154        /* An array index points to threshold just below usage. */
 155        int current_threshold;
 156        /* Size of entries[] */
 157        unsigned int size;
 158        /* Array of thresholds */
 159        struct mem_cgroup_threshold entries[0];
 160};
 161
 162struct mem_cgroup_thresholds {
 163        /* Primary thresholds array */
 164        struct mem_cgroup_threshold_ary *primary;
 165        /*
 166         * Spare threshold array.
 167         * This is needed to make mem_cgroup_unregister_event() "never fail".
 168         * It must be able to store at least primary->size - 1 entries.
 169         */
 170        struct mem_cgroup_threshold_ary *spare;
 171};
 172
 173/* for OOM */
 174struct mem_cgroup_eventfd_list {
 175        struct list_head list;
 176        struct eventfd_ctx *eventfd;
 177};
 178
 179static void mem_cgroup_threshold(struct mem_cgroup *mem);
 180static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
 181
 182/*
 183 * The memory controller data structure. The memory controller controls both
 184 * page cache and RSS per cgroup. We would eventually like to provide
 185 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 186 * to help the administrator determine what knobs to tune.
 187 *
 188 * TODO: Add a water mark for the memory controller. Reclaim will begin when
 189 * we hit the water mark. May be even add a low water mark, such that
 190 * no reclaim occurs from a cgroup at it's low water mark, this is
 191 * a feature that will be implemented much later in the future.
 192 */
 193struct mem_cgroup {
 194        struct cgroup_subsys_state css;
 195        /*
 196         * the counter to account for memory usage
 197         */
 198        struct res_counter res;
 199        /*
 200         * the counter to account for mem+swap usage.
 201         */
 202        struct res_counter memsw;
 203        /*
 204         * Per cgroup active and inactive list, similar to the
 205         * per zone LRU lists.
 206         */
 207        struct mem_cgroup_lru_info info;
 208
 209        /*
 210          protect against reclaim related member.
 211        */
 212        spinlock_t reclaim_param_lock;
 213
 214        int     prev_priority;  /* for recording reclaim priority */
 215
 216        /*
 217         * While reclaiming in a hierarchy, we cache the last child we
 218         * reclaimed from.
 219         */
 220        int last_scanned_child;
 221        /*
 222         * Should the accounting and control be hierarchical, per subtree?
 223         */
 224        bool use_hierarchy;
 225        atomic_t        oom_lock;
 226        atomic_t        refcnt;
 227
 228        unsigned int    swappiness;
 229        /* OOM-Killer disable */
 230        int             oom_kill_disable;
 231
 232        /* set when res.limit == memsw.limit */
 233        bool            memsw_is_minimum;
 234
 235        /* protect arrays of thresholds */
 236        struct mutex thresholds_lock;
 237
 238        /* thresholds for memory usage. RCU-protected */
 239        struct mem_cgroup_thresholds thresholds;
 240
 241        /* thresholds for mem+swap usage. RCU-protected */
 242        struct mem_cgroup_thresholds memsw_thresholds;
 243
 244        /* For oom notifier event fd */
 245        struct list_head oom_notify;
 246
 247        /*
 248         * Should we move charges of a task when a task is moved into this
 249         * mem_cgroup ? And what type of charges should we move ?
 250         */
 251        unsigned long   move_charge_at_immigrate;
 252        /*
 253         * percpu counter.
 254         */
 255        struct mem_cgroup_stat_cpu *stat;
 256};
 257
 258/* Stuffs for move charges at task migration. */
 259/*
 260 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 261 * left-shifted bitmap of these types.
 262 */
 263enum move_type {
 264        MOVE_CHARGE_TYPE_ANON,  /* private anonymous page and swap of it */
 265        MOVE_CHARGE_TYPE_FILE,  /* file page(including tmpfs) and swap of it */
 266        NR_MOVE_TYPE,
 267};
 268
 269/* "mc" and its members are protected by cgroup_mutex */
 270static struct move_charge_struct {
 271        struct mem_cgroup *from;
 272        struct mem_cgroup *to;
 273        unsigned long precharge;
 274        unsigned long moved_charge;
 275        unsigned long moved_swap;
 276        struct task_struct *moving_task;        /* a task moving charges */
 277        wait_queue_head_t waitq;                /* a waitq for other context */
 278} mc = {
 279        .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
 280};
 281
 282static bool move_anon(void)
 283{
 284        return test_bit(MOVE_CHARGE_TYPE_ANON,
 285                                        &mc.to->move_charge_at_immigrate);
 286}
 287
 288static bool move_file(void)
 289{
 290        return test_bit(MOVE_CHARGE_TYPE_FILE,
 291                                        &mc.to->move_charge_at_immigrate);
 292}
 293
 294/*
 295 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 296 * limit reclaim to prevent infinite loops, if they ever occur.
 297 */
 298#define MEM_CGROUP_MAX_RECLAIM_LOOPS            (100)
 299#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
 300
 301enum charge_type {
 302        MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
 303        MEM_CGROUP_CHARGE_TYPE_MAPPED,
 304        MEM_CGROUP_CHARGE_TYPE_SHMEM,   /* used by page migration of shmem */
 305        MEM_CGROUP_CHARGE_TYPE_FORCE,   /* used by force_empty */
 306        MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
 307        MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
 308        NR_CHARGE_TYPE,
 309};
 310
 311/* only for here (for easy reading.) */
 312#define PCGF_CACHE      (1UL << PCG_CACHE)
 313#define PCGF_USED       (1UL << PCG_USED)
 314#define PCGF_LOCK       (1UL << PCG_LOCK)
 315/* Not used, but added here for completeness */
 316#define PCGF_ACCT       (1UL << PCG_ACCT)
 317
 318/* for encoding cft->private value on file */
 319#define _MEM                    (0)
 320#define _MEMSWAP                (1)
 321#define _OOM_TYPE               (2)
 322#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
 323#define MEMFILE_TYPE(val)       (((val) >> 16) & 0xffff)
 324#define MEMFILE_ATTR(val)       ((val) & 0xffff)
 325/* Used for OOM nofiier */
 326#define OOM_CONTROL             (0)
 327
 328/*
 329 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 330 */
 331#define MEM_CGROUP_RECLAIM_NOSWAP_BIT   0x0
 332#define MEM_CGROUP_RECLAIM_NOSWAP       (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
 333#define MEM_CGROUP_RECLAIM_SHRINK_BIT   0x1
 334#define MEM_CGROUP_RECLAIM_SHRINK       (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
 335#define MEM_CGROUP_RECLAIM_SOFT_BIT     0x2
 336#define MEM_CGROUP_RECLAIM_SOFT         (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
 337
 338static void mem_cgroup_get(struct mem_cgroup *mem);
 339static void mem_cgroup_put(struct mem_cgroup *mem);
 340static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
 341static void drain_all_stock_async(void);
 342
 343static struct mem_cgroup_per_zone *
 344mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
 345{
 346        return &mem->info.nodeinfo[nid]->zoneinfo[zid];
 347}
 348
 349struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
 350{
 351        return &mem->css;
 352}
 353
 354static struct mem_cgroup_per_zone *
 355page_cgroup_zoneinfo(struct page_cgroup *pc)
 356{
 357        struct mem_cgroup *mem = pc->mem_cgroup;
 358        int nid = page_cgroup_nid(pc);
 359        int zid = page_cgroup_zid(pc);
 360
 361        if (!mem)
 362                return NULL;
 363
 364        return mem_cgroup_zoneinfo(mem, nid, zid);
 365}
 366
 367static struct mem_cgroup_tree_per_zone *
 368soft_limit_tree_node_zone(int nid, int zid)
 369{
 370        return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
 371}
 372
 373static struct mem_cgroup_tree_per_zone *
 374soft_limit_tree_from_page(struct page *page)
 375{
 376        int nid = page_to_nid(page);
 377        int zid = page_zonenum(page);
 378
 379        return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
 380}
 381
 382static void
 383__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
 384                                struct mem_cgroup_per_zone *mz,
 385                                struct mem_cgroup_tree_per_zone *mctz,
 386                                unsigned long long new_usage_in_excess)
 387{
 388        struct rb_node **p = &mctz->rb_root.rb_node;
 389        struct rb_node *parent = NULL;
 390        struct mem_cgroup_per_zone *mz_node;
 391
 392        if (mz->on_tree)
 393                return;
 394
 395        mz->usage_in_excess = new_usage_in_excess;
 396        if (!mz->usage_in_excess)
 397                return;
 398        while (*p) {
 399                parent = *p;
 400                mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
 401                                        tree_node);
 402                if (mz->usage_in_excess < mz_node->usage_in_excess)
 403                        p = &(*p)->rb_left;
 404                /*
 405                 * We can't avoid mem cgroups that are over their soft
 406                 * limit by the same amount
 407                 */
 408                else if (mz->usage_in_excess >= mz_node->usage_in_excess)
 409                        p = &(*p)->rb_right;
 410        }
 411        rb_link_node(&mz->tree_node, parent, p);
 412        rb_insert_color(&mz->tree_node, &mctz->rb_root);
 413        mz->on_tree = true;
 414}
 415
 416static void
 417__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
 418                                struct mem_cgroup_per_zone *mz,
 419                                struct mem_cgroup_tree_per_zone *mctz)
 420{
 421        if (!mz->on_tree)
 422                return;
 423        rb_erase(&mz->tree_node, &mctz->rb_root);
 424        mz->on_tree = false;
 425}
 426
 427static void
 428mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
 429                                struct mem_cgroup_per_zone *mz,
 430                                struct mem_cgroup_tree_per_zone *mctz)
 431{
 432        spin_lock(&mctz->lock);
 433        __mem_cgroup_remove_exceeded(mem, mz, mctz);
 434        spin_unlock(&mctz->lock);
 435}
 436
 437
 438static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
 439{
 440        unsigned long long excess;
 441        struct mem_cgroup_per_zone *mz;
 442        struct mem_cgroup_tree_per_zone *mctz;
 443        int nid = page_to_nid(page);
 444        int zid = page_zonenum(page);
 445        mctz = soft_limit_tree_from_page(page);
 446
 447        /*
 448         * Necessary to update all ancestors when hierarchy is used.
 449         * because their event counter is not touched.
 450         */
 451        for (; mem; mem = parent_mem_cgroup(mem)) {
 452                mz = mem_cgroup_zoneinfo(mem, nid, zid);
 453                excess = res_counter_soft_limit_excess(&mem->res);
 454                /*
 455                 * We have to update the tree if mz is on RB-tree or
 456                 * mem is over its softlimit.
 457                 */
 458                if (excess || mz->on_tree) {
 459                        spin_lock(&mctz->lock);
 460                        /* if on-tree, remove it */
 461                        if (mz->on_tree)
 462                                __mem_cgroup_remove_exceeded(mem, mz, mctz);
 463                        /*
 464                         * Insert again. mz->usage_in_excess will be updated.
 465                         * If excess is 0, no tree ops.
 466                         */
 467                        __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
 468                        spin_unlock(&mctz->lock);
 469                }
 470        }
 471}
 472
 473static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
 474{
 475        int node, zone;
 476        struct mem_cgroup_per_zone *mz;
 477        struct mem_cgroup_tree_per_zone *mctz;
 478
 479        for_each_node_state(node, N_POSSIBLE) {
 480                for (zone = 0; zone < MAX_NR_ZONES; zone++) {
 481                        mz = mem_cgroup_zoneinfo(mem, node, zone);
 482                        mctz = soft_limit_tree_node_zone(node, zone);
 483                        mem_cgroup_remove_exceeded(mem, mz, mctz);
 484                }
 485        }
 486}
 487
 488static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
 489{
 490        return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
 491}
 492
 493static struct mem_cgroup_per_zone *
 494__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
 495{
 496        struct rb_node *rightmost = NULL;
 497        struct mem_cgroup_per_zone *mz;
 498
 499retry:
 500        mz = NULL;
 501        rightmost = rb_last(&mctz->rb_root);
 502        if (!rightmost)
 503                goto done;              /* Nothing to reclaim from */
 504
 505        mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
 506        /*
 507         * Remove the node now but someone else can add it back,
 508         * we will to add it back at the end of reclaim to its correct
 509         * position in the tree.
 510         */
 511        __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
 512        if (!res_counter_soft_limit_excess(&mz->mem->res) ||
 513                !css_tryget(&mz->mem->css))
 514                goto retry;
 515done:
 516        return mz;
 517}
 518
 519static struct mem_cgroup_per_zone *
 520mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
 521{
 522        struct mem_cgroup_per_zone *mz;
 523
 524        spin_lock(&mctz->lock);
 525        mz = __mem_cgroup_largest_soft_limit_node(mctz);
 526        spin_unlock(&mctz->lock);
 527        return mz;
 528}
 529
 530static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
 531                enum mem_cgroup_stat_index idx)
 532{
 533        int cpu;
 534        s64 val = 0;
 535
 536        for_each_possible_cpu(cpu)
 537                val += per_cpu(mem->stat->count[idx], cpu);
 538        return val;
 539}
 540
 541static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
 542{
 543        s64 ret;
 544
 545        ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
 546        ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
 547        return ret;
 548}
 549
 550static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
 551                                         bool charge)
 552{
 553        int val = (charge) ? 1 : -1;
 554        this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
 555}
 556
 557static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
 558                                         struct page_cgroup *pc,
 559                                         bool charge)
 560{
 561        int val = (charge) ? 1 : -1;
 562
 563        preempt_disable();
 564
 565        if (PageCgroupCache(pc))
 566                __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
 567        else
 568                __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
 569
 570        if (charge)
 571                __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
 572        else
 573                __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
 574        __this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
 575
 576        preempt_enable();
 577}
 578
 579static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
 580                                        enum lru_list idx)
 581{
 582        int nid, zid;
 583        struct mem_cgroup_per_zone *mz;
 584        u64 total = 0;
 585
 586        for_each_online_node(nid)
 587                for (zid = 0; zid < MAX_NR_ZONES; zid++) {
 588                        mz = mem_cgroup_zoneinfo(mem, nid, zid);
 589                        total += MEM_CGROUP_ZSTAT(mz, idx);
 590                }
 591        return total;
 592}
 593
 594static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
 595{
 596        s64 val;
 597
 598        val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
 599
 600        return !(val & ((1 << event_mask_shift) - 1));
 601}
 602
 603/*
 604 * Check events in order.
 605 *
 606 */
 607static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
 608{
 609        /* threshold event is triggered in finer grain than soft limit */
 610        if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
 611                mem_cgroup_threshold(mem);
 612                if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
 613                        mem_cgroup_update_tree(mem, page);
 614        }
 615}
 616
 617static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
 618{
 619        return container_of(cgroup_subsys_state(cont,
 620                                mem_cgroup_subsys_id), struct mem_cgroup,
 621                                css);
 622}
 623
 624struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
 625{
 626        /*
 627         * mm_update_next_owner() may clear mm->owner to NULL
 628         * if it races with swapoff, page migration, etc.
 629         * So this can be called with p == NULL.
 630         */
 631        if (unlikely(!p))
 632                return NULL;
 633
 634        return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
 635                                struct mem_cgroup, css);
 636}
 637
 638static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
 639{
 640        struct mem_cgroup *mem = NULL;
 641
 642        if (!mm)
 643                return NULL;
 644        /*
 645         * Because we have no locks, mm->owner's may be being moved to other
 646         * cgroup. We use css_tryget() here even if this looks
 647         * pessimistic (rather than adding locks here).
 648         */
 649        rcu_read_lock();
 650        do {
 651                mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
 652                if (unlikely(!mem))
 653                        break;
 654        } while (!css_tryget(&mem->css));
 655        rcu_read_unlock();
 656        return mem;
 657}
 658
 659/*
 660 * Call callback function against all cgroup under hierarchy tree.
 661 */
 662static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
 663                          int (*func)(struct mem_cgroup *, void *))
 664{
 665        int found, ret, nextid;
 666        struct cgroup_subsys_state *css;
 667        struct mem_cgroup *mem;
 668
 669        if (!root->use_hierarchy)
 670                return (*func)(root, data);
 671
 672        nextid = 1;
 673        do {
 674                ret = 0;
 675                mem = NULL;
 676
 677                rcu_read_lock();
 678                css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
 679                                   &found);
 680                if (css && css_tryget(css))
 681                        mem = container_of(css, struct mem_cgroup, css);
 682                rcu_read_unlock();
 683
 684                if (mem) {
 685                        ret = (*func)(mem, data);
 686                        css_put(&mem->css);
 687                }
 688                nextid = found + 1;
 689        } while (!ret && css);
 690
 691        return ret;
 692}
 693
 694static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
 695{
 696        return (mem == root_mem_cgroup);
 697}
 698
 699/*
 700 * Following LRU functions are allowed to be used without PCG_LOCK.
 701 * Operations are called by routine of global LRU independently from memcg.
 702 * What we have to take care of here is validness of pc->mem_cgroup.
 703 *
 704 * Changes to pc->mem_cgroup happens when
 705 * 1. charge
 706 * 2. moving account
 707 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 708 * It is added to LRU before charge.
 709 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 710 * When moving account, the page is not on LRU. It's isolated.
 711 */
 712
 713void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
 714{
 715        struct page_cgroup *pc;
 716        struct mem_cgroup_per_zone *mz;
 717
 718        if (mem_cgroup_disabled())
 719                return;
 720        pc = lookup_page_cgroup(page);
 721        /* can happen while we handle swapcache. */
 722        if (!TestClearPageCgroupAcctLRU(pc))
 723                return;
 724        VM_BUG_ON(!pc->mem_cgroup);
 725        /*
 726         * We don't check PCG_USED bit. It's cleared when the "page" is finally
 727         * removed from global LRU.
 728         */
 729        mz = page_cgroup_zoneinfo(pc);
 730        MEM_CGROUP_ZSTAT(mz, lru) -= 1;
 731        if (mem_cgroup_is_root(pc->mem_cgroup))
 732                return;
 733        VM_BUG_ON(list_empty(&pc->lru));
 734        list_del_init(&pc->lru);
 735        return;
 736}
 737
 738void mem_cgroup_del_lru(struct page *page)
 739{
 740        mem_cgroup_del_lru_list(page, page_lru(page));
 741}
 742
 743void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
 744{
 745        struct mem_cgroup_per_zone *mz;
 746        struct page_cgroup *pc;
 747
 748        if (mem_cgroup_disabled())
 749                return;
 750
 751        pc = lookup_page_cgroup(page);
 752        /*
 753         * Used bit is set without atomic ops but after smp_wmb().
 754         * For making pc->mem_cgroup visible, insert smp_rmb() here.
 755         */
 756        smp_rmb();
 757        /* unused or root page is not rotated. */
 758        if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
 759                return;
 760        mz = page_cgroup_zoneinfo(pc);
 761        list_move(&pc->lru, &mz->lists[lru]);
 762}
 763
 764void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
 765{
 766        struct page_cgroup *pc;
 767        struct mem_cgroup_per_zone *mz;
 768
 769        if (mem_cgroup_disabled())
 770                return;
 771        pc = lookup_page_cgroup(page);
 772        VM_BUG_ON(PageCgroupAcctLRU(pc));
 773        /*
 774         * Used bit is set without atomic ops but after smp_wmb().
 775         * For making pc->mem_cgroup visible, insert smp_rmb() here.
 776         */
 777        smp_rmb();
 778        if (!PageCgroupUsed(pc))
 779                return;
 780
 781        mz = page_cgroup_zoneinfo(pc);
 782        MEM_CGROUP_ZSTAT(mz, lru) += 1;
 783        SetPageCgroupAcctLRU(pc);
 784        if (mem_cgroup_is_root(pc->mem_cgroup))
 785                return;
 786        list_add(&pc->lru, &mz->lists[lru]);
 787}
 788
 789/*
 790 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 791 * lru because the page may.be reused after it's fully uncharged (because of
 792 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 793 * it again. This function is only used to charge SwapCache. It's done under
 794 * lock_page and expected that zone->lru_lock is never held.
 795 */
 796static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
 797{
 798        unsigned long flags;
 799        struct zone *zone = page_zone(page);
 800        struct page_cgroup *pc = lookup_page_cgroup(page);
 801
 802        spin_lock_irqsave(&zone->lru_lock, flags);
 803        /*
 804         * Forget old LRU when this page_cgroup is *not* used. This Used bit
 805         * is guarded by lock_page() because the page is SwapCache.
 806         */
 807        if (!PageCgroupUsed(pc))
 808                mem_cgroup_del_lru_list(page, page_lru(page));
 809        spin_unlock_irqrestore(&zone->lru_lock, flags);
 810}
 811
 812static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
 813{
 814        unsigned long flags;
 815        struct zone *zone = page_zone(page);
 816        struct page_cgroup *pc = lookup_page_cgroup(page);
 817
 818        spin_lock_irqsave(&zone->lru_lock, flags);
 819        /* link when the page is linked to LRU but page_cgroup isn't */
 820        if (PageLRU(page) && !PageCgroupAcctLRU(pc))
 821                mem_cgroup_add_lru_list(page, page_lru(page));
 822        spin_unlock_irqrestore(&zone->lru_lock, flags);
 823}
 824
 825
 826void mem_cgroup_move_lists(struct page *page,
 827                           enum lru_list from, enum lru_list to)
 828{
 829        if (mem_cgroup_disabled())
 830                return;
 831        mem_cgroup_del_lru_list(page, from);
 832        mem_cgroup_add_lru_list(page, to);
 833}
 834
 835int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
 836{
 837        int ret;
 838        struct mem_cgroup *curr = NULL;
 839
 840        task_lock(task);
 841        rcu_read_lock();
 842        curr = try_get_mem_cgroup_from_mm(task->mm);
 843        rcu_read_unlock();
 844        task_unlock(task);
 845        if (!curr)
 846                return 0;
 847        /*
 848         * We should check use_hierarchy of "mem" not "curr". Because checking
 849         * use_hierarchy of "curr" here make this function true if hierarchy is
 850         * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
 851         * hierarchy(even if use_hierarchy is disabled in "mem").
 852         */
 853        if (mem->use_hierarchy)
 854                ret = css_is_ancestor(&curr->css, &mem->css);
 855        else
 856                ret = (curr == mem);
 857        css_put(&curr->css);
 858        return ret;
 859}
 860
 861/*
 862 * prev_priority control...this will be used in memory reclaim path.
 863 */
 864int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
 865{
 866        int prev_priority;
 867
 868        spin_lock(&mem->reclaim_param_lock);
 869        prev_priority = mem->prev_priority;
 870        spin_unlock(&mem->reclaim_param_lock);
 871
 872        return prev_priority;
 873}
 874
 875void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
 876{
 877        spin_lock(&mem->reclaim_param_lock);
 878        if (priority < mem->prev_priority)
 879                mem->prev_priority = priority;
 880        spin_unlock(&mem->reclaim_param_lock);
 881}
 882
 883void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
 884{
 885        spin_lock(&mem->reclaim_param_lock);
 886        mem->prev_priority = priority;
 887        spin_unlock(&mem->reclaim_param_lock);
 888}
 889
 890static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
 891{
 892        unsigned long active;
 893        unsigned long inactive;
 894        unsigned long gb;
 895        unsigned long inactive_ratio;
 896
 897        inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
 898        active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
 899
 900        gb = (inactive + active) >> (30 - PAGE_SHIFT);
 901        if (gb)
 902                inactive_ratio = int_sqrt(10 * gb);
 903        else
 904                inactive_ratio = 1;
 905
 906        if (present_pages) {
 907                present_pages[0] = inactive;
 908                present_pages[1] = active;
 909        }
 910
 911        return inactive_ratio;
 912}
 913
 914int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
 915{
 916        unsigned long active;
 917        unsigned long inactive;
 918        unsigned long present_pages[2];
 919        unsigned long inactive_ratio;
 920
 921        inactive_ratio = calc_inactive_ratio(memcg, present_pages);
 922
 923        inactive = present_pages[0];
 924        active = present_pages[1];
 925
 926        if (inactive * inactive_ratio < active)
 927                return 1;
 928
 929        return 0;
 930}
 931
 932int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
 933{
 934        unsigned long active;
 935        unsigned long inactive;
 936
 937        inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
 938        active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
 939
 940        return (active > inactive);
 941}
 942
 943unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
 944                                       struct zone *zone,
 945                                       enum lru_list lru)
 946{
 947        int nid = zone->zone_pgdat->node_id;
 948        int zid = zone_idx(zone);
 949        struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
 950
 951        return MEM_CGROUP_ZSTAT(mz, lru);
 952}
 953
 954struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
 955                                                      struct zone *zone)
 956{
 957        int nid = zone->zone_pgdat->node_id;
 958        int zid = zone_idx(zone);
 959        struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
 960
 961        return &mz->reclaim_stat;
 962}
 963
 964struct zone_reclaim_stat *
 965mem_cgroup_get_reclaim_stat_from_page(struct page *page)
 966{
 967        struct page_cgroup *pc;
 968        struct mem_cgroup_per_zone *mz;
 969
 970        if (mem_cgroup_disabled())
 971                return NULL;
 972
 973        pc = lookup_page_cgroup(page);
 974        /*
 975         * Used bit is set without atomic ops but after smp_wmb().
 976         * For making pc->mem_cgroup visible, insert smp_rmb() here.
 977         */
 978        smp_rmb();
 979        if (!PageCgroupUsed(pc))
 980                return NULL;
 981
 982        mz = page_cgroup_zoneinfo(pc);
 983        if (!mz)
 984                return NULL;
 985
 986        return &mz->reclaim_stat;
 987}
 988
 989unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
 990                                        struct list_head *dst,
 991                                        unsigned long *scanned, int order,
 992                                        int mode, struct zone *z,
 993                                        struct mem_cgroup *mem_cont,
 994                                        int active, int file)
 995{
 996        unsigned long nr_taken = 0;
 997        struct page *page;
 998        unsigned long scan;
 999        LIST_HEAD(pc_list);
1000        struct list_head *src;
1001        struct page_cgroup *pc, *tmp;
1002        int nid = z->zone_pgdat->node_id;
1003        int zid = zone_idx(z);
1004        struct mem_cgroup_per_zone *mz;
1005        int lru = LRU_FILE * file + active;
1006        int ret;
1007
1008        BUG_ON(!mem_cont);
1009        mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1010        src = &mz->lists[lru];
1011
1012        scan = 0;
1013        list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1014                if (scan >= nr_to_scan)
1015                        break;
1016
1017                page = pc->page;
1018                if (unlikely(!PageCgroupUsed(pc)))
1019                        continue;
1020                if (unlikely(!PageLRU(page)))
1021                        continue;
1022
1023                scan++;
1024                ret = __isolate_lru_page(page, mode, file);
1025                switch (ret) {
1026                case 0:
1027                        list_move(&page->lru, dst);
1028                        mem_cgroup_del_lru(page);
1029                        nr_taken++;
1030                        break;
1031                case -EBUSY:
1032                        /* we don't affect global LRU but rotate in our LRU */
1033                        mem_cgroup_rotate_lru_list(page, page_lru(page));
1034                        break;
1035                default:
1036                        break;
1037                }
1038        }
1039
1040        *scanned = scan;
1041        return nr_taken;
1042}
1043
1044#define mem_cgroup_from_res_counter(counter, member)    \
1045        container_of(counter, struct mem_cgroup, member)
1046
1047static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1048{
1049        if (do_swap_account) {
1050                if (res_counter_check_under_limit(&mem->res) &&
1051                        res_counter_check_under_limit(&mem->memsw))
1052                        return true;
1053        } else
1054                if (res_counter_check_under_limit(&mem->res))
1055                        return true;
1056        return false;
1057}
1058
1059static unsigned int get_swappiness(struct mem_cgroup *memcg)
1060{
1061        struct cgroup *cgrp = memcg->css.cgroup;
1062        unsigned int swappiness;
1063
1064        /* root ? */
1065        if (cgrp->parent == NULL)
1066                return vm_swappiness;
1067
1068        spin_lock(&memcg->reclaim_param_lock);
1069        swappiness = memcg->swappiness;
1070        spin_unlock(&memcg->reclaim_param_lock);
1071
1072        return swappiness;
1073}
1074
1075static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
1076{
1077        int *val = data;
1078        (*val)++;
1079        return 0;
1080}
1081
1082/**
1083 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1084 * @memcg: The memory cgroup that went over limit
1085 * @p: Task that is going to be killed
1086 *
1087 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1088 * enabled
1089 */
1090void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1091{
1092        struct cgroup *task_cgrp;
1093        struct cgroup *mem_cgrp;
1094        /*
1095         * Need a buffer in BSS, can't rely on allocations. The code relies
1096         * on the assumption that OOM is serialized for memory controller.
1097         * If this assumption is broken, revisit this code.
1098         */
1099        static char memcg_name[PATH_MAX];
1100        int ret;
1101
1102        if (!memcg || !p)
1103                return;
1104
1105
1106        rcu_read_lock();
1107
1108        mem_cgrp = memcg->css.cgroup;
1109        task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1110
1111        ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1112        if (ret < 0) {
1113                /*
1114                 * Unfortunately, we are unable to convert to a useful name
1115                 * But we'll still print out the usage information
1116                 */
1117                rcu_read_unlock();
1118                goto done;
1119        }
1120        rcu_read_unlock();
1121
1122        printk(KERN_INFO "Task in %s killed", memcg_name);
1123
1124        rcu_read_lock();
1125        ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1126        if (ret < 0) {
1127                rcu_read_unlock();
1128                goto done;
1129        }
1130        rcu_read_unlock();
1131
1132        /*
1133         * Continues from above, so we don't need an KERN_ level
1134         */
1135        printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1136done:
1137
1138        printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1139                res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1140                res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1141                res_counter_read_u64(&memcg->res, RES_FAILCNT));
1142        printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1143                "failcnt %llu\n",
1144                res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1145                res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1146                res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1147}
1148
1149/*
1150 * This function returns the number of memcg under hierarchy tree. Returns
1151 * 1(self count) if no children.
1152 */
1153static int mem_cgroup_count_children(struct mem_cgroup *mem)
1154{
1155        int num = 0;
1156        mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
1157        return num;
1158}
1159
1160/*
1161 * Visit the first child (need not be the first child as per the ordering
1162 * of the cgroup list, since we track last_scanned_child) of @mem and use
1163 * that to reclaim free pages from.
1164 */
1165static struct mem_cgroup *
1166mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1167{
1168        struct mem_cgroup *ret = NULL;
1169        struct cgroup_subsys_state *css;
1170        int nextid, found;
1171
1172        if (!root_mem->use_hierarchy) {
1173                css_get(&root_mem->css);
1174                ret = root_mem;
1175        }
1176
1177        while (!ret) {
1178                rcu_read_lock();
1179                nextid = root_mem->last_scanned_child + 1;
1180                css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1181                                   &found);
1182                if (css && css_tryget(css))
1183                        ret = container_of(css, struct mem_cgroup, css);
1184
1185                rcu_read_unlock();
1186                /* Updates scanning parameter */
1187                spin_lock(&root_mem->reclaim_param_lock);
1188                if (!css) {
1189                        /* this means start scan from ID:1 */
1190                        root_mem->last_scanned_child = 0;
1191                } else
1192                        root_mem->last_scanned_child = found;
1193                spin_unlock(&root_mem->reclaim_param_lock);
1194        }
1195
1196        return ret;
1197}
1198
1199/*
1200 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1201 * we reclaimed from, so that we don't end up penalizing one child extensively
1202 * based on its position in the children list.
1203 *
1204 * root_mem is the original ancestor that we've been reclaim from.
1205 *
1206 * We give up and return to the caller when we visit root_mem twice.
1207 * (other groups can be removed while we're walking....)
1208 *
1209 * If shrink==true, for avoiding to free too much, this returns immedieately.
1210 */
1211static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1212                                                struct zone *zone,
1213                                                gfp_t gfp_mask,
1214                                                unsigned long reclaim_options)
1215{
1216        struct mem_cgroup *victim;
1217        int ret, total = 0;
1218        int loop = 0;
1219        bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1220        bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1221        bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1222        unsigned long excess = mem_cgroup_get_excess(root_mem);
1223
1224        /* If memsw_is_minimum==1, swap-out is of-no-use. */
1225        if (root_mem->memsw_is_minimum)
1226                noswap = true;
1227
1228        while (1) {
1229                victim = mem_cgroup_select_victim(root_mem);
1230                if (victim == root_mem) {
1231                        loop++;
1232                        if (loop >= 1)
1233                                drain_all_stock_async();
1234                        if (loop >= 2) {
1235                                /*
1236                                 * If we have not been able to reclaim
1237                                 * anything, it might because there are
1238                                 * no reclaimable pages under this hierarchy
1239                                 */
1240                                if (!check_soft || !total) {
1241                                        css_put(&victim->css);
1242                                        break;
1243                                }
1244                                /*
1245                                 * We want to do more targetted reclaim.
1246                                 * excess >> 2 is not to excessive so as to
1247                                 * reclaim too much, nor too less that we keep
1248                                 * coming back to reclaim from this cgroup
1249                                 */
1250                                if (total >= (excess >> 2) ||
1251                                        (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1252                                        css_put(&victim->css);
1253                                        break;
1254                                }
1255                        }
1256                }
1257                if (!mem_cgroup_local_usage(victim)) {
1258                        /* this cgroup's local usage == 0 */
1259                        css_put(&victim->css);
1260                        continue;
1261                }
1262                /* we use swappiness of local cgroup */
1263                if (check_soft)
1264                        ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1265                                noswap, get_swappiness(victim), zone,
1266                                zone->zone_pgdat->node_id);
1267                else
1268                        ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1269                                                noswap, get_swappiness(victim));
1270                css_put(&victim->css);
1271                /*
1272                 * At shrinking usage, we can't check we should stop here or
1273                 * reclaim more. It's depends on callers. last_scanned_child
1274                 * will work enough for keeping fairness under tree.
1275                 */
1276                if (shrink)
1277                        return ret;
1278                total += ret;
1279                if (check_soft) {
1280                        if (res_counter_check_under_soft_limit(&root_mem->res))
1281                                return total;
1282                } else if (mem_cgroup_check_under_limit(root_mem))
1283                        return 1 + total;
1284        }
1285        return total;
1286}
1287
1288static int mem_cgroup_oom_lock_cb(struct mem_cgroup *mem, void *data)
1289{
1290        int *val = (int *)data;
1291        int x;
1292        /*
1293         * Logically, we can stop scanning immediately when we find
1294         * a memcg is already locked. But condidering unlock ops and
1295         * creation/removal of memcg, scan-all is simple operation.
1296         */
1297        x = atomic_inc_return(&mem->oom_lock);
1298        *val = max(x, *val);
1299        return 0;
1300}
1301/*
1302 * Check OOM-Killer is already running under our hierarchy.
1303 * If someone is running, return false.
1304 */
1305static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1306{
1307        int lock_count = 0;
1308
1309        mem_cgroup_walk_tree(mem, &lock_count, mem_cgroup_oom_lock_cb);
1310
1311        if (lock_count == 1)
1312                return true;
1313        return false;
1314}
1315
1316static int mem_cgroup_oom_unlock_cb(struct mem_cgroup *mem, void *data)
1317{
1318        /*
1319         * When a new child is created while the hierarchy is under oom,
1320         * mem_cgroup_oom_lock() may not be called. We have to use
1321         * atomic_add_unless() here.
1322         */
1323        atomic_add_unless(&mem->oom_lock, -1, 0);
1324        return 0;
1325}
1326
1327static void mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1328{
1329        mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_unlock_cb);
1330}
1331
1332static DEFINE_MUTEX(memcg_oom_mutex);
1333static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1334
1335struct oom_wait_info {
1336        struct mem_cgroup *mem;
1337        wait_queue_t    wait;
1338};
1339
1340static int memcg_oom_wake_function(wait_queue_t *wait,
1341        unsigned mode, int sync, void *arg)
1342{
1343        struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1344        struct oom_wait_info *oom_wait_info;
1345
1346        oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1347
1348        if (oom_wait_info->mem == wake_mem)
1349                goto wakeup;
1350        /* if no hierarchy, no match */
1351        if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1352                return 0;
1353        /*
1354         * Both of oom_wait_info->mem and wake_mem are stable under us.
1355         * Then we can use css_is_ancestor without taking care of RCU.
1356         */
1357        if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1358            !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1359                return 0;
1360
1361wakeup:
1362        return autoremove_wake_function(wait, mode, sync, arg);
1363}
1364
1365static void memcg_wakeup_oom(struct mem_cgroup *mem)
1366{
1367        /* for filtering, pass "mem" as argument. */
1368        __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1369}
1370
1371static void memcg_oom_recover(struct mem_cgroup *mem)
1372{
1373        if (atomic_read(&mem->oom_lock))
1374                memcg_wakeup_oom(mem);
1375}
1376
1377/*
1378 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1379 */
1380bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1381{
1382        struct oom_wait_info owait;
1383        bool locked, need_to_kill;
1384
1385        owait.mem = mem;
1386        owait.wait.flags = 0;
1387        owait.wait.func = memcg_oom_wake_function;
1388        owait.wait.private = current;
1389        INIT_LIST_HEAD(&owait.wait.task_list);
1390        need_to_kill = true;
1391        /* At first, try to OOM lock hierarchy under mem.*/
1392        mutex_lock(&memcg_oom_mutex);
1393        locked = mem_cgroup_oom_lock(mem);
1394        /*
1395         * Even if signal_pending(), we can't quit charge() loop without
1396         * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1397         * under OOM is always welcomed, use TASK_KILLABLE here.
1398         */
1399        prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1400        if (!locked || mem->oom_kill_disable)
1401                need_to_kill = false;
1402        if (locked)
1403                mem_cgroup_oom_notify(mem);
1404        mutex_unlock(&memcg_oom_mutex);
1405
1406        if (need_to_kill) {
1407                finish_wait(&memcg_oom_waitq, &owait.wait);
1408                mem_cgroup_out_of_memory(mem, mask);
1409        } else {
1410                schedule();
1411                finish_wait(&memcg_oom_waitq, &owait.wait);
1412        }
1413        mutex_lock(&memcg_oom_mutex);
1414        mem_cgroup_oom_unlock(mem);
1415        memcg_wakeup_oom(mem);
1416        mutex_unlock(&memcg_oom_mutex);
1417
1418        if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1419                return false;
1420        /* Give chance to dying process */
1421        schedule_timeout(1);
1422        return true;
1423}
1424
1425/*
1426 * Currently used to update mapped file statistics, but the routine can be
1427 * generalized to update other statistics as well.
1428 */
1429void mem_cgroup_update_file_mapped(struct page *page, int val)
1430{
1431        struct mem_cgroup *mem;
1432        struct page_cgroup *pc;
1433
1434        pc = lookup_page_cgroup(page);
1435        if (unlikely(!pc))
1436                return;
1437
1438        lock_page_cgroup(pc);
1439        mem = pc->mem_cgroup;
1440        if (!mem || !PageCgroupUsed(pc))
1441                goto done;
1442
1443        /*
1444         * Preemption is already disabled. We can use __this_cpu_xxx
1445         */
1446        if (val > 0) {
1447                __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1448                SetPageCgroupFileMapped(pc);
1449        } else {
1450                __this_cpu_dec(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1451                ClearPageCgroupFileMapped(pc);
1452        }
1453
1454done:
1455        unlock_page_cgroup(pc);
1456}
1457
1458/*
1459 * size of first charge trial. "32" comes from vmscan.c's magic value.
1460 * TODO: maybe necessary to use big numbers in big irons.
1461 */
1462#define CHARGE_SIZE     (32 * PAGE_SIZE)
1463struct memcg_stock_pcp {
1464        struct mem_cgroup *cached; /* this never be root cgroup */
1465        int charge;
1466        struct work_struct work;
1467};
1468static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1469static atomic_t memcg_drain_count;
1470
1471/*
1472 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1473 * from local stock and true is returned. If the stock is 0 or charges from a
1474 * cgroup which is not current target, returns false. This stock will be
1475 * refilled.
1476 */
1477static bool consume_stock(struct mem_cgroup *mem)
1478{
1479        struct memcg_stock_pcp *stock;
1480        bool ret = true;
1481
1482        stock = &get_cpu_var(memcg_stock);
1483        if (mem == stock->cached && stock->charge)
1484                stock->charge -= PAGE_SIZE;
1485        else /* need to call res_counter_charge */
1486                ret = false;
1487        put_cpu_var(memcg_stock);
1488        return ret;
1489}
1490
1491/*
1492 * Returns stocks cached in percpu to res_counter and reset cached information.
1493 */
1494static void drain_stock(struct memcg_stock_pcp *stock)
1495{
1496        struct mem_cgroup *old = stock->cached;
1497
1498        if (stock->charge) {
1499                res_counter_uncharge(&old->res, stock->charge);
1500                if (do_swap_account)
1501                        res_counter_uncharge(&old->memsw, stock->charge);
1502        }
1503        stock->cached = NULL;
1504        stock->charge = 0;
1505}
1506
1507/*
1508 * This must be called under preempt disabled or must be called by
1509 * a thread which is pinned to local cpu.
1510 */
1511static void drain_local_stock(struct work_struct *dummy)
1512{
1513        struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1514        drain_stock(stock);
1515}
1516
1517/*
1518 * Cache charges(val) which is from res_counter, to local per_cpu area.
1519 * This will be consumed by consume_stock() function, later.
1520 */
1521static void refill_stock(struct mem_cgroup *mem, int val)
1522{
1523        struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1524
1525        if (stock->cached != mem) { /* reset if necessary */
1526                drain_stock(stock);
1527                stock->cached = mem;
1528        }
1529        stock->charge += val;
1530        put_cpu_var(memcg_stock);
1531}
1532
1533/*
1534 * Tries to drain stocked charges in other cpus. This function is asynchronous
1535 * and just put a work per cpu for draining localy on each cpu. Caller can
1536 * expects some charges will be back to res_counter later but cannot wait for
1537 * it.
1538 */
1539static void drain_all_stock_async(void)
1540{
1541        int cpu;
1542        /* This function is for scheduling "drain" in asynchronous way.
1543         * The result of "drain" is not directly handled by callers. Then,
1544         * if someone is calling drain, we don't have to call drain more.
1545         * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1546         * there is a race. We just do loose check here.
1547         */
1548        if (atomic_read(&memcg_drain_count))
1549                return;
1550        /* Notify other cpus that system-wide "drain" is running */
1551        atomic_inc(&memcg_drain_count);
1552        get_online_cpus();
1553        for_each_online_cpu(cpu) {
1554                struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1555                schedule_work_on(cpu, &stock->work);
1556        }
1557        put_online_cpus();
1558        atomic_dec(&memcg_drain_count);
1559        /* We don't wait for flush_work */
1560}
1561
1562/* This is a synchronous drain interface. */
1563static void drain_all_stock_sync(void)
1564{
1565        /* called when force_empty is called */
1566        atomic_inc(&memcg_drain_count);
1567        schedule_on_each_cpu(drain_local_stock);
1568        atomic_dec(&memcg_drain_count);
1569}
1570
1571static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
1572                                        unsigned long action,
1573                                        void *hcpu)
1574{
1575        int cpu = (unsigned long)hcpu;
1576        struct memcg_stock_pcp *stock;
1577
1578        if (action != CPU_DEAD)
1579                return NOTIFY_OK;
1580        stock = &per_cpu(memcg_stock, cpu);
1581        drain_stock(stock);
1582        return NOTIFY_OK;
1583}
1584
1585/*
1586 * Unlike exported interface, "oom" parameter is added. if oom==true,
1587 * oom-killer can be invoked.
1588 */
1589static int __mem_cgroup_try_charge(struct mm_struct *mm,
1590                        gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
1591{
1592        struct mem_cgroup *mem, *mem_over_limit;
1593        int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1594        struct res_counter *fail_res;
1595        int csize = CHARGE_SIZE;
1596
1597        /*
1598         * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1599         * in system level. So, allow to go ahead dying process in addition to
1600         * MEMDIE process.
1601         */
1602        if (unlikely(test_thread_flag(TIF_MEMDIE)
1603                     || fatal_signal_pending(current)))
1604                goto bypass;
1605
1606        /*
1607         * We always charge the cgroup the mm_struct belongs to.
1608         * The mm_struct's mem_cgroup changes on task migration if the
1609         * thread group leader migrates. It's possible that mm is not
1610         * set, if so charge the init_mm (happens for pagecache usage).
1611         */
1612        mem = *memcg;
1613        if (likely(!mem)) {
1614                mem = try_get_mem_cgroup_from_mm(mm);
1615                *memcg = mem;
1616        } else {
1617                css_get(&mem->css);
1618        }
1619        if (unlikely(!mem))
1620                return 0;
1621
1622        VM_BUG_ON(css_is_removed(&mem->css));
1623        if (mem_cgroup_is_root(mem))
1624                goto done;
1625
1626        while (1) {
1627                int ret = 0;
1628                unsigned long flags = 0;
1629
1630                if (consume_stock(mem))
1631                        goto done;
1632
1633                ret = res_counter_charge(&mem->res, csize, &fail_res);
1634                if (likely(!ret)) {
1635                        if (!do_swap_account)
1636                                break;
1637                        ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1638                        if (likely(!ret))
1639                                break;
1640                        /* mem+swap counter fails */
1641                        res_counter_uncharge(&mem->res, csize);
1642                        flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1643                        mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1644                                                                        memsw);
1645                } else
1646                        /* mem counter fails */
1647                        mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1648                                                                        res);
1649
1650                /* reduce request size and retry */
1651                if (csize > PAGE_SIZE) {
1652                        csize = PAGE_SIZE;
1653                        continue;
1654                }
1655                if (!(gfp_mask & __GFP_WAIT))
1656                        goto nomem;
1657
1658                ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1659                                                gfp_mask, flags);
1660                if (ret)
1661                        continue;
1662
1663                /*
1664                 * try_to_free_mem_cgroup_pages() might not give us a full
1665                 * picture of reclaim. Some pages are reclaimed and might be
1666                 * moved to swap cache or just unmapped from the cgroup.
1667                 * Check the limit again to see if the reclaim reduced the
1668                 * current usage of the cgroup before giving up
1669                 *
1670                 */
1671                if (mem_cgroup_check_under_limit(mem_over_limit))
1672                        continue;
1673
1674                /* try to avoid oom while someone is moving charge */
1675                if (mc.moving_task && current != mc.moving_task) {
1676                        struct mem_cgroup *from, *to;
1677                        bool do_continue = false;
1678                        /*
1679                         * There is a small race that "from" or "to" can be
1680                         * freed by rmdir, so we use css_tryget().
1681                         */
1682                        from = mc.from;
1683                        to = mc.to;
1684                        if (from && css_tryget(&from->css)) {
1685                                if (mem_over_limit->use_hierarchy)
1686                                        do_continue = css_is_ancestor(
1687                                                        &from->css,
1688                                                        &mem_over_limit->css);
1689                                else
1690                                        do_continue = (from == mem_over_limit);
1691                                css_put(&from->css);
1692                        }
1693                        if (!do_continue && to && css_tryget(&to->css)) {
1694                                if (mem_over_limit->use_hierarchy)
1695                                        do_continue = css_is_ancestor(
1696                                                        &to->css,
1697                                                        &mem_over_limit->css);
1698                                else
1699                                        do_continue = (to == mem_over_limit);
1700                                css_put(&to->css);
1701                        }
1702                        if (do_continue) {
1703                                DEFINE_WAIT(wait);
1704                                prepare_to_wait(&mc.waitq, &wait,
1705                                                        TASK_INTERRUPTIBLE);
1706                                /* moving charge context might have finished. */
1707                                if (mc.moving_task)
1708                                        schedule();
1709                                finish_wait(&mc.waitq, &wait);
1710                                continue;
1711                        }
1712                }
1713
1714                if (!nr_retries--) {
1715                        if (!oom)
1716                                goto nomem;
1717                        if (mem_cgroup_handle_oom(mem_over_limit, gfp_mask)) {
1718                                nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1719                                continue;
1720                        }
1721                        /* When we reach here, current task is dying .*/
1722                        css_put(&mem->css);
1723                        goto bypass;
1724                }
1725        }
1726        if (csize > PAGE_SIZE)
1727                refill_stock(mem, csize - PAGE_SIZE);
1728done:
1729        return 0;
1730nomem:
1731        css_put(&mem->css);
1732        return -ENOMEM;
1733bypass:
1734        *memcg = NULL;
1735        return 0;
1736}
1737
1738/*
1739 * Somemtimes we have to undo a charge we got by try_charge().
1740 * This function is for that and do uncharge, put css's refcnt.
1741 * gotten by try_charge().
1742 */
1743static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
1744                                                        unsigned long count)
1745{
1746        if (!mem_cgroup_is_root(mem)) {
1747                res_counter_uncharge(&mem->res, PAGE_SIZE * count);
1748                if (do_swap_account)
1749                        res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
1750                VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
1751                WARN_ON_ONCE(count > INT_MAX);
1752                __css_put(&mem->css, (int)count);
1753        }
1754        /* we don't need css_put for root */
1755}
1756
1757static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
1758{
1759        __mem_cgroup_cancel_charge(mem, 1);
1760}
1761
1762/*
1763 * A helper function to get mem_cgroup from ID. must be called under
1764 * rcu_read_lock(). The caller must check css_is_removed() or some if
1765 * it's concern. (dropping refcnt from swap can be called against removed
1766 * memcg.)
1767 */
1768static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1769{
1770        struct cgroup_subsys_state *css;
1771
1772        /* ID 0 is unused ID */
1773        if (!id)
1774                return NULL;
1775        css = css_lookup(&mem_cgroup_subsys, id);
1776        if (!css)
1777                return NULL;
1778        return container_of(css, struct mem_cgroup, css);
1779}
1780
1781struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
1782{
1783        struct mem_cgroup *mem = NULL;
1784        struct page_cgroup *pc;
1785        unsigned short id;
1786        swp_entry_t ent;
1787
1788        VM_BUG_ON(!PageLocked(page));
1789
1790        pc = lookup_page_cgroup(page);
1791        lock_page_cgroup(pc);
1792        if (PageCgroupUsed(pc)) {
1793                mem = pc->mem_cgroup;
1794                if (mem && !css_tryget(&mem->css))
1795                        mem = NULL;
1796        } else if (PageSwapCache(page)) {
1797                ent.val = page_private(page);
1798                id = lookup_swap_cgroup(ent);
1799                rcu_read_lock();
1800                mem = mem_cgroup_lookup(id);
1801                if (mem && !css_tryget(&mem->css))
1802                        mem = NULL;
1803                rcu_read_unlock();
1804        }
1805        unlock_page_cgroup(pc);
1806        return mem;
1807}
1808
1809/*
1810 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1811 * USED state. If already USED, uncharge and return.
1812 */
1813
1814static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1815                                     struct page_cgroup *pc,
1816                                     enum charge_type ctype)
1817{
1818        /* try_charge() can return NULL to *memcg, taking care of it. */
1819        if (!mem)
1820                return;
1821
1822        lock_page_cgroup(pc);
1823        if (unlikely(PageCgroupUsed(pc))) {
1824                unlock_page_cgroup(pc);
1825                mem_cgroup_cancel_charge(mem);
1826                return;
1827        }
1828
1829        pc->mem_cgroup = mem;
1830        /*
1831         * We access a page_cgroup asynchronously without lock_page_cgroup().
1832         * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
1833         * is accessed after testing USED bit. To make pc->mem_cgroup visible
1834         * before USED bit, we need memory barrier here.
1835         * See mem_cgroup_add_lru_list(), etc.
1836         */
1837        smp_wmb();
1838        switch (ctype) {
1839        case MEM_CGROUP_CHARGE_TYPE_CACHE:
1840        case MEM_CGROUP_CHARGE_TYPE_SHMEM:
1841                SetPageCgroupCache(pc);
1842                SetPageCgroupUsed(pc);
1843                break;
1844        case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1845                ClearPageCgroupCache(pc);
1846                SetPageCgroupUsed(pc);
1847                break;
1848        default:
1849                break;
1850        }
1851
1852        mem_cgroup_charge_statistics(mem, pc, true);
1853
1854        unlock_page_cgroup(pc);
1855        /*
1856         * "charge_statistics" updated event counter. Then, check it.
1857         * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
1858         * if they exceeds softlimit.
1859         */
1860        memcg_check_events(mem, pc->page);
1861}
1862
1863/**
1864 * __mem_cgroup_move_account - move account of the page
1865 * @pc: page_cgroup of the page.
1866 * @from: mem_cgroup which the page is moved from.
1867 * @to: mem_cgroup which the page is moved to. @from != @to.
1868 * @uncharge: whether we should call uncharge and css_put against @from.
1869 *
1870 * The caller must confirm following.
1871 * - page is not on LRU (isolate_page() is useful.)
1872 * - the pc is locked, used, and ->mem_cgroup points to @from.
1873 *
1874 * This function doesn't do "charge" nor css_get to new cgroup. It should be
1875 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
1876 * true, this function does "uncharge" from old cgroup, but it doesn't if
1877 * @uncharge is false, so a caller should do "uncharge".
1878 */
1879
1880static void __mem_cgroup_move_account(struct page_cgroup *pc,
1881        struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1882{
1883        VM_BUG_ON(from == to);
1884        VM_BUG_ON(PageLRU(pc->page));
1885        VM_BUG_ON(!PageCgroupLocked(pc));
1886        VM_BUG_ON(!PageCgroupUsed(pc));
1887        VM_BUG_ON(pc->mem_cgroup != from);
1888
1889        if (PageCgroupFileMapped(pc)) {
1890                /* Update mapped_file data for mem_cgroup */
1891                preempt_disable();
1892                __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1893                __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1894                preempt_enable();
1895        }
1896        mem_cgroup_charge_statistics(from, pc, false);
1897        if (uncharge)
1898                /* This is not "cancel", but cancel_charge does all we need. */
1899                mem_cgroup_cancel_charge(from);
1900
1901        /* caller should have done css_get */
1902        pc->mem_cgroup = to;
1903        mem_cgroup_charge_statistics(to, pc, true);
1904        /*
1905         * We charges against "to" which may not have any tasks. Then, "to"
1906         * can be under rmdir(). But in current implementation, caller of
1907         * this function is just force_empty() and move charge, so it's
1908         * garanteed that "to" is never removed. So, we don't check rmdir
1909         * status here.
1910         */
1911}
1912
1913/*
1914 * check whether the @pc is valid for moving account and call
1915 * __mem_cgroup_move_account()
1916 */
1917static int mem_cgroup_move_account(struct page_cgroup *pc,
1918                struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1919{
1920        int ret = -EINVAL;
1921        lock_page_cgroup(pc);
1922        if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
1923                __mem_cgroup_move_account(pc, from, to, uncharge);
1924                ret = 0;
1925        }
1926        unlock_page_cgroup(pc);
1927        /*
1928         * check events
1929         */
1930        memcg_check_events(to, pc->page);
1931        memcg_check_events(from, pc->page);
1932        return ret;
1933}
1934
1935/*
1936 * move charges to its parent.
1937 */
1938
1939static int mem_cgroup_move_parent(struct page_cgroup *pc,
1940                                  struct mem_cgroup *child,
1941                                  gfp_t gfp_mask)
1942{
1943        struct page *page = pc->page;
1944        struct cgroup *cg = child->css.cgroup;
1945        struct cgroup *pcg = cg->parent;
1946        struct mem_cgroup *parent;
1947        int ret;
1948
1949        /* Is ROOT ? */
1950        if (!pcg)
1951                return -EINVAL;
1952
1953        ret = -EBUSY;
1954        if (!get_page_unless_zero(page))
1955                goto out;
1956        if (isolate_lru_page(page))
1957                goto put;
1958
1959        parent = mem_cgroup_from_cont(pcg);
1960        ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
1961        if (ret || !parent)
1962                goto put_back;
1963
1964        ret = mem_cgroup_move_account(pc, child, parent, true);
1965        if (ret)
1966                mem_cgroup_cancel_charge(parent);
1967put_back:
1968        putback_lru_page(page);
1969put:
1970        put_page(page);
1971out:
1972        return ret;
1973}
1974
1975/*
1976 * Charge the memory controller for page usage.
1977 * Return
1978 * 0 if the charge was successful
1979 * < 0 if the cgroup is over its limit
1980 */
1981static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1982                                gfp_t gfp_mask, enum charge_type ctype,
1983                                struct mem_cgroup *memcg)
1984{
1985        struct mem_cgroup *mem;
1986        struct page_cgroup *pc;
1987        int ret;
1988
1989        pc = lookup_page_cgroup(page);
1990        /* can happen at boot */
1991        if (unlikely(!pc))
1992                return 0;
1993        prefetchw(pc);
1994
1995        mem = memcg;
1996        ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1997        if (ret || !mem)
1998                return ret;
1999
2000        __mem_cgroup_commit_charge(mem, pc, ctype);
2001        return 0;
2002}
2003
2004int mem_cgroup_newpage_charge(struct page *page,
2005                              struct mm_struct *mm, gfp_t gfp_mask)
2006{
2007        if (mem_cgroup_disabled())
2008                return 0;
2009        if (PageCompound(page))
2010                return 0;
2011        /*
2012         * If already mapped, we don't have to account.
2013         * If page cache, page->mapping has address_space.
2014         * But page->mapping may have out-of-use anon_vma pointer,
2015         * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2016         * is NULL.
2017         */
2018        if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2019                return 0;
2020        if (unlikely(!mm))
2021                mm = &init_mm;
2022        return mem_cgroup_charge_common(page, mm, gfp_mask,
2023                                MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
2024}
2025
2026static void
2027__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2028                                        enum charge_type ctype);
2029
2030int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2031                                gfp_t gfp_mask)
2032{
2033        struct mem_cgroup *mem = NULL;
2034        int ret;
2035
2036        if (mem_cgroup_disabled())
2037                return 0;
2038        if (PageCompound(page))
2039                return 0;
2040        /*
2041         * Corner case handling. This is called from add_to_page_cache()
2042         * in usual. But some FS (shmem) precharges this page before calling it
2043         * and call add_to_page_cache() with GFP_NOWAIT.
2044         *
2045         * For GFP_NOWAIT case, the page may be pre-charged before calling
2046         * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2047         * charge twice. (It works but has to pay a bit larger cost.)
2048         * And when the page is SwapCache, it should take swap information
2049         * into account. This is under lock_page() now.
2050         */
2051        if (!(gfp_mask & __GFP_WAIT)) {
2052                struct page_cgroup *pc;
2053
2054
2055                pc = lookup_page_cgroup(page);
2056                if (!pc)
2057                        return 0;
2058                lock_page_cgroup(pc);
2059                if (PageCgroupUsed(pc)) {
2060                        unlock_page_cgroup(pc);
2061                        return 0;
2062                }
2063                unlock_page_cgroup(pc);
2064        }
2065
2066        if (unlikely(!mm && !mem))
2067                mm = &init_mm;
2068
2069        if (page_is_file_cache(page))
2070                return mem_cgroup_charge_common(page, mm, gfp_mask,
2071                                MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
2072
2073        /* shmem */
2074        if (PageSwapCache(page)) {
2075                ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2076                if (!ret)
2077                        __mem_cgroup_commit_charge_swapin(page, mem,
2078                                        MEM_CGROUP_CHARGE_TYPE_SHMEM);
2079        } else
2080                ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2081                                        MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
2082
2083        return ret;
2084}
2085
2086/*
2087 * While swap-in, try_charge -> commit or cancel, the page is locked.
2088 * And when try_charge() successfully returns, one refcnt to memcg without
2089 * struct page_cgroup is acquired. This refcnt will be consumed by
2090 * "commit()" or removed by "cancel()"
2091 */
2092int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2093                                 struct page *page,
2094                                 gfp_t mask, struct mem_cgroup **ptr)
2095{
2096        struct mem_cgroup *mem;
2097        int ret;
2098
2099        if (mem_cgroup_disabled())
2100                return 0;
2101
2102        if (!do_swap_account)
2103                goto charge_cur_mm;
2104        /*
2105         * A racing thread's fault, or swapoff, may have already updated
2106         * the pte, and even removed page from swap cache: in those cases
2107         * do_swap_page()'s pte_same() test will fail; but there's also a
2108         * KSM case which does need to charge the page.
2109         */
2110        if (!PageSwapCache(page))
2111                goto charge_cur_mm;
2112        mem = try_get_mem_cgroup_from_page(page);
2113        if (!mem)
2114                goto charge_cur_mm;
2115        *ptr = mem;
2116        ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
2117        /* drop extra refcnt from tryget */
2118        css_put(&mem->css);
2119        return ret;
2120charge_cur_mm:
2121        if (unlikely(!mm))
2122                mm = &init_mm;
2123        return __mem_cgroup_try_charge(mm, mask, ptr, true);
2124}
2125
2126static void
2127__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2128                                        enum charge_type ctype)
2129{
2130        struct page_cgroup *pc;
2131
2132        if (mem_cgroup_disabled())
2133                return;
2134        if (!ptr)
2135                return;
2136        cgroup_exclude_rmdir(&ptr->css);
2137        pc = lookup_page_cgroup(page);
2138        mem_cgroup_lru_del_before_commit_swapcache(page);
2139        __mem_cgroup_commit_charge(ptr, pc, ctype);
2140        mem_cgroup_lru_add_after_commit_swapcache(page);
2141        /*
2142         * Now swap is on-memory. This means this page may be
2143         * counted both as mem and swap....double count.
2144         * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2145         * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2146         * may call delete_from_swap_cache() before reach here.
2147         */
2148        if (do_swap_account && PageSwapCache(page)) {
2149                swp_entry_t ent = {.val = page_private(page)};
2150                unsigned short id;
2151                struct mem_cgroup *memcg;
2152
2153                id = swap_cgroup_record(ent, 0);
2154                rcu_read_lock();
2155                memcg = mem_cgroup_lookup(id);
2156                if (memcg) {
2157                        /*
2158                         * This recorded memcg can be obsolete one. So, avoid
2159                         * calling css_tryget
2160                         */
2161                        if (!mem_cgroup_is_root(memcg))
2162                                res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2163                        mem_cgroup_swap_statistics(memcg, false);
2164                        mem_cgroup_put(memcg);
2165                }
2166                rcu_read_unlock();
2167        }
2168        /*
2169         * At swapin, we may charge account against cgroup which has no tasks.
2170         * So, rmdir()->pre_destroy() can be called while we do this charge.
2171         * In that case, we need to call pre_destroy() again. check it here.
2172         */
2173        cgroup_release_and_wakeup_rmdir(&ptr->css);
2174}
2175
2176void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2177{
2178        __mem_cgroup_commit_charge_swapin(page, ptr,
2179                                        MEM_CGROUP_CHARGE_TYPE_MAPPED);
2180}
2181
2182void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2183{
2184        if (mem_cgroup_disabled())
2185                return;
2186        if (!mem)
2187                return;
2188        mem_cgroup_cancel_charge(mem);
2189}
2190
2191static void
2192__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
2193{
2194        struct memcg_batch_info *batch = NULL;
2195        bool uncharge_memsw = true;
2196        /* If swapout, usage of swap doesn't decrease */
2197        if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2198                uncharge_memsw = false;
2199
2200        batch = &current->memcg_batch;
2201        /*
2202         * In usual, we do css_get() when we remember memcg pointer.
2203         * But in this case, we keep res->usage until end of a series of
2204         * uncharges. Then, it's ok to ignore memcg's refcnt.
2205         */
2206        if (!batch->memcg)
2207                batch->memcg = mem;
2208        /*
2209         * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2210         * In those cases, all pages freed continously can be expected to be in
2211         * the same cgroup and we have chance to coalesce uncharges.
2212         * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2213         * because we want to do uncharge as soon as possible.
2214         */
2215
2216        if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2217                goto direct_uncharge;
2218
2219        /*
2220         * In typical case, batch->memcg == mem. This means we can
2221         * merge a series of uncharges to an uncharge of res_counter.
2222         * If not, we uncharge res_counter ony by one.
2223         */
2224        if (batch->memcg != mem)
2225                goto direct_uncharge;
2226        /* remember freed charge and uncharge it later */
2227        batch->bytes += PAGE_SIZE;
2228        if (uncharge_memsw)
2229                batch->memsw_bytes += PAGE_SIZE;
2230        return;
2231direct_uncharge:
2232        res_counter_uncharge(&mem->res, PAGE_SIZE);
2233        if (uncharge_memsw)
2234                res_counter_uncharge(&mem->memsw, PAGE_SIZE);
2235        if (unlikely(batch->memcg != mem))
2236                memcg_oom_recover(mem);
2237        return;
2238}
2239
2240/*
2241 * uncharge if !page_mapped(page)
2242 */
2243static struct mem_cgroup *
2244__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2245{
2246        struct page_cgroup *pc;
2247        struct mem_cgroup *mem = NULL;
2248        struct mem_cgroup_per_zone *mz;
2249
2250        if (mem_cgroup_disabled())
2251                return NULL;
2252
2253        if (PageSwapCache(page))
2254                return NULL;
2255
2256        /*
2257         * Check if our page_cgroup is valid
2258         */
2259        pc = lookup_page_cgroup(page);
2260        if (unlikely(!pc || !PageCgroupUsed(pc)))
2261                return NULL;
2262
2263        lock_page_cgroup(pc);
2264
2265        mem = pc->mem_cgroup;
2266
2267        if (!PageCgroupUsed(pc))
2268                goto unlock_out;
2269
2270        switch (ctype) {
2271        case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2272        case MEM_CGROUP_CHARGE_TYPE_DROP:
2273                /* See mem_cgroup_prepare_migration() */
2274                if (page_mapped(page) || PageCgroupMigration(pc))
2275                        goto unlock_out;
2276                break;
2277        case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2278                if (!PageAnon(page)) {  /* Shared memory */
2279                        if (page->mapping && !page_is_file_cache(page))
2280                                goto unlock_out;
2281                } else if (page_mapped(page)) /* Anon */
2282                                goto unlock_out;
2283                break;
2284        default:
2285                break;
2286        }
2287
2288        if (!mem_cgroup_is_root(mem))
2289                __do_uncharge(mem, ctype);
2290        if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2291                mem_cgroup_swap_statistics(mem, true);
2292        mem_cgroup_charge_statistics(mem, pc, false);
2293
2294        ClearPageCgroupUsed(pc);
2295        /*
2296         * pc->mem_cgroup is not cleared here. It will be accessed when it's
2297         * freed from LRU. This is safe because uncharged page is expected not
2298         * to be reused (freed soon). Exception is SwapCache, it's handled by
2299         * special functions.
2300         */
2301
2302        mz = page_cgroup_zoneinfo(pc);
2303        unlock_page_cgroup(pc);
2304
2305        memcg_check_events(mem, page);
2306        /* at swapout, this memcg will be accessed to record to swap */
2307        if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2308                css_put(&mem->css);
2309
2310        return mem;
2311
2312unlock_out:
2313        unlock_page_cgroup(pc);
2314        return NULL;
2315}
2316
2317void mem_cgroup_uncharge_page(struct page *page)
2318{
2319        /* early check. */
2320        if (page_mapped(page))
2321                return;
2322        if (page->mapping && !PageAnon(page))
2323                return;
2324        __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2325}
2326
2327void mem_cgroup_uncharge_cache_page(struct page *page)
2328{
2329        VM_BUG_ON(page_mapped(page));
2330        VM_BUG_ON(page->mapping);
2331        __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2332}
2333
2334/*
2335 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2336 * In that cases, pages are freed continuously and we can expect pages
2337 * are in the same memcg. All these calls itself limits the number of
2338 * pages freed at once, then uncharge_start/end() is called properly.
2339 * This may be called prural(2) times in a context,
2340 */
2341
2342void mem_cgroup_uncharge_start(void)
2343{
2344        current->memcg_batch.do_batch++;
2345        /* We can do nest. */
2346        if (current->memcg_batch.do_batch == 1) {
2347                current->memcg_batch.memcg = NULL;
2348                current->memcg_batch.bytes = 0;
2349                current->memcg_batch.memsw_bytes = 0;
2350        }
2351}
2352
2353void mem_cgroup_uncharge_end(void)
2354{
2355        struct memcg_batch_info *batch = &current->memcg_batch;
2356
2357        if (!batch->do_batch)
2358                return;
2359
2360        batch->do_batch--;
2361        if (batch->do_batch) /* If stacked, do nothing. */
2362                return;
2363
2364        if (!batch->memcg)
2365                return;
2366        /*
2367         * This "batch->memcg" is valid without any css_get/put etc...
2368         * bacause we hide charges behind us.
2369         */
2370        if (batch->bytes)
2371                res_counter_uncharge(&batch->memcg->res, batch->bytes);
2372        if (batch->memsw_bytes)
2373                res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2374        memcg_oom_recover(batch->memcg);
2375        /* forget this pointer (for sanity check) */
2376        batch->memcg = NULL;
2377}
2378
2379#ifdef CONFIG_SWAP
2380/*
2381 * called after __delete_from_swap_cache() and drop "page" account.
2382 * memcg information is recorded to swap_cgroup of "ent"
2383 */
2384void
2385mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2386{
2387        struct mem_cgroup *memcg;
2388        int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2389
2390        if (!swapout) /* this was a swap cache but the swap is unused ! */
2391                ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2392
2393        memcg = __mem_cgroup_uncharge_common(page, ctype);
2394
2395        /* record memcg information */
2396        if (do_swap_account && swapout && memcg) {
2397                swap_cgroup_record(ent, css_id(&memcg->css));
2398                mem_cgroup_get(memcg);
2399        }
2400        if (swapout && memcg)
2401                css_put(&memcg->css);
2402}
2403#endif
2404
2405#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2406/*
2407 * called from swap_entry_free(). remove record in swap_cgroup and
2408 * uncharge "memsw" account.
2409 */
2410void mem_cgroup_uncharge_swap(swp_entry_t ent)
2411{
2412        struct mem_cgroup *memcg;
2413        unsigned short id;
2414
2415        if (!do_swap_account)
2416                return;
2417
2418        id = swap_cgroup_record(ent, 0);
2419        rcu_read_lock();
2420        memcg = mem_cgroup_lookup(id);
2421        if (memcg) {
2422                /*
2423                 * We uncharge this because swap is freed.
2424                 * This memcg can be obsolete one. We avoid calling css_tryget
2425                 */
2426                if (!mem_cgroup_is_root(memcg))
2427                        res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2428                mem_cgroup_swap_statistics(memcg, false);
2429                mem_cgroup_put(memcg);
2430        }
2431        rcu_read_unlock();
2432}
2433
2434/**
2435 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2436 * @entry: swap entry to be moved
2437 * @from:  mem_cgroup which the entry is moved from
2438 * @to:  mem_cgroup which the entry is moved to
2439 * @need_fixup: whether we should fixup res_counters and refcounts.
2440 *
2441 * It succeeds only when the swap_cgroup's record for this entry is the same
2442 * as the mem_cgroup's id of @from.
2443 *
2444 * Returns 0 on success, -EINVAL on failure.
2445 *
2446 * The caller must have charged to @to, IOW, called res_counter_charge() about
2447 * both res and memsw, and called css_get().
2448 */
2449static int mem_cgroup_move_swap_account(swp_entry_t entry,
2450                struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2451{
2452        unsigned short old_id, new_id;
2453
2454        old_id = css_id(&from->css);
2455        new_id = css_id(&to->css);
2456
2457        if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2458                mem_cgroup_swap_statistics(from, false);
2459                mem_cgroup_swap_statistics(to, true);
2460                /*
2461                 * This function is only called from task migration context now.
2462                 * It postpones res_counter and refcount handling till the end
2463                 * of task migration(mem_cgroup_clear_mc()) for performance
2464                 * improvement. But we cannot postpone mem_cgroup_get(to)
2465                 * because if the process that has been moved to @to does
2466                 * swap-in, the refcount of @to might be decreased to 0.
2467                 */
2468                mem_cgroup_get(to);
2469                if (need_fixup) {
2470                        if (!mem_cgroup_is_root(from))
2471                                res_counter_uncharge(&from->memsw, PAGE_SIZE);
2472                        mem_cgroup_put(from);
2473                        /*
2474                         * we charged both to->res and to->memsw, so we should
2475                         * uncharge to->res.
2476                         */
2477                        if (!mem_cgroup_is_root(to))
2478                                res_counter_uncharge(&to->res, PAGE_SIZE);
2479                        css_put(&to->css);
2480                }
2481                return 0;
2482        }
2483        return -EINVAL;
2484}
2485#else
2486static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2487                struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2488{
2489        return -EINVAL;
2490}
2491#endif
2492
2493/*
2494 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2495 * page belongs to.
2496 */
2497int mem_cgroup_prepare_migration(struct page *page,
2498        struct page *newpage, struct mem_cgroup **ptr)
2499{
2500        struct page_cgroup *pc;
2501        struct mem_cgroup *mem = NULL;
2502        enum charge_type ctype;
2503        int ret = 0;
2504
2505        if (mem_cgroup_disabled())
2506                return 0;
2507
2508        pc = lookup_page_cgroup(page);
2509        lock_page_cgroup(pc);
2510        if (PageCgroupUsed(pc)) {
2511                mem = pc->mem_cgroup;
2512                css_get(&mem->css);
2513                /*
2514                 * At migrating an anonymous page, its mapcount goes down
2515                 * to 0 and uncharge() will be called. But, even if it's fully
2516                 * unmapped, migration may fail and this page has to be
2517                 * charged again. We set MIGRATION flag here and delay uncharge
2518                 * until end_migration() is called
2519                 *
2520                 * Corner Case Thinking
2521                 * A)
2522                 * When the old page was mapped as Anon and it's unmap-and-freed
2523                 * while migration was ongoing.
2524                 * If unmap finds the old page, uncharge() of it will be delayed
2525                 * until end_migration(). If unmap finds a new page, it's
2526                 * uncharged when it make mapcount to be 1->0. If unmap code
2527                 * finds swap_migration_entry, the new page will not be mapped
2528                 * and end_migration() will find it(mapcount==0).
2529                 *
2530                 * B)
2531                 * When the old page was mapped but migraion fails, the kernel
2532                 * remaps it. A charge for it is kept by MIGRATION flag even
2533                 * if mapcount goes down to 0. We can do remap successfully
2534                 * without charging it again.
2535                 *
2536                 * C)
2537                 * The "old" page is under lock_page() until the end of
2538                 * migration, so, the old page itself will not be swapped-out.
2539                 * If the new page is swapped out before end_migraton, our
2540                 * hook to usual swap-out path will catch the event.
2541                 */
2542                if (PageAnon(page))
2543                        SetPageCgroupMigration(pc);
2544        }
2545        unlock_page_cgroup(pc);
2546        /*
2547         * If the page is not charged at this point,
2548         * we return here.
2549         */
2550        if (!mem)
2551                return 0;
2552
2553        *ptr = mem;
2554        ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false);
2555        css_put(&mem->css);/* drop extra refcnt */
2556        if (ret || *ptr == NULL) {
2557                if (PageAnon(page)) {
2558                        lock_page_cgroup(pc);
2559                        ClearPageCgroupMigration(pc);
2560                        unlock_page_cgroup(pc);
2561                        /*
2562                         * The old page may be fully unmapped while we kept it.
2563                         */
2564                        mem_cgroup_uncharge_page(page);
2565                }
2566                return -ENOMEM;
2567        }
2568        /*
2569         * We charge new page before it's used/mapped. So, even if unlock_page()
2570         * is called before end_migration, we can catch all events on this new
2571         * page. In the case new page is migrated but not remapped, new page's
2572         * mapcount will be finally 0 and we call uncharge in end_migration().
2573         */
2574        pc = lookup_page_cgroup(newpage);
2575        if (PageAnon(page))
2576                ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2577        else if (page_is_file_cache(page))
2578                ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2579        else
2580                ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2581        __mem_cgroup_commit_charge(mem, pc, ctype);
2582        return ret;
2583}
2584
2585/* remove redundant charge if migration failed*/
2586void mem_cgroup_end_migration(struct mem_cgroup *mem,
2587        struct page *oldpage, struct page *newpage)
2588{
2589        struct page *used, *unused;
2590        struct page_cgroup *pc;
2591
2592        if (!mem)
2593                return;
2594        /* blocks rmdir() */
2595        cgroup_exclude_rmdir(&mem->css);
2596        /* at migration success, oldpage->mapping is NULL. */
2597        if (oldpage->mapping) {
2598                used = oldpage;
2599                unused = newpage;
2600        } else {
2601                used = newpage;
2602                unused = oldpage;
2603        }
2604        /*
2605         * We disallowed uncharge of pages under migration because mapcount
2606         * of the page goes down to zero, temporarly.
2607         * Clear the flag and check the page should be charged.
2608         */
2609        pc = lookup_page_cgroup(oldpage);
2610        lock_page_cgroup(pc);
2611        ClearPageCgroupMigration(pc);
2612        unlock_page_cgroup(pc);
2613
2614        if (unused != oldpage)
2615                pc = lookup_page_cgroup(unused);
2616        __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
2617
2618        pc = lookup_page_cgroup(used);
2619        /*
2620         * If a page is a file cache, radix-tree replacement is very atomic
2621         * and we can skip this check. When it was an Anon page, its mapcount
2622         * goes down to 0. But because we added MIGRATION flage, it's not
2623         * uncharged yet. There are several case but page->mapcount check
2624         * and USED bit check in mem_cgroup_uncharge_page() will do enough
2625         * check. (see prepare_charge() also)
2626         */
2627        if (PageAnon(used))
2628                mem_cgroup_uncharge_page(used);
2629        /*
2630         * At migration, we may charge account against cgroup which has no
2631         * tasks.
2632         * So, rmdir()->pre_destroy() can be called while we do this charge.
2633         * In that case, we need to call pre_destroy() again. check it here.
2634         */
2635        cgroup_release_and_wakeup_rmdir(&mem->css);
2636}
2637
2638/*
2639 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2640 * Calling hierarchical_reclaim is not enough because we should update
2641 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2642 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2643 * not from the memcg which this page would be charged to.
2644 * try_charge_swapin does all of these works properly.
2645 */
2646int mem_cgroup_shmem_charge_fallback(struct page *page,
2647                            struct mm_struct *mm,
2648                            gfp_t gfp_mask)
2649{
2650        struct mem_cgroup *mem = NULL;
2651        int ret;
2652
2653        if (mem_cgroup_disabled())
2654                return 0;
2655
2656        ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2657        if (!ret)
2658                mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2659
2660        return ret;
2661}
2662
2663static DEFINE_MUTEX(set_limit_mutex);
2664
2665static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2666                                unsigned long long val)
2667{
2668        int retry_count;
2669        u64 memswlimit, memlimit;
2670        int ret = 0;
2671        int children = mem_cgroup_count_children(memcg);
2672        u64 curusage, oldusage;
2673        int enlarge;
2674
2675        /*
2676         * For keeping hierarchical_reclaim simple, how long we should retry
2677         * is depends on callers. We set our retry-count to be function
2678         * of # of children which we should visit in this loop.
2679         */
2680        retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2681
2682        oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2683
2684        enlarge = 0;
2685        while (retry_count) {
2686                if (signal_pending(current)) {
2687                        ret = -EINTR;
2688                        break;
2689                }
2690                /*
2691                 * Rather than hide all in some function, I do this in
2692                 * open coded manner. You see what this really does.
2693                 * We have to guarantee mem->res.limit < mem->memsw.limit.
2694                 */
2695                mutex_lock(&set_limit_mutex);
2696                memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2697                if (memswlimit < val) {
2698                        ret = -EINVAL;
2699                        mutex_unlock(&set_limit_mutex);
2700                        break;
2701                }
2702
2703                memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2704                if (memlimit < val)
2705                        enlarge = 1;
2706
2707                ret = res_counter_set_limit(&memcg->res, val);
2708                if (!ret) {
2709                        if (memswlimit == val)
2710                                memcg->memsw_is_minimum = true;
2711                        else
2712                                memcg->memsw_is_minimum = false;
2713                }
2714                mutex_unlock(&set_limit_mutex);
2715
2716                if (!ret)
2717                        break;
2718
2719                mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2720                                                MEM_CGROUP_RECLAIM_SHRINK);
2721                curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2722                /* Usage is reduced ? */
2723                if (curusage >= oldusage)
2724                        retry_count--;
2725                else
2726                        oldusage = curusage;
2727        }
2728        if (!ret && enlarge)
2729                memcg_oom_recover(memcg);
2730
2731        return ret;
2732}
2733
2734static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2735                                        unsigned long long val)
2736{
2737        int retry_count;
2738        u64 memlimit, memswlimit, oldusage, curusage;
2739        int children = mem_cgroup_count_children(memcg);
2740        int ret = -EBUSY;
2741        int enlarge = 0;
2742
2743        /* see mem_cgroup_resize_res_limit */
2744        retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
2745        oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2746        while (retry_count) {
2747                if (signal_pending(current)) {
2748                        ret = -EINTR;
2749                        break;
2750                }
2751                /*
2752                 * Rather than hide all in some function, I do this in
2753                 * open coded manner. You see what this really does.
2754                 * We have to guarantee mem->res.limit < mem->memsw.limit.
2755                 */
2756                mutex_lock(&set_limit_mutex);
2757                memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2758                if (memlimit > val) {
2759                        ret = -EINVAL;
2760                        mutex_unlock(&set_limit_mutex);
2761                        break;
2762                }
2763                memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2764                if (memswlimit < val)
2765                        enlarge = 1;
2766                ret = res_counter_set_limit(&memcg->memsw, val);
2767                if (!ret) {
2768                        if (memlimit == val)
2769                                memcg->memsw_is_minimum = true;
2770                        else
2771                                memcg->memsw_is_minimum = false;
2772                }
2773                mutex_unlock(&set_limit_mutex);
2774
2775                if (!ret)
2776                        break;
2777
2778                mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2779                                                MEM_CGROUP_RECLAIM_NOSWAP |
2780                                                MEM_CGROUP_RECLAIM_SHRINK);
2781                curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2782                /* Usage is reduced ? */
2783                if (curusage >= oldusage)
2784                        retry_count--;
2785                else
2786                        oldusage = curusage;
2787        }
2788        if (!ret && enlarge)
2789                memcg_oom_recover(memcg);
2790        return ret;
2791}
2792
2793unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2794                                                gfp_t gfp_mask, int nid,
2795                                                int zid)
2796{
2797        unsigned long nr_reclaimed = 0;
2798        struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2799        unsigned long reclaimed;
2800        int loop = 0;
2801        struct mem_cgroup_tree_per_zone *mctz;
2802        unsigned long long excess;
2803
2804        if (order > 0)
2805                return 0;
2806
2807        mctz = soft_limit_tree_node_zone(nid, zid);
2808        /*
2809         * This loop can run a while, specially if mem_cgroup's continuously
2810         * keep exceeding their soft limit and putting the system under
2811         * pressure
2812         */
2813        do {
2814                if (next_mz)
2815                        mz = next_mz;
2816                else
2817                        mz = mem_cgroup_largest_soft_limit_node(mctz);
2818                if (!mz)
2819                        break;
2820
2821                reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
2822                                                gfp_mask,
2823                                                MEM_CGROUP_RECLAIM_SOFT);
2824                nr_reclaimed += reclaimed;
2825                spin_lock(&mctz->lock);
2826
2827                /*
2828                 * If we failed to reclaim anything from this memory cgroup
2829                 * it is time to move on to the next cgroup
2830                 */
2831                next_mz = NULL;
2832                if (!reclaimed) {
2833                        do {
2834                                /*
2835                                 * Loop until we find yet another one.
2836                                 *
2837                                 * By the time we get the soft_limit lock
2838                                 * again, someone might have aded the
2839                                 * group back on the RB tree. Iterate to
2840                                 * make sure we get a different mem.
2841                                 * mem_cgroup_largest_soft_limit_node returns
2842                                 * NULL if no other cgroup is present on
2843                                 * the tree
2844                                 */
2845                                next_mz =
2846                                __mem_cgroup_largest_soft_limit_node(mctz);
2847                                if (next_mz == mz) {
2848                                        css_put(&next_mz->mem->css);
2849                                        next_mz = NULL;
2850                                } else /* next_mz == NULL or other memcg */
2851                                        break;
2852                        } while (1);
2853                }
2854                __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2855                excess = res_counter_soft_limit_excess(&mz->mem->res);
2856                /*
2857                 * One school of thought says that we should not add
2858                 * back the node to the tree if reclaim returns 0.
2859                 * But our reclaim could return 0, simply because due
2860                 * to priority we are exposing a smaller subset of
2861                 * memory to reclaim from. Consider this as a longer
2862                 * term TODO.
2863                 */
2864                /* If excess == 0, no tree ops */
2865                __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
2866                spin_unlock(&mctz->lock);
2867                css_put(&mz->mem->css);
2868                loop++;
2869                /*
2870                 * Could not reclaim anything and there are no more
2871                 * mem cgroups to try or we seem to be looping without
2872                 * reclaiming anything.
2873                 */
2874                if (!nr_reclaimed &&
2875                        (next_mz == NULL ||
2876                        loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2877                        break;
2878        } while (!nr_reclaimed);
2879        if (next_mz)
2880                css_put(&next_mz->mem->css);
2881        return nr_reclaimed;
2882}
2883
2884/*
2885 * This routine traverse page_cgroup in given list and drop them all.
2886 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
2887 */
2888static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
2889                                int node, int zid, enum lru_list lru)
2890{
2891        struct zone *zone;
2892        struct mem_cgroup_per_zone *mz;
2893        struct page_cgroup *pc, *busy;
2894        unsigned long flags, loop;
2895        struct list_head *list;
2896        int ret = 0;
2897
2898        zone = &NODE_DATA(node)->node_zones[zid];
2899        mz = mem_cgroup_zoneinfo(mem, node, zid);
2900        list = &mz->lists[lru];
2901
2902        loop = MEM_CGROUP_ZSTAT(mz, lru);
2903        /* give some margin against EBUSY etc...*/
2904        loop += 256;
2905        busy = NULL;
2906        while (loop--) {
2907                ret = 0;
2908                spin_lock_irqsave(&zone->lru_lock, flags);
2909                if (list_empty(list)) {
2910                        spin_unlock_irqrestore(&zone->lru_lock, flags);
2911                        break;
2912                }
2913                pc = list_entry(list->prev, struct page_cgroup, lru);
2914                if (busy == pc) {
2915                        list_move(&pc->lru, list);
2916                        busy = NULL;
2917                        spin_unlock_irqrestore(&zone->lru_lock, flags);
2918                        continue;
2919                }
2920                spin_unlock_irqrestore(&zone->lru_lock, flags);
2921
2922                ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2923                if (ret == -ENOMEM)
2924                        break;
2925
2926                if (ret == -EBUSY || ret == -EINVAL) {
2927                        /* found lock contention or "pc" is obsolete. */
2928                        busy = pc;
2929                        cond_resched();
2930                } else
2931                        busy = NULL;
2932        }
2933
2934        if (!ret && !list_empty(list))
2935                return -EBUSY;
2936        return ret;
2937}
2938
2939/*
2940 * make mem_cgroup's charge to be 0 if there is no task.
2941 * This enables deleting this mem_cgroup.
2942 */
2943static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
2944{
2945        int ret;
2946        int node, zid, shrink;
2947        int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2948        struct cgroup *cgrp = mem->css.cgroup;
2949
2950        css_get(&mem->css);
2951
2952        shrink = 0;
2953        /* should free all ? */
2954        if (free_all)
2955                goto try_to_free;
2956move_account:
2957        do {
2958                ret = -EBUSY;
2959                if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
2960                        goto out;
2961                ret = -EINTR;
2962                if (signal_pending(current))
2963                        goto out;
2964                /* This is for making all *used* pages to be on LRU. */
2965                lru_add_drain_all();
2966                drain_all_stock_sync();
2967                ret = 0;
2968                for_each_node_state(node, N_HIGH_MEMORY) {
2969                        for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
2970                                enum lru_list l;
2971                                for_each_lru(l) {
2972                                        ret = mem_cgroup_force_empty_list(mem,
2973                                                        node, zid, l);
2974                                        if (ret)
2975                                                break;
2976                                }
2977                        }
2978                        if (ret)
2979                                break;
2980                }
2981                memcg_oom_recover(mem);
2982                /* it seems parent cgroup doesn't have enough mem */
2983                if (ret == -ENOMEM)
2984                        goto try_to_free;
2985                cond_resched();
2986        /* "ret" should also be checked to ensure all lists are empty. */
2987        } while (mem->res.usage > 0 || ret);
2988out:
2989        css_put(&mem->css);
2990        return ret;
2991
2992try_to_free:
2993        /* returns EBUSY if there is a task or if we come here twice. */
2994        if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
2995                ret = -EBUSY;
2996                goto out;
2997        }
2998        /* we call try-to-free pages for make this cgroup empty */
2999        lru_add_drain_all();
3000        /* try to free all pages in this cgroup */
3001        shrink = 1;
3002        while (nr_retries && mem->res.usage > 0) {
3003                int progress;
3004
3005                if (signal_pending(current)) {
3006                        ret = -EINTR;
3007                        goto out;
3008                }
3009                progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3010                                                false, get_swappiness(mem));
3011                if (!progress) {
3012                        nr_retries--;
3013                        /* maybe some writeback is necessary */
3014                        congestion_wait(BLK_RW_ASYNC, HZ/10);
3015                }
3016
3017        }
3018        lru_add_drain();
3019        /* try move_account...there may be some *locked* pages. */
3020        goto move_account;
3021}
3022
3023int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3024{
3025        return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3026}
3027
3028
3029static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3030{
3031        return mem_cgroup_from_cont(cont)->use_hierarchy;
3032}
3033
3034static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3035                                        u64 val)
3036{
3037        int retval = 0;
3038        struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3039        struct cgroup *parent = cont->parent;
3040        struct mem_cgroup *parent_mem = NULL;
3041
3042        if (parent)
3043                parent_mem = mem_cgroup_from_cont(parent);
3044
3045        cgroup_lock();
3046        /*
3047         * If parent's use_hierarchy is set, we can't make any modifications
3048         * in the child subtrees. If it is unset, then the change can
3049         * occur, provided the current cgroup has no children.
3050         *
3051         * For the root cgroup, parent_mem is NULL, we allow value to be
3052         * set if there are no children.
3053         */
3054        if ((!parent_mem || !parent_mem->use_hierarchy) &&
3055                                (val == 1 || val == 0)) {
3056                if (list_empty(&cont->children))
3057                        mem->use_hierarchy = val;
3058                else
3059                        retval = -EBUSY;
3060        } else
3061                retval = -EINVAL;
3062        cgroup_unlock();
3063
3064        return retval;
3065}
3066
3067struct mem_cgroup_idx_data {
3068        s64 val;
3069        enum mem_cgroup_stat_index idx;
3070};
3071
3072static int
3073mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
3074{
3075        struct mem_cgroup_idx_data *d = data;
3076        d->val += mem_cgroup_read_stat(mem, d->idx);
3077        return 0;
3078}
3079
3080static void
3081mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3082                                enum mem_cgroup_stat_index idx, s64 *val)
3083{
3084        struct mem_cgroup_idx_data d;
3085        d.idx = idx;
3086        d.val = 0;
3087        mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
3088        *val = d.val;
3089}
3090
3091static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3092{
3093        u64 idx_val, val;
3094
3095        if (!mem_cgroup_is_root(mem)) {
3096                if (!swap)
3097                        return res_counter_read_u64(&mem->res, RES_USAGE);
3098                else
3099                        return res_counter_read_u64(&mem->memsw, RES_USAGE);
3100        }
3101
3102        mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE, &idx_val);
3103        val = idx_val;
3104        mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS, &idx_val);
3105        val += idx_val;
3106
3107        if (swap) {
3108                mem_cgroup_get_recursive_idx_stat(mem,
3109                                MEM_CGROUP_STAT_SWAPOUT, &idx_val);
3110                val += idx_val;
3111        }
3112
3113        return val << PAGE_SHIFT;
3114}
3115
3116static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3117{
3118        struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3119        u64 val;
3120        int type, name;
3121
3122        type = MEMFILE_TYPE(cft->private);
3123        name = MEMFILE_ATTR(cft->private);
3124        switch (type) {
3125        case _MEM:
3126                if (name == RES_USAGE)
3127                        val = mem_cgroup_usage(mem, false);
3128                else
3129                        val = res_counter_read_u64(&mem->res, name);
3130                break;
3131        case _MEMSWAP:
3132                if (name == RES_USAGE)
3133                        val = mem_cgroup_usage(mem, true);
3134                else
3135                        val = res_counter_read_u64(&mem->memsw, name);
3136                break;
3137        default:
3138                BUG();
3139                break;
3140        }
3141        return val;
3142}
3143/*
3144 * The user of this function is...
3145 * RES_LIMIT.
3146 */
3147static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3148                            const char *buffer)
3149{
3150        struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3151        int type, name;
3152        unsigned long long val;
3153        int ret;
3154
3155        type = MEMFILE_TYPE(cft->private);
3156        name = MEMFILE_ATTR(cft->private);
3157        switch (name) {
3158        case RES_LIMIT:
3159                if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3160                        ret = -EINVAL;
3161                        break;
3162                }
3163                /* This function does all necessary parse...reuse it */
3164                ret = res_counter_memparse_write_strategy(buffer, &val);
3165                if (ret)
3166                        break;
3167                if (type == _MEM)
3168                        ret = mem_cgroup_resize_limit(memcg, val);
3169                else
3170                        ret = mem_cgroup_resize_memsw_limit(memcg, val);
3171                break;
3172        case RES_SOFT_LIMIT:
3173                ret = res_counter_memparse_write_strategy(buffer, &val);
3174                if (ret)
3175                        break;
3176                /*
3177                 * For memsw, soft limits are hard to implement in terms
3178                 * of semantics, for now, we support soft limits for
3179                 * control without swap
3180                 */
3181                if (type == _MEM)
3182                        ret = res_counter_set_soft_limit(&memcg->res, val);
3183                else
3184                        ret = -EINVAL;
3185                break;
3186        default:
3187                ret = -EINVAL; /* should be BUG() ? */
3188                break;
3189        }
3190        return ret;
3191}
3192
3193static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3194                unsigned long long *mem_limit, unsigned long long *memsw_limit)
3195{
3196        struct cgroup *cgroup;
3197        unsigned long long min_limit, min_memsw_limit, tmp;
3198
3199        min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3200        min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3201        cgroup = memcg->css.cgroup;
3202        if (!memcg->use_hierarchy)
3203                goto out;
3204
3205        while (cgroup->parent) {
3206                cgroup = cgroup->parent;
3207                memcg = mem_cgroup_from_cont(cgroup);
3208                if (!memcg->use_hierarchy)
3209                        break;
3210                tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3211                min_limit = min(min_limit, tmp);
3212                tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3213                min_memsw_limit = min(min_memsw_limit, tmp);
3214        }
3215out:
3216        *mem_limit = min_limit;
3217        *memsw_limit = min_memsw_limit;
3218        return;
3219}
3220
3221static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3222{
3223        struct mem_cgroup *mem;
3224        int type, name;
3225
3226        mem = mem_cgroup_from_cont(cont);
3227        type = MEMFILE_TYPE(event);
3228        name = MEMFILE_ATTR(event);
3229        switch (name) {
3230        case RES_MAX_USAGE:
3231                if (type == _MEM)
3232                        res_counter_reset_max(&mem->res);
3233                else
3234                        res_counter_reset_max(&mem->memsw);
3235                break;
3236        case RES_FAILCNT:
3237                if (type == _MEM)
3238                        res_counter_reset_failcnt(&mem->res);
3239                else
3240                        res_counter_reset_failcnt(&mem->memsw);
3241                break;
3242        }
3243
3244        return 0;
3245}
3246
3247static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3248                                        struct cftype *cft)
3249{
3250        return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3251}
3252
3253#ifdef CONFIG_MMU
3254static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3255                                        struct cftype *cft, u64 val)
3256{
3257        struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3258
3259        if (val >= (1 << NR_MOVE_TYPE))
3260                return -EINVAL;
3261        /*
3262         * We check this value several times in both in can_attach() and
3263         * attach(), so we need cgroup lock to prevent this value from being
3264         * inconsistent.
3265         */
3266        cgroup_lock();
3267        mem->move_charge_at_immigrate = val;
3268        cgroup_unlock();
3269
3270        return 0;
3271}
3272#else
3273static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3274                                        struct cftype *cft, u64 val)
3275{
3276        return -ENOSYS;
3277}
3278#endif
3279
3280
3281/* For read statistics */
3282enum {
3283        MCS_CACHE,
3284        MCS_RSS,
3285        MCS_FILE_MAPPED,
3286        MCS_PGPGIN,
3287        MCS_PGPGOUT,
3288        MCS_SWAP,
3289        MCS_INACTIVE_ANON,
3290        MCS_ACTIVE_ANON,
3291        MCS_INACTIVE_FILE,
3292        MCS_ACTIVE_FILE,
3293        MCS_UNEVICTABLE,
3294        NR_MCS_STAT,
3295};
3296
3297struct mcs_total_stat {
3298        s64 stat[NR_MCS_STAT];
3299};
3300
3301struct {
3302        char *local_name;
3303        char *total_name;
3304} memcg_stat_strings[NR_MCS_STAT] = {
3305        {"cache", "total_cache"},
3306        {"rss", "total_rss"},
3307        {"mapped_file", "total_mapped_file"},
3308        {"pgpgin", "total_pgpgin"},
3309        {"pgpgout", "total_pgpgout"},
3310        {"swap", "total_swap"},
3311        {"inactive_anon", "total_inactive_anon"},
3312        {"active_anon", "total_active_anon"},
3313        {"inactive_file", "total_inactive_file"},
3314        {"active_file", "total_active_file"},
3315        {"unevictable", "total_unevictable"}
3316};
3317
3318
3319static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
3320{
3321        struct mcs_total_stat *s = data;
3322        s64 val;
3323
3324        /* per cpu stat */
3325        val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3326        s->stat[MCS_CACHE] += val * PAGE_SIZE;
3327        val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3328        s->stat[MCS_RSS] += val * PAGE_SIZE;
3329        val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3330        s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3331        val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3332        s->stat[MCS_PGPGIN] += val;
3333        val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3334        s->stat[MCS_PGPGOUT] += val;
3335        if (do_swap_account) {
3336                val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3337                s->stat[MCS_SWAP] += val * PAGE_SIZE;
3338        }
3339
3340        /* per zone stat */
3341        val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3342        s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3343        val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3344        s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3345        val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3346        s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3347        val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3348        s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3349        val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3350        s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3351        return 0;
3352}
3353
3354static void
3355mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3356{
3357        mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
3358}
3359
3360static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3361                                 struct cgroup_map_cb *cb)
3362{
3363        struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3364        struct mcs_total_stat mystat;
3365        int i;
3366
3367        memset(&mystat, 0, sizeof(mystat));
3368        mem_cgroup_get_local_stat(mem_cont, &mystat);
3369
3370        for (i = 0; i < NR_MCS_STAT; i++) {
3371                if (i == MCS_SWAP && !do_swap_account)
3372                        continue;
3373                cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3374        }
3375
3376        /* Hierarchical information */
3377        {
3378                unsigned long long limit, memsw_limit;
3379                memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3380                cb->fill(cb, "hierarchical_memory_limit", limit);
3381                if (do_swap_account)
3382                        cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3383        }
3384
3385        memset(&mystat, 0, sizeof(mystat));
3386        mem_cgroup_get_total_stat(mem_cont, &mystat);
3387        for (i = 0; i < NR_MCS_STAT; i++) {
3388                if (i == MCS_SWAP && !do_swap_account)
3389                        continue;
3390                cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3391        }
3392
3393#ifdef CONFIG_DEBUG_VM
3394        cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3395
3396        {
3397                int nid, zid;
3398                struct mem_cgroup_per_zone *mz;
3399                unsigned long recent_rotated[2] = {0, 0};
3400                unsigned long recent_scanned[2] = {0, 0};
3401
3402                for_each_online_node(nid)
3403                        for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3404                                mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3405
3406                                recent_rotated[0] +=
3407                                        mz->reclaim_stat.recent_rotated[0];
3408                                recent_rotated[1] +=
3409                                        mz->reclaim_stat.recent_rotated[1];
3410                                recent_scanned[0] +=
3411                                        mz->reclaim_stat.recent_scanned[0];
3412                                recent_scanned[1] +=
3413                                        mz->reclaim_stat.recent_scanned[1];
3414                        }
3415                cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3416                cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3417                cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3418                cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3419        }
3420#endif
3421
3422        return 0;
3423}
3424
3425static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3426{
3427        struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3428
3429        return get_swappiness(memcg);
3430}
3431
3432static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3433                                       u64 val)
3434{
3435        struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3436        struct mem_cgroup *parent;
3437
3438        if (val > 100)
3439                return -EINVAL;
3440
3441        if (cgrp->parent == NULL)
3442                return -EINVAL;
3443
3444        parent = mem_cgroup_from_cont(cgrp->parent);
3445
3446        cgroup_lock();
3447
3448        /* If under hierarchy, only empty-root can set this value */
3449        if ((parent->use_hierarchy) ||
3450            (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3451                cgroup_unlock();
3452                return -EINVAL;
3453        }
3454
3455        spin_lock(&memcg->reclaim_param_lock);
3456        memcg->swappiness = val;
3457        spin_unlock(&memcg->reclaim_param_lock);
3458
3459        cgroup_unlock();
3460
3461        return 0;
3462}
3463
3464static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3465{
3466        struct mem_cgroup_threshold_ary *t;
3467        u64 usage;
3468        int i;
3469
3470        rcu_read_lock();
3471        if (!swap)
3472                t = rcu_dereference(memcg->thresholds.primary);
3473        else
3474                t = rcu_dereference(memcg->memsw_thresholds.primary);
3475
3476        if (!t)
3477                goto unlock;
3478
3479        usage = mem_cgroup_usage(memcg, swap);
3480
3481        /*
3482         * current_threshold points to threshold just below usage.
3483         * If it's not true, a threshold was crossed after last
3484         * call of __mem_cgroup_threshold().
3485         */
3486        i = t->current_threshold;
3487
3488        /*
3489         * Iterate backward over array of thresholds starting from
3490         * current_threshold and check if a threshold is crossed.
3491         * If none of thresholds below usage is crossed, we read
3492         * only one element of the array here.
3493         */
3494        for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3495                eventfd_signal(t->entries[i].eventfd, 1);
3496
3497        /* i = current_threshold + 1 */
3498        i++;
3499
3500        /*
3501         * Iterate forward over array of thresholds starting from
3502         * current_threshold+1 and check if a threshold is crossed.
3503         * If none of thresholds above usage is crossed, we read
3504         * only one element of the array here.
3505         */
3506        for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3507                eventfd_signal(t->entries[i].eventfd, 1);
3508
3509        /* Update current_threshold */
3510        t->current_threshold = i - 1;
3511unlock:
3512        rcu_read_unlock();
3513}
3514
3515static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3516{
3517        __mem_cgroup_threshold(memcg, false);
3518        if (do_swap_account)
3519                __mem_cgroup_threshold(memcg, true);
3520}
3521
3522static int compare_thresholds(const void *a, const void *b)
3523{
3524        const struct mem_cgroup_threshold *_a = a;
3525        const struct mem_cgroup_threshold *_b = b;
3526
3527        return _a->threshold - _b->threshold;
3528}
3529
3530static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem, void *data)
3531{
3532        struct mem_cgroup_eventfd_list *ev;
3533
3534        list_for_each_entry(ev, &mem->oom_notify, list)
3535                eventfd_signal(ev->eventfd, 1);
3536        return 0;
3537}
3538
3539static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3540{
3541        mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_notify_cb);
3542}
3543
3544static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3545        struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3546{
3547        struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3548        struct mem_cgroup_thresholds *thresholds;
3549        struct mem_cgroup_threshold_ary *new;
3550        int type = MEMFILE_TYPE(cft->private);
3551        u64 threshold, usage;
3552        int i, size, ret;
3553
3554        ret = res_counter_memparse_write_strategy(args, &threshold);
3555        if (ret)
3556                return ret;
3557
3558        mutex_lock(&memcg->thresholds_lock);
3559
3560        if (type == _MEM)
3561                thresholds = &memcg->thresholds;
3562        else if (type == _MEMSWAP)
3563                thresholds = &memcg->memsw_thresholds;
3564        else
3565                BUG();
3566
3567        usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3568
3569        /* Check if a threshold crossed before adding a new one */
3570        if (thresholds->primary)
3571                __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3572
3573        size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3574
3575        /* Allocate memory for new array of thresholds */
3576        new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3577                        GFP_KERNEL);
3578        if (!new) {
3579                ret = -ENOMEM;
3580                goto unlock;
3581        }
3582        new->size = size;
3583
3584        /* Copy thresholds (if any) to new array */
3585        if (thresholds->primary) {
3586                memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3587                                sizeof(struct mem_cgroup_threshold));
3588        }
3589
3590        /* Add new threshold */
3591        new->entries[size - 1].eventfd = eventfd;
3592        new->entries[size - 1].threshold = threshold;
3593
3594        /* Sort thresholds. Registering of new threshold isn't time-critical */
3595        sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3596                        compare_thresholds, NULL);
3597
3598        /* Find current threshold */
3599        new->current_threshold = -1;
3600        for (i = 0; i < size; i++) {
3601                if (new->entries[i].threshold < usage) {
3602                        /*
3603                         * new->current_threshold will not be used until
3604                         * rcu_assign_pointer(), so it's safe to increment
3605                         * it here.
3606                         */
3607                        ++new->current_threshold;
3608                }
3609        }
3610
3611        /* Free old spare buffer and save old primary buffer as spare */
3612        kfree(thresholds->spare);
3613        thresholds->spare = thresholds->primary;
3614
3615        rcu_assign_pointer(thresholds->primary, new);
3616
3617        /* To be sure that nobody uses thresholds */
3618        synchronize_rcu();
3619
3620unlock:
3621        mutex_unlock(&memcg->thresholds_lock);
3622
3623        return ret;
3624}
3625
3626static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
3627        struct cftype *cft, struct eventfd_ctx *eventfd)
3628{
3629        struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3630        struct mem_cgroup_thresholds *thresholds;
3631        struct mem_cgroup_threshold_ary *new;
3632        int type = MEMFILE_TYPE(cft->private);
3633        u64 usage;
3634        int i, j, size;
3635
3636        mutex_lock(&memcg->thresholds_lock);
3637        if (type == _MEM)
3638                thresholds = &memcg->thresholds;
3639        else if (type == _MEMSWAP)
3640                thresholds = &memcg->memsw_thresholds;
3641        else
3642                BUG();
3643
3644        /*
3645         * Something went wrong if we trying to unregister a threshold
3646         * if we don't have thresholds
3647         */
3648        BUG_ON(!thresholds);
3649
3650        usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3651
3652        /* Check if a threshold crossed before removing */
3653        __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3654
3655        /* Calculate new number of threshold */
3656        size = 0;
3657        for (i = 0; i < thresholds->primary->size; i++) {
3658                if (thresholds->primary->entries[i].eventfd != eventfd)
3659                        size++;
3660        }
3661
3662        new = thresholds->spare;
3663
3664        /* Set thresholds array to NULL if we don't have thresholds */
3665        if (!size) {
3666                kfree(new);
3667                new = NULL;
3668                goto swap_buffers;
3669        }
3670
3671        new->size = size;
3672
3673        /* Copy thresholds and find current threshold */
3674        new->current_threshold = -1;
3675        for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3676                if (thresholds->primary->entries[i].eventfd == eventfd)
3677                        continue;
3678
3679                new->entries[j] = thresholds->primary->entries[i];
3680                if (new->entries[j].threshold < usage) {
3681                        /*
3682                         * new->current_threshold will not be used
3683                         * until rcu_assign_pointer(), so it's safe to increment
3684                         * it here.
3685                         */
3686                        ++new->current_threshold;
3687                }
3688                j++;
3689        }
3690
3691swap_buffers:
3692        /* Swap primary and spare array */
3693        thresholds->spare = thresholds->primary;
3694        rcu_assign_pointer(thresholds->primary, new);
3695
3696        /* To be sure that nobody uses thresholds */
3697        synchronize_rcu();
3698
3699        mutex_unlock(&memcg->thresholds_lock);
3700}
3701
3702static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
3703        struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3704{
3705        struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3706        struct mem_cgroup_eventfd_list *event;
3707        int type = MEMFILE_TYPE(cft->private);
3708
3709        BUG_ON(type != _OOM_TYPE);
3710        event = kmalloc(sizeof(*event), GFP_KERNEL);
3711        if (!event)
3712                return -ENOMEM;
3713
3714        mutex_lock(&memcg_oom_mutex);
3715
3716        event->eventfd = eventfd;
3717        list_add(&event->list, &memcg->oom_notify);
3718
3719        /* already in OOM ? */
3720        if (atomic_read(&memcg->oom_lock))
3721                eventfd_signal(eventfd, 1);
3722        mutex_unlock(&memcg_oom_mutex);
3723
3724        return 0;
3725}
3726
3727static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
3728        struct cftype *cft, struct eventfd_ctx *eventfd)
3729{
3730        struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3731        struct mem_cgroup_eventfd_list *ev, *tmp;
3732        int type = MEMFILE_TYPE(cft->private);
3733
3734        BUG_ON(type != _OOM_TYPE);
3735
3736        mutex_lock(&memcg_oom_mutex);
3737
3738        list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
3739                if (ev->eventfd == eventfd) {
3740                        list_del(&ev->list);
3741                        kfree(ev);
3742                }
3743        }
3744
3745        mutex_unlock(&memcg_oom_mutex);
3746}
3747
3748static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
3749        struct cftype *cft,  struct cgroup_map_cb *cb)
3750{
3751        struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3752
3753        cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
3754
3755        if (atomic_read(&mem->oom_lock))
3756                cb->fill(cb, "under_oom", 1);
3757        else
3758                cb->fill(cb, "under_oom", 0);
3759        return 0;
3760}
3761
3762/*
3763 */
3764static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
3765        struct cftype *cft, u64 val)
3766{
3767        struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3768        struct mem_cgroup *parent;
3769
3770        /* cannot set to root cgroup and only 0 and 1 are allowed */
3771        if (!cgrp->parent || !((val == 0) || (val == 1)))
3772                return -EINVAL;
3773
3774        parent = mem_cgroup_from_cont(cgrp->parent);
3775
3776        cgroup_lock();
3777        /* oom-kill-disable is a flag for subhierarchy. */
3778        if ((parent->use_hierarchy) ||
3779            (mem->use_hierarchy && !list_empty(&cgrp->children))) {
3780                cgroup_unlock();
3781                return -EINVAL;
3782        }
3783        mem->oom_kill_disable = val;
3784        if (!val)
3785                memcg_oom_recover(mem);
3786        cgroup_unlock();
3787        return 0;
3788}
3789
3790static struct cftype mem_cgroup_files[] = {
3791        {
3792                .name = "usage_in_bytes",
3793                .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3794                .read_u64 = mem_cgroup_read,
3795                .register_event = mem_cgroup_usage_register_event,
3796                .unregister_event = mem_cgroup_usage_unregister_event,
3797        },
3798        {
3799                .name = "max_usage_in_bytes",
3800                .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3801                .trigger = mem_cgroup_reset,
3802                .read_u64 = mem_cgroup_read,
3803        },
3804        {
3805                .name = "limit_in_bytes",
3806                .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3807                .write_string = mem_cgroup_write,
3808                .read_u64 = mem_cgroup_read,
3809        },
3810        {
3811                .name = "soft_limit_in_bytes",
3812                .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3813                .write_string = mem_cgroup_write,
3814                .read_u64 = mem_cgroup_read,
3815        },
3816        {
3817                .name = "failcnt",
3818                .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3819                .trigger = mem_cgroup_reset,
3820                .read_u64 = mem_cgroup_read,
3821        },
3822        {
3823                .name = "stat",
3824                .read_map = mem_control_stat_show,
3825        },
3826        {
3827                .name = "force_empty",
3828                .trigger = mem_cgroup_force_empty_write,
3829        },
3830        {
3831                .name = "use_hierarchy",
3832                .write_u64 = mem_cgroup_hierarchy_write,
3833                .read_u64 = mem_cgroup_hierarchy_read,
3834        },
3835        {
3836                .name = "swappiness",
3837                .read_u64 = mem_cgroup_swappiness_read,
3838                .write_u64 = mem_cgroup_swappiness_write,
3839        },
3840        {
3841                .name = "move_charge_at_immigrate",
3842                .read_u64 = mem_cgroup_move_charge_read,
3843                .write_u64 = mem_cgroup_move_charge_write,
3844        },
3845        {
3846                .name = "oom_control",
3847                .read_map = mem_cgroup_oom_control_read,
3848                .write_u64 = mem_cgroup_oom_control_write,
3849                .register_event = mem_cgroup_oom_register_event,
3850                .unregister_event = mem_cgroup_oom_unregister_event,
3851                .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3852        },
3853};
3854
3855#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3856static struct cftype memsw_cgroup_files[] = {
3857        {
3858                .name = "memsw.usage_in_bytes",
3859                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
3860                .read_u64 = mem_cgroup_read,
3861                .register_event = mem_cgroup_usage_register_event,
3862                .unregister_event = mem_cgroup_usage_unregister_event,
3863        },
3864        {
3865                .name = "memsw.max_usage_in_bytes",
3866                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
3867                .trigger = mem_cgroup_reset,
3868                .read_u64 = mem_cgroup_read,
3869        },
3870        {
3871                .name = "memsw.limit_in_bytes",
3872                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
3873                .write_string = mem_cgroup_write,
3874                .read_u64 = mem_cgroup_read,
3875        },
3876        {
3877                .name = "memsw.failcnt",
3878                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
3879                .trigger = mem_cgroup_reset,
3880                .read_u64 = mem_cgroup_read,
3881        },
3882};
3883
3884static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3885{
3886        if (!do_swap_account)
3887                return 0;
3888        return cgroup_add_files(cont, ss, memsw_cgroup_files,
3889                                ARRAY_SIZE(memsw_cgroup_files));
3890};
3891#else
3892static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3893{
3894        return 0;
3895}
3896#endif
3897
3898static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3899{
3900        struct mem_cgroup_per_node *pn;
3901        struct mem_cgroup_per_zone *mz;
3902        enum lru_list l;
3903        int zone, tmp = node;
3904        /*
3905         * This routine is called against possible nodes.
3906         * But it's BUG to call kmalloc() against offline node.
3907         *
3908         * TODO: this routine can waste much memory for nodes which will
3909         *       never be onlined. It's better to use memory hotplug callback
3910         *       function.
3911         */
3912        if (!node_state(node, N_NORMAL_MEMORY))
3913                tmp = -1;
3914        pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
3915        if (!pn)
3916                return 1;
3917
3918        mem->info.nodeinfo[node] = pn;
3919        memset(pn, 0, sizeof(*pn));
3920
3921        for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3922                mz = &pn->zoneinfo[zone];
3923                for_each_lru(l)
3924                        INIT_LIST_HEAD(&mz->lists[l]);
3925                mz->usage_in_excess = 0;
3926                mz->on_tree = false;
3927                mz->mem = mem;
3928        }
3929        return 0;
3930}
3931
3932static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3933{
3934        kfree(mem->info.nodeinfo[node]);
3935}
3936
3937static struct mem_cgroup *mem_cgroup_alloc(void)
3938{
3939        struct mem_cgroup *mem;
3940        int size = sizeof(struct mem_cgroup);
3941
3942        /* Can be very big if MAX_NUMNODES is very big */
3943        if (size < PAGE_SIZE)
3944                mem = kmalloc(size, GFP_KERNEL);
3945        else
3946                mem = vmalloc(size);
3947
3948        if (!mem)
3949                return NULL;
3950
3951        memset(mem, 0, size);
3952        mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
3953        if (!mem->stat) {
3954                if (size < PAGE_SIZE)
3955                        kfree(mem);
3956                else
3957                        vfree(mem);
3958                mem = NULL;
3959        }
3960        return mem;
3961}
3962
3963/*
3964 * At destroying mem_cgroup, references from swap_cgroup can remain.
3965 * (scanning all at force_empty is too costly...)
3966 *
3967 * Instead of clearing all references at force_empty, we remember
3968 * the number of reference from swap_cgroup and free mem_cgroup when
3969 * it goes down to 0.
3970 *
3971 * Removal of cgroup itself succeeds regardless of refs from swap.
3972 */
3973
3974static void __mem_cgroup_free(struct mem_cgroup *mem)
3975{
3976        int node;
3977
3978        mem_cgroup_remove_from_trees(mem);
3979        free_css_id(&mem_cgroup_subsys, &mem->css);
3980
3981        for_each_node_state(node, N_POSSIBLE)
3982                free_mem_cgroup_per_zone_info(mem, node);
3983
3984        free_percpu(mem->stat);
3985        if (sizeof(struct mem_cgroup) < PAGE_SIZE)
3986                kfree(mem);
3987        else
3988                vfree(mem);
3989}
3990
3991static void mem_cgroup_get(struct mem_cgroup *mem)
3992{
3993        atomic_inc(&mem->refcnt);
3994}
3995
3996static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
3997{
3998        if (atomic_sub_and_test(count, &mem->refcnt)) {
3999                struct mem_cgroup *parent = parent_mem_cgroup(mem);
4000                __mem_cgroup_free(mem);
4001                if (parent)
4002                        mem_cgroup_put(parent);
4003        }
4004}
4005
4006static void mem_cgroup_put(struct mem_cgroup *mem)
4007{
4008        __mem_cgroup_put(mem, 1);
4009}
4010
4011/*
4012 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4013 */
4014static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4015{
4016        if (!mem->res.parent)
4017                return NULL;
4018        return mem_cgroup_from_res_counter(mem->res.parent, res);
4019}
4020
4021#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4022static void __init enable_swap_cgroup(void)
4023{
4024        if (!mem_cgroup_disabled() && really_do_swap_account)
4025                do_swap_account = 1;
4026}
4027#else
4028static void __init enable_swap_cgroup(void)
4029{
4030}
4031#endif
4032
4033static int mem_cgroup_soft_limit_tree_init(void)
4034{
4035        struct mem_cgroup_tree_per_node *rtpn;
4036        struct mem_cgroup_tree_per_zone *rtpz;
4037        int tmp, node, zone;
4038
4039        for_each_node_state(node, N_POSSIBLE) {
4040                tmp = node;
4041                if (!node_state(node, N_NORMAL_MEMORY))
4042                        tmp = -1;
4043                rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4044                if (!rtpn)
4045                        return 1;
4046
4047                soft_limit_tree.rb_tree_per_node[node] = rtpn;
4048
4049                for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4050                        rtpz = &rtpn->rb_tree_per_zone[zone];
4051                        rtpz->rb_root = RB_ROOT;
4052                        spin_lock_init(&rtpz->lock);
4053                }
4054        }
4055        return 0;
4056}
4057
4058static struct cgroup_subsys_state * __ref
4059mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4060{
4061        struct mem_cgroup *mem, *parent;
4062        long error = -ENOMEM;
4063        int node;
4064
4065        mem = mem_cgroup_alloc();
4066        if (!mem)
4067                return ERR_PTR(error);
4068
4069        for_each_node_state(node, N_POSSIBLE)
4070                if (alloc_mem_cgroup_per_zone_info(mem, node))
4071                        goto free_out;
4072
4073        /* root ? */
4074        if (cont->parent == NULL) {
4075                int cpu;
4076                enable_swap_cgroup();
4077                parent = NULL;
4078                root_mem_cgroup = mem;
4079                if (mem_cgroup_soft_limit_tree_init())
4080                        goto free_out;
4081                for_each_possible_cpu(cpu) {
4082                        struct memcg_stock_pcp *stock =
4083                                                &per_cpu(memcg_stock, cpu);
4084                        INIT_WORK(&stock->work, drain_local_stock);
4085                }
4086                hotcpu_notifier(memcg_stock_cpu_callback, 0);
4087        } else {
4088                parent = mem_cgroup_from_cont(cont->parent);
4089                mem->use_hierarchy = parent->use_hierarchy;
4090                mem->oom_kill_disable = parent->oom_kill_disable;
4091        }
4092
4093        if (parent && parent->use_hierarchy) {
4094                res_counter_init(&mem->res, &parent->res);
4095                res_counter_init(&mem->memsw, &parent->memsw);
4096                /*
4097                 * We increment refcnt of the parent to ensure that we can
4098                 * safely access it on res_counter_charge/uncharge.
4099                 * This refcnt will be decremented when freeing this
4100                 * mem_cgroup(see mem_cgroup_put).
4101                 */
4102                mem_cgroup_get(parent);
4103        } else {
4104                res_counter_init(&mem->res, NULL);
4105                res_counter_init(&mem->memsw, NULL);
4106        }
4107        mem->last_scanned_child = 0;
4108        spin_lock_init(&mem->reclaim_param_lock);
4109        INIT_LIST_HEAD(&mem->oom_notify);
4110
4111        if (parent)
4112                mem->swappiness = get_swappiness(parent);
4113        atomic_set(&mem->refcnt, 1);
4114        mem->move_charge_at_immigrate = 0;
4115        mutex_init(&mem->thresholds_lock);
4116        return &mem->css;
4117free_out:
4118        __mem_cgroup_free(mem);
4119        root_mem_cgroup = NULL;
4120        return ERR_PTR(error);
4121}
4122
4123static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4124                                        struct cgroup *cont)
4125{
4126        struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4127
4128        return mem_cgroup_force_empty(mem, false);
4129}
4130
4131static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4132                                struct cgroup *cont)
4133{
4134        struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4135
4136        mem_cgroup_put(mem);
4137}
4138
4139static int mem_cgroup_populate(struct cgroup_subsys *ss,
4140                                struct cgroup *cont)
4141{
4142        int ret;
4143
4144        ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4145                                ARRAY_SIZE(mem_cgroup_files));
4146
4147        if (!ret)
4148                ret = register_memsw_files(cont, ss);
4149        return ret;
4150}
4151
4152#ifdef CONFIG_MMU
4153/* Handlers for move charge at task migration. */
4154#define PRECHARGE_COUNT_AT_ONCE 256
4155static int mem_cgroup_do_precharge(unsigned long count)
4156{
4157        int ret = 0;
4158        int batch_count = PRECHARGE_COUNT_AT_ONCE;
4159        struct mem_cgroup *mem = mc.to;
4160
4161        if (mem_cgroup_is_root(mem)) {
4162                mc.precharge += count;
4163                /* we don't need css_get for root */
4164                return ret;
4165        }
4166        /* try to charge at once */
4167        if (count > 1) {
4168                struct res_counter *dummy;
4169                /*
4170                 * "mem" cannot be under rmdir() because we've already checked
4171                 * by cgroup_lock_live_cgroup() that it is not removed and we
4172                 * are still under the same cgroup_mutex. So we can postpone
4173                 * css_get().
4174                 */
4175                if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4176                        goto one_by_one;
4177                if (do_swap_account && res_counter_charge(&mem->memsw,
4178                                                PAGE_SIZE * count, &dummy)) {
4179                        res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4180                        goto one_by_one;
4181                }
4182                mc.precharge += count;
4183                VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
4184                WARN_ON_ONCE(count > INT_MAX);
4185                __css_get(&mem->css, (int)count);
4186                return ret;
4187        }
4188one_by_one:
4189        /* fall back to one by one charge */
4190        while (count--) {
4191                if (signal_pending(current)) {
4192                        ret = -EINTR;
4193                        break;
4194                }
4195                if (!batch_count--) {
4196                        batch_count = PRECHARGE_COUNT_AT_ONCE;
4197                        cond_resched();
4198                }
4199                ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
4200                if (ret || !mem)
4201                        /* mem_cgroup_clear_mc() will do uncharge later */
4202                        return -ENOMEM;
4203                mc.precharge++;
4204        }
4205        return ret;
4206}
4207
4208/**
4209 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4210 * @vma: the vma the pte to be checked belongs
4211 * @addr: the address corresponding to the pte to be checked
4212 * @ptent: the pte to be checked
4213 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4214 *
4215 * Returns
4216 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4217 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4218 *     move charge. if @target is not NULL, the page is stored in target->page
4219 *     with extra refcnt got(Callers should handle it).
4220 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4221 *     target for charge migration. if @target is not NULL, the entry is stored
4222 *     in target->ent.
4223 *
4224 * Called with pte lock held.
4225 */
4226union mc_target {
4227        struct page     *page;
4228        swp_entry_t     ent;
4229};
4230
4231enum mc_target_type {
4232        MC_TARGET_NONE, /* not used */
4233        MC_TARGET_PAGE,
4234        MC_TARGET_SWAP,
4235};
4236
4237static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4238                                                unsigned long addr, pte_t ptent)
4239{
4240        struct page *page = vm_normal_page(vma, addr, ptent);
4241
4242        if (!page || !page_mapped(page))
4243                return NULL;
4244        if (PageAnon(page)) {
4245                /* we don't move shared anon */
4246                if (!move_anon() || page_mapcount(page) > 2)
4247                        return NULL;
4248        } else if (!move_file())
4249                /* we ignore mapcount for file pages */
4250                return NULL;
4251        if (!get_page_unless_zero(page))
4252                return NULL;
4253
4254        return page;
4255}
4256
4257static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4258                        unsigned long addr, pte_t ptent, swp_entry_t *entry)
4259{
4260        int usage_count;
4261        struct page *page = NULL;
4262        swp_entry_t ent = pte_to_swp_entry(ptent);
4263
4264        if (!move_anon() || non_swap_entry(ent))
4265                return NULL;
4266        usage_count = mem_cgroup_count_swap_user(ent, &page);
4267        if (usage_count > 1) { /* we don't move shared anon */
4268                if (page)
4269                        put_page(page);
4270                return NULL;
4271        }
4272        if (do_swap_account)
4273                entry->val = ent.val;
4274
4275        return page;
4276}
4277
4278static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4279                        unsigned long addr, pte_t ptent, swp_entry_t *entry)
4280{
4281        struct page *page = NULL;
4282        struct inode *inode;
4283        struct address_space *mapping;
4284        pgoff_t pgoff;
4285
4286        if (!vma->vm_file) /* anonymous vma */
4287                return NULL;
4288        if (!move_file())
4289                return NULL;
4290
4291        inode = vma->vm_file->f_path.dentry->d_inode;
4292        mapping = vma->vm_file->f_mapping;
4293        if (pte_none(ptent))
4294                pgoff = linear_page_index(vma, addr);
4295        else /* pte_file(ptent) is true */
4296                pgoff = pte_to_pgoff(ptent);
4297
4298        /* page is moved even if it's not RSS of this task(page-faulted). */
4299        if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4300                page = find_get_page(mapping, pgoff);
4301        } else { /* shmem/tmpfs file. we should take account of swap too. */
4302                swp_entry_t ent;
4303                mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4304                if (do_swap_account)
4305                        entry->val = ent.val;
4306        }
4307
4308        return page;
4309}
4310
4311static int is_target_pte_for_mc(struct vm_area_struct *vma,
4312                unsigned long addr, pte_t ptent, union mc_target *target)
4313{
4314        struct page *page = NULL;
4315        struct page_cgroup *pc;
4316        int ret = 0;
4317        swp_entry_t ent = { .val = 0 };
4318
4319        if (pte_present(ptent))
4320                page = mc_handle_present_pte(vma, addr, ptent);
4321        else if (is_swap_pte(ptent))
4322                page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4323        else if (pte_none(ptent) || pte_file(ptent))
4324                page = mc_handle_file_pte(vma, addr, ptent, &ent);
4325
4326        if (!page && !ent.val)
4327                return 0;
4328        if (page) {
4329                pc = lookup_page_cgroup(page);
4330                /*
4331                 * Do only loose check w/o page_cgroup lock.
4332                 * mem_cgroup_move_account() checks the pc is valid or not under
4333                 * the lock.
4334                 */
4335                if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4336                        ret = MC_TARGET_PAGE;
4337                        if (target)
4338                                target->page = page;
4339                }
4340                if (!ret || !target)
4341                        put_page(page);
4342        }
4343        /* There is a swap entry and a page doesn't exist or isn't charged */
4344        if (ent.val && !ret &&
4345                        css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4346                ret = MC_TARGET_SWAP;
4347                if (target)
4348                        target->ent = ent;
4349        }
4350        return ret;
4351}
4352
4353static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4354                                        unsigned long addr, unsigned long end,
4355                                        struct mm_walk *walk)
4356{
4357        struct vm_area_struct *vma = walk->private;
4358        pte_t *pte;
4359        spinlock_t *ptl;
4360
4361        pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4362        for (; addr != end; pte++, addr += PAGE_SIZE)
4363                if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4364                        mc.precharge++; /* increment precharge temporarily */
4365        pte_unmap_unlock(pte - 1, ptl);
4366        cond_resched();
4367
4368        return 0;
4369}
4370
4371static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4372{
4373        unsigned long precharge;
4374        struct vm_area_struct *vma;
4375
4376        down_read(&mm->mmap_sem);
4377        for (vma = mm->mmap; vma; vma = vma->vm_next) {
4378                struct mm_walk mem_cgroup_count_precharge_walk = {
4379                        .pmd_entry = mem_cgroup_count_precharge_pte_range,
4380                        .mm = mm,
4381                        .private = vma,
4382                };
4383                if (is_vm_hugetlb_page(vma))
4384                        continue;
4385                walk_page_range(vma->vm_start, vma->vm_end,
4386                                        &mem_cgroup_count_precharge_walk);
4387        }
4388        up_read(&mm->mmap_sem);
4389
4390        precharge = mc.precharge;
4391        mc.precharge = 0;
4392
4393        return precharge;
4394}
4395
4396static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4397{
4398        return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4399}
4400
4401static void mem_cgroup_clear_mc(void)
4402{
4403        /* we must uncharge all the leftover precharges from mc.to */
4404        if (mc.precharge) {
4405                __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4406                mc.precharge = 0;
4407                memcg_oom_recover(mc.to);
4408        }
4409        /*
4410         * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4411         * we must uncharge here.
4412         */
4413        if (mc.moved_charge) {
4414                __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4415                mc.moved_charge = 0;
4416                memcg_oom_recover(mc.from);
4417        }
4418        /* we must fixup refcnts and charges */
4419        if (mc.moved_swap) {
4420                WARN_ON_ONCE(mc.moved_swap > INT_MAX);
4421                /* uncharge swap account from the old cgroup */
4422                if (!mem_cgroup_is_root(mc.from))
4423                        res_counter_uncharge(&mc.from->memsw,
4424                                                PAGE_SIZE * mc.moved_swap);
4425                __mem_cgroup_put(mc.from, mc.moved_swap);
4426
4427                if (!mem_cgroup_is_root(mc.to)) {
4428                        /*
4429                         * we charged both to->res and to->memsw, so we should
4430                         * uncharge to->res.
4431                         */
4432                        res_counter_uncharge(&mc.to->res,
4433                                                PAGE_SIZE * mc.moved_swap);
4434                        VM_BUG_ON(test_bit(CSS_ROOT, &mc.to->css.flags));
4435                        __css_put(&mc.to->css, mc.moved_swap);
4436                }
4437                /* we've already done mem_cgroup_get(mc.to) */
4438
4439                mc.moved_swap = 0;
4440        }
4441        mc.from = NULL;
4442        mc.to = NULL;
4443        mc.moving_task = NULL;
4444        wake_up_all(&mc.waitq);
4445}
4446
4447static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4448                                struct cgroup *cgroup,
4449                                struct task_struct *p,
4450                                bool threadgroup)
4451{
4452        int ret = 0;
4453        struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4454
4455        if (mem->move_charge_at_immigrate) {
4456                struct mm_struct *mm;
4457                struct mem_cgroup *from = mem_cgroup_from_task(p);
4458
4459                VM_BUG_ON(from == mem);
4460
4461                mm = get_task_mm(p);
4462                if (!mm)
4463                        return 0;
4464                /* We move charges only when we move a owner of the mm */
4465                if (mm->owner == p) {
4466                        VM_BUG_ON(mc.from);
4467                        VM_BUG_ON(mc.to);
4468                        VM_BUG_ON(mc.precharge);
4469                        VM_BUG_ON(mc.moved_charge);
4470                        VM_BUG_ON(mc.moved_swap);
4471                        VM_BUG_ON(mc.moving_task);
4472                        mc.from = from;
4473                        mc.to = mem;
4474                        mc.precharge = 0;
4475                        mc.moved_charge = 0;
4476                        mc.moved_swap = 0;
4477                        mc.moving_task = current;
4478
4479                        ret = mem_cgroup_precharge_mc(mm);
4480                        if (ret)
4481                                mem_cgroup_clear_mc();
4482                }
4483                mmput(mm);
4484        }
4485        return ret;
4486}
4487
4488static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4489                                struct cgroup *cgroup,
4490                                struct task_struct *p,
4491                                bool threadgroup)
4492{
4493        mem_cgroup_clear_mc();
4494}
4495
4496static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4497                                unsigned long addr, unsigned long end,
4498                                struct mm_walk *walk)
4499{
4500        int ret = 0;
4501        struct vm_area_struct *vma = walk->private;
4502        pte_t *pte;
4503        spinlock_t *ptl;
4504
4505retry:
4506        pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4507        for (; addr != end; addr += PAGE_SIZE) {
4508                pte_t ptent = *(pte++);
4509                union mc_target target;
4510                int type;
4511                struct page *page;
4512                struct page_cgroup *pc;
4513                swp_entry_t ent;
4514
4515                if (!mc.precharge)
4516                        break;
4517
4518                type = is_target_pte_for_mc(vma, addr, ptent, &target);
4519                switch (type) {
4520                case MC_TARGET_PAGE:
4521                        page = target.page;
4522                        if (isolate_lru_page(page))
4523                                goto put;
4524                        pc = lookup_page_cgroup(page);
4525                        if (!mem_cgroup_move_account(pc,
4526                                                mc.from, mc.to, false)) {
4527                                mc.precharge--;
4528                                /* we uncharge from mc.from later. */
4529                                mc.moved_charge++;
4530                        }
4531                        putback_lru_page(page);
4532put:                    /* is_target_pte_for_mc() gets the page */
4533                        put_page(page);
4534                        break;
4535                case MC_TARGET_SWAP:
4536                        ent = target.ent;
4537                        if (!mem_cgroup_move_swap_account(ent,
4538                                                mc.from, mc.to, false)) {
4539                                mc.precharge--;
4540                                /* we fixup refcnts and charges later. */
4541                                mc.moved_swap++;
4542                        }
4543                        break;
4544                default:
4545                        break;
4546                }
4547        }
4548        pte_unmap_unlock(pte - 1, ptl);
4549        cond_resched();
4550
4551        if (addr != end) {
4552                /*
4553                 * We have consumed all precharges we got in can_attach().
4554                 * We try charge one by one, but don't do any additional
4555                 * charges to mc.to if we have failed in charge once in attach()
4556                 * phase.
4557                 */
4558                ret = mem_cgroup_do_precharge(1);
4559                if (!ret)
4560                        goto retry;
4561        }
4562
4563        return ret;
4564}
4565
4566static void mem_cgroup_move_charge(struct mm_struct *mm)
4567{
4568        struct vm_area_struct *vma;
4569
4570        lru_add_drain_all();
4571        down_read(&mm->mmap_sem);
4572        for (vma = mm->mmap; vma; vma = vma->vm_next) {
4573                int ret;
4574                struct mm_walk mem_cgroup_move_charge_walk = {
4575                        .pmd_entry = mem_cgroup_move_charge_pte_range,
4576                        .mm = mm,
4577                        .private = vma,
4578                };
4579                if (is_vm_hugetlb_page(vma))
4580                        continue;
4581                ret = walk_page_range(vma->vm_start, vma->vm_end,
4582                                                &mem_cgroup_move_charge_walk);
4583                if (ret)
4584                        /*
4585                         * means we have consumed all precharges and failed in
4586                         * doing additional charge. Just abandon here.
4587                         */
4588                        break;
4589        }
4590        up_read(&mm->mmap_sem);
4591}
4592
4593static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4594                                struct cgroup *cont,
4595                                struct cgroup *old_cont,
4596                                struct task_struct *p,
4597                                bool threadgroup)
4598{
4599        struct mm_struct *mm;
4600
4601        if (!mc.to)
4602                /* no need to move charge */
4603                return;
4604
4605        mm = get_task_mm(p);
4606        if (mm) {
4607                mem_cgroup_move_charge(mm);
4608                mmput(mm);
4609        }
4610        mem_cgroup_clear_mc();
4611}
4612#else   /* !CONFIG_MMU */
4613static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4614                                struct cgroup *cgroup,
4615                                struct task_struct *p,
4616                                bool threadgroup)
4617{
4618        return 0;
4619}
4620static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4621                                struct cgroup *cgroup,
4622                                struct task_struct *p,
4623                                bool threadgroup)
4624{
4625}
4626static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4627                                struct cgroup *cont,
4628                                struct cgroup *old_cont,
4629                                struct task_struct *p,
4630                                bool threadgroup)
4631{
4632}
4633#endif
4634
4635struct cgroup_subsys mem_cgroup_subsys = {
4636        .name = "memory",
4637        .subsys_id = mem_cgroup_subsys_id,
4638        .create = mem_cgroup_create,
4639        .pre_destroy = mem_cgroup_pre_destroy,
4640        .destroy = mem_cgroup_destroy,
4641        .populate = mem_cgroup_populate,
4642        .can_attach = mem_cgroup_can_attach,
4643        .cancel_attach = mem_cgroup_cancel_attach,
4644        .attach = mem_cgroup_move_task,
4645        .early_init = 0,
4646        .use_id = 1,
4647};
4648
4649#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4650
4651static int __init disable_swap_account(char *s)
4652{
4653        really_do_swap_account = 0;
4654        return 1;
4655}
4656__setup("noswapaccount", disable_swap_account);
4657#endif
4658