linux/block/blk-settings.c
<<
>>
Prefs
   1/*
   2 * Functions related to setting various queue properties from drivers
   3 */
   4#include <linux/kernel.h>
   5#include <linux/module.h>
   6#include <linux/init.h>
   7#include <linux/bio.h>
   8#include <linux/blkdev.h>
   9#include <linux/bootmem.h>      /* for max_pfn/max_low_pfn */
  10#include <linux/gcd.h>
  11#include <linux/lcm.h>
  12#include <linux/jiffies.h>
  13#include <linux/gfp.h>
  14
  15#include "blk.h"
  16
  17unsigned long blk_max_low_pfn;
  18EXPORT_SYMBOL(blk_max_low_pfn);
  19
  20unsigned long blk_max_pfn;
  21
  22/**
  23 * blk_queue_prep_rq - set a prepare_request function for queue
  24 * @q:          queue
  25 * @pfn:        prepare_request function
  26 *
  27 * It's possible for a queue to register a prepare_request callback which
  28 * is invoked before the request is handed to the request_fn. The goal of
  29 * the function is to prepare a request for I/O, it can be used to build a
  30 * cdb from the request data for instance.
  31 *
  32 */
  33void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
  34{
  35        q->prep_rq_fn = pfn;
  36}
  37EXPORT_SYMBOL(blk_queue_prep_rq);
  38
  39/**
  40 * blk_queue_merge_bvec - set a merge_bvec function for queue
  41 * @q:          queue
  42 * @mbfn:       merge_bvec_fn
  43 *
  44 * Usually queues have static limitations on the max sectors or segments that
  45 * we can put in a request. Stacking drivers may have some settings that
  46 * are dynamic, and thus we have to query the queue whether it is ok to
  47 * add a new bio_vec to a bio at a given offset or not. If the block device
  48 * has such limitations, it needs to register a merge_bvec_fn to control
  49 * the size of bio's sent to it. Note that a block device *must* allow a
  50 * single page to be added to an empty bio. The block device driver may want
  51 * to use the bio_split() function to deal with these bio's. By default
  52 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
  53 * honored.
  54 */
  55void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
  56{
  57        q->merge_bvec_fn = mbfn;
  58}
  59EXPORT_SYMBOL(blk_queue_merge_bvec);
  60
  61void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
  62{
  63        q->softirq_done_fn = fn;
  64}
  65EXPORT_SYMBOL(blk_queue_softirq_done);
  66
  67void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
  68{
  69        q->rq_timeout = timeout;
  70}
  71EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
  72
  73void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
  74{
  75        q->rq_timed_out_fn = fn;
  76}
  77EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
  78
  79void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
  80{
  81        q->lld_busy_fn = fn;
  82}
  83EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
  84
  85/**
  86 * blk_set_default_limits - reset limits to default values
  87 * @lim:  the queue_limits structure to reset
  88 *
  89 * Description:
  90 *   Returns a queue_limit struct to its default state.  Can be used by
  91 *   stacking drivers like DM that stage table swaps and reuse an
  92 *   existing device queue.
  93 */
  94void blk_set_default_limits(struct queue_limits *lim)
  95{
  96        lim->max_segments = BLK_MAX_SEGMENTS;
  97        lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
  98        lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
  99        lim->max_sectors = BLK_DEF_MAX_SECTORS;
 100        lim->max_hw_sectors = INT_MAX;
 101        lim->max_discard_sectors = 0;
 102        lim->discard_granularity = 0;
 103        lim->discard_alignment = 0;
 104        lim->discard_misaligned = 0;
 105        lim->discard_zeroes_data = -1;
 106        lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
 107        lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
 108        lim->alignment_offset = 0;
 109        lim->io_opt = 0;
 110        lim->misaligned = 0;
 111        lim->no_cluster = 0;
 112}
 113EXPORT_SYMBOL(blk_set_default_limits);
 114
 115/**
 116 * blk_queue_make_request - define an alternate make_request function for a device
 117 * @q:  the request queue for the device to be affected
 118 * @mfn: the alternate make_request function
 119 *
 120 * Description:
 121 *    The normal way for &struct bios to be passed to a device
 122 *    driver is for them to be collected into requests on a request
 123 *    queue, and then to allow the device driver to select requests
 124 *    off that queue when it is ready.  This works well for many block
 125 *    devices. However some block devices (typically virtual devices
 126 *    such as md or lvm) do not benefit from the processing on the
 127 *    request queue, and are served best by having the requests passed
 128 *    directly to them.  This can be achieved by providing a function
 129 *    to blk_queue_make_request().
 130 *
 131 * Caveat:
 132 *    The driver that does this *must* be able to deal appropriately
 133 *    with buffers in "highmemory". This can be accomplished by either calling
 134 *    __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
 135 *    blk_queue_bounce() to create a buffer in normal memory.
 136 **/
 137void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
 138{
 139        /*
 140         * set defaults
 141         */
 142        q->nr_requests = BLKDEV_MAX_RQ;
 143
 144        q->make_request_fn = mfn;
 145        blk_queue_dma_alignment(q, 511);
 146        blk_queue_congestion_threshold(q);
 147        q->nr_batching = BLK_BATCH_REQ;
 148
 149        q->unplug_thresh = 4;           /* hmm */
 150        q->unplug_delay = msecs_to_jiffies(3);  /* 3 milliseconds */
 151        if (q->unplug_delay == 0)
 152                q->unplug_delay = 1;
 153
 154        q->unplug_timer.function = blk_unplug_timeout;
 155        q->unplug_timer.data = (unsigned long)q;
 156
 157        blk_set_default_limits(&q->limits);
 158        blk_queue_max_hw_sectors(q, BLK_SAFE_MAX_SECTORS);
 159
 160        /*
 161         * If the caller didn't supply a lock, fall back to our embedded
 162         * per-queue locks
 163         */
 164        if (!q->queue_lock)
 165                q->queue_lock = &q->__queue_lock;
 166
 167        /*
 168         * by default assume old behaviour and bounce for any highmem page
 169         */
 170        blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
 171}
 172EXPORT_SYMBOL(blk_queue_make_request);
 173
 174/**
 175 * blk_queue_bounce_limit - set bounce buffer limit for queue
 176 * @q: the request queue for the device
 177 * @dma_mask: the maximum address the device can handle
 178 *
 179 * Description:
 180 *    Different hardware can have different requirements as to what pages
 181 *    it can do I/O directly to. A low level driver can call
 182 *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
 183 *    buffers for doing I/O to pages residing above @dma_mask.
 184 **/
 185void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask)
 186{
 187        unsigned long b_pfn = dma_mask >> PAGE_SHIFT;
 188        int dma = 0;
 189
 190        q->bounce_gfp = GFP_NOIO;
 191#if BITS_PER_LONG == 64
 192        /*
 193         * Assume anything <= 4GB can be handled by IOMMU.  Actually
 194         * some IOMMUs can handle everything, but I don't know of a
 195         * way to test this here.
 196         */
 197        if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
 198                dma = 1;
 199        q->limits.bounce_pfn = max_low_pfn;
 200#else
 201        if (b_pfn < blk_max_low_pfn)
 202                dma = 1;
 203        q->limits.bounce_pfn = b_pfn;
 204#endif
 205        if (dma) {
 206                init_emergency_isa_pool();
 207                q->bounce_gfp = GFP_NOIO | GFP_DMA;
 208                q->limits.bounce_pfn = b_pfn;
 209        }
 210}
 211EXPORT_SYMBOL(blk_queue_bounce_limit);
 212
 213/**
 214 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
 215 * @q:  the request queue for the device
 216 * @max_hw_sectors:  max hardware sectors in the usual 512b unit
 217 *
 218 * Description:
 219 *    Enables a low level driver to set a hard upper limit,
 220 *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
 221 *    the device driver based upon the combined capabilities of I/O
 222 *    controller and storage device.
 223 *
 224 *    max_sectors is a soft limit imposed by the block layer for
 225 *    filesystem type requests.  This value can be overridden on a
 226 *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
 227 *    The soft limit can not exceed max_hw_sectors.
 228 **/
 229void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
 230{
 231        if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) {
 232                max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
 233                printk(KERN_INFO "%s: set to minimum %d\n",
 234                       __func__, max_hw_sectors);
 235        }
 236
 237        q->limits.max_hw_sectors = max_hw_sectors;
 238        q->limits.max_sectors = min_t(unsigned int, max_hw_sectors,
 239                                      BLK_DEF_MAX_SECTORS);
 240}
 241EXPORT_SYMBOL(blk_queue_max_hw_sectors);
 242
 243/**
 244 * blk_queue_max_discard_sectors - set max sectors for a single discard
 245 * @q:  the request queue for the device
 246 * @max_discard_sectors: maximum number of sectors to discard
 247 **/
 248void blk_queue_max_discard_sectors(struct request_queue *q,
 249                unsigned int max_discard_sectors)
 250{
 251        q->limits.max_discard_sectors = max_discard_sectors;
 252}
 253EXPORT_SYMBOL(blk_queue_max_discard_sectors);
 254
 255/**
 256 * blk_queue_max_segments - set max hw segments for a request for this queue
 257 * @q:  the request queue for the device
 258 * @max_segments:  max number of segments
 259 *
 260 * Description:
 261 *    Enables a low level driver to set an upper limit on the number of
 262 *    hw data segments in a request.
 263 **/
 264void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
 265{
 266        if (!max_segments) {
 267                max_segments = 1;
 268                printk(KERN_INFO "%s: set to minimum %d\n",
 269                       __func__, max_segments);
 270        }
 271
 272        q->limits.max_segments = max_segments;
 273}
 274EXPORT_SYMBOL(blk_queue_max_segments);
 275
 276/**
 277 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
 278 * @q:  the request queue for the device
 279 * @max_size:  max size of segment in bytes
 280 *
 281 * Description:
 282 *    Enables a low level driver to set an upper limit on the size of a
 283 *    coalesced segment
 284 **/
 285void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
 286{
 287        if (max_size < PAGE_CACHE_SIZE) {
 288                max_size = PAGE_CACHE_SIZE;
 289                printk(KERN_INFO "%s: set to minimum %d\n",
 290                       __func__, max_size);
 291        }
 292
 293        q->limits.max_segment_size = max_size;
 294}
 295EXPORT_SYMBOL(blk_queue_max_segment_size);
 296
 297/**
 298 * blk_queue_logical_block_size - set logical block size for the queue
 299 * @q:  the request queue for the device
 300 * @size:  the logical block size, in bytes
 301 *
 302 * Description:
 303 *   This should be set to the lowest possible block size that the
 304 *   storage device can address.  The default of 512 covers most
 305 *   hardware.
 306 **/
 307void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
 308{
 309        q->limits.logical_block_size = size;
 310
 311        if (q->limits.physical_block_size < size)
 312                q->limits.physical_block_size = size;
 313
 314        if (q->limits.io_min < q->limits.physical_block_size)
 315                q->limits.io_min = q->limits.physical_block_size;
 316}
 317EXPORT_SYMBOL(blk_queue_logical_block_size);
 318
 319/**
 320 * blk_queue_physical_block_size - set physical block size for the queue
 321 * @q:  the request queue for the device
 322 * @size:  the physical block size, in bytes
 323 *
 324 * Description:
 325 *   This should be set to the lowest possible sector size that the
 326 *   hardware can operate on without reverting to read-modify-write
 327 *   operations.
 328 */
 329void blk_queue_physical_block_size(struct request_queue *q, unsigned short size)
 330{
 331        q->limits.physical_block_size = size;
 332
 333        if (q->limits.physical_block_size < q->limits.logical_block_size)
 334                q->limits.physical_block_size = q->limits.logical_block_size;
 335
 336        if (q->limits.io_min < q->limits.physical_block_size)
 337                q->limits.io_min = q->limits.physical_block_size;
 338}
 339EXPORT_SYMBOL(blk_queue_physical_block_size);
 340
 341/**
 342 * blk_queue_alignment_offset - set physical block alignment offset
 343 * @q:  the request queue for the device
 344 * @offset: alignment offset in bytes
 345 *
 346 * Description:
 347 *   Some devices are naturally misaligned to compensate for things like
 348 *   the legacy DOS partition table 63-sector offset.  Low-level drivers
 349 *   should call this function for devices whose first sector is not
 350 *   naturally aligned.
 351 */
 352void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
 353{
 354        q->limits.alignment_offset =
 355                offset & (q->limits.physical_block_size - 1);
 356        q->limits.misaligned = 0;
 357}
 358EXPORT_SYMBOL(blk_queue_alignment_offset);
 359
 360/**
 361 * blk_limits_io_min - set minimum request size for a device
 362 * @limits: the queue limits
 363 * @min:  smallest I/O size in bytes
 364 *
 365 * Description:
 366 *   Some devices have an internal block size bigger than the reported
 367 *   hardware sector size.  This function can be used to signal the
 368 *   smallest I/O the device can perform without incurring a performance
 369 *   penalty.
 370 */
 371void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
 372{
 373        limits->io_min = min;
 374
 375        if (limits->io_min < limits->logical_block_size)
 376                limits->io_min = limits->logical_block_size;
 377
 378        if (limits->io_min < limits->physical_block_size)
 379                limits->io_min = limits->physical_block_size;
 380}
 381EXPORT_SYMBOL(blk_limits_io_min);
 382
 383/**
 384 * blk_queue_io_min - set minimum request size for the queue
 385 * @q:  the request queue for the device
 386 * @min:  smallest I/O size in bytes
 387 *
 388 * Description:
 389 *   Storage devices may report a granularity or preferred minimum I/O
 390 *   size which is the smallest request the device can perform without
 391 *   incurring a performance penalty.  For disk drives this is often the
 392 *   physical block size.  For RAID arrays it is often the stripe chunk
 393 *   size.  A properly aligned multiple of minimum_io_size is the
 394 *   preferred request size for workloads where a high number of I/O
 395 *   operations is desired.
 396 */
 397void blk_queue_io_min(struct request_queue *q, unsigned int min)
 398{
 399        blk_limits_io_min(&q->limits, min);
 400}
 401EXPORT_SYMBOL(blk_queue_io_min);
 402
 403/**
 404 * blk_limits_io_opt - set optimal request size for a device
 405 * @limits: the queue limits
 406 * @opt:  smallest I/O size in bytes
 407 *
 408 * Description:
 409 *   Storage devices may report an optimal I/O size, which is the
 410 *   device's preferred unit for sustained I/O.  This is rarely reported
 411 *   for disk drives.  For RAID arrays it is usually the stripe width or
 412 *   the internal track size.  A properly aligned multiple of
 413 *   optimal_io_size is the preferred request size for workloads where
 414 *   sustained throughput is desired.
 415 */
 416void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
 417{
 418        limits->io_opt = opt;
 419}
 420EXPORT_SYMBOL(blk_limits_io_opt);
 421
 422/**
 423 * blk_queue_io_opt - set optimal request size for the queue
 424 * @q:  the request queue for the device
 425 * @opt:  optimal request size in bytes
 426 *
 427 * Description:
 428 *   Storage devices may report an optimal I/O size, which is the
 429 *   device's preferred unit for sustained I/O.  This is rarely reported
 430 *   for disk drives.  For RAID arrays it is usually the stripe width or
 431 *   the internal track size.  A properly aligned multiple of
 432 *   optimal_io_size is the preferred request size for workloads where
 433 *   sustained throughput is desired.
 434 */
 435void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
 436{
 437        blk_limits_io_opt(&q->limits, opt);
 438}
 439EXPORT_SYMBOL(blk_queue_io_opt);
 440
 441/*
 442 * Returns the minimum that is _not_ zero, unless both are zero.
 443 */
 444#define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
 445
 446/**
 447 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
 448 * @t:  the stacking driver (top)
 449 * @b:  the underlying device (bottom)
 450 **/
 451void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
 452{
 453        blk_stack_limits(&t->limits, &b->limits, 0);
 454
 455        if (!t->queue_lock)
 456                WARN_ON_ONCE(1);
 457        else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) {
 458                unsigned long flags;
 459                spin_lock_irqsave(t->queue_lock, flags);
 460                queue_flag_clear(QUEUE_FLAG_CLUSTER, t);
 461                spin_unlock_irqrestore(t->queue_lock, flags);
 462        }
 463}
 464EXPORT_SYMBOL(blk_queue_stack_limits);
 465
 466/**
 467 * blk_stack_limits - adjust queue_limits for stacked devices
 468 * @t:  the stacking driver limits (top device)
 469 * @b:  the underlying queue limits (bottom, component device)
 470 * @start:  first data sector within component device
 471 *
 472 * Description:
 473 *    This function is used by stacking drivers like MD and DM to ensure
 474 *    that all component devices have compatible block sizes and
 475 *    alignments.  The stacking driver must provide a queue_limits
 476 *    struct (top) and then iteratively call the stacking function for
 477 *    all component (bottom) devices.  The stacking function will
 478 *    attempt to combine the values and ensure proper alignment.
 479 *
 480 *    Returns 0 if the top and bottom queue_limits are compatible.  The
 481 *    top device's block sizes and alignment offsets may be adjusted to
 482 *    ensure alignment with the bottom device. If no compatible sizes
 483 *    and alignments exist, -1 is returned and the resulting top
 484 *    queue_limits will have the misaligned flag set to indicate that
 485 *    the alignment_offset is undefined.
 486 */
 487int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
 488                     sector_t start)
 489{
 490        unsigned int top, bottom, alignment, ret = 0;
 491
 492        t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
 493        t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
 494        t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
 495
 496        t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
 497                                            b->seg_boundary_mask);
 498
 499        t->max_segments = min_not_zero(t->max_segments, b->max_segments);
 500
 501        t->max_segment_size = min_not_zero(t->max_segment_size,
 502                                           b->max_segment_size);
 503
 504        t->misaligned |= b->misaligned;
 505
 506        alignment = queue_limit_alignment_offset(b, start);
 507
 508        /* Bottom device has different alignment.  Check that it is
 509         * compatible with the current top alignment.
 510         */
 511        if (t->alignment_offset != alignment) {
 512
 513                top = max(t->physical_block_size, t->io_min)
 514                        + t->alignment_offset;
 515                bottom = max(b->physical_block_size, b->io_min) + alignment;
 516
 517                /* Verify that top and bottom intervals line up */
 518                if (max(top, bottom) & (min(top, bottom) - 1)) {
 519                        t->misaligned = 1;
 520                        ret = -1;
 521                }
 522        }
 523
 524        t->logical_block_size = max(t->logical_block_size,
 525                                    b->logical_block_size);
 526
 527        t->physical_block_size = max(t->physical_block_size,
 528                                     b->physical_block_size);
 529
 530        t->io_min = max(t->io_min, b->io_min);
 531        t->io_opt = lcm(t->io_opt, b->io_opt);
 532
 533        t->no_cluster |= b->no_cluster;
 534        t->discard_zeroes_data &= b->discard_zeroes_data;
 535
 536        /* Physical block size a multiple of the logical block size? */
 537        if (t->physical_block_size & (t->logical_block_size - 1)) {
 538                t->physical_block_size = t->logical_block_size;
 539                t->misaligned = 1;
 540                ret = -1;
 541        }
 542
 543        /* Minimum I/O a multiple of the physical block size? */
 544        if (t->io_min & (t->physical_block_size - 1)) {
 545                t->io_min = t->physical_block_size;
 546                t->misaligned = 1;
 547                ret = -1;
 548        }
 549
 550        /* Optimal I/O a multiple of the physical block size? */
 551        if (t->io_opt & (t->physical_block_size - 1)) {
 552                t->io_opt = 0;
 553                t->misaligned = 1;
 554                ret = -1;
 555        }
 556
 557        /* Find lowest common alignment_offset */
 558        t->alignment_offset = lcm(t->alignment_offset, alignment)
 559                & (max(t->physical_block_size, t->io_min) - 1);
 560
 561        /* Verify that new alignment_offset is on a logical block boundary */
 562        if (t->alignment_offset & (t->logical_block_size - 1)) {
 563                t->misaligned = 1;
 564                ret = -1;
 565        }
 566
 567        /* Discard alignment and granularity */
 568        if (b->discard_granularity) {
 569                alignment = queue_limit_discard_alignment(b, start);
 570
 571                if (t->discard_granularity != 0 &&
 572                    t->discard_alignment != alignment) {
 573                        top = t->discard_granularity + t->discard_alignment;
 574                        bottom = b->discard_granularity + alignment;
 575
 576                        /* Verify that top and bottom intervals line up */
 577                        if (max(top, bottom) & (min(top, bottom) - 1))
 578                                t->discard_misaligned = 1;
 579                }
 580
 581                t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
 582                                                      b->max_discard_sectors);
 583                t->discard_granularity = max(t->discard_granularity,
 584                                             b->discard_granularity);
 585                t->discard_alignment = lcm(t->discard_alignment, alignment) &
 586                        (t->discard_granularity - 1);
 587        }
 588
 589        return ret;
 590}
 591EXPORT_SYMBOL(blk_stack_limits);
 592
 593/**
 594 * bdev_stack_limits - adjust queue limits for stacked drivers
 595 * @t:  the stacking driver limits (top device)
 596 * @bdev:  the component block_device (bottom)
 597 * @start:  first data sector within component device
 598 *
 599 * Description:
 600 *    Merges queue limits for a top device and a block_device.  Returns
 601 *    0 if alignment didn't change.  Returns -1 if adding the bottom
 602 *    device caused misalignment.
 603 */
 604int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
 605                      sector_t start)
 606{
 607        struct request_queue *bq = bdev_get_queue(bdev);
 608
 609        start += get_start_sect(bdev);
 610
 611        return blk_stack_limits(t, &bq->limits, start);
 612}
 613EXPORT_SYMBOL(bdev_stack_limits);
 614
 615/**
 616 * disk_stack_limits - adjust queue limits for stacked drivers
 617 * @disk:  MD/DM gendisk (top)
 618 * @bdev:  the underlying block device (bottom)
 619 * @offset:  offset to beginning of data within component device
 620 *
 621 * Description:
 622 *    Merges the limits for a top level gendisk and a bottom level
 623 *    block_device.
 624 */
 625void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
 626                       sector_t offset)
 627{
 628        struct request_queue *t = disk->queue;
 629        struct request_queue *b = bdev_get_queue(bdev);
 630
 631        if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
 632                char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
 633
 634                disk_name(disk, 0, top);
 635                bdevname(bdev, bottom);
 636
 637                printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
 638                       top, bottom);
 639        }
 640
 641        if (!t->queue_lock)
 642                WARN_ON_ONCE(1);
 643        else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) {
 644                unsigned long flags;
 645
 646                spin_lock_irqsave(t->queue_lock, flags);
 647                if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
 648                        queue_flag_clear(QUEUE_FLAG_CLUSTER, t);
 649                spin_unlock_irqrestore(t->queue_lock, flags);
 650        }
 651}
 652EXPORT_SYMBOL(disk_stack_limits);
 653
 654/**
 655 * blk_queue_dma_pad - set pad mask
 656 * @q:     the request queue for the device
 657 * @mask:  pad mask
 658 *
 659 * Set dma pad mask.
 660 *
 661 * Appending pad buffer to a request modifies the last entry of a
 662 * scatter list such that it includes the pad buffer.
 663 **/
 664void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
 665{
 666        q->dma_pad_mask = mask;
 667}
 668EXPORT_SYMBOL(blk_queue_dma_pad);
 669
 670/**
 671 * blk_queue_update_dma_pad - update pad mask
 672 * @q:     the request queue for the device
 673 * @mask:  pad mask
 674 *
 675 * Update dma pad mask.
 676 *
 677 * Appending pad buffer to a request modifies the last entry of a
 678 * scatter list such that it includes the pad buffer.
 679 **/
 680void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
 681{
 682        if (mask > q->dma_pad_mask)
 683                q->dma_pad_mask = mask;
 684}
 685EXPORT_SYMBOL(blk_queue_update_dma_pad);
 686
 687/**
 688 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
 689 * @q:  the request queue for the device
 690 * @dma_drain_needed: fn which returns non-zero if drain is necessary
 691 * @buf:        physically contiguous buffer
 692 * @size:       size of the buffer in bytes
 693 *
 694 * Some devices have excess DMA problems and can't simply discard (or
 695 * zero fill) the unwanted piece of the transfer.  They have to have a
 696 * real area of memory to transfer it into.  The use case for this is
 697 * ATAPI devices in DMA mode.  If the packet command causes a transfer
 698 * bigger than the transfer size some HBAs will lock up if there
 699 * aren't DMA elements to contain the excess transfer.  What this API
 700 * does is adjust the queue so that the buf is always appended
 701 * silently to the scatterlist.
 702 *
 703 * Note: This routine adjusts max_hw_segments to make room for appending
 704 * the drain buffer.  If you call blk_queue_max_segments() after calling
 705 * this routine, you must set the limit to one fewer than your device
 706 * can support otherwise there won't be room for the drain buffer.
 707 */
 708int blk_queue_dma_drain(struct request_queue *q,
 709                               dma_drain_needed_fn *dma_drain_needed,
 710                               void *buf, unsigned int size)
 711{
 712        if (queue_max_segments(q) < 2)
 713                return -EINVAL;
 714        /* make room for appending the drain */
 715        blk_queue_max_segments(q, queue_max_segments(q) - 1);
 716        q->dma_drain_needed = dma_drain_needed;
 717        q->dma_drain_buffer = buf;
 718        q->dma_drain_size = size;
 719
 720        return 0;
 721}
 722EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
 723
 724/**
 725 * blk_queue_segment_boundary - set boundary rules for segment merging
 726 * @q:  the request queue for the device
 727 * @mask:  the memory boundary mask
 728 **/
 729void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
 730{
 731        if (mask < PAGE_CACHE_SIZE - 1) {
 732                mask = PAGE_CACHE_SIZE - 1;
 733                printk(KERN_INFO "%s: set to minimum %lx\n",
 734                       __func__, mask);
 735        }
 736
 737        q->limits.seg_boundary_mask = mask;
 738}
 739EXPORT_SYMBOL(blk_queue_segment_boundary);
 740
 741/**
 742 * blk_queue_dma_alignment - set dma length and memory alignment
 743 * @q:     the request queue for the device
 744 * @mask:  alignment mask
 745 *
 746 * description:
 747 *    set required memory and length alignment for direct dma transactions.
 748 *    this is used when building direct io requests for the queue.
 749 *
 750 **/
 751void blk_queue_dma_alignment(struct request_queue *q, int mask)
 752{
 753        q->dma_alignment = mask;
 754}
 755EXPORT_SYMBOL(blk_queue_dma_alignment);
 756
 757/**
 758 * blk_queue_update_dma_alignment - update dma length and memory alignment
 759 * @q:     the request queue for the device
 760 * @mask:  alignment mask
 761 *
 762 * description:
 763 *    update required memory and length alignment for direct dma transactions.
 764 *    If the requested alignment is larger than the current alignment, then
 765 *    the current queue alignment is updated to the new value, otherwise it
 766 *    is left alone.  The design of this is to allow multiple objects
 767 *    (driver, device, transport etc) to set their respective
 768 *    alignments without having them interfere.
 769 *
 770 **/
 771void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
 772{
 773        BUG_ON(mask > PAGE_SIZE);
 774
 775        if (mask > q->dma_alignment)
 776                q->dma_alignment = mask;
 777}
 778EXPORT_SYMBOL(blk_queue_update_dma_alignment);
 779
 780static int __init blk_settings_init(void)
 781{
 782        blk_max_low_pfn = max_low_pfn - 1;
 783        blk_max_pfn = max_pfn - 1;
 784        return 0;
 785}
 786subsys_initcall(blk_settings_init);
 787