linux/block/elevator.c
<<
>>
Prefs
   1/*
   2 *  Block device elevator/IO-scheduler.
   3 *
   4 *  Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
   5 *
   6 * 30042000 Jens Axboe <axboe@kernel.dk> :
   7 *
   8 * Split the elevator a bit so that it is possible to choose a different
   9 * one or even write a new "plug in". There are three pieces:
  10 * - elevator_fn, inserts a new request in the queue list
  11 * - elevator_merge_fn, decides whether a new buffer can be merged with
  12 *   an existing request
  13 * - elevator_dequeue_fn, called when a request is taken off the active list
  14 *
  15 * 20082000 Dave Jones <davej@suse.de> :
  16 * Removed tests for max-bomb-segments, which was breaking elvtune
  17 *  when run without -bN
  18 *
  19 * Jens:
  20 * - Rework again to work with bio instead of buffer_heads
  21 * - loose bi_dev comparisons, partition handling is right now
  22 * - completely modularize elevator setup and teardown
  23 *
  24 */
  25#include <linux/kernel.h>
  26#include <linux/fs.h>
  27#include <linux/blkdev.h>
  28#include <linux/elevator.h>
  29#include <linux/bio.h>
  30#include <linux/module.h>
  31#include <linux/slab.h>
  32#include <linux/init.h>
  33#include <linux/compiler.h>
  34#include <linux/delay.h>
  35#include <linux/blktrace_api.h>
  36#include <linux/hash.h>
  37#include <linux/uaccess.h>
  38
  39#include <trace/events/block.h>
  40
  41#include "blk.h"
  42
  43static DEFINE_SPINLOCK(elv_list_lock);
  44static LIST_HEAD(elv_list);
  45
  46/*
  47 * Merge hash stuff.
  48 */
  49static const int elv_hash_shift = 6;
  50#define ELV_HASH_BLOCK(sec)     ((sec) >> 3)
  51#define ELV_HASH_FN(sec)        \
  52                (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
  53#define ELV_HASH_ENTRIES        (1 << elv_hash_shift)
  54#define rq_hash_key(rq)         (blk_rq_pos(rq) + blk_rq_sectors(rq))
  55
  56/*
  57 * Query io scheduler to see if the current process issuing bio may be
  58 * merged with rq.
  59 */
  60static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
  61{
  62        struct request_queue *q = rq->q;
  63        struct elevator_queue *e = q->elevator;
  64
  65        if (e->ops->elevator_allow_merge_fn)
  66                return e->ops->elevator_allow_merge_fn(q, rq, bio);
  67
  68        return 1;
  69}
  70
  71/*
  72 * can we safely merge with this request?
  73 */
  74int elv_rq_merge_ok(struct request *rq, struct bio *bio)
  75{
  76        if (!rq_mergeable(rq))
  77                return 0;
  78
  79        /*
  80         * Don't merge file system requests and discard requests
  81         */
  82        if (bio_rw_flagged(bio, BIO_RW_DISCARD) !=
  83            bio_rw_flagged(rq->bio, BIO_RW_DISCARD))
  84                return 0;
  85
  86        /*
  87         * different data direction or already started, don't merge
  88         */
  89        if (bio_data_dir(bio) != rq_data_dir(rq))
  90                return 0;
  91
  92        /*
  93         * must be same device and not a special request
  94         */
  95        if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special)
  96                return 0;
  97
  98        /*
  99         * only merge integrity protected bio into ditto rq
 100         */
 101        if (bio_integrity(bio) != blk_integrity_rq(rq))
 102                return 0;
 103
 104        if (!elv_iosched_allow_merge(rq, bio))
 105                return 0;
 106
 107        return 1;
 108}
 109EXPORT_SYMBOL(elv_rq_merge_ok);
 110
 111static inline int elv_try_merge(struct request *__rq, struct bio *bio)
 112{
 113        int ret = ELEVATOR_NO_MERGE;
 114
 115        /*
 116         * we can merge and sequence is ok, check if it's possible
 117         */
 118        if (elv_rq_merge_ok(__rq, bio)) {
 119                if (blk_rq_pos(__rq) + blk_rq_sectors(__rq) == bio->bi_sector)
 120                        ret = ELEVATOR_BACK_MERGE;
 121                else if (blk_rq_pos(__rq) - bio_sectors(bio) == bio->bi_sector)
 122                        ret = ELEVATOR_FRONT_MERGE;
 123        }
 124
 125        return ret;
 126}
 127
 128static struct elevator_type *elevator_find(const char *name)
 129{
 130        struct elevator_type *e;
 131
 132        list_for_each_entry(e, &elv_list, list) {
 133                if (!strcmp(e->elevator_name, name))
 134                        return e;
 135        }
 136
 137        return NULL;
 138}
 139
 140static void elevator_put(struct elevator_type *e)
 141{
 142        module_put(e->elevator_owner);
 143}
 144
 145static struct elevator_type *elevator_get(const char *name)
 146{
 147        struct elevator_type *e;
 148
 149        spin_lock(&elv_list_lock);
 150
 151        e = elevator_find(name);
 152        if (!e) {
 153                char elv[ELV_NAME_MAX + strlen("-iosched")];
 154
 155                spin_unlock(&elv_list_lock);
 156
 157                snprintf(elv, sizeof(elv), "%s-iosched", name);
 158
 159                request_module("%s", elv);
 160                spin_lock(&elv_list_lock);
 161                e = elevator_find(name);
 162        }
 163
 164        if (e && !try_module_get(e->elevator_owner))
 165                e = NULL;
 166
 167        spin_unlock(&elv_list_lock);
 168
 169        return e;
 170}
 171
 172static void *elevator_init_queue(struct request_queue *q,
 173                                 struct elevator_queue *eq)
 174{
 175        return eq->ops->elevator_init_fn(q);
 176}
 177
 178static void elevator_attach(struct request_queue *q, struct elevator_queue *eq,
 179                           void *data)
 180{
 181        q->elevator = eq;
 182        eq->elevator_data = data;
 183}
 184
 185static char chosen_elevator[16];
 186
 187static int __init elevator_setup(char *str)
 188{
 189        /*
 190         * Be backwards-compatible with previous kernels, so users
 191         * won't get the wrong elevator.
 192         */
 193        strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
 194        return 1;
 195}
 196
 197__setup("elevator=", elevator_setup);
 198
 199static struct kobj_type elv_ktype;
 200
 201static struct elevator_queue *elevator_alloc(struct request_queue *q,
 202                                  struct elevator_type *e)
 203{
 204        struct elevator_queue *eq;
 205        int i;
 206
 207        eq = kmalloc_node(sizeof(*eq), GFP_KERNEL | __GFP_ZERO, q->node);
 208        if (unlikely(!eq))
 209                goto err;
 210
 211        eq->ops = &e->ops;
 212        eq->elevator_type = e;
 213        kobject_init(&eq->kobj, &elv_ktype);
 214        mutex_init(&eq->sysfs_lock);
 215
 216        eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
 217                                        GFP_KERNEL, q->node);
 218        if (!eq->hash)
 219                goto err;
 220
 221        for (i = 0; i < ELV_HASH_ENTRIES; i++)
 222                INIT_HLIST_HEAD(&eq->hash[i]);
 223
 224        return eq;
 225err:
 226        kfree(eq);
 227        elevator_put(e);
 228        return NULL;
 229}
 230
 231static void elevator_release(struct kobject *kobj)
 232{
 233        struct elevator_queue *e;
 234
 235        e = container_of(kobj, struct elevator_queue, kobj);
 236        elevator_put(e->elevator_type);
 237        kfree(e->hash);
 238        kfree(e);
 239}
 240
 241int elevator_init(struct request_queue *q, char *name)
 242{
 243        struct elevator_type *e = NULL;
 244        struct elevator_queue *eq;
 245        void *data;
 246
 247        if (unlikely(q->elevator))
 248                return 0;
 249
 250        INIT_LIST_HEAD(&q->queue_head);
 251        q->last_merge = NULL;
 252        q->end_sector = 0;
 253        q->boundary_rq = NULL;
 254
 255        if (name) {
 256                e = elevator_get(name);
 257                if (!e)
 258                        return -EINVAL;
 259        }
 260
 261        if (!e && *chosen_elevator) {
 262                e = elevator_get(chosen_elevator);
 263                if (!e)
 264                        printk(KERN_ERR "I/O scheduler %s not found\n",
 265                                                        chosen_elevator);
 266        }
 267
 268        if (!e) {
 269                e = elevator_get(CONFIG_DEFAULT_IOSCHED);
 270                if (!e) {
 271                        printk(KERN_ERR
 272                                "Default I/O scheduler not found. " \
 273                                "Using noop.\n");
 274                        e = elevator_get("noop");
 275                }
 276        }
 277
 278        eq = elevator_alloc(q, e);
 279        if (!eq)
 280                return -ENOMEM;
 281
 282        data = elevator_init_queue(q, eq);
 283        if (!data) {
 284                kobject_put(&eq->kobj);
 285                return -ENOMEM;
 286        }
 287
 288        elevator_attach(q, eq, data);
 289        return 0;
 290}
 291EXPORT_SYMBOL(elevator_init);
 292
 293void elevator_exit(struct elevator_queue *e)
 294{
 295        mutex_lock(&e->sysfs_lock);
 296        if (e->ops->elevator_exit_fn)
 297                e->ops->elevator_exit_fn(e);
 298        e->ops = NULL;
 299        mutex_unlock(&e->sysfs_lock);
 300
 301        kobject_put(&e->kobj);
 302}
 303EXPORT_SYMBOL(elevator_exit);
 304
 305static inline void __elv_rqhash_del(struct request *rq)
 306{
 307        hlist_del_init(&rq->hash);
 308}
 309
 310static void elv_rqhash_del(struct request_queue *q, struct request *rq)
 311{
 312        if (ELV_ON_HASH(rq))
 313                __elv_rqhash_del(rq);
 314}
 315
 316static void elv_rqhash_add(struct request_queue *q, struct request *rq)
 317{
 318        struct elevator_queue *e = q->elevator;
 319
 320        BUG_ON(ELV_ON_HASH(rq));
 321        hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
 322}
 323
 324static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
 325{
 326        __elv_rqhash_del(rq);
 327        elv_rqhash_add(q, rq);
 328}
 329
 330static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
 331{
 332        struct elevator_queue *e = q->elevator;
 333        struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
 334        struct hlist_node *entry, *next;
 335        struct request *rq;
 336
 337        hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
 338                BUG_ON(!ELV_ON_HASH(rq));
 339
 340                if (unlikely(!rq_mergeable(rq))) {
 341                        __elv_rqhash_del(rq);
 342                        continue;
 343                }
 344
 345                if (rq_hash_key(rq) == offset)
 346                        return rq;
 347        }
 348
 349        return NULL;
 350}
 351
 352/*
 353 * RB-tree support functions for inserting/lookup/removal of requests
 354 * in a sorted RB tree.
 355 */
 356struct request *elv_rb_add(struct rb_root *root, struct request *rq)
 357{
 358        struct rb_node **p = &root->rb_node;
 359        struct rb_node *parent = NULL;
 360        struct request *__rq;
 361
 362        while (*p) {
 363                parent = *p;
 364                __rq = rb_entry(parent, struct request, rb_node);
 365
 366                if (blk_rq_pos(rq) < blk_rq_pos(__rq))
 367                        p = &(*p)->rb_left;
 368                else if (blk_rq_pos(rq) > blk_rq_pos(__rq))
 369                        p = &(*p)->rb_right;
 370                else
 371                        return __rq;
 372        }
 373
 374        rb_link_node(&rq->rb_node, parent, p);
 375        rb_insert_color(&rq->rb_node, root);
 376        return NULL;
 377}
 378EXPORT_SYMBOL(elv_rb_add);
 379
 380void elv_rb_del(struct rb_root *root, struct request *rq)
 381{
 382        BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
 383        rb_erase(&rq->rb_node, root);
 384        RB_CLEAR_NODE(&rq->rb_node);
 385}
 386EXPORT_SYMBOL(elv_rb_del);
 387
 388struct request *elv_rb_find(struct rb_root *root, sector_t sector)
 389{
 390        struct rb_node *n = root->rb_node;
 391        struct request *rq;
 392
 393        while (n) {
 394                rq = rb_entry(n, struct request, rb_node);
 395
 396                if (sector < blk_rq_pos(rq))
 397                        n = n->rb_left;
 398                else if (sector > blk_rq_pos(rq))
 399                        n = n->rb_right;
 400                else
 401                        return rq;
 402        }
 403
 404        return NULL;
 405}
 406EXPORT_SYMBOL(elv_rb_find);
 407
 408/*
 409 * Insert rq into dispatch queue of q.  Queue lock must be held on
 410 * entry.  rq is sort instead into the dispatch queue. To be used by
 411 * specific elevators.
 412 */
 413void elv_dispatch_sort(struct request_queue *q, struct request *rq)
 414{
 415        sector_t boundary;
 416        struct list_head *entry;
 417        int stop_flags;
 418
 419        if (q->last_merge == rq)
 420                q->last_merge = NULL;
 421
 422        elv_rqhash_del(q, rq);
 423
 424        q->nr_sorted--;
 425
 426        boundary = q->end_sector;
 427        stop_flags = REQ_SOFTBARRIER | REQ_HARDBARRIER | REQ_STARTED;
 428        list_for_each_prev(entry, &q->queue_head) {
 429                struct request *pos = list_entry_rq(entry);
 430
 431                if (blk_discard_rq(rq) != blk_discard_rq(pos))
 432                        break;
 433                if (rq_data_dir(rq) != rq_data_dir(pos))
 434                        break;
 435                if (pos->cmd_flags & stop_flags)
 436                        break;
 437                if (blk_rq_pos(rq) >= boundary) {
 438                        if (blk_rq_pos(pos) < boundary)
 439                                continue;
 440                } else {
 441                        if (blk_rq_pos(pos) >= boundary)
 442                                break;
 443                }
 444                if (blk_rq_pos(rq) >= blk_rq_pos(pos))
 445                        break;
 446        }
 447
 448        list_add(&rq->queuelist, entry);
 449}
 450EXPORT_SYMBOL(elv_dispatch_sort);
 451
 452/*
 453 * Insert rq into dispatch queue of q.  Queue lock must be held on
 454 * entry.  rq is added to the back of the dispatch queue. To be used by
 455 * specific elevators.
 456 */
 457void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
 458{
 459        if (q->last_merge == rq)
 460                q->last_merge = NULL;
 461
 462        elv_rqhash_del(q, rq);
 463
 464        q->nr_sorted--;
 465
 466        q->end_sector = rq_end_sector(rq);
 467        q->boundary_rq = rq;
 468        list_add_tail(&rq->queuelist, &q->queue_head);
 469}
 470EXPORT_SYMBOL(elv_dispatch_add_tail);
 471
 472int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
 473{
 474        struct elevator_queue *e = q->elevator;
 475        struct request *__rq;
 476        int ret;
 477
 478        /*
 479         * Levels of merges:
 480         *      nomerges:  No merges at all attempted
 481         *      noxmerges: Only simple one-hit cache try
 482         *      merges:    All merge tries attempted
 483         */
 484        if (blk_queue_nomerges(q))
 485                return ELEVATOR_NO_MERGE;
 486
 487        /*
 488         * First try one-hit cache.
 489         */
 490        if (q->last_merge) {
 491                ret = elv_try_merge(q->last_merge, bio);
 492                if (ret != ELEVATOR_NO_MERGE) {
 493                        *req = q->last_merge;
 494                        return ret;
 495                }
 496        }
 497
 498        if (blk_queue_noxmerges(q))
 499                return ELEVATOR_NO_MERGE;
 500
 501        /*
 502         * See if our hash lookup can find a potential backmerge.
 503         */
 504        __rq = elv_rqhash_find(q, bio->bi_sector);
 505        if (__rq && elv_rq_merge_ok(__rq, bio)) {
 506                *req = __rq;
 507                return ELEVATOR_BACK_MERGE;
 508        }
 509
 510        if (e->ops->elevator_merge_fn)
 511                return e->ops->elevator_merge_fn(q, req, bio);
 512
 513        return ELEVATOR_NO_MERGE;
 514}
 515
 516void elv_merged_request(struct request_queue *q, struct request *rq, int type)
 517{
 518        struct elevator_queue *e = q->elevator;
 519
 520        if (e->ops->elevator_merged_fn)
 521                e->ops->elevator_merged_fn(q, rq, type);
 522
 523        if (type == ELEVATOR_BACK_MERGE)
 524                elv_rqhash_reposition(q, rq);
 525
 526        q->last_merge = rq;
 527}
 528
 529void elv_merge_requests(struct request_queue *q, struct request *rq,
 530                             struct request *next)
 531{
 532        struct elevator_queue *e = q->elevator;
 533
 534        if (e->ops->elevator_merge_req_fn)
 535                e->ops->elevator_merge_req_fn(q, rq, next);
 536
 537        elv_rqhash_reposition(q, rq);
 538        elv_rqhash_del(q, next);
 539
 540        q->nr_sorted--;
 541        q->last_merge = rq;
 542}
 543
 544void elv_bio_merged(struct request_queue *q, struct request *rq,
 545                        struct bio *bio)
 546{
 547        struct elevator_queue *e = q->elevator;
 548
 549        if (e->ops->elevator_bio_merged_fn)
 550                e->ops->elevator_bio_merged_fn(q, rq, bio);
 551}
 552
 553void elv_requeue_request(struct request_queue *q, struct request *rq)
 554{
 555        /*
 556         * it already went through dequeue, we need to decrement the
 557         * in_flight count again
 558         */
 559        if (blk_account_rq(rq)) {
 560                q->in_flight[rq_is_sync(rq)]--;
 561                if (blk_sorted_rq(rq))
 562                        elv_deactivate_rq(q, rq);
 563        }
 564
 565        rq->cmd_flags &= ~REQ_STARTED;
 566
 567        elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
 568}
 569
 570void elv_drain_elevator(struct request_queue *q)
 571{
 572        static int printed;
 573        while (q->elevator->ops->elevator_dispatch_fn(q, 1))
 574                ;
 575        if (q->nr_sorted == 0)
 576                return;
 577        if (printed++ < 10) {
 578                printk(KERN_ERR "%s: forced dispatching is broken "
 579                       "(nr_sorted=%u), please report this\n",
 580                       q->elevator->elevator_type->elevator_name, q->nr_sorted);
 581        }
 582}
 583
 584/*
 585 * Call with queue lock held, interrupts disabled
 586 */
 587void elv_quiesce_start(struct request_queue *q)
 588{
 589        if (!q->elevator)
 590                return;
 591
 592        queue_flag_set(QUEUE_FLAG_ELVSWITCH, q);
 593
 594        /*
 595         * make sure we don't have any requests in flight
 596         */
 597        elv_drain_elevator(q);
 598        while (q->rq.elvpriv) {
 599                __blk_run_queue(q);
 600                spin_unlock_irq(q->queue_lock);
 601                msleep(10);
 602                spin_lock_irq(q->queue_lock);
 603                elv_drain_elevator(q);
 604        }
 605}
 606
 607void elv_quiesce_end(struct request_queue *q)
 608{
 609        queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
 610}
 611
 612void elv_insert(struct request_queue *q, struct request *rq, int where)
 613{
 614        struct list_head *pos;
 615        unsigned ordseq;
 616        int unplug_it = 1;
 617
 618        trace_block_rq_insert(q, rq);
 619
 620        rq->q = q;
 621
 622        switch (where) {
 623        case ELEVATOR_INSERT_FRONT:
 624                rq->cmd_flags |= REQ_SOFTBARRIER;
 625
 626                list_add(&rq->queuelist, &q->queue_head);
 627                break;
 628
 629        case ELEVATOR_INSERT_BACK:
 630                rq->cmd_flags |= REQ_SOFTBARRIER;
 631                elv_drain_elevator(q);
 632                list_add_tail(&rq->queuelist, &q->queue_head);
 633                /*
 634                 * We kick the queue here for the following reasons.
 635                 * - The elevator might have returned NULL previously
 636                 *   to delay requests and returned them now.  As the
 637                 *   queue wasn't empty before this request, ll_rw_blk
 638                 *   won't run the queue on return, resulting in hang.
 639                 * - Usually, back inserted requests won't be merged
 640                 *   with anything.  There's no point in delaying queue
 641                 *   processing.
 642                 */
 643                __blk_run_queue(q);
 644                break;
 645
 646        case ELEVATOR_INSERT_SORT:
 647                BUG_ON(!blk_fs_request(rq) && !blk_discard_rq(rq));
 648                rq->cmd_flags |= REQ_SORTED;
 649                q->nr_sorted++;
 650                if (rq_mergeable(rq)) {
 651                        elv_rqhash_add(q, rq);
 652                        if (!q->last_merge)
 653                                q->last_merge = rq;
 654                }
 655
 656                /*
 657                 * Some ioscheds (cfq) run q->request_fn directly, so
 658                 * rq cannot be accessed after calling
 659                 * elevator_add_req_fn.
 660                 */
 661                q->elevator->ops->elevator_add_req_fn(q, rq);
 662                break;
 663
 664        case ELEVATOR_INSERT_REQUEUE:
 665                /*
 666                 * If ordered flush isn't in progress, we do front
 667                 * insertion; otherwise, requests should be requeued
 668                 * in ordseq order.
 669                 */
 670                rq->cmd_flags |= REQ_SOFTBARRIER;
 671
 672                /*
 673                 * Most requeues happen because of a busy condition,
 674                 * don't force unplug of the queue for that case.
 675                 */
 676                unplug_it = 0;
 677
 678                if (q->ordseq == 0) {
 679                        list_add(&rq->queuelist, &q->queue_head);
 680                        break;
 681                }
 682
 683                ordseq = blk_ordered_req_seq(rq);
 684
 685                list_for_each(pos, &q->queue_head) {
 686                        struct request *pos_rq = list_entry_rq(pos);
 687                        if (ordseq <= blk_ordered_req_seq(pos_rq))
 688                                break;
 689                }
 690
 691                list_add_tail(&rq->queuelist, pos);
 692                break;
 693
 694        default:
 695                printk(KERN_ERR "%s: bad insertion point %d\n",
 696                       __func__, where);
 697                BUG();
 698        }
 699
 700        if (unplug_it && blk_queue_plugged(q)) {
 701                int nrq = q->rq.count[BLK_RW_SYNC] + q->rq.count[BLK_RW_ASYNC]
 702                                - queue_in_flight(q);
 703
 704                if (nrq >= q->unplug_thresh)
 705                        __generic_unplug_device(q);
 706        }
 707}
 708
 709void __elv_add_request(struct request_queue *q, struct request *rq, int where,
 710                       int plug)
 711{
 712        if (q->ordcolor)
 713                rq->cmd_flags |= REQ_ORDERED_COLOR;
 714
 715        if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
 716                /*
 717                 * toggle ordered color
 718                 */
 719                if (blk_barrier_rq(rq))
 720                        q->ordcolor ^= 1;
 721
 722                /*
 723                 * barriers implicitly indicate back insertion
 724                 */
 725                if (where == ELEVATOR_INSERT_SORT)
 726                        where = ELEVATOR_INSERT_BACK;
 727
 728                /*
 729                 * this request is scheduling boundary, update
 730                 * end_sector
 731                 */
 732                if (blk_fs_request(rq) || blk_discard_rq(rq)) {
 733                        q->end_sector = rq_end_sector(rq);
 734                        q->boundary_rq = rq;
 735                }
 736        } else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
 737                    where == ELEVATOR_INSERT_SORT)
 738                where = ELEVATOR_INSERT_BACK;
 739
 740        if (plug)
 741                blk_plug_device(q);
 742
 743        elv_insert(q, rq, where);
 744}
 745EXPORT_SYMBOL(__elv_add_request);
 746
 747void elv_add_request(struct request_queue *q, struct request *rq, int where,
 748                     int plug)
 749{
 750        unsigned long flags;
 751
 752        spin_lock_irqsave(q->queue_lock, flags);
 753        __elv_add_request(q, rq, where, plug);
 754        spin_unlock_irqrestore(q->queue_lock, flags);
 755}
 756EXPORT_SYMBOL(elv_add_request);
 757
 758int elv_queue_empty(struct request_queue *q)
 759{
 760        struct elevator_queue *e = q->elevator;
 761
 762        if (!list_empty(&q->queue_head))
 763                return 0;
 764
 765        if (e->ops->elevator_queue_empty_fn)
 766                return e->ops->elevator_queue_empty_fn(q);
 767
 768        return 1;
 769}
 770EXPORT_SYMBOL(elv_queue_empty);
 771
 772struct request *elv_latter_request(struct request_queue *q, struct request *rq)
 773{
 774        struct elevator_queue *e = q->elevator;
 775
 776        if (e->ops->elevator_latter_req_fn)
 777                return e->ops->elevator_latter_req_fn(q, rq);
 778        return NULL;
 779}
 780
 781struct request *elv_former_request(struct request_queue *q, struct request *rq)
 782{
 783        struct elevator_queue *e = q->elevator;
 784
 785        if (e->ops->elevator_former_req_fn)
 786                return e->ops->elevator_former_req_fn(q, rq);
 787        return NULL;
 788}
 789
 790int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
 791{
 792        struct elevator_queue *e = q->elevator;
 793
 794        if (e->ops->elevator_set_req_fn)
 795                return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
 796
 797        rq->elevator_private = NULL;
 798        return 0;
 799}
 800
 801void elv_put_request(struct request_queue *q, struct request *rq)
 802{
 803        struct elevator_queue *e = q->elevator;
 804
 805        if (e->ops->elevator_put_req_fn)
 806                e->ops->elevator_put_req_fn(rq);
 807}
 808
 809int elv_may_queue(struct request_queue *q, int rw)
 810{
 811        struct elevator_queue *e = q->elevator;
 812
 813        if (e->ops->elevator_may_queue_fn)
 814                return e->ops->elevator_may_queue_fn(q, rw);
 815
 816        return ELV_MQUEUE_MAY;
 817}
 818
 819void elv_abort_queue(struct request_queue *q)
 820{
 821        struct request *rq;
 822
 823        while (!list_empty(&q->queue_head)) {
 824                rq = list_entry_rq(q->queue_head.next);
 825                rq->cmd_flags |= REQ_QUIET;
 826                trace_block_rq_abort(q, rq);
 827                /*
 828                 * Mark this request as started so we don't trigger
 829                 * any debug logic in the end I/O path.
 830                 */
 831                blk_start_request(rq);
 832                __blk_end_request_all(rq, -EIO);
 833        }
 834}
 835EXPORT_SYMBOL(elv_abort_queue);
 836
 837void elv_completed_request(struct request_queue *q, struct request *rq)
 838{
 839        struct elevator_queue *e = q->elevator;
 840
 841        /*
 842         * request is released from the driver, io must be done
 843         */
 844        if (blk_account_rq(rq)) {
 845                q->in_flight[rq_is_sync(rq)]--;
 846                if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
 847                        e->ops->elevator_completed_req_fn(q, rq);
 848        }
 849
 850        /*
 851         * Check if the queue is waiting for fs requests to be
 852         * drained for flush sequence.
 853         */
 854        if (unlikely(q->ordseq)) {
 855                struct request *next = NULL;
 856
 857                if (!list_empty(&q->queue_head))
 858                        next = list_entry_rq(q->queue_head.next);
 859
 860                if (!queue_in_flight(q) &&
 861                    blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
 862                    (!next || blk_ordered_req_seq(next) > QUEUE_ORDSEQ_DRAIN)) {
 863                        blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
 864                        __blk_run_queue(q);
 865                }
 866        }
 867}
 868
 869#define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
 870
 871static ssize_t
 872elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
 873{
 874        struct elv_fs_entry *entry = to_elv(attr);
 875        struct elevator_queue *e;
 876        ssize_t error;
 877
 878        if (!entry->show)
 879                return -EIO;
 880
 881        e = container_of(kobj, struct elevator_queue, kobj);
 882        mutex_lock(&e->sysfs_lock);
 883        error = e->ops ? entry->show(e, page) : -ENOENT;
 884        mutex_unlock(&e->sysfs_lock);
 885        return error;
 886}
 887
 888static ssize_t
 889elv_attr_store(struct kobject *kobj, struct attribute *attr,
 890               const char *page, size_t length)
 891{
 892        struct elv_fs_entry *entry = to_elv(attr);
 893        struct elevator_queue *e;
 894        ssize_t error;
 895
 896        if (!entry->store)
 897                return -EIO;
 898
 899        e = container_of(kobj, struct elevator_queue, kobj);
 900        mutex_lock(&e->sysfs_lock);
 901        error = e->ops ? entry->store(e, page, length) : -ENOENT;
 902        mutex_unlock(&e->sysfs_lock);
 903        return error;
 904}
 905
 906static const struct sysfs_ops elv_sysfs_ops = {
 907        .show   = elv_attr_show,
 908        .store  = elv_attr_store,
 909};
 910
 911static struct kobj_type elv_ktype = {
 912        .sysfs_ops      = &elv_sysfs_ops,
 913        .release        = elevator_release,
 914};
 915
 916int elv_register_queue(struct request_queue *q)
 917{
 918        struct elevator_queue *e = q->elevator;
 919        int error;
 920
 921        error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
 922        if (!error) {
 923                struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
 924                if (attr) {
 925                        while (attr->attr.name) {
 926                                if (sysfs_create_file(&e->kobj, &attr->attr))
 927                                        break;
 928                                attr++;
 929                        }
 930                }
 931                kobject_uevent(&e->kobj, KOBJ_ADD);
 932        }
 933        return error;
 934}
 935EXPORT_SYMBOL(elv_register_queue);
 936
 937static void __elv_unregister_queue(struct elevator_queue *e)
 938{
 939        kobject_uevent(&e->kobj, KOBJ_REMOVE);
 940        kobject_del(&e->kobj);
 941}
 942
 943void elv_unregister_queue(struct request_queue *q)
 944{
 945        if (q)
 946                __elv_unregister_queue(q->elevator);
 947}
 948EXPORT_SYMBOL(elv_unregister_queue);
 949
 950void elv_register(struct elevator_type *e)
 951{
 952        char *def = "";
 953
 954        spin_lock(&elv_list_lock);
 955        BUG_ON(elevator_find(e->elevator_name));
 956        list_add_tail(&e->list, &elv_list);
 957        spin_unlock(&elv_list_lock);
 958
 959        if (!strcmp(e->elevator_name, chosen_elevator) ||
 960                        (!*chosen_elevator &&
 961                         !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
 962                                def = " (default)";
 963
 964        printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
 965                                                                def);
 966}
 967EXPORT_SYMBOL_GPL(elv_register);
 968
 969void elv_unregister(struct elevator_type *e)
 970{
 971        struct task_struct *g, *p;
 972
 973        /*
 974         * Iterate every thread in the process to remove the io contexts.
 975         */
 976        if (e->ops.trim) {
 977                read_lock(&tasklist_lock);
 978                do_each_thread(g, p) {
 979                        task_lock(p);
 980                        if (p->io_context)
 981                                e->ops.trim(p->io_context);
 982                        task_unlock(p);
 983                } while_each_thread(g, p);
 984                read_unlock(&tasklist_lock);
 985        }
 986
 987        spin_lock(&elv_list_lock);
 988        list_del_init(&e->list);
 989        spin_unlock(&elv_list_lock);
 990}
 991EXPORT_SYMBOL_GPL(elv_unregister);
 992
 993/*
 994 * switch to new_e io scheduler. be careful not to introduce deadlocks -
 995 * we don't free the old io scheduler, before we have allocated what we
 996 * need for the new one. this way we have a chance of going back to the old
 997 * one, if the new one fails init for some reason.
 998 */
 999static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
1000{
1001        struct elevator_queue *old_elevator, *e;
1002        void *data;
1003
1004        /*
1005         * Allocate new elevator
1006         */
1007        e = elevator_alloc(q, new_e);
1008        if (!e)
1009                return 0;
1010
1011        data = elevator_init_queue(q, e);
1012        if (!data) {
1013                kobject_put(&e->kobj);
1014                return 0;
1015        }
1016
1017        /*
1018         * Turn on BYPASS and drain all requests w/ elevator private data
1019         */
1020        spin_lock_irq(q->queue_lock);
1021        elv_quiesce_start(q);
1022
1023        /*
1024         * Remember old elevator.
1025         */
1026        old_elevator = q->elevator;
1027
1028        /*
1029         * attach and start new elevator
1030         */
1031        elevator_attach(q, e, data);
1032
1033        spin_unlock_irq(q->queue_lock);
1034
1035        __elv_unregister_queue(old_elevator);
1036
1037        if (elv_register_queue(q))
1038                goto fail_register;
1039
1040        /*
1041         * finally exit old elevator and turn off BYPASS.
1042         */
1043        elevator_exit(old_elevator);
1044        spin_lock_irq(q->queue_lock);
1045        elv_quiesce_end(q);
1046        spin_unlock_irq(q->queue_lock);
1047
1048        blk_add_trace_msg(q, "elv switch: %s", e->elevator_type->elevator_name);
1049
1050        return 1;
1051
1052fail_register:
1053        /*
1054         * switch failed, exit the new io scheduler and reattach the old
1055         * one again (along with re-adding the sysfs dir)
1056         */
1057        elevator_exit(e);
1058        q->elevator = old_elevator;
1059        elv_register_queue(q);
1060
1061        spin_lock_irq(q->queue_lock);
1062        queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
1063        spin_unlock_irq(q->queue_lock);
1064
1065        return 0;
1066}
1067
1068ssize_t elv_iosched_store(struct request_queue *q, const char *name,
1069                          size_t count)
1070{
1071        char elevator_name[ELV_NAME_MAX];
1072        struct elevator_type *e;
1073
1074        if (!q->elevator)
1075                return count;
1076
1077        strlcpy(elevator_name, name, sizeof(elevator_name));
1078        e = elevator_get(strstrip(elevator_name));
1079        if (!e) {
1080                printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
1081                return -EINVAL;
1082        }
1083
1084        if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
1085                elevator_put(e);
1086                return count;
1087        }
1088
1089        if (!elevator_switch(q, e))
1090                printk(KERN_ERR "elevator: switch to %s failed\n",
1091                                                        elevator_name);
1092        return count;
1093}
1094
1095ssize_t elv_iosched_show(struct request_queue *q, char *name)
1096{
1097        struct elevator_queue *e = q->elevator;
1098        struct elevator_type *elv;
1099        struct elevator_type *__e;
1100        int len = 0;
1101
1102        if (!q->elevator || !blk_queue_stackable(q))
1103                return sprintf(name, "none\n");
1104
1105        elv = e->elevator_type;
1106
1107        spin_lock(&elv_list_lock);
1108        list_for_each_entry(__e, &elv_list, list) {
1109                if (!strcmp(elv->elevator_name, __e->elevator_name))
1110                        len += sprintf(name+len, "[%s] ", elv->elevator_name);
1111                else
1112                        len += sprintf(name+len, "%s ", __e->elevator_name);
1113        }
1114        spin_unlock(&elv_list_lock);
1115
1116        len += sprintf(len+name, "\n");
1117        return len;
1118}
1119
1120struct request *elv_rb_former_request(struct request_queue *q,
1121                                      struct request *rq)
1122{
1123        struct rb_node *rbprev = rb_prev(&rq->rb_node);
1124
1125        if (rbprev)
1126                return rb_entry_rq(rbprev);
1127
1128        return NULL;
1129}
1130EXPORT_SYMBOL(elv_rb_former_request);
1131
1132struct request *elv_rb_latter_request(struct request_queue *q,
1133                                      struct request *rq)
1134{
1135        struct rb_node *rbnext = rb_next(&rq->rb_node);
1136
1137        if (rbnext)
1138                return rb_entry_rq(rbnext);
1139
1140        return NULL;
1141}
1142EXPORT_SYMBOL(elv_rb_latter_request);
1143