linux/include/linux/sched.h
<<
>>
Prefs
   1#ifndef _LINUX_SCHED_H
   2#define _LINUX_SCHED_H
   3
   4/*
   5 * cloning flags:
   6 */
   7#define CSIGNAL         0x000000ff      /* signal mask to be sent at exit */
   8#define CLONE_VM        0x00000100      /* set if VM shared between processes */
   9#define CLONE_FS        0x00000200      /* set if fs info shared between processes */
  10#define CLONE_FILES     0x00000400      /* set if open files shared between processes */
  11#define CLONE_SIGHAND   0x00000800      /* set if signal handlers and blocked signals shared */
  12#define CLONE_PTRACE    0x00002000      /* set if we want to let tracing continue on the child too */
  13#define CLONE_VFORK     0x00004000      /* set if the parent wants the child to wake it up on mm_release */
  14#define CLONE_PARENT    0x00008000      /* set if we want to have the same parent as the cloner */
  15#define CLONE_THREAD    0x00010000      /* Same thread group? */
  16#define CLONE_NEWNS     0x00020000      /* New namespace group? */
  17#define CLONE_SYSVSEM   0x00040000      /* share system V SEM_UNDO semantics */
  18#define CLONE_SETTLS    0x00080000      /* create a new TLS for the child */
  19#define CLONE_PARENT_SETTID     0x00100000      /* set the TID in the parent */
  20#define CLONE_CHILD_CLEARTID    0x00200000      /* clear the TID in the child */
  21#define CLONE_DETACHED          0x00400000      /* Unused, ignored */
  22#define CLONE_UNTRACED          0x00800000      /* set if the tracing process can't force CLONE_PTRACE on this clone */
  23#define CLONE_CHILD_SETTID      0x01000000      /* set the TID in the child */
  24#define CLONE_STOPPED           0x02000000      /* Start in stopped state */
  25#define CLONE_NEWUTS            0x04000000      /* New utsname group? */
  26#define CLONE_NEWIPC            0x08000000      /* New ipcs */
  27#define CLONE_NEWUSER           0x10000000      /* New user namespace */
  28#define CLONE_NEWPID            0x20000000      /* New pid namespace */
  29#define CLONE_NEWNET            0x40000000      /* New network namespace */
  30#define CLONE_IO                0x80000000      /* Clone io context */
  31
  32/*
  33 * Scheduling policies
  34 */
  35#define SCHED_NORMAL            0
  36#define SCHED_FIFO              1
  37#define SCHED_RR                2
  38#define SCHED_BATCH             3
  39/* SCHED_ISO: reserved but not implemented yet */
  40#define SCHED_IDLE              5
  41/* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
  42#define SCHED_RESET_ON_FORK     0x40000000
  43
  44#ifdef __KERNEL__
  45
  46struct sched_param {
  47        int sched_priority;
  48};
  49
  50#include <asm/param.h>  /* for HZ */
  51
  52#include <linux/capability.h>
  53#include <linux/threads.h>
  54#include <linux/kernel.h>
  55#include <linux/types.h>
  56#include <linux/timex.h>
  57#include <linux/jiffies.h>
  58#include <linux/rbtree.h>
  59#include <linux/thread_info.h>
  60#include <linux/cpumask.h>
  61#include <linux/errno.h>
  62#include <linux/nodemask.h>
  63#include <linux/mm_types.h>
  64
  65#include <asm/system.h>
  66#include <asm/page.h>
  67#include <asm/ptrace.h>
  68#include <asm/cputime.h>
  69
  70#include <linux/smp.h>
  71#include <linux/sem.h>
  72#include <linux/signal.h>
  73#include <linux/path.h>
  74#include <linux/compiler.h>
  75#include <linux/completion.h>
  76#include <linux/pid.h>
  77#include <linux/percpu.h>
  78#include <linux/topology.h>
  79#include <linux/proportions.h>
  80#include <linux/seccomp.h>
  81#include <linux/rcupdate.h>
  82#include <linux/rculist.h>
  83#include <linux/rtmutex.h>
  84
  85#include <linux/time.h>
  86#include <linux/param.h>
  87#include <linux/resource.h>
  88#include <linux/timer.h>
  89#include <linux/hrtimer.h>
  90#include <linux/task_io_accounting.h>
  91#include <linux/kobject.h>
  92#include <linux/latencytop.h>
  93#include <linux/cred.h>
  94
  95#include <asm/processor.h>
  96
  97struct exec_domain;
  98struct futex_pi_state;
  99struct robust_list_head;
 100struct bio_list;
 101struct fs_struct;
 102struct perf_event_context;
 103
 104/*
 105 * List of flags we want to share for kernel threads,
 106 * if only because they are not used by them anyway.
 107 */
 108#define CLONE_KERNEL    (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
 109
 110/*
 111 * These are the constant used to fake the fixed-point load-average
 112 * counting. Some notes:
 113 *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
 114 *    a load-average precision of 10 bits integer + 11 bits fractional
 115 *  - if you want to count load-averages more often, you need more
 116 *    precision, or rounding will get you. With 2-second counting freq,
 117 *    the EXP_n values would be 1981, 2034 and 2043 if still using only
 118 *    11 bit fractions.
 119 */
 120extern unsigned long avenrun[];         /* Load averages */
 121extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
 122
 123#define FSHIFT          11              /* nr of bits of precision */
 124#define FIXED_1         (1<<FSHIFT)     /* 1.0 as fixed-point */
 125#define LOAD_FREQ       (5*HZ+1)        /* 5 sec intervals */
 126#define EXP_1           1884            /* 1/exp(5sec/1min) as fixed-point */
 127#define EXP_5           2014            /* 1/exp(5sec/5min) */
 128#define EXP_15          2037            /* 1/exp(5sec/15min) */
 129
 130#define CALC_LOAD(load,exp,n) \
 131        load *= exp; \
 132        load += n*(FIXED_1-exp); \
 133        load >>= FSHIFT;
 134
 135extern unsigned long total_forks;
 136extern int nr_threads;
 137DECLARE_PER_CPU(unsigned long, process_counts);
 138extern int nr_processes(void);
 139extern unsigned long nr_running(void);
 140extern unsigned long nr_uninterruptible(void);
 141extern unsigned long nr_iowait(void);
 142extern unsigned long nr_iowait_cpu(int cpu);
 143extern unsigned long this_cpu_load(void);
 144
 145
 146extern void calc_global_load(void);
 147
 148extern unsigned long get_parent_ip(unsigned long addr);
 149
 150struct seq_file;
 151struct cfs_rq;
 152struct task_group;
 153#ifdef CONFIG_SCHED_DEBUG
 154extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
 155extern void proc_sched_set_task(struct task_struct *p);
 156extern void
 157print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
 158#else
 159static inline void
 160proc_sched_show_task(struct task_struct *p, struct seq_file *m)
 161{
 162}
 163static inline void proc_sched_set_task(struct task_struct *p)
 164{
 165}
 166static inline void
 167print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
 168{
 169}
 170#endif
 171
 172/*
 173 * Task state bitmask. NOTE! These bits are also
 174 * encoded in fs/proc/array.c: get_task_state().
 175 *
 176 * We have two separate sets of flags: task->state
 177 * is about runnability, while task->exit_state are
 178 * about the task exiting. Confusing, but this way
 179 * modifying one set can't modify the other one by
 180 * mistake.
 181 */
 182#define TASK_RUNNING            0
 183#define TASK_INTERRUPTIBLE      1
 184#define TASK_UNINTERRUPTIBLE    2
 185#define __TASK_STOPPED          4
 186#define __TASK_TRACED           8
 187/* in tsk->exit_state */
 188#define EXIT_ZOMBIE             16
 189#define EXIT_DEAD               32
 190/* in tsk->state again */
 191#define TASK_DEAD               64
 192#define TASK_WAKEKILL           128
 193#define TASK_WAKING             256
 194#define TASK_STATE_MAX          512
 195
 196#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
 197
 198extern char ___assert_task_state[1 - 2*!!(
 199                sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
 200
 201/* Convenience macros for the sake of set_task_state */
 202#define TASK_KILLABLE           (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
 203#define TASK_STOPPED            (TASK_WAKEKILL | __TASK_STOPPED)
 204#define TASK_TRACED             (TASK_WAKEKILL | __TASK_TRACED)
 205
 206/* Convenience macros for the sake of wake_up */
 207#define TASK_NORMAL             (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
 208#define TASK_ALL                (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
 209
 210/* get_task_state() */
 211#define TASK_REPORT             (TASK_RUNNING | TASK_INTERRUPTIBLE | \
 212                                 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
 213                                 __TASK_TRACED)
 214
 215#define task_is_traced(task)    ((task->state & __TASK_TRACED) != 0)
 216#define task_is_stopped(task)   ((task->state & __TASK_STOPPED) != 0)
 217#define task_is_dead(task)      ((task)->exit_state != 0)
 218#define task_is_stopped_or_traced(task) \
 219                        ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
 220#define task_contributes_to_load(task)  \
 221                                ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
 222                                 (task->flags & PF_FREEZING) == 0)
 223
 224#define __set_task_state(tsk, state_value)              \
 225        do { (tsk)->state = (state_value); } while (0)
 226#define set_task_state(tsk, state_value)                \
 227        set_mb((tsk)->state, (state_value))
 228
 229/*
 230 * set_current_state() includes a barrier so that the write of current->state
 231 * is correctly serialised wrt the caller's subsequent test of whether to
 232 * actually sleep:
 233 *
 234 *      set_current_state(TASK_UNINTERRUPTIBLE);
 235 *      if (do_i_need_to_sleep())
 236 *              schedule();
 237 *
 238 * If the caller does not need such serialisation then use __set_current_state()
 239 */
 240#define __set_current_state(state_value)                        \
 241        do { current->state = (state_value); } while (0)
 242#define set_current_state(state_value)          \
 243        set_mb(current->state, (state_value))
 244
 245/* Task command name length */
 246#define TASK_COMM_LEN 16
 247
 248#include <linux/spinlock.h>
 249
 250/*
 251 * This serializes "schedule()" and also protects
 252 * the run-queue from deletions/modifications (but
 253 * _adding_ to the beginning of the run-queue has
 254 * a separate lock).
 255 */
 256extern rwlock_t tasklist_lock;
 257extern spinlock_t mmlist_lock;
 258
 259struct task_struct;
 260
 261#ifdef CONFIG_PROVE_RCU
 262extern int lockdep_tasklist_lock_is_held(void);
 263#endif /* #ifdef CONFIG_PROVE_RCU */
 264
 265extern void sched_init(void);
 266extern void sched_init_smp(void);
 267extern asmlinkage void schedule_tail(struct task_struct *prev);
 268extern void init_idle(struct task_struct *idle, int cpu);
 269extern void init_idle_bootup_task(struct task_struct *idle);
 270
 271extern int runqueue_is_locked(int cpu);
 272
 273extern cpumask_var_t nohz_cpu_mask;
 274#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
 275extern int select_nohz_load_balancer(int cpu);
 276extern int get_nohz_load_balancer(void);
 277extern int nohz_ratelimit(int cpu);
 278#else
 279static inline int select_nohz_load_balancer(int cpu)
 280{
 281        return 0;
 282}
 283
 284static inline int nohz_ratelimit(int cpu)
 285{
 286        return 0;
 287}
 288#endif
 289
 290/*
 291 * Only dump TASK_* tasks. (0 for all tasks)
 292 */
 293extern void show_state_filter(unsigned long state_filter);
 294
 295static inline void show_state(void)
 296{
 297        show_state_filter(0);
 298}
 299
 300extern void show_regs(struct pt_regs *);
 301
 302/*
 303 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
 304 * task), SP is the stack pointer of the first frame that should be shown in the back
 305 * trace (or NULL if the entire call-chain of the task should be shown).
 306 */
 307extern void show_stack(struct task_struct *task, unsigned long *sp);
 308
 309void io_schedule(void);
 310long io_schedule_timeout(long timeout);
 311
 312extern void cpu_init (void);
 313extern void trap_init(void);
 314extern void update_process_times(int user);
 315extern void scheduler_tick(void);
 316
 317extern void sched_show_task(struct task_struct *p);
 318
 319#ifdef CONFIG_DETECT_SOFTLOCKUP
 320extern void softlockup_tick(void);
 321extern void touch_softlockup_watchdog(void);
 322extern void touch_softlockup_watchdog_sync(void);
 323extern void touch_all_softlockup_watchdogs(void);
 324extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write,
 325                                    void __user *buffer,
 326                                    size_t *lenp, loff_t *ppos);
 327extern unsigned int  softlockup_panic;
 328extern int softlockup_thresh;
 329#else
 330static inline void softlockup_tick(void)
 331{
 332}
 333static inline void touch_softlockup_watchdog(void)
 334{
 335}
 336static inline void touch_softlockup_watchdog_sync(void)
 337{
 338}
 339static inline void touch_all_softlockup_watchdogs(void)
 340{
 341}
 342#endif
 343
 344#ifdef CONFIG_DETECT_HUNG_TASK
 345extern unsigned int  sysctl_hung_task_panic;
 346extern unsigned long sysctl_hung_task_check_count;
 347extern unsigned long sysctl_hung_task_timeout_secs;
 348extern unsigned long sysctl_hung_task_warnings;
 349extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
 350                                         void __user *buffer,
 351                                         size_t *lenp, loff_t *ppos);
 352#endif
 353
 354/* Attach to any functions which should be ignored in wchan output. */
 355#define __sched         __attribute__((__section__(".sched.text")))
 356
 357/* Linker adds these: start and end of __sched functions */
 358extern char __sched_text_start[], __sched_text_end[];
 359
 360/* Is this address in the __sched functions? */
 361extern int in_sched_functions(unsigned long addr);
 362
 363#define MAX_SCHEDULE_TIMEOUT    LONG_MAX
 364extern signed long schedule_timeout(signed long timeout);
 365extern signed long schedule_timeout_interruptible(signed long timeout);
 366extern signed long schedule_timeout_killable(signed long timeout);
 367extern signed long schedule_timeout_uninterruptible(signed long timeout);
 368asmlinkage void schedule(void);
 369extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
 370
 371struct nsproxy;
 372struct user_namespace;
 373
 374/*
 375 * Default maximum number of active map areas, this limits the number of vmas
 376 * per mm struct. Users can overwrite this number by sysctl but there is a
 377 * problem.
 378 *
 379 * When a program's coredump is generated as ELF format, a section is created
 380 * per a vma. In ELF, the number of sections is represented in unsigned short.
 381 * This means the number of sections should be smaller than 65535 at coredump.
 382 * Because the kernel adds some informative sections to a image of program at
 383 * generating coredump, we need some margin. The number of extra sections is
 384 * 1-3 now and depends on arch. We use "5" as safe margin, here.
 385 */
 386#define MAPCOUNT_ELF_CORE_MARGIN        (5)
 387#define DEFAULT_MAX_MAP_COUNT   (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
 388
 389extern int sysctl_max_map_count;
 390
 391#include <linux/aio.h>
 392
 393#ifdef CONFIG_MMU
 394extern void arch_pick_mmap_layout(struct mm_struct *mm);
 395extern unsigned long
 396arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
 397                       unsigned long, unsigned long);
 398extern unsigned long
 399arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
 400                          unsigned long len, unsigned long pgoff,
 401                          unsigned long flags);
 402extern void arch_unmap_area(struct mm_struct *, unsigned long);
 403extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
 404#else
 405static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
 406#endif
 407
 408
 409extern void set_dumpable(struct mm_struct *mm, int value);
 410extern int get_dumpable(struct mm_struct *mm);
 411
 412/* mm flags */
 413/* dumpable bits */
 414#define MMF_DUMPABLE      0  /* core dump is permitted */
 415#define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
 416
 417#define MMF_DUMPABLE_BITS 2
 418#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
 419
 420/* coredump filter bits */
 421#define MMF_DUMP_ANON_PRIVATE   2
 422#define MMF_DUMP_ANON_SHARED    3
 423#define MMF_DUMP_MAPPED_PRIVATE 4
 424#define MMF_DUMP_MAPPED_SHARED  5
 425#define MMF_DUMP_ELF_HEADERS    6
 426#define MMF_DUMP_HUGETLB_PRIVATE 7
 427#define MMF_DUMP_HUGETLB_SHARED  8
 428
 429#define MMF_DUMP_FILTER_SHIFT   MMF_DUMPABLE_BITS
 430#define MMF_DUMP_FILTER_BITS    7
 431#define MMF_DUMP_FILTER_MASK \
 432        (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
 433#define MMF_DUMP_FILTER_DEFAULT \
 434        ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
 435         (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
 436
 437#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
 438# define MMF_DUMP_MASK_DEFAULT_ELF      (1 << MMF_DUMP_ELF_HEADERS)
 439#else
 440# define MMF_DUMP_MASK_DEFAULT_ELF      0
 441#endif
 442                                        /* leave room for more dump flags */
 443#define MMF_VM_MERGEABLE        16      /* KSM may merge identical pages */
 444
 445#define MMF_INIT_MASK           (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
 446
 447struct sighand_struct {
 448        atomic_t                count;
 449        struct k_sigaction      action[_NSIG];
 450        spinlock_t              siglock;
 451        wait_queue_head_t       signalfd_wqh;
 452};
 453
 454struct pacct_struct {
 455        int                     ac_flag;
 456        long                    ac_exitcode;
 457        unsigned long           ac_mem;
 458        cputime_t               ac_utime, ac_stime;
 459        unsigned long           ac_minflt, ac_majflt;
 460};
 461
 462struct cpu_itimer {
 463        cputime_t expires;
 464        cputime_t incr;
 465        u32 error;
 466        u32 incr_error;
 467};
 468
 469/**
 470 * struct task_cputime - collected CPU time counts
 471 * @utime:              time spent in user mode, in &cputime_t units
 472 * @stime:              time spent in kernel mode, in &cputime_t units
 473 * @sum_exec_runtime:   total time spent on the CPU, in nanoseconds
 474 *
 475 * This structure groups together three kinds of CPU time that are
 476 * tracked for threads and thread groups.  Most things considering
 477 * CPU time want to group these counts together and treat all three
 478 * of them in parallel.
 479 */
 480struct task_cputime {
 481        cputime_t utime;
 482        cputime_t stime;
 483        unsigned long long sum_exec_runtime;
 484};
 485/* Alternate field names when used to cache expirations. */
 486#define prof_exp        stime
 487#define virt_exp        utime
 488#define sched_exp       sum_exec_runtime
 489
 490#define INIT_CPUTIME    \
 491        (struct task_cputime) {                                 \
 492                .utime = cputime_zero,                          \
 493                .stime = cputime_zero,                          \
 494                .sum_exec_runtime = 0,                          \
 495        }
 496
 497/*
 498 * Disable preemption until the scheduler is running.
 499 * Reset by start_kernel()->sched_init()->init_idle().
 500 *
 501 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
 502 * before the scheduler is active -- see should_resched().
 503 */
 504#define INIT_PREEMPT_COUNT      (1 + PREEMPT_ACTIVE)
 505
 506/**
 507 * struct thread_group_cputimer - thread group interval timer counts
 508 * @cputime:            thread group interval timers.
 509 * @running:            non-zero when there are timers running and
 510 *                      @cputime receives updates.
 511 * @lock:               lock for fields in this struct.
 512 *
 513 * This structure contains the version of task_cputime, above, that is
 514 * used for thread group CPU timer calculations.
 515 */
 516struct thread_group_cputimer {
 517        struct task_cputime cputime;
 518        int running;
 519        spinlock_t lock;
 520};
 521
 522/*
 523 * NOTE! "signal_struct" does not have it's own
 524 * locking, because a shared signal_struct always
 525 * implies a shared sighand_struct, so locking
 526 * sighand_struct is always a proper superset of
 527 * the locking of signal_struct.
 528 */
 529struct signal_struct {
 530        atomic_t                sigcnt;
 531        atomic_t                live;
 532        int                     nr_threads;
 533
 534        wait_queue_head_t       wait_chldexit;  /* for wait4() */
 535
 536        /* current thread group signal load-balancing target: */
 537        struct task_struct      *curr_target;
 538
 539        /* shared signal handling: */
 540        struct sigpending       shared_pending;
 541
 542        /* thread group exit support */
 543        int                     group_exit_code;
 544        /* overloaded:
 545         * - notify group_exit_task when ->count is equal to notify_count
 546         * - everyone except group_exit_task is stopped during signal delivery
 547         *   of fatal signals, group_exit_task processes the signal.
 548         */
 549        int                     notify_count;
 550        struct task_struct      *group_exit_task;
 551
 552        /* thread group stop support, overloads group_exit_code too */
 553        int                     group_stop_count;
 554        unsigned int            flags; /* see SIGNAL_* flags below */
 555
 556        /* POSIX.1b Interval Timers */
 557        struct list_head posix_timers;
 558
 559        /* ITIMER_REAL timer for the process */
 560        struct hrtimer real_timer;
 561        struct pid *leader_pid;
 562        ktime_t it_real_incr;
 563
 564        /*
 565         * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
 566         * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
 567         * values are defined to 0 and 1 respectively
 568         */
 569        struct cpu_itimer it[2];
 570
 571        /*
 572         * Thread group totals for process CPU timers.
 573         * See thread_group_cputimer(), et al, for details.
 574         */
 575        struct thread_group_cputimer cputimer;
 576
 577        /* Earliest-expiration cache. */
 578        struct task_cputime cputime_expires;
 579
 580        struct list_head cpu_timers[3];
 581
 582        struct pid *tty_old_pgrp;
 583
 584        /* boolean value for session group leader */
 585        int leader;
 586
 587        struct tty_struct *tty; /* NULL if no tty */
 588
 589        /*
 590         * Cumulative resource counters for dead threads in the group,
 591         * and for reaped dead child processes forked by this group.
 592         * Live threads maintain their own counters and add to these
 593         * in __exit_signal, except for the group leader.
 594         */
 595        cputime_t utime, stime, cutime, cstime;
 596        cputime_t gtime;
 597        cputime_t cgtime;
 598#ifndef CONFIG_VIRT_CPU_ACCOUNTING
 599        cputime_t prev_utime, prev_stime;
 600#endif
 601        unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
 602        unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
 603        unsigned long inblock, oublock, cinblock, coublock;
 604        unsigned long maxrss, cmaxrss;
 605        struct task_io_accounting ioac;
 606
 607        /*
 608         * Cumulative ns of schedule CPU time fo dead threads in the
 609         * group, not including a zombie group leader, (This only differs
 610         * from jiffies_to_ns(utime + stime) if sched_clock uses something
 611         * other than jiffies.)
 612         */
 613        unsigned long long sum_sched_runtime;
 614
 615        /*
 616         * We don't bother to synchronize most readers of this at all,
 617         * because there is no reader checking a limit that actually needs
 618         * to get both rlim_cur and rlim_max atomically, and either one
 619         * alone is a single word that can safely be read normally.
 620         * getrlimit/setrlimit use task_lock(current->group_leader) to
 621         * protect this instead of the siglock, because they really
 622         * have no need to disable irqs.
 623         */
 624        struct rlimit rlim[RLIM_NLIMITS];
 625
 626#ifdef CONFIG_BSD_PROCESS_ACCT
 627        struct pacct_struct pacct;      /* per-process accounting information */
 628#endif
 629#ifdef CONFIG_TASKSTATS
 630        struct taskstats *stats;
 631#endif
 632#ifdef CONFIG_AUDIT
 633        unsigned audit_tty;
 634        struct tty_audit_buf *tty_audit_buf;
 635#endif
 636
 637        int oom_adj;    /* OOM kill score adjustment (bit shift) */
 638};
 639
 640/* Context switch must be unlocked if interrupts are to be enabled */
 641#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
 642# define __ARCH_WANT_UNLOCKED_CTXSW
 643#endif
 644
 645/*
 646 * Bits in flags field of signal_struct.
 647 */
 648#define SIGNAL_STOP_STOPPED     0x00000001 /* job control stop in effect */
 649#define SIGNAL_STOP_DEQUEUED    0x00000002 /* stop signal dequeued */
 650#define SIGNAL_STOP_CONTINUED   0x00000004 /* SIGCONT since WCONTINUED reap */
 651#define SIGNAL_GROUP_EXIT       0x00000008 /* group exit in progress */
 652/*
 653 * Pending notifications to parent.
 654 */
 655#define SIGNAL_CLD_STOPPED      0x00000010
 656#define SIGNAL_CLD_CONTINUED    0x00000020
 657#define SIGNAL_CLD_MASK         (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
 658
 659#define SIGNAL_UNKILLABLE       0x00000040 /* for init: ignore fatal signals */
 660
 661/* If true, all threads except ->group_exit_task have pending SIGKILL */
 662static inline int signal_group_exit(const struct signal_struct *sig)
 663{
 664        return  (sig->flags & SIGNAL_GROUP_EXIT) ||
 665                (sig->group_exit_task != NULL);
 666}
 667
 668/*
 669 * Some day this will be a full-fledged user tracking system..
 670 */
 671struct user_struct {
 672        atomic_t __count;       /* reference count */
 673        atomic_t processes;     /* How many processes does this user have? */
 674        atomic_t files;         /* How many open files does this user have? */
 675        atomic_t sigpending;    /* How many pending signals does this user have? */
 676#ifdef CONFIG_INOTIFY_USER
 677        atomic_t inotify_watches; /* How many inotify watches does this user have? */
 678        atomic_t inotify_devs;  /* How many inotify devs does this user have opened? */
 679#endif
 680#ifdef CONFIG_EPOLL
 681        atomic_t epoll_watches; /* The number of file descriptors currently watched */
 682#endif
 683#ifdef CONFIG_POSIX_MQUEUE
 684        /* protected by mq_lock */
 685        unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
 686#endif
 687        unsigned long locked_shm; /* How many pages of mlocked shm ? */
 688
 689#ifdef CONFIG_KEYS
 690        struct key *uid_keyring;        /* UID specific keyring */
 691        struct key *session_keyring;    /* UID's default session keyring */
 692#endif
 693
 694        /* Hash table maintenance information */
 695        struct hlist_node uidhash_node;
 696        uid_t uid;
 697        struct user_namespace *user_ns;
 698
 699#ifdef CONFIG_PERF_EVENTS
 700        atomic_long_t locked_vm;
 701#endif
 702};
 703
 704extern int uids_sysfs_init(void);
 705
 706extern struct user_struct *find_user(uid_t);
 707
 708extern struct user_struct root_user;
 709#define INIT_USER (&root_user)
 710
 711
 712struct backing_dev_info;
 713struct reclaim_state;
 714
 715#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
 716struct sched_info {
 717        /* cumulative counters */
 718        unsigned long pcount;         /* # of times run on this cpu */
 719        unsigned long long run_delay; /* time spent waiting on a runqueue */
 720
 721        /* timestamps */
 722        unsigned long long last_arrival,/* when we last ran on a cpu */
 723                           last_queued; /* when we were last queued to run */
 724#ifdef CONFIG_SCHEDSTATS
 725        /* BKL stats */
 726        unsigned int bkl_count;
 727#endif
 728};
 729#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
 730
 731#ifdef CONFIG_TASK_DELAY_ACCT
 732struct task_delay_info {
 733        spinlock_t      lock;
 734        unsigned int    flags;  /* Private per-task flags */
 735
 736        /* For each stat XXX, add following, aligned appropriately
 737         *
 738         * struct timespec XXX_start, XXX_end;
 739         * u64 XXX_delay;
 740         * u32 XXX_count;
 741         *
 742         * Atomicity of updates to XXX_delay, XXX_count protected by
 743         * single lock above (split into XXX_lock if contention is an issue).
 744         */
 745
 746        /*
 747         * XXX_count is incremented on every XXX operation, the delay
 748         * associated with the operation is added to XXX_delay.
 749         * XXX_delay contains the accumulated delay time in nanoseconds.
 750         */
 751        struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
 752        u64 blkio_delay;        /* wait for sync block io completion */
 753        u64 swapin_delay;       /* wait for swapin block io completion */
 754        u32 blkio_count;        /* total count of the number of sync block */
 755                                /* io operations performed */
 756        u32 swapin_count;       /* total count of the number of swapin block */
 757                                /* io operations performed */
 758
 759        struct timespec freepages_start, freepages_end;
 760        u64 freepages_delay;    /* wait for memory reclaim */
 761        u32 freepages_count;    /* total count of memory reclaim */
 762};
 763#endif  /* CONFIG_TASK_DELAY_ACCT */
 764
 765static inline int sched_info_on(void)
 766{
 767#ifdef CONFIG_SCHEDSTATS
 768        return 1;
 769#elif defined(CONFIG_TASK_DELAY_ACCT)
 770        extern int delayacct_on;
 771        return delayacct_on;
 772#else
 773        return 0;
 774#endif
 775}
 776
 777enum cpu_idle_type {
 778        CPU_IDLE,
 779        CPU_NOT_IDLE,
 780        CPU_NEWLY_IDLE,
 781        CPU_MAX_IDLE_TYPES
 782};
 783
 784/*
 785 * sched-domains (multiprocessor balancing) declarations:
 786 */
 787
 788/*
 789 * Increase resolution of nice-level calculations:
 790 */
 791#define SCHED_LOAD_SHIFT        10
 792#define SCHED_LOAD_SCALE        (1L << SCHED_LOAD_SHIFT)
 793
 794#define SCHED_LOAD_SCALE_FUZZ   SCHED_LOAD_SCALE
 795
 796#ifdef CONFIG_SMP
 797#define SD_LOAD_BALANCE         0x0001  /* Do load balancing on this domain. */
 798#define SD_BALANCE_NEWIDLE      0x0002  /* Balance when about to become idle */
 799#define SD_BALANCE_EXEC         0x0004  /* Balance on exec */
 800#define SD_BALANCE_FORK         0x0008  /* Balance on fork, clone */
 801#define SD_BALANCE_WAKE         0x0010  /* Balance on wakeup */
 802#define SD_WAKE_AFFINE          0x0020  /* Wake task to waking CPU */
 803#define SD_PREFER_LOCAL         0x0040  /* Prefer to keep tasks local to this domain */
 804#define SD_SHARE_CPUPOWER       0x0080  /* Domain members share cpu power */
 805#define SD_POWERSAVINGS_BALANCE 0x0100  /* Balance for power savings */
 806#define SD_SHARE_PKG_RESOURCES  0x0200  /* Domain members share cpu pkg resources */
 807#define SD_SERIALIZE            0x0400  /* Only a single load balancing instance */
 808
 809#define SD_PREFER_SIBLING       0x1000  /* Prefer to place tasks in a sibling domain */
 810
 811enum powersavings_balance_level {
 812        POWERSAVINGS_BALANCE_NONE = 0,  /* No power saving load balance */
 813        POWERSAVINGS_BALANCE_BASIC,     /* Fill one thread/core/package
 814                                         * first for long running threads
 815                                         */
 816        POWERSAVINGS_BALANCE_WAKEUP,    /* Also bias task wakeups to semi-idle
 817                                         * cpu package for power savings
 818                                         */
 819        MAX_POWERSAVINGS_BALANCE_LEVELS
 820};
 821
 822extern int sched_mc_power_savings, sched_smt_power_savings;
 823
 824static inline int sd_balance_for_mc_power(void)
 825{
 826        if (sched_smt_power_savings)
 827                return SD_POWERSAVINGS_BALANCE;
 828
 829        if (!sched_mc_power_savings)
 830                return SD_PREFER_SIBLING;
 831
 832        return 0;
 833}
 834
 835static inline int sd_balance_for_package_power(void)
 836{
 837        if (sched_mc_power_savings | sched_smt_power_savings)
 838                return SD_POWERSAVINGS_BALANCE;
 839
 840        return SD_PREFER_SIBLING;
 841}
 842
 843/*
 844 * Optimise SD flags for power savings:
 845 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
 846 * Keep default SD flags if sched_{smt,mc}_power_saving=0
 847 */
 848
 849static inline int sd_power_saving_flags(void)
 850{
 851        if (sched_mc_power_savings | sched_smt_power_savings)
 852                return SD_BALANCE_NEWIDLE;
 853
 854        return 0;
 855}
 856
 857struct sched_group {
 858        struct sched_group *next;       /* Must be a circular list */
 859
 860        /*
 861         * CPU power of this group, SCHED_LOAD_SCALE being max power for a
 862         * single CPU.
 863         */
 864        unsigned int cpu_power;
 865
 866        /*
 867         * The CPUs this group covers.
 868         *
 869         * NOTE: this field is variable length. (Allocated dynamically
 870         * by attaching extra space to the end of the structure,
 871         * depending on how many CPUs the kernel has booted up with)
 872         *
 873         * It is also be embedded into static data structures at build
 874         * time. (See 'struct static_sched_group' in kernel/sched.c)
 875         */
 876        unsigned long cpumask[0];
 877};
 878
 879static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
 880{
 881        return to_cpumask(sg->cpumask);
 882}
 883
 884enum sched_domain_level {
 885        SD_LV_NONE = 0,
 886        SD_LV_SIBLING,
 887        SD_LV_MC,
 888        SD_LV_CPU,
 889        SD_LV_NODE,
 890        SD_LV_ALLNODES,
 891        SD_LV_MAX
 892};
 893
 894struct sched_domain_attr {
 895        int relax_domain_level;
 896};
 897
 898#define SD_ATTR_INIT    (struct sched_domain_attr) {    \
 899        .relax_domain_level = -1,                       \
 900}
 901
 902struct sched_domain {
 903        /* These fields must be setup */
 904        struct sched_domain *parent;    /* top domain must be null terminated */
 905        struct sched_domain *child;     /* bottom domain must be null terminated */
 906        struct sched_group *groups;     /* the balancing groups of the domain */
 907        unsigned long min_interval;     /* Minimum balance interval ms */
 908        unsigned long max_interval;     /* Maximum balance interval ms */
 909        unsigned int busy_factor;       /* less balancing by factor if busy */
 910        unsigned int imbalance_pct;     /* No balance until over watermark */
 911        unsigned int cache_nice_tries;  /* Leave cache hot tasks for # tries */
 912        unsigned int busy_idx;
 913        unsigned int idle_idx;
 914        unsigned int newidle_idx;
 915        unsigned int wake_idx;
 916        unsigned int forkexec_idx;
 917        unsigned int smt_gain;
 918        int flags;                      /* See SD_* */
 919        enum sched_domain_level level;
 920
 921        /* Runtime fields. */
 922        unsigned long last_balance;     /* init to jiffies. units in jiffies */
 923        unsigned int balance_interval;  /* initialise to 1. units in ms. */
 924        unsigned int nr_balance_failed; /* initialise to 0 */
 925
 926        u64 last_update;
 927
 928#ifdef CONFIG_SCHEDSTATS
 929        /* load_balance() stats */
 930        unsigned int lb_count[CPU_MAX_IDLE_TYPES];
 931        unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
 932        unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
 933        unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
 934        unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
 935        unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
 936        unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
 937        unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
 938
 939        /* Active load balancing */
 940        unsigned int alb_count;
 941        unsigned int alb_failed;
 942        unsigned int alb_pushed;
 943
 944        /* SD_BALANCE_EXEC stats */
 945        unsigned int sbe_count;
 946        unsigned int sbe_balanced;
 947        unsigned int sbe_pushed;
 948
 949        /* SD_BALANCE_FORK stats */
 950        unsigned int sbf_count;
 951        unsigned int sbf_balanced;
 952        unsigned int sbf_pushed;
 953
 954        /* try_to_wake_up() stats */
 955        unsigned int ttwu_wake_remote;
 956        unsigned int ttwu_move_affine;
 957        unsigned int ttwu_move_balance;
 958#endif
 959#ifdef CONFIG_SCHED_DEBUG
 960        char *name;
 961#endif
 962
 963        unsigned int span_weight;
 964        /*
 965         * Span of all CPUs in this domain.
 966         *
 967         * NOTE: this field is variable length. (Allocated dynamically
 968         * by attaching extra space to the end of the structure,
 969         * depending on how many CPUs the kernel has booted up with)
 970         *
 971         * It is also be embedded into static data structures at build
 972         * time. (See 'struct static_sched_domain' in kernel/sched.c)
 973         */
 974        unsigned long span[0];
 975};
 976
 977static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
 978{
 979        return to_cpumask(sd->span);
 980}
 981
 982extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
 983                                    struct sched_domain_attr *dattr_new);
 984
 985/* Allocate an array of sched domains, for partition_sched_domains(). */
 986cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
 987void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
 988
 989/* Test a flag in parent sched domain */
 990static inline int test_sd_parent(struct sched_domain *sd, int flag)
 991{
 992        if (sd->parent && (sd->parent->flags & flag))
 993                return 1;
 994
 995        return 0;
 996}
 997
 998unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
 999unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
1000
1001#else /* CONFIG_SMP */
1002
1003struct sched_domain_attr;
1004
1005static inline void
1006partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1007                        struct sched_domain_attr *dattr_new)
1008{
1009}
1010#endif  /* !CONFIG_SMP */
1011
1012
1013struct io_context;                      /* See blkdev.h */
1014
1015
1016#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1017extern void prefetch_stack(struct task_struct *t);
1018#else
1019static inline void prefetch_stack(struct task_struct *t) { }
1020#endif
1021
1022struct audit_context;           /* See audit.c */
1023struct mempolicy;
1024struct pipe_inode_info;
1025struct uts_namespace;
1026
1027struct rq;
1028struct sched_domain;
1029
1030/*
1031 * wake flags
1032 */
1033#define WF_SYNC         0x01            /* waker goes to sleep after wakup */
1034#define WF_FORK         0x02            /* child wakeup after fork */
1035
1036#define ENQUEUE_WAKEUP          1
1037#define ENQUEUE_WAKING          2
1038#define ENQUEUE_HEAD            4
1039
1040#define DEQUEUE_SLEEP           1
1041
1042struct sched_class {
1043        const struct sched_class *next;
1044
1045        void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1046        void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1047        void (*yield_task) (struct rq *rq);
1048
1049        void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1050
1051        struct task_struct * (*pick_next_task) (struct rq *rq);
1052        void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1053
1054#ifdef CONFIG_SMP
1055        int  (*select_task_rq)(struct rq *rq, struct task_struct *p,
1056                               int sd_flag, int flags);
1057
1058        void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1059        void (*post_schedule) (struct rq *this_rq);
1060        void (*task_waking) (struct rq *this_rq, struct task_struct *task);
1061        void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1062
1063        void (*set_cpus_allowed)(struct task_struct *p,
1064                                 const struct cpumask *newmask);
1065
1066        void (*rq_online)(struct rq *rq);
1067        void (*rq_offline)(struct rq *rq);
1068#endif
1069
1070        void (*set_curr_task) (struct rq *rq);
1071        void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1072        void (*task_fork) (struct task_struct *p);
1073
1074        void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1075                               int running);
1076        void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1077                             int running);
1078        void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1079                             int oldprio, int running);
1080
1081        unsigned int (*get_rr_interval) (struct rq *rq,
1082                                         struct task_struct *task);
1083
1084#ifdef CONFIG_FAIR_GROUP_SCHED
1085        void (*moved_group) (struct task_struct *p, int on_rq);
1086#endif
1087};
1088
1089struct load_weight {
1090        unsigned long weight, inv_weight;
1091};
1092
1093#ifdef CONFIG_SCHEDSTATS
1094struct sched_statistics {
1095        u64                     wait_start;
1096        u64                     wait_max;
1097        u64                     wait_count;
1098        u64                     wait_sum;
1099        u64                     iowait_count;
1100        u64                     iowait_sum;
1101
1102        u64                     sleep_start;
1103        u64                     sleep_max;
1104        s64                     sum_sleep_runtime;
1105
1106        u64                     block_start;
1107        u64                     block_max;
1108        u64                     exec_max;
1109        u64                     slice_max;
1110
1111        u64                     nr_migrations_cold;
1112        u64                     nr_failed_migrations_affine;
1113        u64                     nr_failed_migrations_running;
1114        u64                     nr_failed_migrations_hot;
1115        u64                     nr_forced_migrations;
1116
1117        u64                     nr_wakeups;
1118        u64                     nr_wakeups_sync;
1119        u64                     nr_wakeups_migrate;
1120        u64                     nr_wakeups_local;
1121        u64                     nr_wakeups_remote;
1122        u64                     nr_wakeups_affine;
1123        u64                     nr_wakeups_affine_attempts;
1124        u64                     nr_wakeups_passive;
1125        u64                     nr_wakeups_idle;
1126};
1127#endif
1128
1129struct sched_entity {
1130        struct load_weight      load;           /* for load-balancing */
1131        struct rb_node          run_node;
1132        struct list_head        group_node;
1133        unsigned int            on_rq;
1134
1135        u64                     exec_start;
1136        u64                     sum_exec_runtime;
1137        u64                     vruntime;
1138        u64                     prev_sum_exec_runtime;
1139
1140        u64                     nr_migrations;
1141
1142#ifdef CONFIG_SCHEDSTATS
1143        struct sched_statistics statistics;
1144#endif
1145
1146#ifdef CONFIG_FAIR_GROUP_SCHED
1147        struct sched_entity     *parent;
1148        /* rq on which this entity is (to be) queued: */
1149        struct cfs_rq           *cfs_rq;
1150        /* rq "owned" by this entity/group: */
1151        struct cfs_rq           *my_q;
1152#endif
1153};
1154
1155struct sched_rt_entity {
1156        struct list_head run_list;
1157        unsigned long timeout;
1158        unsigned int time_slice;
1159        int nr_cpus_allowed;
1160
1161        struct sched_rt_entity *back;
1162#ifdef CONFIG_RT_GROUP_SCHED
1163        struct sched_rt_entity  *parent;
1164        /* rq on which this entity is (to be) queued: */
1165        struct rt_rq            *rt_rq;
1166        /* rq "owned" by this entity/group: */
1167        struct rt_rq            *my_q;
1168#endif
1169};
1170
1171struct rcu_node;
1172
1173struct task_struct {
1174        volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
1175        void *stack;
1176        atomic_t usage;
1177        unsigned int flags;     /* per process flags, defined below */
1178        unsigned int ptrace;
1179
1180        int lock_depth;         /* BKL lock depth */
1181
1182#ifdef CONFIG_SMP
1183#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1184        int oncpu;
1185#endif
1186#endif
1187
1188        int prio, static_prio, normal_prio;
1189        unsigned int rt_priority;
1190        const struct sched_class *sched_class;
1191        struct sched_entity se;
1192        struct sched_rt_entity rt;
1193
1194#ifdef CONFIG_PREEMPT_NOTIFIERS
1195        /* list of struct preempt_notifier: */
1196        struct hlist_head preempt_notifiers;
1197#endif
1198
1199        /*
1200         * fpu_counter contains the number of consecutive context switches
1201         * that the FPU is used. If this is over a threshold, the lazy fpu
1202         * saving becomes unlazy to save the trap. This is an unsigned char
1203         * so that after 256 times the counter wraps and the behavior turns
1204         * lazy again; this to deal with bursty apps that only use FPU for
1205         * a short time
1206         */
1207        unsigned char fpu_counter;
1208#ifdef CONFIG_BLK_DEV_IO_TRACE
1209        unsigned int btrace_seq;
1210#endif
1211
1212        unsigned int policy;
1213        cpumask_t cpus_allowed;
1214
1215#ifdef CONFIG_TREE_PREEMPT_RCU
1216        int rcu_read_lock_nesting;
1217        char rcu_read_unlock_special;
1218        struct rcu_node *rcu_blocked_node;
1219        struct list_head rcu_node_entry;
1220#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1221
1222#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1223        struct sched_info sched_info;
1224#endif
1225
1226        struct list_head tasks;
1227        struct plist_node pushable_tasks;
1228
1229        struct mm_struct *mm, *active_mm;
1230#if defined(SPLIT_RSS_COUNTING)
1231        struct task_rss_stat    rss_stat;
1232#endif
1233/* task state */
1234        int exit_state;
1235        int exit_code, exit_signal;
1236        int pdeath_signal;  /*  The signal sent when the parent dies  */
1237        /* ??? */
1238        unsigned int personality;
1239        unsigned did_exec:1;
1240        unsigned in_execve:1;   /* Tell the LSMs that the process is doing an
1241                                 * execve */
1242        unsigned in_iowait:1;
1243
1244
1245        /* Revert to default priority/policy when forking */
1246        unsigned sched_reset_on_fork:1;
1247
1248        pid_t pid;
1249        pid_t tgid;
1250
1251#ifdef CONFIG_CC_STACKPROTECTOR
1252        /* Canary value for the -fstack-protector gcc feature */
1253        unsigned long stack_canary;
1254#endif
1255
1256        /* 
1257         * pointers to (original) parent process, youngest child, younger sibling,
1258         * older sibling, respectively.  (p->father can be replaced with 
1259         * p->real_parent->pid)
1260         */
1261        struct task_struct *real_parent; /* real parent process */
1262        struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1263        /*
1264         * children/sibling forms the list of my natural children
1265         */
1266        struct list_head children;      /* list of my children */
1267        struct list_head sibling;       /* linkage in my parent's children list */
1268        struct task_struct *group_leader;       /* threadgroup leader */
1269
1270        /*
1271         * ptraced is the list of tasks this task is using ptrace on.
1272         * This includes both natural children and PTRACE_ATTACH targets.
1273         * p->ptrace_entry is p's link on the p->parent->ptraced list.
1274         */
1275        struct list_head ptraced;
1276        struct list_head ptrace_entry;
1277
1278        /* PID/PID hash table linkage. */
1279        struct pid_link pids[PIDTYPE_MAX];
1280        struct list_head thread_group;
1281
1282        struct completion *vfork_done;          /* for vfork() */
1283        int __user *set_child_tid;              /* CLONE_CHILD_SETTID */
1284        int __user *clear_child_tid;            /* CLONE_CHILD_CLEARTID */
1285
1286        cputime_t utime, stime, utimescaled, stimescaled;
1287        cputime_t gtime;
1288#ifndef CONFIG_VIRT_CPU_ACCOUNTING
1289        cputime_t prev_utime, prev_stime;
1290#endif
1291        unsigned long nvcsw, nivcsw; /* context switch counts */
1292        struct timespec start_time;             /* monotonic time */
1293        struct timespec real_start_time;        /* boot based time */
1294/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1295        unsigned long min_flt, maj_flt;
1296
1297        struct task_cputime cputime_expires;
1298        struct list_head cpu_timers[3];
1299
1300/* process credentials */
1301        const struct cred *real_cred;   /* objective and real subjective task
1302                                         * credentials (COW) */
1303        const struct cred *cred;        /* effective (overridable) subjective task
1304                                         * credentials (COW) */
1305        struct mutex cred_guard_mutex;  /* guard against foreign influences on
1306                                         * credential calculations
1307                                         * (notably. ptrace) */
1308        struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1309
1310        char comm[TASK_COMM_LEN]; /* executable name excluding path
1311                                     - access with [gs]et_task_comm (which lock
1312                                       it with task_lock())
1313                                     - initialized normally by setup_new_exec */
1314/* file system info */
1315        int link_count, total_link_count;
1316#ifdef CONFIG_SYSVIPC
1317/* ipc stuff */
1318        struct sysv_sem sysvsem;
1319#endif
1320#ifdef CONFIG_DETECT_HUNG_TASK
1321/* hung task detection */
1322        unsigned long last_switch_count;
1323#endif
1324/* CPU-specific state of this task */
1325        struct thread_struct thread;
1326/* filesystem information */
1327        struct fs_struct *fs;
1328/* open file information */
1329        struct files_struct *files;
1330/* namespaces */
1331        struct nsproxy *nsproxy;
1332/* signal handlers */
1333        struct signal_struct *signal;
1334        struct sighand_struct *sighand;
1335
1336        sigset_t blocked, real_blocked;
1337        sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1338        struct sigpending pending;
1339
1340        unsigned long sas_ss_sp;
1341        size_t sas_ss_size;
1342        int (*notifier)(void *priv);
1343        void *notifier_data;
1344        sigset_t *notifier_mask;
1345        struct audit_context *audit_context;
1346#ifdef CONFIG_AUDITSYSCALL
1347        uid_t loginuid;
1348        unsigned int sessionid;
1349#endif
1350        seccomp_t seccomp;
1351
1352/* Thread group tracking */
1353        u32 parent_exec_id;
1354        u32 self_exec_id;
1355/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1356 * mempolicy */
1357        spinlock_t alloc_lock;
1358
1359#ifdef CONFIG_GENERIC_HARDIRQS
1360        /* IRQ handler threads */
1361        struct irqaction *irqaction;
1362#endif
1363
1364        /* Protection of the PI data structures: */
1365        raw_spinlock_t pi_lock;
1366
1367#ifdef CONFIG_RT_MUTEXES
1368        /* PI waiters blocked on a rt_mutex held by this task */
1369        struct plist_head pi_waiters;
1370        /* Deadlock detection and priority inheritance handling */
1371        struct rt_mutex_waiter *pi_blocked_on;
1372#endif
1373
1374#ifdef CONFIG_DEBUG_MUTEXES
1375        /* mutex deadlock detection */
1376        struct mutex_waiter *blocked_on;
1377#endif
1378#ifdef CONFIG_TRACE_IRQFLAGS
1379        unsigned int irq_events;
1380        unsigned long hardirq_enable_ip;
1381        unsigned long hardirq_disable_ip;
1382        unsigned int hardirq_enable_event;
1383        unsigned int hardirq_disable_event;
1384        int hardirqs_enabled;
1385        int hardirq_context;
1386        unsigned long softirq_disable_ip;
1387        unsigned long softirq_enable_ip;
1388        unsigned int softirq_disable_event;
1389        unsigned int softirq_enable_event;
1390        int softirqs_enabled;
1391        int softirq_context;
1392#endif
1393#ifdef CONFIG_LOCKDEP
1394# define MAX_LOCK_DEPTH 48UL
1395        u64 curr_chain_key;
1396        int lockdep_depth;
1397        unsigned int lockdep_recursion;
1398        struct held_lock held_locks[MAX_LOCK_DEPTH];
1399        gfp_t lockdep_reclaim_gfp;
1400#endif
1401
1402/* journalling filesystem info */
1403        void *journal_info;
1404
1405/* stacked block device info */
1406        struct bio_list *bio_list;
1407
1408/* VM state */
1409        struct reclaim_state *reclaim_state;
1410
1411        struct backing_dev_info *backing_dev_info;
1412
1413        struct io_context *io_context;
1414
1415        unsigned long ptrace_message;
1416        siginfo_t *last_siginfo; /* For ptrace use.  */
1417        struct task_io_accounting ioac;
1418#if defined(CONFIG_TASK_XACCT)
1419        u64 acct_rss_mem1;      /* accumulated rss usage */
1420        u64 acct_vm_mem1;       /* accumulated virtual memory usage */
1421        cputime_t acct_timexpd; /* stime + utime since last update */
1422#endif
1423#ifdef CONFIG_CPUSETS
1424        nodemask_t mems_allowed;        /* Protected by alloc_lock */
1425        int mems_allowed_change_disable;
1426        int cpuset_mem_spread_rotor;
1427        int cpuset_slab_spread_rotor;
1428#endif
1429#ifdef CONFIG_CGROUPS
1430        /* Control Group info protected by css_set_lock */
1431        struct css_set *cgroups;
1432        /* cg_list protected by css_set_lock and tsk->alloc_lock */
1433        struct list_head cg_list;
1434#endif
1435#ifdef CONFIG_FUTEX
1436        struct robust_list_head __user *robust_list;
1437#ifdef CONFIG_COMPAT
1438        struct compat_robust_list_head __user *compat_robust_list;
1439#endif
1440        struct list_head pi_state_list;
1441        struct futex_pi_state *pi_state_cache;
1442#endif
1443#ifdef CONFIG_PERF_EVENTS
1444        struct perf_event_context *perf_event_ctxp;
1445        struct mutex perf_event_mutex;
1446        struct list_head perf_event_list;
1447#endif
1448#ifdef CONFIG_NUMA
1449        struct mempolicy *mempolicy;    /* Protected by alloc_lock */
1450        short il_next;
1451#endif
1452        atomic_t fs_excl;       /* holding fs exclusive resources */
1453        struct rcu_head rcu;
1454
1455        /*
1456         * cache last used pipe for splice
1457         */
1458        struct pipe_inode_info *splice_pipe;
1459#ifdef  CONFIG_TASK_DELAY_ACCT
1460        struct task_delay_info *delays;
1461#endif
1462#ifdef CONFIG_FAULT_INJECTION
1463        int make_it_fail;
1464#endif
1465        struct prop_local_single dirties;
1466#ifdef CONFIG_LATENCYTOP
1467        int latency_record_count;
1468        struct latency_record latency_record[LT_SAVECOUNT];
1469#endif
1470        /*
1471         * time slack values; these are used to round up poll() and
1472         * select() etc timeout values. These are in nanoseconds.
1473         */
1474        unsigned long timer_slack_ns;
1475        unsigned long default_timer_slack_ns;
1476
1477        struct list_head        *scm_work_list;
1478#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1479        /* Index of current stored address in ret_stack */
1480        int curr_ret_stack;
1481        /* Stack of return addresses for return function tracing */
1482        struct ftrace_ret_stack *ret_stack;
1483        /* time stamp for last schedule */
1484        unsigned long long ftrace_timestamp;
1485        /*
1486         * Number of functions that haven't been traced
1487         * because of depth overrun.
1488         */
1489        atomic_t trace_overrun;
1490        /* Pause for the tracing */
1491        atomic_t tracing_graph_pause;
1492#endif
1493#ifdef CONFIG_TRACING
1494        /* state flags for use by tracers */
1495        unsigned long trace;
1496        /* bitmask of trace recursion */
1497        unsigned long trace_recursion;
1498#endif /* CONFIG_TRACING */
1499#ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1500        struct memcg_batch_info {
1501                int do_batch;   /* incremented when batch uncharge started */
1502                struct mem_cgroup *memcg; /* target memcg of uncharge */
1503                unsigned long bytes;            /* uncharged usage */
1504                unsigned long memsw_bytes; /* uncharged mem+swap usage */
1505        } memcg_batch;
1506#endif
1507};
1508
1509/* Future-safe accessor for struct task_struct's cpus_allowed. */
1510#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1511
1512/*
1513 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1514 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1515 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1516 * values are inverted: lower p->prio value means higher priority.
1517 *
1518 * The MAX_USER_RT_PRIO value allows the actual maximum
1519 * RT priority to be separate from the value exported to
1520 * user-space.  This allows kernel threads to set their
1521 * priority to a value higher than any user task. Note:
1522 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1523 */
1524
1525#define MAX_USER_RT_PRIO        100
1526#define MAX_RT_PRIO             MAX_USER_RT_PRIO
1527
1528#define MAX_PRIO                (MAX_RT_PRIO + 40)
1529#define DEFAULT_PRIO            (MAX_RT_PRIO + 20)
1530
1531static inline int rt_prio(int prio)
1532{
1533        if (unlikely(prio < MAX_RT_PRIO))
1534                return 1;
1535        return 0;
1536}
1537
1538static inline int rt_task(struct task_struct *p)
1539{
1540        return rt_prio(p->prio);
1541}
1542
1543static inline struct pid *task_pid(struct task_struct *task)
1544{
1545        return task->pids[PIDTYPE_PID].pid;
1546}
1547
1548static inline struct pid *task_tgid(struct task_struct *task)
1549{
1550        return task->group_leader->pids[PIDTYPE_PID].pid;
1551}
1552
1553/*
1554 * Without tasklist or rcu lock it is not safe to dereference
1555 * the result of task_pgrp/task_session even if task == current,
1556 * we can race with another thread doing sys_setsid/sys_setpgid.
1557 */
1558static inline struct pid *task_pgrp(struct task_struct *task)
1559{
1560        return task->group_leader->pids[PIDTYPE_PGID].pid;
1561}
1562
1563static inline struct pid *task_session(struct task_struct *task)
1564{
1565        return task->group_leader->pids[PIDTYPE_SID].pid;
1566}
1567
1568struct pid_namespace;
1569
1570/*
1571 * the helpers to get the task's different pids as they are seen
1572 * from various namespaces
1573 *
1574 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1575 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1576 *                     current.
1577 * task_xid_nr_ns()  : id seen from the ns specified;
1578 *
1579 * set_task_vxid()   : assigns a virtual id to a task;
1580 *
1581 * see also pid_nr() etc in include/linux/pid.h
1582 */
1583pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1584                        struct pid_namespace *ns);
1585
1586static inline pid_t task_pid_nr(struct task_struct *tsk)
1587{
1588        return tsk->pid;
1589}
1590
1591static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1592                                        struct pid_namespace *ns)
1593{
1594        return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1595}
1596
1597static inline pid_t task_pid_vnr(struct task_struct *tsk)
1598{
1599        return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1600}
1601
1602
1603static inline pid_t task_tgid_nr(struct task_struct *tsk)
1604{
1605        return tsk->tgid;
1606}
1607
1608pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1609
1610static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1611{
1612        return pid_vnr(task_tgid(tsk));
1613}
1614
1615
1616static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1617                                        struct pid_namespace *ns)
1618{
1619        return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1620}
1621
1622static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1623{
1624        return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1625}
1626
1627
1628static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1629                                        struct pid_namespace *ns)
1630{
1631        return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1632}
1633
1634static inline pid_t task_session_vnr(struct task_struct *tsk)
1635{
1636        return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1637}
1638
1639/* obsolete, do not use */
1640static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1641{
1642        return task_pgrp_nr_ns(tsk, &init_pid_ns);
1643}
1644
1645/**
1646 * pid_alive - check that a task structure is not stale
1647 * @p: Task structure to be checked.
1648 *
1649 * Test if a process is not yet dead (at most zombie state)
1650 * If pid_alive fails, then pointers within the task structure
1651 * can be stale and must not be dereferenced.
1652 */
1653static inline int pid_alive(struct task_struct *p)
1654{
1655        return p->pids[PIDTYPE_PID].pid != NULL;
1656}
1657
1658/**
1659 * is_global_init - check if a task structure is init
1660 * @tsk: Task structure to be checked.
1661 *
1662 * Check if a task structure is the first user space task the kernel created.
1663 */
1664static inline int is_global_init(struct task_struct *tsk)
1665{
1666        return tsk->pid == 1;
1667}
1668
1669/*
1670 * is_container_init:
1671 * check whether in the task is init in its own pid namespace.
1672 */
1673extern int is_container_init(struct task_struct *tsk);
1674
1675extern struct pid *cad_pid;
1676
1677extern void free_task(struct task_struct *tsk);
1678#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1679
1680extern void __put_task_struct(struct task_struct *t);
1681
1682static inline void put_task_struct(struct task_struct *t)
1683{
1684        if (atomic_dec_and_test(&t->usage))
1685                __put_task_struct(t);
1686}
1687
1688extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1689extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1690
1691/*
1692 * Per process flags
1693 */
1694#define PF_ALIGNWARN    0x00000001      /* Print alignment warning msgs */
1695                                        /* Not implemented yet, only for 486*/
1696#define PF_STARTING     0x00000002      /* being created */
1697#define PF_EXITING      0x00000004      /* getting shut down */
1698#define PF_EXITPIDONE   0x00000008      /* pi exit done on shut down */
1699#define PF_VCPU         0x00000010      /* I'm a virtual CPU */
1700#define PF_FORKNOEXEC   0x00000040      /* forked but didn't exec */
1701#define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
1702#define PF_SUPERPRIV    0x00000100      /* used super-user privileges */
1703#define PF_DUMPCORE     0x00000200      /* dumped core */
1704#define PF_SIGNALED     0x00000400      /* killed by a signal */
1705#define PF_MEMALLOC     0x00000800      /* Allocating memory */
1706#define PF_FLUSHER      0x00001000      /* responsible for disk writeback */
1707#define PF_USED_MATH    0x00002000      /* if unset the fpu must be initialized before use */
1708#define PF_FREEZING     0x00004000      /* freeze in progress. do not account to load */
1709#define PF_NOFREEZE     0x00008000      /* this thread should not be frozen */
1710#define PF_FROZEN       0x00010000      /* frozen for system suspend */
1711#define PF_FSTRANS      0x00020000      /* inside a filesystem transaction */
1712#define PF_KSWAPD       0x00040000      /* I am kswapd */
1713#define PF_OOM_ORIGIN   0x00080000      /* Allocating much memory to others */
1714#define PF_LESS_THROTTLE 0x00100000     /* Throttle me less: I clean memory */
1715#define PF_KTHREAD      0x00200000      /* I am a kernel thread */
1716#define PF_RANDOMIZE    0x00400000      /* randomize virtual address space */
1717#define PF_SWAPWRITE    0x00800000      /* Allowed to write to swap */
1718#define PF_SPREAD_PAGE  0x01000000      /* Spread page cache over cpuset */
1719#define PF_SPREAD_SLAB  0x02000000      /* Spread some slab caches over cpuset */
1720#define PF_THREAD_BOUND 0x04000000      /* Thread bound to specific cpu */
1721#define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
1722#define PF_MEMPOLICY    0x10000000      /* Non-default NUMA mempolicy */
1723#define PF_MUTEX_TESTER 0x20000000      /* Thread belongs to the rt mutex tester */
1724#define PF_FREEZER_SKIP 0x40000000      /* Freezer should not count it as freezeable */
1725#define PF_FREEZER_NOSIG 0x80000000     /* Freezer won't send signals to it */
1726
1727/*
1728 * Only the _current_ task can read/write to tsk->flags, but other
1729 * tasks can access tsk->flags in readonly mode for example
1730 * with tsk_used_math (like during threaded core dumping).
1731 * There is however an exception to this rule during ptrace
1732 * or during fork: the ptracer task is allowed to write to the
1733 * child->flags of its traced child (same goes for fork, the parent
1734 * can write to the child->flags), because we're guaranteed the
1735 * child is not running and in turn not changing child->flags
1736 * at the same time the parent does it.
1737 */
1738#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1739#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1740#define clear_used_math() clear_stopped_child_used_math(current)
1741#define set_used_math() set_stopped_child_used_math(current)
1742#define conditional_stopped_child_used_math(condition, child) \
1743        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1744#define conditional_used_math(condition) \
1745        conditional_stopped_child_used_math(condition, current)
1746#define copy_to_stopped_child_used_math(child) \
1747        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1748/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1749#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1750#define used_math() tsk_used_math(current)
1751
1752#ifdef CONFIG_TREE_PREEMPT_RCU
1753
1754#define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1755#define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1756
1757static inline void rcu_copy_process(struct task_struct *p)
1758{
1759        p->rcu_read_lock_nesting = 0;
1760        p->rcu_read_unlock_special = 0;
1761        p->rcu_blocked_node = NULL;
1762        INIT_LIST_HEAD(&p->rcu_node_entry);
1763}
1764
1765#else
1766
1767static inline void rcu_copy_process(struct task_struct *p)
1768{
1769}
1770
1771#endif
1772
1773#ifdef CONFIG_SMP
1774extern int set_cpus_allowed_ptr(struct task_struct *p,
1775                                const struct cpumask *new_mask);
1776#else
1777static inline int set_cpus_allowed_ptr(struct task_struct *p,
1778                                       const struct cpumask *new_mask)
1779{
1780        if (!cpumask_test_cpu(0, new_mask))
1781                return -EINVAL;
1782        return 0;
1783}
1784#endif
1785
1786#ifndef CONFIG_CPUMASK_OFFSTACK
1787static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1788{
1789        return set_cpus_allowed_ptr(p, &new_mask);
1790}
1791#endif
1792
1793/*
1794 * Architectures can set this to 1 if they have specified
1795 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1796 * but then during bootup it turns out that sched_clock()
1797 * is reliable after all:
1798 */
1799#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1800extern int sched_clock_stable;
1801#endif
1802
1803/* ftrace calls sched_clock() directly */
1804extern unsigned long long notrace sched_clock(void);
1805
1806extern void sched_clock_init(void);
1807extern u64 sched_clock_cpu(int cpu);
1808
1809#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1810static inline void sched_clock_tick(void)
1811{
1812}
1813
1814static inline void sched_clock_idle_sleep_event(void)
1815{
1816}
1817
1818static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1819{
1820}
1821#else
1822extern void sched_clock_tick(void);
1823extern void sched_clock_idle_sleep_event(void);
1824extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1825#endif
1826
1827/*
1828 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1829 * clock constructed from sched_clock():
1830 */
1831extern unsigned long long cpu_clock(int cpu);
1832
1833extern unsigned long long
1834task_sched_runtime(struct task_struct *task);
1835extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1836
1837/* sched_exec is called by processes performing an exec */
1838#ifdef CONFIG_SMP
1839extern void sched_exec(void);
1840#else
1841#define sched_exec()   {}
1842#endif
1843
1844extern void sched_clock_idle_sleep_event(void);
1845extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1846
1847#ifdef CONFIG_HOTPLUG_CPU
1848extern void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p);
1849extern void idle_task_exit(void);
1850#else
1851static inline void idle_task_exit(void) {}
1852#endif
1853
1854extern void sched_idle_next(void);
1855
1856#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1857extern void wake_up_idle_cpu(int cpu);
1858#else
1859static inline void wake_up_idle_cpu(int cpu) { }
1860#endif
1861
1862extern unsigned int sysctl_sched_latency;
1863extern unsigned int sysctl_sched_min_granularity;
1864extern unsigned int sysctl_sched_wakeup_granularity;
1865extern unsigned int sysctl_sched_shares_ratelimit;
1866extern unsigned int sysctl_sched_shares_thresh;
1867extern unsigned int sysctl_sched_child_runs_first;
1868
1869enum sched_tunable_scaling {
1870        SCHED_TUNABLESCALING_NONE,
1871        SCHED_TUNABLESCALING_LOG,
1872        SCHED_TUNABLESCALING_LINEAR,
1873        SCHED_TUNABLESCALING_END,
1874};
1875extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
1876
1877#ifdef CONFIG_SCHED_DEBUG
1878extern unsigned int sysctl_sched_migration_cost;
1879extern unsigned int sysctl_sched_nr_migrate;
1880extern unsigned int sysctl_sched_time_avg;
1881extern unsigned int sysctl_timer_migration;
1882
1883int sched_proc_update_handler(struct ctl_table *table, int write,
1884                void __user *buffer, size_t *length,
1885                loff_t *ppos);
1886#endif
1887#ifdef CONFIG_SCHED_DEBUG
1888static inline unsigned int get_sysctl_timer_migration(void)
1889{
1890        return sysctl_timer_migration;
1891}
1892#else
1893static inline unsigned int get_sysctl_timer_migration(void)
1894{
1895        return 1;
1896}
1897#endif
1898extern unsigned int sysctl_sched_rt_period;
1899extern int sysctl_sched_rt_runtime;
1900
1901int sched_rt_handler(struct ctl_table *table, int write,
1902                void __user *buffer, size_t *lenp,
1903                loff_t *ppos);
1904
1905extern unsigned int sysctl_sched_compat_yield;
1906
1907#ifdef CONFIG_RT_MUTEXES
1908extern int rt_mutex_getprio(struct task_struct *p);
1909extern void rt_mutex_setprio(struct task_struct *p, int prio);
1910extern void rt_mutex_adjust_pi(struct task_struct *p);
1911#else
1912static inline int rt_mutex_getprio(struct task_struct *p)
1913{
1914        return p->normal_prio;
1915}
1916# define rt_mutex_adjust_pi(p)          do { } while (0)
1917#endif
1918
1919extern void set_user_nice(struct task_struct *p, long nice);
1920extern int task_prio(const struct task_struct *p);
1921extern int task_nice(const struct task_struct *p);
1922extern int can_nice(const struct task_struct *p, const int nice);
1923extern int task_curr(const struct task_struct *p);
1924extern int idle_cpu(int cpu);
1925extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1926extern int sched_setscheduler_nocheck(struct task_struct *, int,
1927                                      struct sched_param *);
1928extern struct task_struct *idle_task(int cpu);
1929extern struct task_struct *curr_task(int cpu);
1930extern void set_curr_task(int cpu, struct task_struct *p);
1931
1932void yield(void);
1933
1934/*
1935 * The default (Linux) execution domain.
1936 */
1937extern struct exec_domain       default_exec_domain;
1938
1939union thread_union {
1940        struct thread_info thread_info;
1941        unsigned long stack[THREAD_SIZE/sizeof(long)];
1942};
1943
1944#ifndef __HAVE_ARCH_KSTACK_END
1945static inline int kstack_end(void *addr)
1946{
1947        /* Reliable end of stack detection:
1948         * Some APM bios versions misalign the stack
1949         */
1950        return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1951}
1952#endif
1953
1954extern union thread_union init_thread_union;
1955extern struct task_struct init_task;
1956
1957extern struct   mm_struct init_mm;
1958
1959extern struct pid_namespace init_pid_ns;
1960
1961/*
1962 * find a task by one of its numerical ids
1963 *
1964 * find_task_by_pid_ns():
1965 *      finds a task by its pid in the specified namespace
1966 * find_task_by_vpid():
1967 *      finds a task by its virtual pid
1968 *
1969 * see also find_vpid() etc in include/linux/pid.h
1970 */
1971
1972extern struct task_struct *find_task_by_vpid(pid_t nr);
1973extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1974                struct pid_namespace *ns);
1975
1976extern void __set_special_pids(struct pid *pid);
1977
1978/* per-UID process charging. */
1979extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1980static inline struct user_struct *get_uid(struct user_struct *u)
1981{
1982        atomic_inc(&u->__count);
1983        return u;
1984}
1985extern void free_uid(struct user_struct *);
1986extern void release_uids(struct user_namespace *ns);
1987
1988#include <asm/current.h>
1989
1990extern void do_timer(unsigned long ticks);
1991
1992extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1993extern int wake_up_process(struct task_struct *tsk);
1994extern void wake_up_new_task(struct task_struct *tsk,
1995                                unsigned long clone_flags);
1996#ifdef CONFIG_SMP
1997 extern void kick_process(struct task_struct *tsk);
1998#else
1999 static inline void kick_process(struct task_struct *tsk) { }
2000#endif
2001extern void sched_fork(struct task_struct *p, int clone_flags);
2002extern void sched_dead(struct task_struct *p);
2003
2004extern void proc_caches_init(void);
2005extern void flush_signals(struct task_struct *);
2006extern void __flush_signals(struct task_struct *);
2007extern void ignore_signals(struct task_struct *);
2008extern void flush_signal_handlers(struct task_struct *, int force_default);
2009extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2010
2011static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2012{
2013        unsigned long flags;
2014        int ret;
2015
2016        spin_lock_irqsave(&tsk->sighand->siglock, flags);
2017        ret = dequeue_signal(tsk, mask, info);
2018        spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2019
2020        return ret;
2021}       
2022
2023extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2024                              sigset_t *mask);
2025extern void unblock_all_signals(void);
2026extern void release_task(struct task_struct * p);
2027extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2028extern int force_sigsegv(int, struct task_struct *);
2029extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2030extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2031extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2032extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
2033extern int kill_pgrp(struct pid *pid, int sig, int priv);
2034extern int kill_pid(struct pid *pid, int sig, int priv);
2035extern int kill_proc_info(int, struct siginfo *, pid_t);
2036extern int do_notify_parent(struct task_struct *, int);
2037extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2038extern void force_sig(int, struct task_struct *);
2039extern int send_sig(int, struct task_struct *, int);
2040extern int zap_other_threads(struct task_struct *p);
2041extern struct sigqueue *sigqueue_alloc(void);
2042extern void sigqueue_free(struct sigqueue *);
2043extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2044extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2045extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2046
2047static inline int kill_cad_pid(int sig, int priv)
2048{
2049        return kill_pid(cad_pid, sig, priv);
2050}
2051
2052/* These can be the second arg to send_sig_info/send_group_sig_info.  */
2053#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2054#define SEND_SIG_PRIV   ((struct siginfo *) 1)
2055#define SEND_SIG_FORCED ((struct siginfo *) 2)
2056
2057/*
2058 * True if we are on the alternate signal stack.
2059 */
2060static inline int on_sig_stack(unsigned long sp)
2061{
2062#ifdef CONFIG_STACK_GROWSUP
2063        return sp >= current->sas_ss_sp &&
2064                sp - current->sas_ss_sp < current->sas_ss_size;
2065#else
2066        return sp > current->sas_ss_sp &&
2067                sp - current->sas_ss_sp <= current->sas_ss_size;
2068#endif
2069}
2070
2071static inline int sas_ss_flags(unsigned long sp)
2072{
2073        return (current->sas_ss_size == 0 ? SS_DISABLE
2074                : on_sig_stack(sp) ? SS_ONSTACK : 0);
2075}
2076
2077/*
2078 * Routines for handling mm_structs
2079 */
2080extern struct mm_struct * mm_alloc(void);
2081
2082/* mmdrop drops the mm and the page tables */
2083extern void __mmdrop(struct mm_struct *);
2084static inline void mmdrop(struct mm_struct * mm)
2085{
2086        if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2087                __mmdrop(mm);
2088}
2089
2090/* mmput gets rid of the mappings and all user-space */
2091extern void mmput(struct mm_struct *);
2092/* Grab a reference to a task's mm, if it is not already going away */
2093extern struct mm_struct *get_task_mm(struct task_struct *task);
2094/* Remove the current tasks stale references to the old mm_struct */
2095extern void mm_release(struct task_struct *, struct mm_struct *);
2096/* Allocate a new mm structure and copy contents from tsk->mm */
2097extern struct mm_struct *dup_mm(struct task_struct *tsk);
2098
2099extern int copy_thread(unsigned long, unsigned long, unsigned long,
2100                        struct task_struct *, struct pt_regs *);
2101extern void flush_thread(void);
2102extern void exit_thread(void);
2103
2104extern void exit_files(struct task_struct *);
2105extern void __cleanup_sighand(struct sighand_struct *);
2106
2107extern void exit_itimers(struct signal_struct *);
2108extern void flush_itimer_signals(void);
2109
2110extern NORET_TYPE void do_group_exit(int);
2111
2112extern void daemonize(const char *, ...);
2113extern int allow_signal(int);
2114extern int disallow_signal(int);
2115
2116extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
2117extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2118struct task_struct *fork_idle(int);
2119
2120extern void set_task_comm(struct task_struct *tsk, char *from);
2121extern char *get_task_comm(char *to, struct task_struct *tsk);
2122
2123#ifdef CONFIG_SMP
2124extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2125#else
2126static inline unsigned long wait_task_inactive(struct task_struct *p,
2127                                               long match_state)
2128{
2129        return 1;
2130}
2131#endif
2132
2133#define next_task(p) \
2134        list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2135
2136#define for_each_process(p) \
2137        for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2138
2139extern bool current_is_single_threaded(void);
2140
2141/*
2142 * Careful: do_each_thread/while_each_thread is a double loop so
2143 *          'break' will not work as expected - use goto instead.
2144 */
2145#define do_each_thread(g, t) \
2146        for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2147
2148#define while_each_thread(g, t) \
2149        while ((t = next_thread(t)) != g)
2150
2151static inline int get_nr_threads(struct task_struct *tsk)
2152{
2153        return tsk->signal->nr_threads;
2154}
2155
2156/* de_thread depends on thread_group_leader not being a pid based check */
2157#define thread_group_leader(p)  (p == p->group_leader)
2158
2159/* Do to the insanities of de_thread it is possible for a process
2160 * to have the pid of the thread group leader without actually being
2161 * the thread group leader.  For iteration through the pids in proc
2162 * all we care about is that we have a task with the appropriate
2163 * pid, we don't actually care if we have the right task.
2164 */
2165static inline int has_group_leader_pid(struct task_struct *p)
2166{
2167        return p->pid == p->tgid;
2168}
2169
2170static inline
2171int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2172{
2173        return p1->tgid == p2->tgid;
2174}
2175
2176static inline struct task_struct *next_thread(const struct task_struct *p)
2177{
2178        return list_entry_rcu(p->thread_group.next,
2179                              struct task_struct, thread_group);
2180}
2181
2182static inline int thread_group_empty(struct task_struct *p)
2183{
2184        return list_empty(&p->thread_group);
2185}
2186
2187#define delay_group_leader(p) \
2188                (thread_group_leader(p) && !thread_group_empty(p))
2189
2190static inline int task_detached(struct task_struct *p)
2191{
2192        return p->exit_signal == -1;
2193}
2194
2195/*
2196 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2197 * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2198 * pins the final release of task.io_context.  Also protects ->cpuset and
2199 * ->cgroup.subsys[].
2200 *
2201 * Nests both inside and outside of read_lock(&tasklist_lock).
2202 * It must not be nested with write_lock_irq(&tasklist_lock),
2203 * neither inside nor outside.
2204 */
2205static inline void task_lock(struct task_struct *p)
2206{
2207        spin_lock(&p->alloc_lock);
2208}
2209
2210static inline void task_unlock(struct task_struct *p)
2211{
2212        spin_unlock(&p->alloc_lock);
2213}
2214
2215extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2216                                                        unsigned long *flags);
2217
2218static inline void unlock_task_sighand(struct task_struct *tsk,
2219                                                unsigned long *flags)
2220{
2221        spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2222}
2223
2224#ifndef __HAVE_THREAD_FUNCTIONS
2225
2226#define task_thread_info(task)  ((struct thread_info *)(task)->stack)
2227#define task_stack_page(task)   ((task)->stack)
2228
2229static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2230{
2231        *task_thread_info(p) = *task_thread_info(org);
2232        task_thread_info(p)->task = p;
2233}
2234
2235static inline unsigned long *end_of_stack(struct task_struct *p)
2236{
2237        return (unsigned long *)(task_thread_info(p) + 1);
2238}
2239
2240#endif
2241
2242static inline int object_is_on_stack(void *obj)
2243{
2244        void *stack = task_stack_page(current);
2245
2246        return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2247}
2248
2249extern void thread_info_cache_init(void);
2250
2251#ifdef CONFIG_DEBUG_STACK_USAGE
2252static inline unsigned long stack_not_used(struct task_struct *p)
2253{
2254        unsigned long *n = end_of_stack(p);
2255
2256        do {    /* Skip over canary */
2257                n++;
2258        } while (!*n);
2259
2260        return (unsigned long)n - (unsigned long)end_of_stack(p);
2261}
2262#endif
2263
2264/* set thread flags in other task's structures
2265 * - see asm/thread_info.h for TIF_xxxx flags available
2266 */
2267static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2268{
2269        set_ti_thread_flag(task_thread_info(tsk), flag);
2270}
2271
2272static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2273{
2274        clear_ti_thread_flag(task_thread_info(tsk), flag);
2275}
2276
2277static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2278{
2279        return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2280}
2281
2282static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2283{
2284        return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2285}
2286
2287static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2288{
2289        return test_ti_thread_flag(task_thread_info(tsk), flag);
2290}
2291
2292static inline void set_tsk_need_resched(struct task_struct *tsk)
2293{
2294        set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2295}
2296
2297static inline void clear_tsk_need_resched(struct task_struct *tsk)
2298{
2299        clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2300}
2301
2302static inline int test_tsk_need_resched(struct task_struct *tsk)
2303{
2304        return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2305}
2306
2307static inline int restart_syscall(void)
2308{
2309        set_tsk_thread_flag(current, TIF_SIGPENDING);
2310        return -ERESTARTNOINTR;
2311}
2312
2313static inline int signal_pending(struct task_struct *p)
2314{
2315        return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2316}
2317
2318static inline int __fatal_signal_pending(struct task_struct *p)
2319{
2320        return unlikely(sigismember(&p->pending.signal, SIGKILL));
2321}
2322
2323static inline int fatal_signal_pending(struct task_struct *p)
2324{
2325        return signal_pending(p) && __fatal_signal_pending(p);
2326}
2327
2328static inline int signal_pending_state(long state, struct task_struct *p)
2329{
2330        if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2331                return 0;
2332        if (!signal_pending(p))
2333                return 0;
2334
2335        return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2336}
2337
2338static inline int need_resched(void)
2339{
2340        return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2341}
2342
2343/*
2344 * cond_resched() and cond_resched_lock(): latency reduction via
2345 * explicit rescheduling in places that are safe. The return
2346 * value indicates whether a reschedule was done in fact.
2347 * cond_resched_lock() will drop the spinlock before scheduling,
2348 * cond_resched_softirq() will enable bhs before scheduling.
2349 */
2350extern int _cond_resched(void);
2351
2352#define cond_resched() ({                       \
2353        __might_sleep(__FILE__, __LINE__, 0);   \
2354        _cond_resched();                        \
2355})
2356
2357extern int __cond_resched_lock(spinlock_t *lock);
2358
2359#ifdef CONFIG_PREEMPT
2360#define PREEMPT_LOCK_OFFSET     PREEMPT_OFFSET
2361#else
2362#define PREEMPT_LOCK_OFFSET     0
2363#endif
2364
2365#define cond_resched_lock(lock) ({                              \
2366        __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2367        __cond_resched_lock(lock);                              \
2368})
2369
2370extern int __cond_resched_softirq(void);
2371
2372#define cond_resched_softirq() ({                               \
2373        __might_sleep(__FILE__, __LINE__, SOFTIRQ_OFFSET);      \
2374        __cond_resched_softirq();                               \
2375})
2376
2377/*
2378 * Does a critical section need to be broken due to another
2379 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2380 * but a general need for low latency)
2381 */
2382static inline int spin_needbreak(spinlock_t *lock)
2383{
2384#ifdef CONFIG_PREEMPT
2385        return spin_is_contended(lock);
2386#else
2387        return 0;
2388#endif
2389}
2390
2391/*
2392 * Thread group CPU time accounting.
2393 */
2394void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2395void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2396
2397static inline void thread_group_cputime_init(struct signal_struct *sig)
2398{
2399        spin_lock_init(&sig->cputimer.lock);
2400}
2401
2402/*
2403 * Reevaluate whether the task has signals pending delivery.
2404 * Wake the task if so.
2405 * This is required every time the blocked sigset_t changes.
2406 * callers must hold sighand->siglock.
2407 */
2408extern void recalc_sigpending_and_wake(struct task_struct *t);
2409extern void recalc_sigpending(void);
2410
2411extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2412
2413/*
2414 * Wrappers for p->thread_info->cpu access. No-op on UP.
2415 */
2416#ifdef CONFIG_SMP
2417
2418static inline unsigned int task_cpu(const struct task_struct *p)
2419{
2420        return task_thread_info(p)->cpu;
2421}
2422
2423extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2424
2425#else
2426
2427static inline unsigned int task_cpu(const struct task_struct *p)
2428{
2429        return 0;
2430}
2431
2432static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2433{
2434}
2435
2436#endif /* CONFIG_SMP */
2437
2438#ifdef CONFIG_TRACING
2439extern void
2440__trace_special(void *__tr, void *__data,
2441                unsigned long arg1, unsigned long arg2, unsigned long arg3);
2442#else
2443static inline void
2444__trace_special(void *__tr, void *__data,
2445                unsigned long arg1, unsigned long arg2, unsigned long arg3)
2446{
2447}
2448#endif
2449
2450extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2451extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2452
2453extern void normalize_rt_tasks(void);
2454
2455#ifdef CONFIG_CGROUP_SCHED
2456
2457extern struct task_group init_task_group;
2458
2459extern struct task_group *sched_create_group(struct task_group *parent);
2460extern void sched_destroy_group(struct task_group *tg);
2461extern void sched_move_task(struct task_struct *tsk);
2462#ifdef CONFIG_FAIR_GROUP_SCHED
2463extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2464extern unsigned long sched_group_shares(struct task_group *tg);
2465#endif
2466#ifdef CONFIG_RT_GROUP_SCHED
2467extern int sched_group_set_rt_runtime(struct task_group *tg,
2468                                      long rt_runtime_us);
2469extern long sched_group_rt_runtime(struct task_group *tg);
2470extern int sched_group_set_rt_period(struct task_group *tg,
2471                                      long rt_period_us);
2472extern long sched_group_rt_period(struct task_group *tg);
2473extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2474#endif
2475#endif
2476
2477extern int task_can_switch_user(struct user_struct *up,
2478                                        struct task_struct *tsk);
2479
2480#ifdef CONFIG_TASK_XACCT
2481static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2482{
2483        tsk->ioac.rchar += amt;
2484}
2485
2486static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2487{
2488        tsk->ioac.wchar += amt;
2489}
2490
2491static inline void inc_syscr(struct task_struct *tsk)
2492{
2493        tsk->ioac.syscr++;
2494}
2495
2496static inline void inc_syscw(struct task_struct *tsk)
2497{
2498        tsk->ioac.syscw++;
2499}
2500#else
2501static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2502{
2503}
2504
2505static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2506{
2507}
2508
2509static inline void inc_syscr(struct task_struct *tsk)
2510{
2511}
2512
2513static inline void inc_syscw(struct task_struct *tsk)
2514{
2515}
2516#endif
2517
2518#ifndef TASK_SIZE_OF
2519#define TASK_SIZE_OF(tsk)       TASK_SIZE
2520#endif
2521
2522/*
2523 * Call the function if the target task is executing on a CPU right now:
2524 */
2525extern void task_oncpu_function_call(struct task_struct *p,
2526                                     void (*func) (void *info), void *info);
2527
2528
2529#ifdef CONFIG_MM_OWNER
2530extern void mm_update_next_owner(struct mm_struct *mm);
2531extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2532#else
2533static inline void mm_update_next_owner(struct mm_struct *mm)
2534{
2535}
2536
2537static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2538{
2539}
2540#endif /* CONFIG_MM_OWNER */
2541
2542static inline unsigned long task_rlimit(const struct task_struct *tsk,
2543                unsigned int limit)
2544{
2545        return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2546}
2547
2548static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2549                unsigned int limit)
2550{
2551        return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2552}
2553
2554static inline unsigned long rlimit(unsigned int limit)
2555{
2556        return task_rlimit(current, limit);
2557}
2558
2559static inline unsigned long rlimit_max(unsigned int limit)
2560{
2561        return task_rlimit_max(current, limit);
2562}
2563
2564#endif /* __KERNEL__ */
2565
2566#endif
2567