linux/block/cfq-iosched.c
<<
>>
Prefs
   1/*
   2 *  CFQ, or complete fairness queueing, disk scheduler.
   3 *
   4 *  Based on ideas from a previously unfinished io
   5 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
   6 *
   7 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
   8 */
   9#include <linux/module.h>
  10#include <linux/slab.h>
  11#include <linux/blkdev.h>
  12#include <linux/elevator.h>
  13#include <linux/jiffies.h>
  14#include <linux/rbtree.h>
  15#include <linux/ioprio.h>
  16#include <linux/blktrace_api.h>
  17#include "cfq.h"
  18
  19/*
  20 * tunables
  21 */
  22/* max queue in one round of service */
  23static const int cfq_quantum = 8;
  24static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  25/* maximum backwards seek, in KiB */
  26static const int cfq_back_max = 16 * 1024;
  27/* penalty of a backwards seek */
  28static const int cfq_back_penalty = 2;
  29static const int cfq_slice_sync = HZ / 10;
  30static int cfq_slice_async = HZ / 25;
  31static const int cfq_slice_async_rq = 2;
  32static int cfq_slice_idle = HZ / 125;
  33static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  34static const int cfq_hist_divisor = 4;
  35
  36/*
  37 * offset from end of service tree
  38 */
  39#define CFQ_IDLE_DELAY          (HZ / 5)
  40
  41/*
  42 * below this threshold, we consider thinktime immediate
  43 */
  44#define CFQ_MIN_TT              (2)
  45
  46#define CFQ_SLICE_SCALE         (5)
  47#define CFQ_HW_QUEUE_MIN        (5)
  48#define CFQ_SERVICE_SHIFT       12
  49
  50#define CFQQ_SEEK_THR           (sector_t)(8 * 100)
  51#define CFQQ_CLOSE_THR          (sector_t)(8 * 1024)
  52#define CFQQ_SECT_THR_NONROT    (sector_t)(2 * 32)
  53#define CFQQ_SEEKY(cfqq)        (hweight32(cfqq->seek_history) > 32/8)
  54
  55#define RQ_CIC(rq)              \
  56        ((struct cfq_io_context *) (rq)->elevator_private)
  57#define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elevator_private2)
  58#define RQ_CFQG(rq)             (struct cfq_group *) ((rq)->elevator_private3)
  59
  60static struct kmem_cache *cfq_pool;
  61static struct kmem_cache *cfq_ioc_pool;
  62
  63static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
  64static struct completion *ioc_gone;
  65static DEFINE_SPINLOCK(ioc_gone_lock);
  66
  67static DEFINE_SPINLOCK(cic_index_lock);
  68static DEFINE_IDA(cic_index_ida);
  69
  70#define CFQ_PRIO_LISTS          IOPRIO_BE_NR
  71#define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  72#define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  73
  74#define sample_valid(samples)   ((samples) > 80)
  75#define rb_entry_cfqg(node)     rb_entry((node), struct cfq_group, rb_node)
  76
  77/*
  78 * Most of our rbtree usage is for sorting with min extraction, so
  79 * if we cache the leftmost node we don't have to walk down the tree
  80 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  81 * move this into the elevator for the rq sorting as well.
  82 */
  83struct cfq_rb_root {
  84        struct rb_root rb;
  85        struct rb_node *left;
  86        unsigned count;
  87        unsigned total_weight;
  88        u64 min_vdisktime;
  89        struct rb_node *active;
  90};
  91#define CFQ_RB_ROOT     (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
  92                        .count = 0, .min_vdisktime = 0, }
  93
  94/*
  95 * Per process-grouping structure
  96 */
  97struct cfq_queue {
  98        /* reference count */
  99        atomic_t ref;
 100        /* various state flags, see below */
 101        unsigned int flags;
 102        /* parent cfq_data */
 103        struct cfq_data *cfqd;
 104        /* service_tree member */
 105        struct rb_node rb_node;
 106        /* service_tree key */
 107        unsigned long rb_key;
 108        /* prio tree member */
 109        struct rb_node p_node;
 110        /* prio tree root we belong to, if any */
 111        struct rb_root *p_root;
 112        /* sorted list of pending requests */
 113        struct rb_root sort_list;
 114        /* if fifo isn't expired, next request to serve */
 115        struct request *next_rq;
 116        /* requests queued in sort_list */
 117        int queued[2];
 118        /* currently allocated requests */
 119        int allocated[2];
 120        /* fifo list of requests in sort_list */
 121        struct list_head fifo;
 122
 123        /* time when queue got scheduled in to dispatch first request. */
 124        unsigned long dispatch_start;
 125        unsigned int allocated_slice;
 126        unsigned int slice_dispatch;
 127        /* time when first request from queue completed and slice started. */
 128        unsigned long slice_start;
 129        unsigned long slice_end;
 130        long slice_resid;
 131
 132        /* pending metadata requests */
 133        int meta_pending;
 134        /* number of requests that are on the dispatch list or inside driver */
 135        int dispatched;
 136
 137        /* io prio of this group */
 138        unsigned short ioprio, org_ioprio;
 139        unsigned short ioprio_class, org_ioprio_class;
 140
 141        pid_t pid;
 142
 143        u32 seek_history;
 144        sector_t last_request_pos;
 145
 146        struct cfq_rb_root *service_tree;
 147        struct cfq_queue *new_cfqq;
 148        struct cfq_group *cfqg;
 149        struct cfq_group *orig_cfqg;
 150};
 151
 152/*
 153 * First index in the service_trees.
 154 * IDLE is handled separately, so it has negative index
 155 */
 156enum wl_prio_t {
 157        BE_WORKLOAD = 0,
 158        RT_WORKLOAD = 1,
 159        IDLE_WORKLOAD = 2,
 160};
 161
 162/*
 163 * Second index in the service_trees.
 164 */
 165enum wl_type_t {
 166        ASYNC_WORKLOAD = 0,
 167        SYNC_NOIDLE_WORKLOAD = 1,
 168        SYNC_WORKLOAD = 2
 169};
 170
 171/* This is per cgroup per device grouping structure */
 172struct cfq_group {
 173        /* group service_tree member */
 174        struct rb_node rb_node;
 175
 176        /* group service_tree key */
 177        u64 vdisktime;
 178        unsigned int weight;
 179        bool on_st;
 180
 181        /* number of cfqq currently on this group */
 182        int nr_cfqq;
 183
 184        /* Per group busy queus average. Useful for workload slice calc. */
 185        unsigned int busy_queues_avg[2];
 186        /*
 187         * rr lists of queues with requests, onle rr for each priority class.
 188         * Counts are embedded in the cfq_rb_root
 189         */
 190        struct cfq_rb_root service_trees[2][3];
 191        struct cfq_rb_root service_tree_idle;
 192
 193        unsigned long saved_workload_slice;
 194        enum wl_type_t saved_workload;
 195        enum wl_prio_t saved_serving_prio;
 196        struct blkio_group blkg;
 197#ifdef CONFIG_CFQ_GROUP_IOSCHED
 198        struct hlist_node cfqd_node;
 199        atomic_t ref;
 200#endif
 201};
 202
 203/*
 204 * Per block device queue structure
 205 */
 206struct cfq_data {
 207        struct request_queue *queue;
 208        /* Root service tree for cfq_groups */
 209        struct cfq_rb_root grp_service_tree;
 210        struct cfq_group root_group;
 211
 212        /*
 213         * The priority currently being served
 214         */
 215        enum wl_prio_t serving_prio;
 216        enum wl_type_t serving_type;
 217        unsigned long workload_expires;
 218        struct cfq_group *serving_group;
 219        bool noidle_tree_requires_idle;
 220
 221        /*
 222         * Each priority tree is sorted by next_request position.  These
 223         * trees are used when determining if two or more queues are
 224         * interleaving requests (see cfq_close_cooperator).
 225         */
 226        struct rb_root prio_trees[CFQ_PRIO_LISTS];
 227
 228        unsigned int busy_queues;
 229
 230        int rq_in_driver;
 231        int rq_in_flight[2];
 232
 233        /*
 234         * queue-depth detection
 235         */
 236        int rq_queued;
 237        int hw_tag;
 238        /*
 239         * hw_tag can be
 240         * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
 241         *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
 242         *  0 => no NCQ
 243         */
 244        int hw_tag_est_depth;
 245        unsigned int hw_tag_samples;
 246
 247        /*
 248         * idle window management
 249         */
 250        struct timer_list idle_slice_timer;
 251        struct work_struct unplug_work;
 252
 253        struct cfq_queue *active_queue;
 254        struct cfq_io_context *active_cic;
 255
 256        /*
 257         * async queue for each priority case
 258         */
 259        struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
 260        struct cfq_queue *async_idle_cfqq;
 261
 262        sector_t last_position;
 263
 264        /*
 265         * tunables, see top of file
 266         */
 267        unsigned int cfq_quantum;
 268        unsigned int cfq_fifo_expire[2];
 269        unsigned int cfq_back_penalty;
 270        unsigned int cfq_back_max;
 271        unsigned int cfq_slice[2];
 272        unsigned int cfq_slice_async_rq;
 273        unsigned int cfq_slice_idle;
 274        unsigned int cfq_latency;
 275        unsigned int cfq_group_isolation;
 276
 277        unsigned int cic_index;
 278        struct list_head cic_list;
 279
 280        /*
 281         * Fallback dummy cfqq for extreme OOM conditions
 282         */
 283        struct cfq_queue oom_cfqq;
 284
 285        unsigned long last_delayed_sync;
 286
 287        /* List of cfq groups being managed on this device*/
 288        struct hlist_head cfqg_list;
 289        struct rcu_head rcu;
 290};
 291
 292static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
 293
 294static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
 295                                            enum wl_prio_t prio,
 296                                            enum wl_type_t type)
 297{
 298        if (!cfqg)
 299                return NULL;
 300
 301        if (prio == IDLE_WORKLOAD)
 302                return &cfqg->service_tree_idle;
 303
 304        return &cfqg->service_trees[prio][type];
 305}
 306
 307enum cfqq_state_flags {
 308        CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
 309        CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
 310        CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
 311        CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
 312        CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
 313        CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
 314        CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
 315        CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
 316        CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
 317        CFQ_CFQQ_FLAG_coop,             /* cfqq is shared */
 318        CFQ_CFQQ_FLAG_split_coop,       /* shared cfqq will be splitted */
 319        CFQ_CFQQ_FLAG_deep,             /* sync cfqq experienced large depth */
 320        CFQ_CFQQ_FLAG_wait_busy,        /* Waiting for next request */
 321};
 322
 323#define CFQ_CFQQ_FNS(name)                                              \
 324static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
 325{                                                                       \
 326        (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
 327}                                                                       \
 328static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
 329{                                                                       \
 330        (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
 331}                                                                       \
 332static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
 333{                                                                       \
 334        return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
 335}
 336
 337CFQ_CFQQ_FNS(on_rr);
 338CFQ_CFQQ_FNS(wait_request);
 339CFQ_CFQQ_FNS(must_dispatch);
 340CFQ_CFQQ_FNS(must_alloc_slice);
 341CFQ_CFQQ_FNS(fifo_expire);
 342CFQ_CFQQ_FNS(idle_window);
 343CFQ_CFQQ_FNS(prio_changed);
 344CFQ_CFQQ_FNS(slice_new);
 345CFQ_CFQQ_FNS(sync);
 346CFQ_CFQQ_FNS(coop);
 347CFQ_CFQQ_FNS(split_coop);
 348CFQ_CFQQ_FNS(deep);
 349CFQ_CFQQ_FNS(wait_busy);
 350#undef CFQ_CFQQ_FNS
 351
 352#ifdef CONFIG_CFQ_GROUP_IOSCHED
 353#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
 354        blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
 355                        cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
 356                        blkg_path(&(cfqq)->cfqg->blkg), ##args);
 357
 358#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)                          \
 359        blk_add_trace_msg((cfqd)->queue, "%s " fmt,                     \
 360                                blkg_path(&(cfqg)->blkg), ##args);      \
 361
 362#else
 363#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
 364        blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
 365#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)          do {} while (0);
 366#endif
 367#define cfq_log(cfqd, fmt, args...)     \
 368        blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
 369
 370/* Traverses through cfq group service trees */
 371#define for_each_cfqg_st(cfqg, i, j, st) \
 372        for (i = 0; i <= IDLE_WORKLOAD; i++) \
 373                for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
 374                        : &cfqg->service_tree_idle; \
 375                        (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
 376                        (i == IDLE_WORKLOAD && j == 0); \
 377                        j++, st = i < IDLE_WORKLOAD ? \
 378                        &cfqg->service_trees[i][j]: NULL) \
 379
 380
 381static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
 382{
 383        if (cfq_class_idle(cfqq))
 384                return IDLE_WORKLOAD;
 385        if (cfq_class_rt(cfqq))
 386                return RT_WORKLOAD;
 387        return BE_WORKLOAD;
 388}
 389
 390
 391static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
 392{
 393        if (!cfq_cfqq_sync(cfqq))
 394                return ASYNC_WORKLOAD;
 395        if (!cfq_cfqq_idle_window(cfqq))
 396                return SYNC_NOIDLE_WORKLOAD;
 397        return SYNC_WORKLOAD;
 398}
 399
 400static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
 401                                        struct cfq_data *cfqd,
 402                                        struct cfq_group *cfqg)
 403{
 404        if (wl == IDLE_WORKLOAD)
 405                return cfqg->service_tree_idle.count;
 406
 407        return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
 408                + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
 409                + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
 410}
 411
 412static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
 413                                        struct cfq_group *cfqg)
 414{
 415        return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
 416                + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
 417}
 418
 419static void cfq_dispatch_insert(struct request_queue *, struct request *);
 420static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
 421                                       struct io_context *, gfp_t);
 422static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
 423                                                struct io_context *);
 424
 425static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
 426                                            bool is_sync)
 427{
 428        return cic->cfqq[is_sync];
 429}
 430
 431static inline void cic_set_cfqq(struct cfq_io_context *cic,
 432                                struct cfq_queue *cfqq, bool is_sync)
 433{
 434        cic->cfqq[is_sync] = cfqq;
 435}
 436
 437#define CIC_DEAD_KEY    1ul
 438#define CIC_DEAD_INDEX_SHIFT    1
 439
 440static inline void *cfqd_dead_key(struct cfq_data *cfqd)
 441{
 442        return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
 443}
 444
 445static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
 446{
 447        struct cfq_data *cfqd = cic->key;
 448
 449        if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
 450                return NULL;
 451
 452        return cfqd;
 453}
 454
 455/*
 456 * We regard a request as SYNC, if it's either a read or has the SYNC bit
 457 * set (in which case it could also be direct WRITE).
 458 */
 459static inline bool cfq_bio_sync(struct bio *bio)
 460{
 461        return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
 462}
 463
 464/*
 465 * scheduler run of queue, if there are requests pending and no one in the
 466 * driver that will restart queueing
 467 */
 468static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
 469{
 470        if (cfqd->busy_queues) {
 471                cfq_log(cfqd, "schedule dispatch");
 472                kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
 473        }
 474}
 475
 476static int cfq_queue_empty(struct request_queue *q)
 477{
 478        struct cfq_data *cfqd = q->elevator->elevator_data;
 479
 480        return !cfqd->rq_queued;
 481}
 482
 483/*
 484 * Scale schedule slice based on io priority. Use the sync time slice only
 485 * if a queue is marked sync and has sync io queued. A sync queue with async
 486 * io only, should not get full sync slice length.
 487 */
 488static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
 489                                 unsigned short prio)
 490{
 491        const int base_slice = cfqd->cfq_slice[sync];
 492
 493        WARN_ON(prio >= IOPRIO_BE_NR);
 494
 495        return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
 496}
 497
 498static inline int
 499cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
 500{
 501        return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
 502}
 503
 504static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
 505{
 506        u64 d = delta << CFQ_SERVICE_SHIFT;
 507
 508        d = d * BLKIO_WEIGHT_DEFAULT;
 509        do_div(d, cfqg->weight);
 510        return d;
 511}
 512
 513static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
 514{
 515        s64 delta = (s64)(vdisktime - min_vdisktime);
 516        if (delta > 0)
 517                min_vdisktime = vdisktime;
 518
 519        return min_vdisktime;
 520}
 521
 522static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
 523{
 524        s64 delta = (s64)(vdisktime - min_vdisktime);
 525        if (delta < 0)
 526                min_vdisktime = vdisktime;
 527
 528        return min_vdisktime;
 529}
 530
 531static void update_min_vdisktime(struct cfq_rb_root *st)
 532{
 533        u64 vdisktime = st->min_vdisktime;
 534        struct cfq_group *cfqg;
 535
 536        if (st->active) {
 537                cfqg = rb_entry_cfqg(st->active);
 538                vdisktime = cfqg->vdisktime;
 539        }
 540
 541        if (st->left) {
 542                cfqg = rb_entry_cfqg(st->left);
 543                vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
 544        }
 545
 546        st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
 547}
 548
 549/*
 550 * get averaged number of queues of RT/BE priority.
 551 * average is updated, with a formula that gives more weight to higher numbers,
 552 * to quickly follows sudden increases and decrease slowly
 553 */
 554
 555static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
 556                                        struct cfq_group *cfqg, bool rt)
 557{
 558        unsigned min_q, max_q;
 559        unsigned mult  = cfq_hist_divisor - 1;
 560        unsigned round = cfq_hist_divisor / 2;
 561        unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
 562
 563        min_q = min(cfqg->busy_queues_avg[rt], busy);
 564        max_q = max(cfqg->busy_queues_avg[rt], busy);
 565        cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
 566                cfq_hist_divisor;
 567        return cfqg->busy_queues_avg[rt];
 568}
 569
 570static inline unsigned
 571cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
 572{
 573        struct cfq_rb_root *st = &cfqd->grp_service_tree;
 574
 575        return cfq_target_latency * cfqg->weight / st->total_weight;
 576}
 577
 578static inline void
 579cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
 580{
 581        unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
 582        if (cfqd->cfq_latency) {
 583                /*
 584                 * interested queues (we consider only the ones with the same
 585                 * priority class in the cfq group)
 586                 */
 587                unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
 588                                                cfq_class_rt(cfqq));
 589                unsigned sync_slice = cfqd->cfq_slice[1];
 590                unsigned expect_latency = sync_slice * iq;
 591                unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
 592
 593                if (expect_latency > group_slice) {
 594                        unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
 595                        /* scale low_slice according to IO priority
 596                         * and sync vs async */
 597                        unsigned low_slice =
 598                                min(slice, base_low_slice * slice / sync_slice);
 599                        /* the adapted slice value is scaled to fit all iqs
 600                         * into the target latency */
 601                        slice = max(slice * group_slice / expect_latency,
 602                                    low_slice);
 603                }
 604        }
 605        cfqq->slice_start = jiffies;
 606        cfqq->slice_end = jiffies + slice;
 607        cfqq->allocated_slice = slice;
 608        cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
 609}
 610
 611/*
 612 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
 613 * isn't valid until the first request from the dispatch is activated
 614 * and the slice time set.
 615 */
 616static inline bool cfq_slice_used(struct cfq_queue *cfqq)
 617{
 618        if (cfq_cfqq_slice_new(cfqq))
 619                return 0;
 620        if (time_before(jiffies, cfqq->slice_end))
 621                return 0;
 622
 623        return 1;
 624}
 625
 626/*
 627 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
 628 * We choose the request that is closest to the head right now. Distance
 629 * behind the head is penalized and only allowed to a certain extent.
 630 */
 631static struct request *
 632cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
 633{
 634        sector_t s1, s2, d1 = 0, d2 = 0;
 635        unsigned long back_max;
 636#define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
 637#define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
 638        unsigned wrap = 0; /* bit mask: requests behind the disk head? */
 639
 640        if (rq1 == NULL || rq1 == rq2)
 641                return rq2;
 642        if (rq2 == NULL)
 643                return rq1;
 644
 645        if (rq_is_sync(rq1) && !rq_is_sync(rq2))
 646                return rq1;
 647        else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
 648                return rq2;
 649        if (rq_is_meta(rq1) && !rq_is_meta(rq2))
 650                return rq1;
 651        else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
 652                return rq2;
 653
 654        s1 = blk_rq_pos(rq1);
 655        s2 = blk_rq_pos(rq2);
 656
 657        /*
 658         * by definition, 1KiB is 2 sectors
 659         */
 660        back_max = cfqd->cfq_back_max * 2;
 661
 662        /*
 663         * Strict one way elevator _except_ in the case where we allow
 664         * short backward seeks which are biased as twice the cost of a
 665         * similar forward seek.
 666         */
 667        if (s1 >= last)
 668                d1 = s1 - last;
 669        else if (s1 + back_max >= last)
 670                d1 = (last - s1) * cfqd->cfq_back_penalty;
 671        else
 672                wrap |= CFQ_RQ1_WRAP;
 673
 674        if (s2 >= last)
 675                d2 = s2 - last;
 676        else if (s2 + back_max >= last)
 677                d2 = (last - s2) * cfqd->cfq_back_penalty;
 678        else
 679                wrap |= CFQ_RQ2_WRAP;
 680
 681        /* Found required data */
 682
 683        /*
 684         * By doing switch() on the bit mask "wrap" we avoid having to
 685         * check two variables for all permutations: --> faster!
 686         */
 687        switch (wrap) {
 688        case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
 689                if (d1 < d2)
 690                        return rq1;
 691                else if (d2 < d1)
 692                        return rq2;
 693                else {
 694                        if (s1 >= s2)
 695                                return rq1;
 696                        else
 697                                return rq2;
 698                }
 699
 700        case CFQ_RQ2_WRAP:
 701                return rq1;
 702        case CFQ_RQ1_WRAP:
 703                return rq2;
 704        case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
 705        default:
 706                /*
 707                 * Since both rqs are wrapped,
 708                 * start with the one that's further behind head
 709                 * (--> only *one* back seek required),
 710                 * since back seek takes more time than forward.
 711                 */
 712                if (s1 <= s2)
 713                        return rq1;
 714                else
 715                        return rq2;
 716        }
 717}
 718
 719/*
 720 * The below is leftmost cache rbtree addon
 721 */
 722static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
 723{
 724        /* Service tree is empty */
 725        if (!root->count)
 726                return NULL;
 727
 728        if (!root->left)
 729                root->left = rb_first(&root->rb);
 730
 731        if (root->left)
 732                return rb_entry(root->left, struct cfq_queue, rb_node);
 733
 734        return NULL;
 735}
 736
 737static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
 738{
 739        if (!root->left)
 740                root->left = rb_first(&root->rb);
 741
 742        if (root->left)
 743                return rb_entry_cfqg(root->left);
 744
 745        return NULL;
 746}
 747
 748static void rb_erase_init(struct rb_node *n, struct rb_root *root)
 749{
 750        rb_erase(n, root);
 751        RB_CLEAR_NODE(n);
 752}
 753
 754static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
 755{
 756        if (root->left == n)
 757                root->left = NULL;
 758        rb_erase_init(n, &root->rb);
 759        --root->count;
 760}
 761
 762/*
 763 * would be nice to take fifo expire time into account as well
 764 */
 765static struct request *
 766cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
 767                  struct request *last)
 768{
 769        struct rb_node *rbnext = rb_next(&last->rb_node);
 770        struct rb_node *rbprev = rb_prev(&last->rb_node);
 771        struct request *next = NULL, *prev = NULL;
 772
 773        BUG_ON(RB_EMPTY_NODE(&last->rb_node));
 774
 775        if (rbprev)
 776                prev = rb_entry_rq(rbprev);
 777
 778        if (rbnext)
 779                next = rb_entry_rq(rbnext);
 780        else {
 781                rbnext = rb_first(&cfqq->sort_list);
 782                if (rbnext && rbnext != &last->rb_node)
 783                        next = rb_entry_rq(rbnext);
 784        }
 785
 786        return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
 787}
 788
 789static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
 790                                      struct cfq_queue *cfqq)
 791{
 792        /*
 793         * just an approximation, should be ok.
 794         */
 795        return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
 796                       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
 797}
 798
 799static inline s64
 800cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
 801{
 802        return cfqg->vdisktime - st->min_vdisktime;
 803}
 804
 805static void
 806__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
 807{
 808        struct rb_node **node = &st->rb.rb_node;
 809        struct rb_node *parent = NULL;
 810        struct cfq_group *__cfqg;
 811        s64 key = cfqg_key(st, cfqg);
 812        int left = 1;
 813
 814        while (*node != NULL) {
 815                parent = *node;
 816                __cfqg = rb_entry_cfqg(parent);
 817
 818                if (key < cfqg_key(st, __cfqg))
 819                        node = &parent->rb_left;
 820                else {
 821                        node = &parent->rb_right;
 822                        left = 0;
 823                }
 824        }
 825
 826        if (left)
 827                st->left = &cfqg->rb_node;
 828
 829        rb_link_node(&cfqg->rb_node, parent, node);
 830        rb_insert_color(&cfqg->rb_node, &st->rb);
 831}
 832
 833static void
 834cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
 835{
 836        struct cfq_rb_root *st = &cfqd->grp_service_tree;
 837        struct cfq_group *__cfqg;
 838        struct rb_node *n;
 839
 840        cfqg->nr_cfqq++;
 841        if (cfqg->on_st)
 842                return;
 843
 844        /*
 845         * Currently put the group at the end. Later implement something
 846         * so that groups get lesser vtime based on their weights, so that
 847         * if group does not loose all if it was not continously backlogged.
 848         */
 849        n = rb_last(&st->rb);
 850        if (n) {
 851                __cfqg = rb_entry_cfqg(n);
 852                cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
 853        } else
 854                cfqg->vdisktime = st->min_vdisktime;
 855
 856        __cfq_group_service_tree_add(st, cfqg);
 857        cfqg->on_st = true;
 858        st->total_weight += cfqg->weight;
 859}
 860
 861static void
 862cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
 863{
 864        struct cfq_rb_root *st = &cfqd->grp_service_tree;
 865
 866        if (st->active == &cfqg->rb_node)
 867                st->active = NULL;
 868
 869        BUG_ON(cfqg->nr_cfqq < 1);
 870        cfqg->nr_cfqq--;
 871
 872        /* If there are other cfq queues under this group, don't delete it */
 873        if (cfqg->nr_cfqq)
 874                return;
 875
 876        cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
 877        cfqg->on_st = false;
 878        st->total_weight -= cfqg->weight;
 879        if (!RB_EMPTY_NODE(&cfqg->rb_node))
 880                cfq_rb_erase(&cfqg->rb_node, st);
 881        cfqg->saved_workload_slice = 0;
 882        cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
 883}
 884
 885static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
 886{
 887        unsigned int slice_used;
 888
 889        /*
 890         * Queue got expired before even a single request completed or
 891         * got expired immediately after first request completion.
 892         */
 893        if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
 894                /*
 895                 * Also charge the seek time incurred to the group, otherwise
 896                 * if there are mutiple queues in the group, each can dispatch
 897                 * a single request on seeky media and cause lots of seek time
 898                 * and group will never know it.
 899                 */
 900                slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
 901                                        1);
 902        } else {
 903                slice_used = jiffies - cfqq->slice_start;
 904                if (slice_used > cfqq->allocated_slice)
 905                        slice_used = cfqq->allocated_slice;
 906        }
 907
 908        cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u", slice_used);
 909        return slice_used;
 910}
 911
 912static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
 913                                struct cfq_queue *cfqq)
 914{
 915        struct cfq_rb_root *st = &cfqd->grp_service_tree;
 916        unsigned int used_sl, charge_sl;
 917        int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
 918                        - cfqg->service_tree_idle.count;
 919
 920        BUG_ON(nr_sync < 0);
 921        used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
 922
 923        if (!cfq_cfqq_sync(cfqq) && !nr_sync)
 924                charge_sl = cfqq->allocated_slice;
 925
 926        /* Can't update vdisktime while group is on service tree */
 927        cfq_rb_erase(&cfqg->rb_node, st);
 928        cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
 929        __cfq_group_service_tree_add(st, cfqg);
 930
 931        /* This group is being expired. Save the context */
 932        if (time_after(cfqd->workload_expires, jiffies)) {
 933                cfqg->saved_workload_slice = cfqd->workload_expires
 934                                                - jiffies;
 935                cfqg->saved_workload = cfqd->serving_type;
 936                cfqg->saved_serving_prio = cfqd->serving_prio;
 937        } else
 938                cfqg->saved_workload_slice = 0;
 939
 940        cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
 941                                        st->min_vdisktime);
 942        cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
 943        cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
 944}
 945
 946#ifdef CONFIG_CFQ_GROUP_IOSCHED
 947static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
 948{
 949        if (blkg)
 950                return container_of(blkg, struct cfq_group, blkg);
 951        return NULL;
 952}
 953
 954void
 955cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
 956{
 957        cfqg_of_blkg(blkg)->weight = weight;
 958}
 959
 960static struct cfq_group *
 961cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
 962{
 963        struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
 964        struct cfq_group *cfqg = NULL;
 965        void *key = cfqd;
 966        int i, j;
 967        struct cfq_rb_root *st;
 968        struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
 969        unsigned int major, minor;
 970
 971        cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
 972        if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
 973                sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
 974                cfqg->blkg.dev = MKDEV(major, minor);
 975                goto done;
 976        }
 977        if (cfqg || !create)
 978                goto done;
 979
 980        cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
 981        if (!cfqg)
 982                goto done;
 983
 984        for_each_cfqg_st(cfqg, i, j, st)
 985                *st = CFQ_RB_ROOT;
 986        RB_CLEAR_NODE(&cfqg->rb_node);
 987
 988        /*
 989         * Take the initial reference that will be released on destroy
 990         * This can be thought of a joint reference by cgroup and
 991         * elevator which will be dropped by either elevator exit
 992         * or cgroup deletion path depending on who is exiting first.
 993         */
 994        atomic_set(&cfqg->ref, 1);
 995
 996        /* Add group onto cgroup list */
 997        sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
 998        cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
 999                                        MKDEV(major, minor));
1000        cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1001
1002        /* Add group on cfqd list */
1003        hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1004
1005done:
1006        return cfqg;
1007}
1008
1009/*
1010 * Search for the cfq group current task belongs to. If create = 1, then also
1011 * create the cfq group if it does not exist. request_queue lock must be held.
1012 */
1013static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1014{
1015        struct cgroup *cgroup;
1016        struct cfq_group *cfqg = NULL;
1017
1018        rcu_read_lock();
1019        cgroup = task_cgroup(current, blkio_subsys_id);
1020        cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1021        if (!cfqg && create)
1022                cfqg = &cfqd->root_group;
1023        rcu_read_unlock();
1024        return cfqg;
1025}
1026
1027static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1028{
1029        atomic_inc(&cfqg->ref);
1030        return cfqg;
1031}
1032
1033static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1034{
1035        /* Currently, all async queues are mapped to root group */
1036        if (!cfq_cfqq_sync(cfqq))
1037                cfqg = &cfqq->cfqd->root_group;
1038
1039        cfqq->cfqg = cfqg;
1040        /* cfqq reference on cfqg */
1041        atomic_inc(&cfqq->cfqg->ref);
1042}
1043
1044static void cfq_put_cfqg(struct cfq_group *cfqg)
1045{
1046        struct cfq_rb_root *st;
1047        int i, j;
1048
1049        BUG_ON(atomic_read(&cfqg->ref) <= 0);
1050        if (!atomic_dec_and_test(&cfqg->ref))
1051                return;
1052        for_each_cfqg_st(cfqg, i, j, st)
1053                BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1054        kfree(cfqg);
1055}
1056
1057static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1058{
1059        /* Something wrong if we are trying to remove same group twice */
1060        BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1061
1062        hlist_del_init(&cfqg->cfqd_node);
1063
1064        /*
1065         * Put the reference taken at the time of creation so that when all
1066         * queues are gone, group can be destroyed.
1067         */
1068        cfq_put_cfqg(cfqg);
1069}
1070
1071static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1072{
1073        struct hlist_node *pos, *n;
1074        struct cfq_group *cfqg;
1075
1076        hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1077                /*
1078                 * If cgroup removal path got to blk_group first and removed
1079                 * it from cgroup list, then it will take care of destroying
1080                 * cfqg also.
1081                 */
1082                if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
1083                        cfq_destroy_cfqg(cfqd, cfqg);
1084        }
1085}
1086
1087/*
1088 * Blk cgroup controller notification saying that blkio_group object is being
1089 * delinked as associated cgroup object is going away. That also means that
1090 * no new IO will come in this group. So get rid of this group as soon as
1091 * any pending IO in the group is finished.
1092 *
1093 * This function is called under rcu_read_lock(). key is the rcu protected
1094 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1095 * read lock.
1096 *
1097 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1098 * it should not be NULL as even if elevator was exiting, cgroup deltion
1099 * path got to it first.
1100 */
1101void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1102{
1103        unsigned long  flags;
1104        struct cfq_data *cfqd = key;
1105
1106        spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1107        cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1108        spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1109}
1110
1111#else /* GROUP_IOSCHED */
1112static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1113{
1114        return &cfqd->root_group;
1115}
1116
1117static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1118{
1119        return cfqg;
1120}
1121
1122static inline void
1123cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1124        cfqq->cfqg = cfqg;
1125}
1126
1127static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1128static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1129
1130#endif /* GROUP_IOSCHED */
1131
1132/*
1133 * The cfqd->service_trees holds all pending cfq_queue's that have
1134 * requests waiting to be processed. It is sorted in the order that
1135 * we will service the queues.
1136 */
1137static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1138                                 bool add_front)
1139{
1140        struct rb_node **p, *parent;
1141        struct cfq_queue *__cfqq;
1142        unsigned long rb_key;
1143        struct cfq_rb_root *service_tree;
1144        int left;
1145        int new_cfqq = 1;
1146        int group_changed = 0;
1147
1148#ifdef CONFIG_CFQ_GROUP_IOSCHED
1149        if (!cfqd->cfq_group_isolation
1150            && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1151            && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1152                /* Move this cfq to root group */
1153                cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1154                if (!RB_EMPTY_NODE(&cfqq->rb_node))
1155                        cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1156                cfqq->orig_cfqg = cfqq->cfqg;
1157                cfqq->cfqg = &cfqd->root_group;
1158                atomic_inc(&cfqd->root_group.ref);
1159                group_changed = 1;
1160        } else if (!cfqd->cfq_group_isolation
1161                   && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1162                /* cfqq is sequential now needs to go to its original group */
1163                BUG_ON(cfqq->cfqg != &cfqd->root_group);
1164                if (!RB_EMPTY_NODE(&cfqq->rb_node))
1165                        cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1166                cfq_put_cfqg(cfqq->cfqg);
1167                cfqq->cfqg = cfqq->orig_cfqg;
1168                cfqq->orig_cfqg = NULL;
1169                group_changed = 1;
1170                cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1171        }
1172#endif
1173
1174        service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1175                                                cfqq_type(cfqq));
1176        if (cfq_class_idle(cfqq)) {
1177                rb_key = CFQ_IDLE_DELAY;
1178                parent = rb_last(&service_tree->rb);
1179                if (parent && parent != &cfqq->rb_node) {
1180                        __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1181                        rb_key += __cfqq->rb_key;
1182                } else
1183                        rb_key += jiffies;
1184        } else if (!add_front) {
1185                /*
1186                 * Get our rb key offset. Subtract any residual slice
1187                 * value carried from last service. A negative resid
1188                 * count indicates slice overrun, and this should position
1189                 * the next service time further away in the tree.
1190                 */
1191                rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1192                rb_key -= cfqq->slice_resid;
1193                cfqq->slice_resid = 0;
1194        } else {
1195                rb_key = -HZ;
1196                __cfqq = cfq_rb_first(service_tree);
1197                rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1198        }
1199
1200        if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1201                new_cfqq = 0;
1202                /*
1203                 * same position, nothing more to do
1204                 */
1205                if (rb_key == cfqq->rb_key &&
1206                    cfqq->service_tree == service_tree)
1207                        return;
1208
1209                cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1210                cfqq->service_tree = NULL;
1211        }
1212
1213        left = 1;
1214        parent = NULL;
1215        cfqq->service_tree = service_tree;
1216        p = &service_tree->rb.rb_node;
1217        while (*p) {
1218                struct rb_node **n;
1219
1220                parent = *p;
1221                __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1222
1223                /*
1224                 * sort by key, that represents service time.
1225                 */
1226                if (time_before(rb_key, __cfqq->rb_key))
1227                        n = &(*p)->rb_left;
1228                else {
1229                        n = &(*p)->rb_right;
1230                        left = 0;
1231                }
1232
1233                p = n;
1234        }
1235
1236        if (left)
1237                service_tree->left = &cfqq->rb_node;
1238
1239        cfqq->rb_key = rb_key;
1240        rb_link_node(&cfqq->rb_node, parent, p);
1241        rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1242        service_tree->count++;
1243        if ((add_front || !new_cfqq) && !group_changed)
1244                return;
1245        cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1246}
1247
1248static struct cfq_queue *
1249cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1250                     sector_t sector, struct rb_node **ret_parent,
1251                     struct rb_node ***rb_link)
1252{
1253        struct rb_node **p, *parent;
1254        struct cfq_queue *cfqq = NULL;
1255
1256        parent = NULL;
1257        p = &root->rb_node;
1258        while (*p) {
1259                struct rb_node **n;
1260
1261                parent = *p;
1262                cfqq = rb_entry(parent, struct cfq_queue, p_node);
1263
1264                /*
1265                 * Sort strictly based on sector.  Smallest to the left,
1266                 * largest to the right.
1267                 */
1268                if (sector > blk_rq_pos(cfqq->next_rq))
1269                        n = &(*p)->rb_right;
1270                else if (sector < blk_rq_pos(cfqq->next_rq))
1271                        n = &(*p)->rb_left;
1272                else
1273                        break;
1274                p = n;
1275                cfqq = NULL;
1276        }
1277
1278        *ret_parent = parent;
1279        if (rb_link)
1280                *rb_link = p;
1281        return cfqq;
1282}
1283
1284static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1285{
1286        struct rb_node **p, *parent;
1287        struct cfq_queue *__cfqq;
1288
1289        if (cfqq->p_root) {
1290                rb_erase(&cfqq->p_node, cfqq->p_root);
1291                cfqq->p_root = NULL;
1292        }
1293
1294        if (cfq_class_idle(cfqq))
1295                return;
1296        if (!cfqq->next_rq)
1297                return;
1298
1299        cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1300        __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1301                                      blk_rq_pos(cfqq->next_rq), &parent, &p);
1302        if (!__cfqq) {
1303                rb_link_node(&cfqq->p_node, parent, p);
1304                rb_insert_color(&cfqq->p_node, cfqq->p_root);
1305        } else
1306                cfqq->p_root = NULL;
1307}
1308
1309/*
1310 * Update cfqq's position in the service tree.
1311 */
1312static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1313{
1314        /*
1315         * Resorting requires the cfqq to be on the RR list already.
1316         */
1317        if (cfq_cfqq_on_rr(cfqq)) {
1318                cfq_service_tree_add(cfqd, cfqq, 0);
1319                cfq_prio_tree_add(cfqd, cfqq);
1320        }
1321}
1322
1323/*
1324 * add to busy list of queues for service, trying to be fair in ordering
1325 * the pending list according to last request service
1326 */
1327static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1328{
1329        cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1330        BUG_ON(cfq_cfqq_on_rr(cfqq));
1331        cfq_mark_cfqq_on_rr(cfqq);
1332        cfqd->busy_queues++;
1333
1334        cfq_resort_rr_list(cfqd, cfqq);
1335}
1336
1337/*
1338 * Called when the cfqq no longer has requests pending, remove it from
1339 * the service tree.
1340 */
1341static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1342{
1343        cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1344        BUG_ON(!cfq_cfqq_on_rr(cfqq));
1345        cfq_clear_cfqq_on_rr(cfqq);
1346
1347        if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1348                cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1349                cfqq->service_tree = NULL;
1350        }
1351        if (cfqq->p_root) {
1352                rb_erase(&cfqq->p_node, cfqq->p_root);
1353                cfqq->p_root = NULL;
1354        }
1355
1356        cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1357        BUG_ON(!cfqd->busy_queues);
1358        cfqd->busy_queues--;
1359}
1360
1361/*
1362 * rb tree support functions
1363 */
1364static void cfq_del_rq_rb(struct request *rq)
1365{
1366        struct cfq_queue *cfqq = RQ_CFQQ(rq);
1367        const int sync = rq_is_sync(rq);
1368
1369        BUG_ON(!cfqq->queued[sync]);
1370        cfqq->queued[sync]--;
1371
1372        elv_rb_del(&cfqq->sort_list, rq);
1373
1374        if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1375                /*
1376                 * Queue will be deleted from service tree when we actually
1377                 * expire it later. Right now just remove it from prio tree
1378                 * as it is empty.
1379                 */
1380                if (cfqq->p_root) {
1381                        rb_erase(&cfqq->p_node, cfqq->p_root);
1382                        cfqq->p_root = NULL;
1383                }
1384        }
1385}
1386
1387static void cfq_add_rq_rb(struct request *rq)
1388{
1389        struct cfq_queue *cfqq = RQ_CFQQ(rq);
1390        struct cfq_data *cfqd = cfqq->cfqd;
1391        struct request *__alias, *prev;
1392
1393        cfqq->queued[rq_is_sync(rq)]++;
1394
1395        /*
1396         * looks a little odd, but the first insert might return an alias.
1397         * if that happens, put the alias on the dispatch list
1398         */
1399        while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1400                cfq_dispatch_insert(cfqd->queue, __alias);
1401
1402        if (!cfq_cfqq_on_rr(cfqq))
1403                cfq_add_cfqq_rr(cfqd, cfqq);
1404
1405        /*
1406         * check if this request is a better next-serve candidate
1407         */
1408        prev = cfqq->next_rq;
1409        cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1410
1411        /*
1412         * adjust priority tree position, if ->next_rq changes
1413         */
1414        if (prev != cfqq->next_rq)
1415                cfq_prio_tree_add(cfqd, cfqq);
1416
1417        BUG_ON(!cfqq->next_rq);
1418}
1419
1420static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1421{
1422        elv_rb_del(&cfqq->sort_list, rq);
1423        cfqq->queued[rq_is_sync(rq)]--;
1424        cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1425                                        rq_data_dir(rq), rq_is_sync(rq));
1426        cfq_add_rq_rb(rq);
1427        cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1428                        &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1429                        rq_is_sync(rq));
1430}
1431
1432static struct request *
1433cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1434{
1435        struct task_struct *tsk = current;
1436        struct cfq_io_context *cic;
1437        struct cfq_queue *cfqq;
1438
1439        cic = cfq_cic_lookup(cfqd, tsk->io_context);
1440        if (!cic)
1441                return NULL;
1442
1443        cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1444        if (cfqq) {
1445                sector_t sector = bio->bi_sector + bio_sectors(bio);
1446
1447                return elv_rb_find(&cfqq->sort_list, sector);
1448        }
1449
1450        return NULL;
1451}
1452
1453static void cfq_activate_request(struct request_queue *q, struct request *rq)
1454{
1455        struct cfq_data *cfqd = q->elevator->elevator_data;
1456
1457        cfqd->rq_in_driver++;
1458        cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1459                                                cfqd->rq_in_driver);
1460
1461        cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1462}
1463
1464static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1465{
1466        struct cfq_data *cfqd = q->elevator->elevator_data;
1467
1468        WARN_ON(!cfqd->rq_in_driver);
1469        cfqd->rq_in_driver--;
1470        cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1471                                                cfqd->rq_in_driver);
1472}
1473
1474static void cfq_remove_request(struct request *rq)
1475{
1476        struct cfq_queue *cfqq = RQ_CFQQ(rq);
1477
1478        if (cfqq->next_rq == rq)
1479                cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1480
1481        list_del_init(&rq->queuelist);
1482        cfq_del_rq_rb(rq);
1483
1484        cfqq->cfqd->rq_queued--;
1485        cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1486                                        rq_data_dir(rq), rq_is_sync(rq));
1487        if (rq_is_meta(rq)) {
1488                WARN_ON(!cfqq->meta_pending);
1489                cfqq->meta_pending--;
1490        }
1491}
1492
1493static int cfq_merge(struct request_queue *q, struct request **req,
1494                     struct bio *bio)
1495{
1496        struct cfq_data *cfqd = q->elevator->elevator_data;
1497        struct request *__rq;
1498
1499        __rq = cfq_find_rq_fmerge(cfqd, bio);
1500        if (__rq && elv_rq_merge_ok(__rq, bio)) {
1501                *req = __rq;
1502                return ELEVATOR_FRONT_MERGE;
1503        }
1504
1505        return ELEVATOR_NO_MERGE;
1506}
1507
1508static void cfq_merged_request(struct request_queue *q, struct request *req,
1509                               int type)
1510{
1511        if (type == ELEVATOR_FRONT_MERGE) {
1512                struct cfq_queue *cfqq = RQ_CFQQ(req);
1513
1514                cfq_reposition_rq_rb(cfqq, req);
1515        }
1516}
1517
1518static void cfq_bio_merged(struct request_queue *q, struct request *req,
1519                                struct bio *bio)
1520{
1521        cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1522                                        bio_data_dir(bio), cfq_bio_sync(bio));
1523}
1524
1525static void
1526cfq_merged_requests(struct request_queue *q, struct request *rq,
1527                    struct request *next)
1528{
1529        struct cfq_queue *cfqq = RQ_CFQQ(rq);
1530        /*
1531         * reposition in fifo if next is older than rq
1532         */
1533        if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1534            time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1535                list_move(&rq->queuelist, &next->queuelist);
1536                rq_set_fifo_time(rq, rq_fifo_time(next));
1537        }
1538
1539        if (cfqq->next_rq == next)
1540                cfqq->next_rq = rq;
1541        cfq_remove_request(next);
1542        cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1543                                        rq_data_dir(next), rq_is_sync(next));
1544}
1545
1546static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1547                           struct bio *bio)
1548{
1549        struct cfq_data *cfqd = q->elevator->elevator_data;
1550        struct cfq_io_context *cic;
1551        struct cfq_queue *cfqq;
1552
1553        /*
1554         * Disallow merge of a sync bio into an async request.
1555         */
1556        if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1557                return false;
1558
1559        /*
1560         * Lookup the cfqq that this bio will be queued with. Allow
1561         * merge only if rq is queued there.
1562         */
1563        cic = cfq_cic_lookup(cfqd, current->io_context);
1564        if (!cic)
1565                return false;
1566
1567        cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1568        return cfqq == RQ_CFQQ(rq);
1569}
1570
1571static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1572{
1573        del_timer(&cfqd->idle_slice_timer);
1574        cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1575}
1576
1577static void __cfq_set_active_queue(struct cfq_data *cfqd,
1578                                   struct cfq_queue *cfqq)
1579{
1580        if (cfqq) {
1581                cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1582                                cfqd->serving_prio, cfqd->serving_type);
1583                cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1584                cfqq->slice_start = 0;
1585                cfqq->dispatch_start = jiffies;
1586                cfqq->allocated_slice = 0;
1587                cfqq->slice_end = 0;
1588                cfqq->slice_dispatch = 0;
1589
1590                cfq_clear_cfqq_wait_request(cfqq);
1591                cfq_clear_cfqq_must_dispatch(cfqq);
1592                cfq_clear_cfqq_must_alloc_slice(cfqq);
1593                cfq_clear_cfqq_fifo_expire(cfqq);
1594                cfq_mark_cfqq_slice_new(cfqq);
1595
1596                cfq_del_timer(cfqd, cfqq);
1597        }
1598
1599        cfqd->active_queue = cfqq;
1600}
1601
1602/*
1603 * current cfqq expired its slice (or was too idle), select new one
1604 */
1605static void
1606__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1607                    bool timed_out)
1608{
1609        cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1610
1611        if (cfq_cfqq_wait_request(cfqq))
1612                cfq_del_timer(cfqd, cfqq);
1613
1614        cfq_clear_cfqq_wait_request(cfqq);
1615        cfq_clear_cfqq_wait_busy(cfqq);
1616
1617        /*
1618         * If this cfqq is shared between multiple processes, check to
1619         * make sure that those processes are still issuing I/Os within
1620         * the mean seek distance.  If not, it may be time to break the
1621         * queues apart again.
1622         */
1623        if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1624                cfq_mark_cfqq_split_coop(cfqq);
1625
1626        /*
1627         * store what was left of this slice, if the queue idled/timed out
1628         */
1629        if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1630                cfqq->slice_resid = cfqq->slice_end - jiffies;
1631                cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1632        }
1633
1634        cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1635
1636        if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1637                cfq_del_cfqq_rr(cfqd, cfqq);
1638
1639        cfq_resort_rr_list(cfqd, cfqq);
1640
1641        if (cfqq == cfqd->active_queue)
1642                cfqd->active_queue = NULL;
1643
1644        if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1645                cfqd->grp_service_tree.active = NULL;
1646
1647        if (cfqd->active_cic) {
1648                put_io_context(cfqd->active_cic->ioc);
1649                cfqd->active_cic = NULL;
1650        }
1651}
1652
1653static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1654{
1655        struct cfq_queue *cfqq = cfqd->active_queue;
1656
1657        if (cfqq)
1658                __cfq_slice_expired(cfqd, cfqq, timed_out);
1659}
1660
1661/*
1662 * Get next queue for service. Unless we have a queue preemption,
1663 * we'll simply select the first cfqq in the service tree.
1664 */
1665static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1666{
1667        struct cfq_rb_root *service_tree =
1668                service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1669                                        cfqd->serving_type);
1670
1671        if (!cfqd->rq_queued)
1672                return NULL;
1673
1674        /* There is nothing to dispatch */
1675        if (!service_tree)
1676                return NULL;
1677        if (RB_EMPTY_ROOT(&service_tree->rb))
1678                return NULL;
1679        return cfq_rb_first(service_tree);
1680}
1681
1682static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1683{
1684        struct cfq_group *cfqg;
1685        struct cfq_queue *cfqq;
1686        int i, j;
1687        struct cfq_rb_root *st;
1688
1689        if (!cfqd->rq_queued)
1690                return NULL;
1691
1692        cfqg = cfq_get_next_cfqg(cfqd);
1693        if (!cfqg)
1694                return NULL;
1695
1696        for_each_cfqg_st(cfqg, i, j, st)
1697                if ((cfqq = cfq_rb_first(st)) != NULL)
1698                        return cfqq;
1699        return NULL;
1700}
1701
1702/*
1703 * Get and set a new active queue for service.
1704 */
1705static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1706                                              struct cfq_queue *cfqq)
1707{
1708        if (!cfqq)
1709                cfqq = cfq_get_next_queue(cfqd);
1710
1711        __cfq_set_active_queue(cfqd, cfqq);
1712        return cfqq;
1713}
1714
1715static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1716                                          struct request *rq)
1717{
1718        if (blk_rq_pos(rq) >= cfqd->last_position)
1719                return blk_rq_pos(rq) - cfqd->last_position;
1720        else
1721                return cfqd->last_position - blk_rq_pos(rq);
1722}
1723
1724static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1725                               struct request *rq)
1726{
1727        return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1728}
1729
1730static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1731                                    struct cfq_queue *cur_cfqq)
1732{
1733        struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1734        struct rb_node *parent, *node;
1735        struct cfq_queue *__cfqq;
1736        sector_t sector = cfqd->last_position;
1737
1738        if (RB_EMPTY_ROOT(root))
1739                return NULL;
1740
1741        /*
1742         * First, if we find a request starting at the end of the last
1743         * request, choose it.
1744         */
1745        __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1746        if (__cfqq)
1747                return __cfqq;
1748
1749        /*
1750         * If the exact sector wasn't found, the parent of the NULL leaf
1751         * will contain the closest sector.
1752         */
1753        __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1754        if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1755                return __cfqq;
1756
1757        if (blk_rq_pos(__cfqq->next_rq) < sector)
1758                node = rb_next(&__cfqq->p_node);
1759        else
1760                node = rb_prev(&__cfqq->p_node);
1761        if (!node)
1762                return NULL;
1763
1764        __cfqq = rb_entry(node, struct cfq_queue, p_node);
1765        if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1766                return __cfqq;
1767
1768        return NULL;
1769}
1770
1771/*
1772 * cfqd - obvious
1773 * cur_cfqq - passed in so that we don't decide that the current queue is
1774 *            closely cooperating with itself.
1775 *
1776 * So, basically we're assuming that that cur_cfqq has dispatched at least
1777 * one request, and that cfqd->last_position reflects a position on the disk
1778 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1779 * assumption.
1780 */
1781static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1782                                              struct cfq_queue *cur_cfqq)
1783{
1784        struct cfq_queue *cfqq;
1785
1786        if (cfq_class_idle(cur_cfqq))
1787                return NULL;
1788        if (!cfq_cfqq_sync(cur_cfqq))
1789                return NULL;
1790        if (CFQQ_SEEKY(cur_cfqq))
1791                return NULL;
1792
1793        /*
1794         * Don't search priority tree if it's the only queue in the group.
1795         */
1796        if (cur_cfqq->cfqg->nr_cfqq == 1)
1797                return NULL;
1798
1799        /*
1800         * We should notice if some of the queues are cooperating, eg
1801         * working closely on the same area of the disk. In that case,
1802         * we can group them together and don't waste time idling.
1803         */
1804        cfqq = cfqq_close(cfqd, cur_cfqq);
1805        if (!cfqq)
1806                return NULL;
1807
1808        /* If new queue belongs to different cfq_group, don't choose it */
1809        if (cur_cfqq->cfqg != cfqq->cfqg)
1810                return NULL;
1811
1812        /*
1813         * It only makes sense to merge sync queues.
1814         */
1815        if (!cfq_cfqq_sync(cfqq))
1816                return NULL;
1817        if (CFQQ_SEEKY(cfqq))
1818                return NULL;
1819
1820        /*
1821         * Do not merge queues of different priority classes
1822         */
1823        if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1824                return NULL;
1825
1826        return cfqq;
1827}
1828
1829/*
1830 * Determine whether we should enforce idle window for this queue.
1831 */
1832
1833static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1834{
1835        enum wl_prio_t prio = cfqq_prio(cfqq);
1836        struct cfq_rb_root *service_tree = cfqq->service_tree;
1837
1838        BUG_ON(!service_tree);
1839        BUG_ON(!service_tree->count);
1840
1841        /* We never do for idle class queues. */
1842        if (prio == IDLE_WORKLOAD)
1843                return false;
1844
1845        /* We do for queues that were marked with idle window flag. */
1846        if (cfq_cfqq_idle_window(cfqq) &&
1847           !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1848                return true;
1849
1850        /*
1851         * Otherwise, we do only if they are the last ones
1852         * in their service tree.
1853         */
1854        if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1855                return 1;
1856        cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1857                        service_tree->count);
1858        return 0;
1859}
1860
1861static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1862{
1863        struct cfq_queue *cfqq = cfqd->active_queue;
1864        struct cfq_io_context *cic;
1865        unsigned long sl;
1866
1867        /*
1868         * SSD device without seek penalty, disable idling. But only do so
1869         * for devices that support queuing, otherwise we still have a problem
1870         * with sync vs async workloads.
1871         */
1872        if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1873                return;
1874
1875        WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1876        WARN_ON(cfq_cfqq_slice_new(cfqq));
1877
1878        /*
1879         * idle is disabled, either manually or by past process history
1880         */
1881        if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1882                return;
1883
1884        /*
1885         * still active requests from this queue, don't idle
1886         */
1887        if (cfqq->dispatched)
1888                return;
1889
1890        /*
1891         * task has exited, don't wait
1892         */
1893        cic = cfqd->active_cic;
1894        if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1895                return;
1896
1897        /*
1898         * If our average think time is larger than the remaining time
1899         * slice, then don't idle. This avoids overrunning the allotted
1900         * time slice.
1901         */
1902        if (sample_valid(cic->ttime_samples) &&
1903            (cfqq->slice_end - jiffies < cic->ttime_mean)) {
1904                cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
1905                                cic->ttime_mean);
1906                return;
1907        }
1908
1909        cfq_mark_cfqq_wait_request(cfqq);
1910
1911        sl = cfqd->cfq_slice_idle;
1912
1913        mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1914        cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
1915        cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1916}
1917
1918/*
1919 * Move request from internal lists to the request queue dispatch list.
1920 */
1921static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1922{
1923        struct cfq_data *cfqd = q->elevator->elevator_data;
1924        struct cfq_queue *cfqq = RQ_CFQQ(rq);
1925
1926        cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1927
1928        cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1929        cfq_remove_request(rq);
1930        cfqq->dispatched++;
1931        elv_dispatch_sort(q, rq);
1932
1933        cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
1934        cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
1935                                        rq_data_dir(rq), rq_is_sync(rq));
1936}
1937
1938/*
1939 * return expired entry, or NULL to just start from scratch in rbtree
1940 */
1941static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1942{
1943        struct request *rq = NULL;
1944
1945        if (cfq_cfqq_fifo_expire(cfqq))
1946                return NULL;
1947
1948        cfq_mark_cfqq_fifo_expire(cfqq);
1949
1950        if (list_empty(&cfqq->fifo))
1951                return NULL;
1952
1953        rq = rq_entry_fifo(cfqq->fifo.next);
1954        if (time_before(jiffies, rq_fifo_time(rq)))
1955                rq = NULL;
1956
1957        cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1958        return rq;
1959}
1960
1961static inline int
1962cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1963{
1964        const int base_rq = cfqd->cfq_slice_async_rq;
1965
1966        WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1967
1968        return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1969}
1970
1971/*
1972 * Must be called with the queue_lock held.
1973 */
1974static int cfqq_process_refs(struct cfq_queue *cfqq)
1975{
1976        int process_refs, io_refs;
1977
1978        io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1979        process_refs = atomic_read(&cfqq->ref) - io_refs;
1980        BUG_ON(process_refs < 0);
1981        return process_refs;
1982}
1983
1984static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1985{
1986        int process_refs, new_process_refs;
1987        struct cfq_queue *__cfqq;
1988
1989        /*
1990         * If there are no process references on the new_cfqq, then it is
1991         * unsafe to follow the ->new_cfqq chain as other cfqq's in the
1992         * chain may have dropped their last reference (not just their
1993         * last process reference).
1994         */
1995        if (!cfqq_process_refs(new_cfqq))
1996                return;
1997
1998        /* Avoid a circular list and skip interim queue merges */
1999        while ((__cfqq = new_cfqq->new_cfqq)) {
2000                if (__cfqq == cfqq)
2001                        return;
2002                new_cfqq = __cfqq;
2003        }
2004
2005        process_refs = cfqq_process_refs(cfqq);
2006        new_process_refs = cfqq_process_refs(new_cfqq);
2007        /*
2008         * If the process for the cfqq has gone away, there is no
2009         * sense in merging the queues.
2010         */
2011        if (process_refs == 0 || new_process_refs == 0)
2012                return;
2013
2014        /*
2015         * Merge in the direction of the lesser amount of work.
2016         */
2017        if (new_process_refs >= process_refs) {
2018                cfqq->new_cfqq = new_cfqq;
2019                atomic_add(process_refs, &new_cfqq->ref);
2020        } else {
2021                new_cfqq->new_cfqq = cfqq;
2022                atomic_add(new_process_refs, &cfqq->ref);
2023        }
2024}
2025
2026static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2027                                struct cfq_group *cfqg, enum wl_prio_t prio)
2028{
2029        struct cfq_queue *queue;
2030        int i;
2031        bool key_valid = false;
2032        unsigned long lowest_key = 0;
2033        enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2034
2035        for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2036                /* select the one with lowest rb_key */
2037                queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2038                if (queue &&
2039                    (!key_valid || time_before(queue->rb_key, lowest_key))) {
2040                        lowest_key = queue->rb_key;
2041                        cur_best = i;
2042                        key_valid = true;
2043                }
2044        }
2045
2046        return cur_best;
2047}
2048
2049static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2050{
2051        unsigned slice;
2052        unsigned count;
2053        struct cfq_rb_root *st;
2054        unsigned group_slice;
2055
2056        if (!cfqg) {
2057                cfqd->serving_prio = IDLE_WORKLOAD;
2058                cfqd->workload_expires = jiffies + 1;
2059                return;
2060        }
2061
2062        /* Choose next priority. RT > BE > IDLE */
2063        if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2064                cfqd->serving_prio = RT_WORKLOAD;
2065        else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2066                cfqd->serving_prio = BE_WORKLOAD;
2067        else {
2068                cfqd->serving_prio = IDLE_WORKLOAD;
2069                cfqd->workload_expires = jiffies + 1;
2070                return;
2071        }
2072
2073        /*
2074         * For RT and BE, we have to choose also the type
2075         * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2076         * expiration time
2077         */
2078        st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2079        count = st->count;
2080
2081        /*
2082         * check workload expiration, and that we still have other queues ready
2083         */
2084        if (count && !time_after(jiffies, cfqd->workload_expires))
2085                return;
2086
2087        /* otherwise select new workload type */
2088        cfqd->serving_type =
2089                cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2090        st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2091        count = st->count;
2092
2093        /*
2094         * the workload slice is computed as a fraction of target latency
2095         * proportional to the number of queues in that workload, over
2096         * all the queues in the same priority class
2097         */
2098        group_slice = cfq_group_slice(cfqd, cfqg);
2099
2100        slice = group_slice * count /
2101                max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2102                      cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2103
2104        if (cfqd->serving_type == ASYNC_WORKLOAD) {
2105                unsigned int tmp;
2106
2107                /*
2108                 * Async queues are currently system wide. Just taking
2109                 * proportion of queues with-in same group will lead to higher
2110                 * async ratio system wide as generally root group is going
2111                 * to have higher weight. A more accurate thing would be to
2112                 * calculate system wide asnc/sync ratio.
2113                 */
2114                tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2115                tmp = tmp/cfqd->busy_queues;
2116                slice = min_t(unsigned, slice, tmp);
2117
2118                /* async workload slice is scaled down according to
2119                 * the sync/async slice ratio. */
2120                slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2121        } else
2122                /* sync workload slice is at least 2 * cfq_slice_idle */
2123                slice = max(slice, 2 * cfqd->cfq_slice_idle);
2124
2125        slice = max_t(unsigned, slice, CFQ_MIN_TT);
2126        cfq_log(cfqd, "workload slice:%d", slice);
2127        cfqd->workload_expires = jiffies + slice;
2128        cfqd->noidle_tree_requires_idle = false;
2129}
2130
2131static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2132{
2133        struct cfq_rb_root *st = &cfqd->grp_service_tree;
2134        struct cfq_group *cfqg;
2135
2136        if (RB_EMPTY_ROOT(&st->rb))
2137                return NULL;
2138        cfqg = cfq_rb_first_group(st);
2139        st->active = &cfqg->rb_node;
2140        update_min_vdisktime(st);
2141        return cfqg;
2142}
2143
2144static void cfq_choose_cfqg(struct cfq_data *cfqd)
2145{
2146        struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2147
2148        cfqd->serving_group = cfqg;
2149
2150        /* Restore the workload type data */
2151        if (cfqg->saved_workload_slice) {
2152                cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2153                cfqd->serving_type = cfqg->saved_workload;
2154                cfqd->serving_prio = cfqg->saved_serving_prio;
2155        } else
2156                cfqd->workload_expires = jiffies - 1;
2157
2158        choose_service_tree(cfqd, cfqg);
2159}
2160
2161/*
2162 * Select a queue for service. If we have a current active queue,
2163 * check whether to continue servicing it, or retrieve and set a new one.
2164 */
2165static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2166{
2167        struct cfq_queue *cfqq, *new_cfqq = NULL;
2168
2169        cfqq = cfqd->active_queue;
2170        if (!cfqq)
2171                goto new_queue;
2172
2173        if (!cfqd->rq_queued)
2174                return NULL;
2175
2176        /*
2177         * We were waiting for group to get backlogged. Expire the queue
2178         */
2179        if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2180                goto expire;
2181
2182        /*
2183         * The active queue has run out of time, expire it and select new.
2184         */
2185        if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2186                /*
2187                 * If slice had not expired at the completion of last request
2188                 * we might not have turned on wait_busy flag. Don't expire
2189                 * the queue yet. Allow the group to get backlogged.
2190                 *
2191                 * The very fact that we have used the slice, that means we
2192                 * have been idling all along on this queue and it should be
2193                 * ok to wait for this request to complete.
2194                 */
2195                if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2196                    && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2197                        cfqq = NULL;
2198                        goto keep_queue;
2199                } else
2200                        goto expire;
2201        }
2202
2203        /*
2204         * The active queue has requests and isn't expired, allow it to
2205         * dispatch.
2206         */
2207        if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2208                goto keep_queue;
2209
2210        /*
2211         * If another queue has a request waiting within our mean seek
2212         * distance, let it run.  The expire code will check for close
2213         * cooperators and put the close queue at the front of the service
2214         * tree.  If possible, merge the expiring queue with the new cfqq.
2215         */
2216        new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2217        if (new_cfqq) {
2218                if (!cfqq->new_cfqq)
2219                        cfq_setup_merge(cfqq, new_cfqq);
2220                goto expire;
2221        }
2222
2223        /*
2224         * No requests pending. If the active queue still has requests in
2225         * flight or is idling for a new request, allow either of these
2226         * conditions to happen (or time out) before selecting a new queue.
2227         */
2228        if (timer_pending(&cfqd->idle_slice_timer) ||
2229            (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2230                cfqq = NULL;
2231                goto keep_queue;
2232        }
2233
2234expire:
2235        cfq_slice_expired(cfqd, 0);
2236new_queue:
2237        /*
2238         * Current queue expired. Check if we have to switch to a new
2239         * service tree
2240         */
2241        if (!new_cfqq)
2242                cfq_choose_cfqg(cfqd);
2243
2244        cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2245keep_queue:
2246        return cfqq;
2247}
2248
2249static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2250{
2251        int dispatched = 0;
2252
2253        while (cfqq->next_rq) {
2254                cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2255                dispatched++;
2256        }
2257
2258        BUG_ON(!list_empty(&cfqq->fifo));
2259
2260        /* By default cfqq is not expired if it is empty. Do it explicitly */
2261        __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2262        return dispatched;
2263}
2264
2265/*
2266 * Drain our current requests. Used for barriers and when switching
2267 * io schedulers on-the-fly.
2268 */
2269static int cfq_forced_dispatch(struct cfq_data *cfqd)
2270{
2271        struct cfq_queue *cfqq;
2272        int dispatched = 0;
2273
2274        /* Expire the timeslice of the current active queue first */
2275        cfq_slice_expired(cfqd, 0);
2276        while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2277                __cfq_set_active_queue(cfqd, cfqq);
2278                dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2279        }
2280
2281        BUG_ON(cfqd->busy_queues);
2282
2283        cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2284        return dispatched;
2285}
2286
2287static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2288        struct cfq_queue *cfqq)
2289{
2290        /* the queue hasn't finished any request, can't estimate */
2291        if (cfq_cfqq_slice_new(cfqq))
2292                return 1;
2293        if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2294                cfqq->slice_end))
2295                return 1;
2296
2297        return 0;
2298}
2299
2300static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2301{
2302        unsigned int max_dispatch;
2303
2304        /*
2305         * Drain async requests before we start sync IO
2306         */
2307        if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2308                return false;
2309
2310        /*
2311         * If this is an async queue and we have sync IO in flight, let it wait
2312         */
2313        if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2314                return false;
2315
2316        max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2317        if (cfq_class_idle(cfqq))
2318                max_dispatch = 1;
2319
2320        /*
2321         * Does this cfqq already have too much IO in flight?
2322         */
2323        if (cfqq->dispatched >= max_dispatch) {
2324                /*
2325                 * idle queue must always only have a single IO in flight
2326                 */
2327                if (cfq_class_idle(cfqq))
2328                        return false;
2329
2330                /*
2331                 * We have other queues, don't allow more IO from this one
2332                 */
2333                if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
2334                        return false;
2335
2336                /*
2337                 * Sole queue user, no limit
2338                 */
2339                if (cfqd->busy_queues == 1)
2340                        max_dispatch = -1;
2341                else
2342                        /*
2343                         * Normally we start throttling cfqq when cfq_quantum/2
2344                         * requests have been dispatched. But we can drive
2345                         * deeper queue depths at the beginning of slice
2346                         * subjected to upper limit of cfq_quantum.
2347                         * */
2348                        max_dispatch = cfqd->cfq_quantum;
2349        }
2350
2351        /*
2352         * Async queues must wait a bit before being allowed dispatch.
2353         * We also ramp up the dispatch depth gradually for async IO,
2354         * based on the last sync IO we serviced
2355         */
2356        if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2357                unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2358                unsigned int depth;
2359
2360                depth = last_sync / cfqd->cfq_slice[1];
2361                if (!depth && !cfqq->dispatched)
2362                        depth = 1;
2363                if (depth < max_dispatch)
2364                        max_dispatch = depth;
2365        }
2366
2367        /*
2368         * If we're below the current max, allow a dispatch
2369         */
2370        return cfqq->dispatched < max_dispatch;
2371}
2372
2373/*
2374 * Dispatch a request from cfqq, moving them to the request queue
2375 * dispatch list.
2376 */
2377static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2378{
2379        struct request *rq;
2380
2381        BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2382
2383        if (!cfq_may_dispatch(cfqd, cfqq))
2384                return false;
2385
2386        /*
2387         * follow expired path, else get first next available
2388         */
2389        rq = cfq_check_fifo(cfqq);
2390        if (!rq)
2391                rq = cfqq->next_rq;
2392
2393        /*
2394         * insert request into driver dispatch list
2395         */
2396        cfq_dispatch_insert(cfqd->queue, rq);
2397
2398        if (!cfqd->active_cic) {
2399                struct cfq_io_context *cic = RQ_CIC(rq);
2400
2401                atomic_long_inc(&cic->ioc->refcount);
2402                cfqd->active_cic = cic;
2403        }
2404
2405        return true;
2406}
2407
2408/*
2409 * Find the cfqq that we need to service and move a request from that to the
2410 * dispatch list
2411 */
2412static int cfq_dispatch_requests(struct request_queue *q, int force)
2413{
2414        struct cfq_data *cfqd = q->elevator->elevator_data;
2415        struct cfq_queue *cfqq;
2416
2417        if (!cfqd->busy_queues)
2418                return 0;
2419
2420        if (unlikely(force))
2421                return cfq_forced_dispatch(cfqd);
2422
2423        cfqq = cfq_select_queue(cfqd);
2424        if (!cfqq)
2425                return 0;
2426
2427        /*
2428         * Dispatch a request from this cfqq, if it is allowed
2429         */
2430        if (!cfq_dispatch_request(cfqd, cfqq))
2431                return 0;
2432
2433        cfqq->slice_dispatch++;
2434        cfq_clear_cfqq_must_dispatch(cfqq);
2435
2436        /*
2437         * expire an async queue immediately if it has used up its slice. idle
2438         * queue always expire after 1 dispatch round.
2439         */
2440        if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2441            cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2442            cfq_class_idle(cfqq))) {
2443                cfqq->slice_end = jiffies + 1;
2444                cfq_slice_expired(cfqd, 0);
2445        }
2446
2447        cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2448        return 1;
2449}
2450
2451/*
2452 * task holds one reference to the queue, dropped when task exits. each rq
2453 * in-flight on this queue also holds a reference, dropped when rq is freed.
2454 *
2455 * Each cfq queue took a reference on the parent group. Drop it now.
2456 * queue lock must be held here.
2457 */
2458static void cfq_put_queue(struct cfq_queue *cfqq)
2459{
2460        struct cfq_data *cfqd = cfqq->cfqd;
2461        struct cfq_group *cfqg, *orig_cfqg;
2462
2463        BUG_ON(atomic_read(&cfqq->ref) <= 0);
2464
2465        if (!atomic_dec_and_test(&cfqq->ref))
2466                return;
2467
2468        cfq_log_cfqq(cfqd, cfqq, "put_queue");
2469        BUG_ON(rb_first(&cfqq->sort_list));
2470        BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2471        cfqg = cfqq->cfqg;
2472        orig_cfqg = cfqq->orig_cfqg;
2473
2474        if (unlikely(cfqd->active_queue == cfqq)) {
2475                __cfq_slice_expired(cfqd, cfqq, 0);
2476                cfq_schedule_dispatch(cfqd);
2477        }
2478
2479        BUG_ON(cfq_cfqq_on_rr(cfqq));
2480        kmem_cache_free(cfq_pool, cfqq);
2481        cfq_put_cfqg(cfqg);
2482        if (orig_cfqg)
2483                cfq_put_cfqg(orig_cfqg);
2484}
2485
2486/*
2487 * Must always be called with the rcu_read_lock() held
2488 */
2489static void
2490__call_for_each_cic(struct io_context *ioc,
2491                    void (*func)(struct io_context *, struct cfq_io_context *))
2492{
2493        struct cfq_io_context *cic;
2494        struct hlist_node *n;
2495
2496        hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2497                func(ioc, cic);
2498}
2499
2500/*
2501 * Call func for each cic attached to this ioc.
2502 */
2503static void
2504call_for_each_cic(struct io_context *ioc,
2505                  void (*func)(struct io_context *, struct cfq_io_context *))
2506{
2507        rcu_read_lock();
2508        __call_for_each_cic(ioc, func);
2509        rcu_read_unlock();
2510}
2511
2512static void cfq_cic_free_rcu(struct rcu_head *head)
2513{
2514        struct cfq_io_context *cic;
2515
2516        cic = container_of(head, struct cfq_io_context, rcu_head);
2517
2518        kmem_cache_free(cfq_ioc_pool, cic);
2519        elv_ioc_count_dec(cfq_ioc_count);
2520
2521        if (ioc_gone) {
2522                /*
2523                 * CFQ scheduler is exiting, grab exit lock and check
2524                 * the pending io context count. If it hits zero,
2525                 * complete ioc_gone and set it back to NULL
2526                 */
2527                spin_lock(&ioc_gone_lock);
2528                if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2529                        complete(ioc_gone);
2530                        ioc_gone = NULL;
2531                }
2532                spin_unlock(&ioc_gone_lock);
2533        }
2534}
2535
2536static void cfq_cic_free(struct cfq_io_context *cic)
2537{
2538        call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2539}
2540
2541static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2542{
2543        unsigned long flags;
2544        unsigned long dead_key = (unsigned long) cic->key;
2545
2546        BUG_ON(!(dead_key & CIC_DEAD_KEY));
2547
2548        spin_lock_irqsave(&ioc->lock, flags);
2549        radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
2550        hlist_del_rcu(&cic->cic_list);
2551        spin_unlock_irqrestore(&ioc->lock, flags);
2552
2553        cfq_cic_free(cic);
2554}
2555
2556/*
2557 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2558 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2559 * and ->trim() which is called with the task lock held
2560 */
2561static void cfq_free_io_context(struct io_context *ioc)
2562{
2563        /*
2564         * ioc->refcount is zero here, or we are called from elv_unregister(),
2565         * so no more cic's are allowed to be linked into this ioc.  So it
2566         * should be ok to iterate over the known list, we will see all cic's
2567         * since no new ones are added.
2568         */
2569        __call_for_each_cic(ioc, cic_free_func);
2570}
2571
2572static void cfq_put_cooperator(struct cfq_queue *cfqq)
2573{
2574        struct cfq_queue *__cfqq, *next;
2575
2576        /*
2577         * If this queue was scheduled to merge with another queue, be
2578         * sure to drop the reference taken on that queue (and others in
2579         * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
2580         */
2581        __cfqq = cfqq->new_cfqq;
2582        while (__cfqq) {
2583                if (__cfqq == cfqq) {
2584                        WARN(1, "cfqq->new_cfqq loop detected\n");
2585                        break;
2586                }
2587                next = __cfqq->new_cfqq;
2588                cfq_put_queue(__cfqq);
2589                __cfqq = next;
2590        }
2591}
2592
2593static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2594{
2595        if (unlikely(cfqq == cfqd->active_queue)) {
2596                __cfq_slice_expired(cfqd, cfqq, 0);
2597                cfq_schedule_dispatch(cfqd);
2598        }
2599
2600        cfq_put_cooperator(cfqq);
2601
2602        cfq_put_queue(cfqq);
2603}
2604
2605static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2606                                         struct cfq_io_context *cic)
2607{
2608        struct io_context *ioc = cic->ioc;
2609
2610        list_del_init(&cic->queue_list);
2611
2612        /*
2613         * Make sure dead mark is seen for dead queues
2614         */
2615        smp_wmb();
2616        cic->key = cfqd_dead_key(cfqd);
2617
2618        if (ioc->ioc_data == cic)
2619                rcu_assign_pointer(ioc->ioc_data, NULL);
2620
2621        if (cic->cfqq[BLK_RW_ASYNC]) {
2622                cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2623                cic->cfqq[BLK_RW_ASYNC] = NULL;
2624        }
2625
2626        if (cic->cfqq[BLK_RW_SYNC]) {
2627                cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2628                cic->cfqq[BLK_RW_SYNC] = NULL;
2629        }
2630}
2631
2632static void cfq_exit_single_io_context(struct io_context *ioc,
2633                                       struct cfq_io_context *cic)
2634{
2635        struct cfq_data *cfqd = cic_to_cfqd(cic);
2636
2637        if (cfqd) {
2638                struct request_queue *q = cfqd->queue;
2639                unsigned long flags;
2640
2641                spin_lock_irqsave(q->queue_lock, flags);
2642
2643                /*
2644                 * Ensure we get a fresh copy of the ->key to prevent
2645                 * race between exiting task and queue
2646                 */
2647                smp_read_barrier_depends();
2648                if (cic->key == cfqd)
2649                        __cfq_exit_single_io_context(cfqd, cic);
2650
2651                spin_unlock_irqrestore(q->queue_lock, flags);
2652        }
2653}
2654
2655/*
2656 * The process that ioc belongs to has exited, we need to clean up
2657 * and put the internal structures we have that belongs to that process.
2658 */
2659static void cfq_exit_io_context(struct io_context *ioc)
2660{
2661        call_for_each_cic(ioc, cfq_exit_single_io_context);
2662}
2663
2664static struct cfq_io_context *
2665cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2666{
2667        struct cfq_io_context *cic;
2668
2669        cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2670                                                        cfqd->queue->node);
2671        if (cic) {
2672                cic->last_end_request = jiffies;
2673                INIT_LIST_HEAD(&cic->queue_list);
2674                INIT_HLIST_NODE(&cic->cic_list);
2675                cic->dtor = cfq_free_io_context;
2676                cic->exit = cfq_exit_io_context;
2677                elv_ioc_count_inc(cfq_ioc_count);
2678        }
2679
2680        return cic;
2681}
2682
2683static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2684{
2685        struct task_struct *tsk = current;
2686        int ioprio_class;
2687
2688        if (!cfq_cfqq_prio_changed(cfqq))
2689                return;
2690
2691        ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2692        switch (ioprio_class) {
2693        default:
2694                printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2695        case IOPRIO_CLASS_NONE:
2696                /*
2697                 * no prio set, inherit CPU scheduling settings
2698                 */
2699                cfqq->ioprio = task_nice_ioprio(tsk);
2700                cfqq->ioprio_class = task_nice_ioclass(tsk);
2701                break;
2702        case IOPRIO_CLASS_RT:
2703                cfqq->ioprio = task_ioprio(ioc);
2704                cfqq->ioprio_class = IOPRIO_CLASS_RT;
2705                break;
2706        case IOPRIO_CLASS_BE:
2707                cfqq->ioprio = task_ioprio(ioc);
2708                cfqq->ioprio_class = IOPRIO_CLASS_BE;
2709                break;
2710        case IOPRIO_CLASS_IDLE:
2711                cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2712                cfqq->ioprio = 7;
2713                cfq_clear_cfqq_idle_window(cfqq);
2714                break;
2715        }
2716
2717        /*
2718         * keep track of original prio settings in case we have to temporarily
2719         * elevate the priority of this queue
2720         */
2721        cfqq->org_ioprio = cfqq->ioprio;
2722        cfqq->org_ioprio_class = cfqq->ioprio_class;
2723        cfq_clear_cfqq_prio_changed(cfqq);
2724}
2725
2726static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2727{
2728        struct cfq_data *cfqd = cic_to_cfqd(cic);
2729        struct cfq_queue *cfqq;
2730        unsigned long flags;
2731
2732        if (unlikely(!cfqd))
2733                return;
2734
2735        spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2736
2737        cfqq = cic->cfqq[BLK_RW_ASYNC];
2738        if (cfqq) {
2739                struct cfq_queue *new_cfqq;
2740                new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2741                                                GFP_ATOMIC);
2742                if (new_cfqq) {
2743                        cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2744                        cfq_put_queue(cfqq);
2745                }
2746        }
2747
2748        cfqq = cic->cfqq[BLK_RW_SYNC];
2749        if (cfqq)
2750                cfq_mark_cfqq_prio_changed(cfqq);
2751
2752        spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2753}
2754
2755static void cfq_ioc_set_ioprio(struct io_context *ioc)
2756{
2757        call_for_each_cic(ioc, changed_ioprio);
2758        ioc->ioprio_changed = 0;
2759}
2760
2761static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2762                          pid_t pid, bool is_sync)
2763{
2764        RB_CLEAR_NODE(&cfqq->rb_node);
2765        RB_CLEAR_NODE(&cfqq->p_node);
2766        INIT_LIST_HEAD(&cfqq->fifo);
2767
2768        atomic_set(&cfqq->ref, 0);
2769        cfqq->cfqd = cfqd;
2770
2771        cfq_mark_cfqq_prio_changed(cfqq);
2772
2773        if (is_sync) {
2774                if (!cfq_class_idle(cfqq))
2775                        cfq_mark_cfqq_idle_window(cfqq);
2776                cfq_mark_cfqq_sync(cfqq);
2777        }
2778        cfqq->pid = pid;
2779}
2780
2781#ifdef CONFIG_CFQ_GROUP_IOSCHED
2782static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2783{
2784        struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2785        struct cfq_data *cfqd = cic_to_cfqd(cic);
2786        unsigned long flags;
2787        struct request_queue *q;
2788
2789        if (unlikely(!cfqd))
2790                return;
2791
2792        q = cfqd->queue;
2793
2794        spin_lock_irqsave(q->queue_lock, flags);
2795
2796        if (sync_cfqq) {
2797                /*
2798                 * Drop reference to sync queue. A new sync queue will be
2799                 * assigned in new group upon arrival of a fresh request.
2800                 */
2801                cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2802                cic_set_cfqq(cic, NULL, 1);
2803                cfq_put_queue(sync_cfqq);
2804        }
2805
2806        spin_unlock_irqrestore(q->queue_lock, flags);
2807}
2808
2809static void cfq_ioc_set_cgroup(struct io_context *ioc)
2810{
2811        call_for_each_cic(ioc, changed_cgroup);
2812        ioc->cgroup_changed = 0;
2813}
2814#endif  /* CONFIG_CFQ_GROUP_IOSCHED */
2815
2816static struct cfq_queue *
2817cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2818                     struct io_context *ioc, gfp_t gfp_mask)
2819{
2820        struct cfq_queue *cfqq, *new_cfqq = NULL;
2821        struct cfq_io_context *cic;
2822        struct cfq_group *cfqg;
2823
2824retry:
2825        cfqg = cfq_get_cfqg(cfqd, 1);
2826        cic = cfq_cic_lookup(cfqd, ioc);
2827        /* cic always exists here */
2828        cfqq = cic_to_cfqq(cic, is_sync);
2829
2830        /*
2831         * Always try a new alloc if we fell back to the OOM cfqq
2832         * originally, since it should just be a temporary situation.
2833         */
2834        if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2835                cfqq = NULL;
2836                if (new_cfqq) {
2837                        cfqq = new_cfqq;
2838                        new_cfqq = NULL;
2839                } else if (gfp_mask & __GFP_WAIT) {
2840                        spin_unlock_irq(cfqd->queue->queue_lock);
2841                        new_cfqq = kmem_cache_alloc_node(cfq_pool,
2842                                        gfp_mask | __GFP_ZERO,
2843                                        cfqd->queue->node);
2844                        spin_lock_irq(cfqd->queue->queue_lock);
2845                        if (new_cfqq)
2846                                goto retry;
2847                } else {
2848                        cfqq = kmem_cache_alloc_node(cfq_pool,
2849                                        gfp_mask | __GFP_ZERO,
2850                                        cfqd->queue->node);
2851                }
2852
2853                if (cfqq) {
2854                        cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2855                        cfq_init_prio_data(cfqq, ioc);
2856                        cfq_link_cfqq_cfqg(cfqq, cfqg);
2857                        cfq_log_cfqq(cfqd, cfqq, "alloced");
2858                } else
2859                        cfqq = &cfqd->oom_cfqq;
2860        }
2861
2862        if (new_cfqq)
2863                kmem_cache_free(cfq_pool, new_cfqq);
2864
2865        return cfqq;
2866}
2867
2868static struct cfq_queue **
2869cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2870{
2871        switch (ioprio_class) {
2872        case IOPRIO_CLASS_RT:
2873                return &cfqd->async_cfqq[0][ioprio];
2874        case IOPRIO_CLASS_BE:
2875                return &cfqd->async_cfqq[1][ioprio];
2876        case IOPRIO_CLASS_IDLE:
2877                return &cfqd->async_idle_cfqq;
2878        default:
2879                BUG();
2880        }
2881}
2882
2883static struct cfq_queue *
2884cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2885              gfp_t gfp_mask)
2886{
2887        const int ioprio = task_ioprio(ioc);
2888        const int ioprio_class = task_ioprio_class(ioc);
2889        struct cfq_queue **async_cfqq = NULL;
2890        struct cfq_queue *cfqq = NULL;
2891
2892        if (!is_sync) {
2893                async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2894                cfqq = *async_cfqq;
2895        }
2896
2897        if (!cfqq)
2898                cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2899
2900        /*
2901         * pin the queue now that it's allocated, scheduler exit will prune it
2902         */
2903        if (!is_sync && !(*async_cfqq)) {
2904                atomic_inc(&cfqq->ref);
2905                *async_cfqq = cfqq;
2906        }
2907
2908        atomic_inc(&cfqq->ref);
2909        return cfqq;
2910}
2911
2912/*
2913 * We drop cfq io contexts lazily, so we may find a dead one.
2914 */
2915static void
2916cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2917                  struct cfq_io_context *cic)
2918{
2919        unsigned long flags;
2920
2921        WARN_ON(!list_empty(&cic->queue_list));
2922        BUG_ON(cic->key != cfqd_dead_key(cfqd));
2923
2924        spin_lock_irqsave(&ioc->lock, flags);
2925
2926        BUG_ON(ioc->ioc_data == cic);
2927
2928        radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
2929        hlist_del_rcu(&cic->cic_list);
2930        spin_unlock_irqrestore(&ioc->lock, flags);
2931
2932        cfq_cic_free(cic);
2933}
2934
2935static struct cfq_io_context *
2936cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2937{
2938        struct cfq_io_context *cic;
2939        unsigned long flags;
2940
2941        if (unlikely(!ioc))
2942                return NULL;
2943
2944        rcu_read_lock();
2945
2946        /*
2947         * we maintain a last-hit cache, to avoid browsing over the tree
2948         */
2949        cic = rcu_dereference(ioc->ioc_data);
2950        if (cic && cic->key == cfqd) {
2951                rcu_read_unlock();
2952                return cic;
2953        }
2954
2955        do {
2956                cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
2957                rcu_read_unlock();
2958                if (!cic)
2959                        break;
2960                if (unlikely(cic->key != cfqd)) {
2961                        cfq_drop_dead_cic(cfqd, ioc, cic);
2962                        rcu_read_lock();
2963                        continue;
2964                }
2965
2966                spin_lock_irqsave(&ioc->lock, flags);
2967                rcu_assign_pointer(ioc->ioc_data, cic);
2968                spin_unlock_irqrestore(&ioc->lock, flags);
2969                break;
2970        } while (1);
2971
2972        return cic;
2973}
2974
2975/*
2976 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2977 * the process specific cfq io context when entered from the block layer.
2978 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2979 */
2980static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2981                        struct cfq_io_context *cic, gfp_t gfp_mask)
2982{
2983        unsigned long flags;
2984        int ret;
2985
2986        ret = radix_tree_preload(gfp_mask);
2987        if (!ret) {
2988                cic->ioc = ioc;
2989                cic->key = cfqd;
2990
2991                spin_lock_irqsave(&ioc->lock, flags);
2992                ret = radix_tree_insert(&ioc->radix_root,
2993                                                cfqd->cic_index, cic);
2994                if (!ret)
2995                        hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2996                spin_unlock_irqrestore(&ioc->lock, flags);
2997
2998                radix_tree_preload_end();
2999
3000                if (!ret) {
3001                        spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3002                        list_add(&cic->queue_list, &cfqd->cic_list);
3003                        spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3004                }
3005        }
3006
3007        if (ret)
3008                printk(KERN_ERR "cfq: cic link failed!\n");
3009
3010        return ret;
3011}
3012
3013/*
3014 * Setup general io context and cfq io context. There can be several cfq
3015 * io contexts per general io context, if this process is doing io to more
3016 * than one device managed by cfq.
3017 */
3018static struct cfq_io_context *
3019cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
3020{
3021        struct io_context *ioc = NULL;
3022        struct cfq_io_context *cic;
3023
3024        might_sleep_if(gfp_mask & __GFP_WAIT);
3025
3026        ioc = get_io_context(gfp_mask, cfqd->queue->node);
3027        if (!ioc)
3028                return NULL;
3029
3030        cic = cfq_cic_lookup(cfqd, ioc);
3031        if (cic)
3032                goto out;
3033
3034        cic = cfq_alloc_io_context(cfqd, gfp_mask);
3035        if (cic == NULL)
3036                goto err;
3037
3038        if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3039                goto err_free;
3040
3041out:
3042        smp_read_barrier_depends();
3043        if (unlikely(ioc->ioprio_changed))
3044                cfq_ioc_set_ioprio(ioc);
3045
3046#ifdef CONFIG_CFQ_GROUP_IOSCHED
3047        if (unlikely(ioc->cgroup_changed))
3048                cfq_ioc_set_cgroup(ioc);
3049#endif
3050        return cic;
3051err_free:
3052        cfq_cic_free(cic);
3053err:
3054        put_io_context(ioc);
3055        return NULL;
3056}
3057
3058static void
3059cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
3060{
3061        unsigned long elapsed = jiffies - cic->last_end_request;
3062        unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
3063
3064        cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
3065        cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
3066        cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3067}
3068
3069static void
3070cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3071                       struct request *rq)
3072{
3073        sector_t sdist = 0;
3074        sector_t n_sec = blk_rq_sectors(rq);
3075        if (cfqq->last_request_pos) {
3076                if (cfqq->last_request_pos < blk_rq_pos(rq))
3077                        sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3078                else
3079                        sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3080        }
3081
3082        cfqq->seek_history <<= 1;
3083        if (blk_queue_nonrot(cfqd->queue))
3084                cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3085        else
3086                cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3087}
3088
3089/*
3090 * Disable idle window if the process thinks too long or seeks so much that
3091 * it doesn't matter
3092 */
3093static void
3094cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3095                       struct cfq_io_context *cic)
3096{
3097        int old_idle, enable_idle;
3098
3099        /*
3100         * Don't idle for async or idle io prio class
3101         */
3102        if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3103                return;
3104
3105        enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3106
3107        if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3108                cfq_mark_cfqq_deep(cfqq);
3109
3110        if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3111            (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3112                enable_idle = 0;
3113        else if (sample_valid(cic->ttime_samples)) {
3114                if (cic->ttime_mean > cfqd->cfq_slice_idle)
3115                        enable_idle = 0;
3116                else
3117                        enable_idle = 1;
3118        }
3119
3120        if (old_idle != enable_idle) {
3121                cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3122                if (enable_idle)
3123                        cfq_mark_cfqq_idle_window(cfqq);
3124                else
3125                        cfq_clear_cfqq_idle_window(cfqq);
3126        }
3127}
3128
3129/*
3130 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3131 * no or if we aren't sure, a 1 will cause a preempt.
3132 */
3133static bool
3134cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3135                   struct request *rq)
3136{
3137        struct cfq_queue *cfqq;
3138
3139        cfqq = cfqd->active_queue;
3140        if (!cfqq)
3141                return false;
3142
3143        if (cfq_class_idle(new_cfqq))
3144                return false;
3145
3146        if (cfq_class_idle(cfqq))
3147                return true;
3148
3149        /*
3150         * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3151         */
3152        if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3153                return false;
3154
3155        /*
3156         * if the new request is sync, but the currently running queue is
3157         * not, let the sync request have priority.
3158         */
3159        if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3160                return true;
3161
3162        if (new_cfqq->cfqg != cfqq->cfqg)
3163                return false;
3164
3165        if (cfq_slice_used(cfqq))
3166                return true;
3167
3168        /* Allow preemption only if we are idling on sync-noidle tree */
3169        if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3170            cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3171            new_cfqq->service_tree->count == 2 &&
3172            RB_EMPTY_ROOT(&cfqq->sort_list))
3173                return true;
3174
3175        /*
3176         * So both queues are sync. Let the new request get disk time if
3177         * it's a metadata request and the current queue is doing regular IO.
3178         */
3179        if (rq_is_meta(rq) && !cfqq->meta_pending)
3180                return true;
3181
3182        /*
3183         * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3184         */
3185        if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3186                return true;
3187
3188        if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3189                return false;
3190
3191        /*
3192         * if this request is as-good as one we would expect from the
3193         * current cfqq, let it preempt
3194         */
3195        if (cfq_rq_close(cfqd, cfqq, rq))
3196                return true;
3197
3198        return false;
3199}
3200
3201/*
3202 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3203 * let it have half of its nominal slice.
3204 */
3205static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3206{
3207        cfq_log_cfqq(cfqd, cfqq, "preempt");
3208        cfq_slice_expired(cfqd, 1);
3209
3210        /*
3211         * Put the new queue at the front of the of the current list,
3212         * so we know that it will be selected next.
3213         */
3214        BUG_ON(!cfq_cfqq_on_rr(cfqq));
3215
3216        cfq_service_tree_add(cfqd, cfqq, 1);
3217
3218        cfqq->slice_end = 0;
3219        cfq_mark_cfqq_slice_new(cfqq);
3220}
3221
3222/*
3223 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3224 * something we should do about it
3225 */
3226static void
3227cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3228                struct request *rq)
3229{
3230        struct cfq_io_context *cic = RQ_CIC(rq);
3231
3232        cfqd->rq_queued++;
3233        if (rq_is_meta(rq))
3234                cfqq->meta_pending++;
3235
3236        cfq_update_io_thinktime(cfqd, cic);
3237        cfq_update_io_seektime(cfqd, cfqq, rq);
3238        cfq_update_idle_window(cfqd, cfqq, cic);
3239
3240        cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3241
3242        if (cfqq == cfqd->active_queue) {
3243                /*
3244                 * Remember that we saw a request from this process, but
3245                 * don't start queuing just yet. Otherwise we risk seeing lots
3246                 * of tiny requests, because we disrupt the normal plugging
3247                 * and merging. If the request is already larger than a single
3248                 * page, let it rip immediately. For that case we assume that
3249                 * merging is already done. Ditto for a busy system that
3250                 * has other work pending, don't risk delaying until the
3251                 * idle timer unplug to continue working.
3252                 */
3253                if (cfq_cfqq_wait_request(cfqq)) {
3254                        if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3255                            cfqd->busy_queues > 1) {
3256                                cfq_del_timer(cfqd, cfqq);
3257                                cfq_clear_cfqq_wait_request(cfqq);
3258                                __blk_run_queue(cfqd->queue);
3259                        } else {
3260                                cfq_blkiocg_update_idle_time_stats(
3261                                                &cfqq->cfqg->blkg);
3262                                cfq_mark_cfqq_must_dispatch(cfqq);
3263                        }
3264                }
3265        } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3266                /*
3267                 * not the active queue - expire current slice if it is
3268                 * idle and has expired it's mean thinktime or this new queue
3269                 * has some old slice time left and is of higher priority or
3270                 * this new queue is RT and the current one is BE
3271                 */
3272                cfq_preempt_queue(cfqd, cfqq);
3273                __blk_run_queue(cfqd->queue);
3274        }
3275}
3276
3277static void cfq_insert_request(struct request_queue *q, struct request *rq)
3278{
3279        struct cfq_data *cfqd = q->elevator->elevator_data;
3280        struct cfq_queue *cfqq = RQ_CFQQ(rq);
3281
3282        cfq_log_cfqq(cfqd, cfqq, "insert_request");
3283        cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3284
3285        rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3286        list_add_tail(&rq->queuelist, &cfqq->fifo);
3287        cfq_add_rq_rb(rq);
3288        cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3289                        &cfqd->serving_group->blkg, rq_data_dir(rq),
3290                        rq_is_sync(rq));
3291        cfq_rq_enqueued(cfqd, cfqq, rq);
3292}
3293
3294/*
3295 * Update hw_tag based on peak queue depth over 50 samples under
3296 * sufficient load.
3297 */
3298static void cfq_update_hw_tag(struct cfq_data *cfqd)
3299{
3300        struct cfq_queue *cfqq = cfqd->active_queue;
3301
3302        if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3303                cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3304
3305        if (cfqd->hw_tag == 1)
3306                return;
3307
3308        if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3309            cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3310                return;
3311
3312        /*
3313         * If active queue hasn't enough requests and can idle, cfq might not
3314         * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3315         * case
3316         */
3317        if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3318            cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3319            CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3320                return;
3321
3322        if (cfqd->hw_tag_samples++ < 50)
3323                return;
3324
3325        if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3326                cfqd->hw_tag = 1;
3327        else
3328                cfqd->hw_tag = 0;
3329}
3330
3331static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3332{
3333        struct cfq_io_context *cic = cfqd->active_cic;
3334
3335        /* If there are other queues in the group, don't wait */
3336        if (cfqq->cfqg->nr_cfqq > 1)
3337                return false;
3338
3339        if (cfq_slice_used(cfqq))
3340                return true;
3341
3342        /* if slice left is less than think time, wait busy */
3343        if (cic && sample_valid(cic->ttime_samples)
3344            && (cfqq->slice_end - jiffies < cic->ttime_mean))
3345                return true;
3346
3347        /*
3348         * If think times is less than a jiffy than ttime_mean=0 and above
3349         * will not be true. It might happen that slice has not expired yet
3350         * but will expire soon (4-5 ns) during select_queue(). To cover the
3351         * case where think time is less than a jiffy, mark the queue wait
3352         * busy if only 1 jiffy is left in the slice.
3353         */
3354        if (cfqq->slice_end - jiffies == 1)
3355                return true;
3356
3357        return false;
3358}
3359
3360static void cfq_completed_request(struct request_queue *q, struct request *rq)
3361{
3362        struct cfq_queue *cfqq = RQ_CFQQ(rq);
3363        struct cfq_data *cfqd = cfqq->cfqd;
3364        const int sync = rq_is_sync(rq);
3365        unsigned long now;
3366
3367        now = jiffies;
3368        cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
3369
3370        cfq_update_hw_tag(cfqd);
3371
3372        WARN_ON(!cfqd->rq_in_driver);
3373        WARN_ON(!cfqq->dispatched);
3374        cfqd->rq_in_driver--;
3375        cfqq->dispatched--;
3376        cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3377                        rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3378                        rq_data_dir(rq), rq_is_sync(rq));
3379
3380        cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3381
3382        if (sync) {
3383                RQ_CIC(rq)->last_end_request = now;
3384                if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3385                        cfqd->last_delayed_sync = now;
3386        }
3387
3388        /*
3389         * If this is the active queue, check if it needs to be expired,
3390         * or if we want to idle in case it has no pending requests.
3391         */
3392        if (cfqd->active_queue == cfqq) {
3393                const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3394
3395                if (cfq_cfqq_slice_new(cfqq)) {
3396                        cfq_set_prio_slice(cfqd, cfqq);
3397                        cfq_clear_cfqq_slice_new(cfqq);
3398                }
3399
3400                /*
3401                 * Should we wait for next request to come in before we expire
3402                 * the queue.
3403                 */
3404                if (cfq_should_wait_busy(cfqd, cfqq)) {
3405                        cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3406                        cfq_mark_cfqq_wait_busy(cfqq);
3407                        cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3408                }
3409
3410                /*
3411                 * Idling is not enabled on:
3412                 * - expired queues
3413                 * - idle-priority queues
3414                 * - async queues
3415                 * - queues with still some requests queued
3416                 * - when there is a close cooperator
3417                 */
3418                if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3419                        cfq_slice_expired(cfqd, 1);
3420                else if (sync && cfqq_empty &&
3421                         !cfq_close_cooperator(cfqd, cfqq)) {
3422                        cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3423                        /*
3424                         * Idling is enabled for SYNC_WORKLOAD.
3425                         * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3426                         * only if we processed at least one !rq_noidle request
3427                         */
3428                        if (cfqd->serving_type == SYNC_WORKLOAD
3429                            || cfqd->noidle_tree_requires_idle
3430                            || cfqq->cfqg->nr_cfqq == 1)
3431                                cfq_arm_slice_timer(cfqd);
3432                }
3433        }
3434
3435        if (!cfqd->rq_in_driver)
3436                cfq_schedule_dispatch(cfqd);
3437}
3438
3439/*
3440 * we temporarily boost lower priority queues if they are holding fs exclusive
3441 * resources. they are boosted to normal prio (CLASS_BE/4)
3442 */
3443static void cfq_prio_boost(struct cfq_queue *cfqq)
3444{
3445        if (has_fs_excl()) {
3446                /*
3447                 * boost idle prio on transactions that would lock out other
3448                 * users of the filesystem
3449                 */
3450                if (cfq_class_idle(cfqq))
3451                        cfqq->ioprio_class = IOPRIO_CLASS_BE;
3452                if (cfqq->ioprio > IOPRIO_NORM)
3453                        cfqq->ioprio = IOPRIO_NORM;
3454        } else {
3455                /*
3456                 * unboost the queue (if needed)
3457                 */
3458                cfqq->ioprio_class = cfqq->org_ioprio_class;
3459                cfqq->ioprio = cfqq->org_ioprio;
3460        }
3461}
3462
3463static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3464{
3465        if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3466                cfq_mark_cfqq_must_alloc_slice(cfqq);
3467                return ELV_MQUEUE_MUST;
3468        }
3469
3470        return ELV_MQUEUE_MAY;
3471}
3472
3473static int cfq_may_queue(struct request_queue *q, int rw)
3474{
3475        struct cfq_data *cfqd = q->elevator->elevator_data;
3476        struct task_struct *tsk = current;
3477        struct cfq_io_context *cic;
3478        struct cfq_queue *cfqq;
3479
3480        /*
3481         * don't force setup of a queue from here, as a call to may_queue
3482         * does not necessarily imply that a request actually will be queued.
3483         * so just lookup a possibly existing queue, or return 'may queue'
3484         * if that fails
3485         */
3486        cic = cfq_cic_lookup(cfqd, tsk->io_context);
3487        if (!cic)
3488                return ELV_MQUEUE_MAY;
3489
3490        cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3491        if (cfqq) {
3492                cfq_init_prio_data(cfqq, cic->ioc);
3493                cfq_prio_boost(cfqq);
3494
3495                return __cfq_may_queue(cfqq);
3496        }
3497
3498        return ELV_MQUEUE_MAY;
3499}
3500
3501/*
3502 * queue lock held here
3503 */
3504static void cfq_put_request(struct request *rq)
3505{
3506        struct cfq_queue *cfqq = RQ_CFQQ(rq);
3507
3508        if (cfqq) {
3509                const int rw = rq_data_dir(rq);
3510
3511                BUG_ON(!cfqq->allocated[rw]);
3512                cfqq->allocated[rw]--;
3513
3514                put_io_context(RQ_CIC(rq)->ioc);
3515
3516                rq->elevator_private = NULL;
3517                rq->elevator_private2 = NULL;
3518
3519                /* Put down rq reference on cfqg */
3520                cfq_put_cfqg(RQ_CFQG(rq));
3521                rq->elevator_private3 = NULL;
3522
3523                cfq_put_queue(cfqq);
3524        }
3525}
3526
3527static struct cfq_queue *
3528cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3529                struct cfq_queue *cfqq)
3530{
3531        cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3532        cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3533        cfq_mark_cfqq_coop(cfqq->new_cfqq);
3534        cfq_put_queue(cfqq);
3535        return cic_to_cfqq(cic, 1);
3536}
3537
3538/*
3539 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3540 * was the last process referring to said cfqq.
3541 */
3542static struct cfq_queue *
3543split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3544{
3545        if (cfqq_process_refs(cfqq) == 1) {
3546                cfqq->pid = current->pid;
3547                cfq_clear_cfqq_coop(cfqq);
3548                cfq_clear_cfqq_split_coop(cfqq);
3549                return cfqq;
3550        }
3551
3552        cic_set_cfqq(cic, NULL, 1);
3553
3554        cfq_put_cooperator(cfqq);
3555
3556        cfq_put_queue(cfqq);
3557        return NULL;
3558}
3559/*
3560 * Allocate cfq data structures associated with this request.
3561 */
3562static int
3563cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3564{
3565        struct cfq_data *cfqd = q->elevator->elevator_data;
3566        struct cfq_io_context *cic;
3567        const int rw = rq_data_dir(rq);
3568        const bool is_sync = rq_is_sync(rq);
3569        struct cfq_queue *cfqq;
3570        unsigned long flags;
3571
3572        might_sleep_if(gfp_mask & __GFP_WAIT);
3573
3574        cic = cfq_get_io_context(cfqd, gfp_mask);
3575
3576        spin_lock_irqsave(q->queue_lock, flags);
3577
3578        if (!cic)
3579                goto queue_fail;
3580
3581new_queue:
3582        cfqq = cic_to_cfqq(cic, is_sync);
3583        if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3584                cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3585                cic_set_cfqq(cic, cfqq, is_sync);
3586        } else {
3587                /*
3588                 * If the queue was seeky for too long, break it apart.
3589                 */
3590                if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3591                        cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3592                        cfqq = split_cfqq(cic, cfqq);
3593                        if (!cfqq)
3594                                goto new_queue;
3595                }
3596
3597                /*
3598                 * Check to see if this queue is scheduled to merge with
3599                 * another, closely cooperating queue.  The merging of
3600                 * queues happens here as it must be done in process context.
3601                 * The reference on new_cfqq was taken in merge_cfqqs.
3602                 */
3603                if (cfqq->new_cfqq)
3604                        cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3605        }
3606
3607        cfqq->allocated[rw]++;
3608        atomic_inc(&cfqq->ref);
3609
3610        spin_unlock_irqrestore(q->queue_lock, flags);
3611
3612        rq->elevator_private = cic;
3613        rq->elevator_private2 = cfqq;
3614        rq->elevator_private3 = cfq_ref_get_cfqg(cfqq->cfqg);
3615        return 0;
3616
3617queue_fail:
3618        if (cic)
3619                put_io_context(cic->ioc);
3620
3621        cfq_schedule_dispatch(cfqd);
3622        spin_unlock_irqrestore(q->queue_lock, flags);
3623        cfq_log(cfqd, "set_request fail");
3624        return 1;
3625}
3626
3627static void cfq_kick_queue(struct work_struct *work)
3628{
3629        struct cfq_data *cfqd =
3630                container_of(work, struct cfq_data, unplug_work);
3631        struct request_queue *q = cfqd->queue;
3632
3633        spin_lock_irq(q->queue_lock);
3634        __blk_run_queue(cfqd->queue);
3635        spin_unlock_irq(q->queue_lock);
3636}
3637
3638/*
3639 * Timer running if the active_queue is currently idling inside its time slice
3640 */
3641static void cfq_idle_slice_timer(unsigned long data)
3642{
3643        struct cfq_data *cfqd = (struct cfq_data *) data;
3644        struct cfq_queue *cfqq;
3645        unsigned long flags;
3646        int timed_out = 1;
3647
3648        cfq_log(cfqd, "idle timer fired");
3649
3650        spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3651
3652        cfqq = cfqd->active_queue;
3653        if (cfqq) {
3654                timed_out = 0;
3655
3656                /*
3657                 * We saw a request before the queue expired, let it through
3658                 */
3659                if (cfq_cfqq_must_dispatch(cfqq))
3660                        goto out_kick;
3661
3662                /*
3663                 * expired
3664                 */
3665                if (cfq_slice_used(cfqq))
3666                        goto expire;
3667
3668                /*
3669                 * only expire and reinvoke request handler, if there are
3670                 * other queues with pending requests
3671                 */
3672                if (!cfqd->busy_queues)
3673                        goto out_cont;
3674
3675                /*
3676                 * not expired and it has a request pending, let it dispatch
3677                 */
3678                if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3679                        goto out_kick;
3680
3681                /*
3682                 * Queue depth flag is reset only when the idle didn't succeed
3683                 */
3684                cfq_clear_cfqq_deep(cfqq);
3685        }
3686expire:
3687        cfq_slice_expired(cfqd, timed_out);
3688out_kick:
3689        cfq_schedule_dispatch(cfqd);
3690out_cont:
3691        spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3692}
3693
3694static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3695{
3696        del_timer_sync(&cfqd->idle_slice_timer);
3697        cancel_work_sync(&cfqd->unplug_work);
3698}
3699
3700static void cfq_put_async_queues(struct cfq_data *cfqd)
3701{
3702        int i;
3703
3704        for (i = 0; i < IOPRIO_BE_NR; i++) {
3705                if (cfqd->async_cfqq[0][i])
3706                        cfq_put_queue(cfqd->async_cfqq[0][i]);
3707                if (cfqd->async_cfqq[1][i])
3708                        cfq_put_queue(cfqd->async_cfqq[1][i]);
3709        }
3710
3711        if (cfqd->async_idle_cfqq)
3712                cfq_put_queue(cfqd->async_idle_cfqq);
3713}
3714
3715static void cfq_cfqd_free(struct rcu_head *head)
3716{
3717        kfree(container_of(head, struct cfq_data, rcu));
3718}
3719
3720static void cfq_exit_queue(struct elevator_queue *e)
3721{
3722        struct cfq_data *cfqd = e->elevator_data;
3723        struct request_queue *q = cfqd->queue;
3724
3725        cfq_shutdown_timer_wq(cfqd);
3726
3727        spin_lock_irq(q->queue_lock);
3728
3729        if (cfqd->active_queue)
3730                __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3731
3732        while (!list_empty(&cfqd->cic_list)) {
3733                struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3734                                                        struct cfq_io_context,
3735                                                        queue_list);
3736
3737                __cfq_exit_single_io_context(cfqd, cic);
3738        }
3739
3740        cfq_put_async_queues(cfqd);
3741        cfq_release_cfq_groups(cfqd);
3742        cfq_blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3743
3744        spin_unlock_irq(q->queue_lock);
3745
3746        cfq_shutdown_timer_wq(cfqd);
3747
3748        spin_lock(&cic_index_lock);
3749        ida_remove(&cic_index_ida, cfqd->cic_index);
3750        spin_unlock(&cic_index_lock);
3751
3752        /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3753        call_rcu(&cfqd->rcu, cfq_cfqd_free);
3754}
3755
3756static int cfq_alloc_cic_index(void)
3757{
3758        int index, error;
3759
3760        do {
3761                if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3762                        return -ENOMEM;
3763
3764                spin_lock(&cic_index_lock);
3765                error = ida_get_new(&cic_index_ida, &index);
3766                spin_unlock(&cic_index_lock);
3767                if (error && error != -EAGAIN)
3768                        return error;
3769        } while (error);
3770
3771        return index;
3772}
3773
3774static void *cfq_init_queue(struct request_queue *q)
3775{
3776        struct cfq_data *cfqd;
3777        int i, j;
3778        struct cfq_group *cfqg;
3779        struct cfq_rb_root *st;
3780
3781        i = cfq_alloc_cic_index();
3782        if (i < 0)
3783                return NULL;
3784
3785        cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3786        if (!cfqd)
3787                return NULL;
3788
3789        cfqd->cic_index = i;
3790
3791        /* Init root service tree */
3792        cfqd->grp_service_tree = CFQ_RB_ROOT;
3793
3794        /* Init root group */
3795        cfqg = &cfqd->root_group;
3796        for_each_cfqg_st(cfqg, i, j, st)
3797                *st = CFQ_RB_ROOT;
3798        RB_CLEAR_NODE(&cfqg->rb_node);
3799
3800        /* Give preference to root group over other groups */
3801        cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3802
3803#ifdef CONFIG_CFQ_GROUP_IOSCHED
3804        /*
3805         * Take a reference to root group which we never drop. This is just
3806         * to make sure that cfq_put_cfqg() does not try to kfree root group
3807         */
3808        atomic_set(&cfqg->ref, 1);
3809        rcu_read_lock();
3810        cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
3811                                        (void *)cfqd, 0);
3812        rcu_read_unlock();
3813#endif
3814        /*
3815         * Not strictly needed (since RB_ROOT just clears the node and we
3816         * zeroed cfqd on alloc), but better be safe in case someone decides
3817         * to add magic to the rb code
3818         */
3819        for (i = 0; i < CFQ_PRIO_LISTS; i++)
3820                cfqd->prio_trees[i] = RB_ROOT;
3821
3822        /*
3823         * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3824         * Grab a permanent reference to it, so that the normal code flow
3825         * will not attempt to free it.
3826         */
3827        cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3828        atomic_inc(&cfqd->oom_cfqq.ref);
3829        cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3830
3831        INIT_LIST_HEAD(&cfqd->cic_list);
3832
3833        cfqd->queue = q;
3834
3835        init_timer(&cfqd->idle_slice_timer);
3836        cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3837        cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3838
3839        INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3840
3841        cfqd->cfq_quantum = cfq_quantum;
3842        cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3843        cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3844        cfqd->cfq_back_max = cfq_back_max;
3845        cfqd->cfq_back_penalty = cfq_back_penalty;
3846        cfqd->cfq_slice[0] = cfq_slice_async;
3847        cfqd->cfq_slice[1] = cfq_slice_sync;
3848        cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3849        cfqd->cfq_slice_idle = cfq_slice_idle;
3850        cfqd->cfq_latency = 1;
3851        cfqd->cfq_group_isolation = 0;
3852        cfqd->hw_tag = -1;
3853        /*
3854         * we optimistically start assuming sync ops weren't delayed in last
3855         * second, in order to have larger depth for async operations.
3856         */
3857        cfqd->last_delayed_sync = jiffies - HZ;
3858        return cfqd;
3859}
3860
3861static void cfq_slab_kill(void)
3862{
3863        /*
3864         * Caller already ensured that pending RCU callbacks are completed,
3865         * so we should have no busy allocations at this point.
3866         */
3867        if (cfq_pool)
3868                kmem_cache_destroy(cfq_pool);
3869        if (cfq_ioc_pool)
3870                kmem_cache_destroy(cfq_ioc_pool);
3871}
3872
3873static int __init cfq_slab_setup(void)
3874{
3875        cfq_pool = KMEM_CACHE(cfq_queue, 0);
3876        if (!cfq_pool)
3877                goto fail;
3878
3879        cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3880        if (!cfq_ioc_pool)
3881                goto fail;
3882
3883        return 0;
3884fail:
3885        cfq_slab_kill();
3886        return -ENOMEM;
3887}
3888
3889/*
3890 * sysfs parts below -->
3891 */
3892static ssize_t
3893cfq_var_show(unsigned int var, char *page)
3894{
3895        return sprintf(page, "%d\n", var);
3896}
3897
3898static ssize_t
3899cfq_var_store(unsigned int *var, const char *page, size_t count)
3900{
3901        char *p = (char *) page;
3902
3903        *var = simple_strtoul(p, &p, 10);
3904        return count;
3905}
3906
3907#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
3908static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
3909{                                                                       \
3910        struct cfq_data *cfqd = e->elevator_data;                       \
3911        unsigned int __data = __VAR;                                    \
3912        if (__CONV)                                                     \
3913                __data = jiffies_to_msecs(__data);                      \
3914        return cfq_var_show(__data, (page));                            \
3915}
3916SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3917SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3918SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3919SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3920SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3921SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3922SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3923SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3924SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3925SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3926SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
3927#undef SHOW_FUNCTION
3928
3929#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
3930static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3931{                                                                       \
3932        struct cfq_data *cfqd = e->elevator_data;                       \
3933        unsigned int __data;                                            \
3934        int ret = cfq_var_store(&__data, (page), count);                \
3935        if (__data < (MIN))                                             \
3936                __data = (MIN);                                         \
3937        else if (__data > (MAX))                                        \
3938                __data = (MAX);                                         \
3939        if (__CONV)                                                     \
3940                *(__PTR) = msecs_to_jiffies(__data);                    \
3941        else                                                            \
3942                *(__PTR) = __data;                                      \
3943        return ret;                                                     \
3944}
3945STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3946STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3947                UINT_MAX, 1);
3948STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3949                UINT_MAX, 1);
3950STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3951STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3952                UINT_MAX, 0);
3953STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3954STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3955STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3956STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3957                UINT_MAX, 0);
3958STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3959STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
3960#undef STORE_FUNCTION
3961
3962#define CFQ_ATTR(name) \
3963        __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3964
3965static struct elv_fs_entry cfq_attrs[] = {
3966        CFQ_ATTR(quantum),
3967        CFQ_ATTR(fifo_expire_sync),
3968        CFQ_ATTR(fifo_expire_async),
3969        CFQ_ATTR(back_seek_max),
3970        CFQ_ATTR(back_seek_penalty),
3971        CFQ_ATTR(slice_sync),
3972        CFQ_ATTR(slice_async),
3973        CFQ_ATTR(slice_async_rq),
3974        CFQ_ATTR(slice_idle),
3975        CFQ_ATTR(low_latency),
3976        CFQ_ATTR(group_isolation),
3977        __ATTR_NULL
3978};
3979
3980static struct elevator_type iosched_cfq = {
3981        .ops = {
3982                .elevator_merge_fn =            cfq_merge,
3983                .elevator_merged_fn =           cfq_merged_request,
3984                .elevator_merge_req_fn =        cfq_merged_requests,
3985                .elevator_allow_merge_fn =      cfq_allow_merge,
3986                .elevator_bio_merged_fn =       cfq_bio_merged,
3987                .elevator_dispatch_fn =         cfq_dispatch_requests,
3988                .elevator_add_req_fn =          cfq_insert_request,
3989                .elevator_activate_req_fn =     cfq_activate_request,
3990                .elevator_deactivate_req_fn =   cfq_deactivate_request,
3991                .elevator_queue_empty_fn =      cfq_queue_empty,
3992                .elevator_completed_req_fn =    cfq_completed_request,
3993                .elevator_former_req_fn =       elv_rb_former_request,
3994                .elevator_latter_req_fn =       elv_rb_latter_request,
3995                .elevator_set_req_fn =          cfq_set_request,
3996                .elevator_put_req_fn =          cfq_put_request,
3997                .elevator_may_queue_fn =        cfq_may_queue,
3998                .elevator_init_fn =             cfq_init_queue,
3999                .elevator_exit_fn =             cfq_exit_queue,
4000                .trim =                         cfq_free_io_context,
4001        },
4002        .elevator_attrs =       cfq_attrs,
4003        .elevator_name =        "cfq",
4004        .elevator_owner =       THIS_MODULE,
4005};
4006
4007#ifdef CONFIG_CFQ_GROUP_IOSCHED
4008static struct blkio_policy_type blkio_policy_cfq = {
4009        .ops = {
4010                .blkio_unlink_group_fn =        cfq_unlink_blkio_group,
4011                .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4012        },
4013};
4014#else
4015static struct blkio_policy_type blkio_policy_cfq;
4016#endif
4017
4018static int __init cfq_init(void)
4019{
4020        /*
4021         * could be 0 on HZ < 1000 setups
4022         */
4023        if (!cfq_slice_async)
4024                cfq_slice_async = 1;
4025        if (!cfq_slice_idle)
4026                cfq_slice_idle = 1;
4027
4028        if (cfq_slab_setup())
4029                return -ENOMEM;
4030
4031        elv_register(&iosched_cfq);
4032        blkio_policy_register(&blkio_policy_cfq);
4033
4034        return 0;
4035}
4036
4037static void __exit cfq_exit(void)
4038{
4039        DECLARE_COMPLETION_ONSTACK(all_gone);
4040        blkio_policy_unregister(&blkio_policy_cfq);
4041        elv_unregister(&iosched_cfq);
4042        ioc_gone = &all_gone;
4043        /* ioc_gone's update must be visible before reading ioc_count */
4044        smp_wmb();
4045
4046        /*
4047         * this also protects us from entering cfq_slab_kill() with
4048         * pending RCU callbacks
4049         */
4050        if (elv_ioc_count_read(cfq_ioc_count))
4051                wait_for_completion(&all_gone);
4052        ida_destroy(&cic_index_ida);
4053        cfq_slab_kill();
4054}
4055
4056module_init(cfq_init);
4057module_exit(cfq_exit);
4058
4059MODULE_AUTHOR("Jens Axboe");
4060MODULE_LICENSE("GPL");
4061MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
4062