linux/drivers/net/ixgbe/ixgbe_common.c
<<
>>
Prefs
   1/*******************************************************************************
   2
   3  Intel 10 Gigabit PCI Express Linux driver
   4  Copyright(c) 1999 - 2009 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  25
  26*******************************************************************************/
  27
  28#include <linux/pci.h>
  29#include <linux/delay.h>
  30#include <linux/sched.h>
  31
  32#include "ixgbe.h"
  33#include "ixgbe_common.h"
  34#include "ixgbe_phy.h"
  35
  36static s32 ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw *hw);
  37static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
  38static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
  39static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
  40static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
  41static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
  42static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
  43                                        u16 count);
  44static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
  45static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
  46static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
  47static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
  48static u16 ixgbe_calc_eeprom_checksum(struct ixgbe_hw *hw);
  49
  50static void ixgbe_enable_rar(struct ixgbe_hw *hw, u32 index);
  51static void ixgbe_disable_rar(struct ixgbe_hw *hw, u32 index);
  52static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
  53static void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq);
  54
  55/**
  56 *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
  57 *  @hw: pointer to hardware structure
  58 *
  59 *  Starts the hardware by filling the bus info structure and media type, clears
  60 *  all on chip counters, initializes receive address registers, multicast
  61 *  table, VLAN filter table, calls routine to set up link and flow control
  62 *  settings, and leaves transmit and receive units disabled and uninitialized
  63 **/
  64s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
  65{
  66        u32 ctrl_ext;
  67
  68        /* Set the media type */
  69        hw->phy.media_type = hw->mac.ops.get_media_type(hw);
  70
  71        /* Identify the PHY */
  72        hw->phy.ops.identify(hw);
  73
  74        /*
  75         * Store MAC address from RAR0, clear receive address registers, and
  76         * clear the multicast table
  77         */
  78        hw->mac.ops.init_rx_addrs(hw);
  79
  80        /* Clear the VLAN filter table */
  81        hw->mac.ops.clear_vfta(hw);
  82
  83        /* Clear statistics registers */
  84        hw->mac.ops.clear_hw_cntrs(hw);
  85
  86        /* Set No Snoop Disable */
  87        ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
  88        ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
  89        IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
  90        IXGBE_WRITE_FLUSH(hw);
  91
  92        /* Clear adapter stopped flag */
  93        hw->adapter_stopped = false;
  94
  95        return 0;
  96}
  97
  98/**
  99 *  ixgbe_init_hw_generic - Generic hardware initialization
 100 *  @hw: pointer to hardware structure
 101 *
 102 *  Initialize the hardware by resetting the hardware, filling the bus info
 103 *  structure and media type, clears all on chip counters, initializes receive
 104 *  address registers, multicast table, VLAN filter table, calls routine to set
 105 *  up link and flow control settings, and leaves transmit and receive units
 106 *  disabled and uninitialized
 107 **/
 108s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
 109{
 110        /* Reset the hardware */
 111        hw->mac.ops.reset_hw(hw);
 112
 113        /* Start the HW */
 114        hw->mac.ops.start_hw(hw);
 115
 116        return 0;
 117}
 118
 119/**
 120 *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
 121 *  @hw: pointer to hardware structure
 122 *
 123 *  Clears all hardware statistics counters by reading them from the hardware
 124 *  Statistics counters are clear on read.
 125 **/
 126s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
 127{
 128        u16 i = 0;
 129
 130        IXGBE_READ_REG(hw, IXGBE_CRCERRS);
 131        IXGBE_READ_REG(hw, IXGBE_ILLERRC);
 132        IXGBE_READ_REG(hw, IXGBE_ERRBC);
 133        IXGBE_READ_REG(hw, IXGBE_MSPDC);
 134        for (i = 0; i < 8; i++)
 135                IXGBE_READ_REG(hw, IXGBE_MPC(i));
 136
 137        IXGBE_READ_REG(hw, IXGBE_MLFC);
 138        IXGBE_READ_REG(hw, IXGBE_MRFC);
 139        IXGBE_READ_REG(hw, IXGBE_RLEC);
 140        IXGBE_READ_REG(hw, IXGBE_LXONTXC);
 141        IXGBE_READ_REG(hw, IXGBE_LXONRXC);
 142        IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
 143        IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
 144
 145        for (i = 0; i < 8; i++) {
 146                IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
 147                IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
 148                IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
 149                IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
 150        }
 151
 152        IXGBE_READ_REG(hw, IXGBE_PRC64);
 153        IXGBE_READ_REG(hw, IXGBE_PRC127);
 154        IXGBE_READ_REG(hw, IXGBE_PRC255);
 155        IXGBE_READ_REG(hw, IXGBE_PRC511);
 156        IXGBE_READ_REG(hw, IXGBE_PRC1023);
 157        IXGBE_READ_REG(hw, IXGBE_PRC1522);
 158        IXGBE_READ_REG(hw, IXGBE_GPRC);
 159        IXGBE_READ_REG(hw, IXGBE_BPRC);
 160        IXGBE_READ_REG(hw, IXGBE_MPRC);
 161        IXGBE_READ_REG(hw, IXGBE_GPTC);
 162        IXGBE_READ_REG(hw, IXGBE_GORCL);
 163        IXGBE_READ_REG(hw, IXGBE_GORCH);
 164        IXGBE_READ_REG(hw, IXGBE_GOTCL);
 165        IXGBE_READ_REG(hw, IXGBE_GOTCH);
 166        for (i = 0; i < 8; i++)
 167                IXGBE_READ_REG(hw, IXGBE_RNBC(i));
 168        IXGBE_READ_REG(hw, IXGBE_RUC);
 169        IXGBE_READ_REG(hw, IXGBE_RFC);
 170        IXGBE_READ_REG(hw, IXGBE_ROC);
 171        IXGBE_READ_REG(hw, IXGBE_RJC);
 172        IXGBE_READ_REG(hw, IXGBE_MNGPRC);
 173        IXGBE_READ_REG(hw, IXGBE_MNGPDC);
 174        IXGBE_READ_REG(hw, IXGBE_MNGPTC);
 175        IXGBE_READ_REG(hw, IXGBE_TORL);
 176        IXGBE_READ_REG(hw, IXGBE_TORH);
 177        IXGBE_READ_REG(hw, IXGBE_TPR);
 178        IXGBE_READ_REG(hw, IXGBE_TPT);
 179        IXGBE_READ_REG(hw, IXGBE_PTC64);
 180        IXGBE_READ_REG(hw, IXGBE_PTC127);
 181        IXGBE_READ_REG(hw, IXGBE_PTC255);
 182        IXGBE_READ_REG(hw, IXGBE_PTC511);
 183        IXGBE_READ_REG(hw, IXGBE_PTC1023);
 184        IXGBE_READ_REG(hw, IXGBE_PTC1522);
 185        IXGBE_READ_REG(hw, IXGBE_MPTC);
 186        IXGBE_READ_REG(hw, IXGBE_BPTC);
 187        for (i = 0; i < 16; i++) {
 188                IXGBE_READ_REG(hw, IXGBE_QPRC(i));
 189                IXGBE_READ_REG(hw, IXGBE_QBRC(i));
 190                IXGBE_READ_REG(hw, IXGBE_QPTC(i));
 191                IXGBE_READ_REG(hw, IXGBE_QBTC(i));
 192        }
 193
 194        return 0;
 195}
 196
 197/**
 198 *  ixgbe_read_pba_num_generic - Reads part number from EEPROM
 199 *  @hw: pointer to hardware structure
 200 *  @pba_num: stores the part number from the EEPROM
 201 *
 202 *  Reads the part number from the EEPROM.
 203 **/
 204s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
 205{
 206        s32 ret_val;
 207        u16 data;
 208
 209        ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
 210        if (ret_val) {
 211                hw_dbg(hw, "NVM Read Error\n");
 212                return ret_val;
 213        }
 214        *pba_num = (u32)(data << 16);
 215
 216        ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
 217        if (ret_val) {
 218                hw_dbg(hw, "NVM Read Error\n");
 219                return ret_val;
 220        }
 221        *pba_num |= data;
 222
 223        return 0;
 224}
 225
 226/**
 227 *  ixgbe_get_mac_addr_generic - Generic get MAC address
 228 *  @hw: pointer to hardware structure
 229 *  @mac_addr: Adapter MAC address
 230 *
 231 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
 232 *  A reset of the adapter must be performed prior to calling this function
 233 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
 234 **/
 235s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
 236{
 237        u32 rar_high;
 238        u32 rar_low;
 239        u16 i;
 240
 241        rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
 242        rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
 243
 244        for (i = 0; i < 4; i++)
 245                mac_addr[i] = (u8)(rar_low >> (i*8));
 246
 247        for (i = 0; i < 2; i++)
 248                mac_addr[i+4] = (u8)(rar_high >> (i*8));
 249
 250        return 0;
 251}
 252
 253/**
 254 *  ixgbe_get_bus_info_generic - Generic set PCI bus info
 255 *  @hw: pointer to hardware structure
 256 *
 257 *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
 258 **/
 259s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
 260{
 261        struct ixgbe_adapter *adapter = hw->back;
 262        struct ixgbe_mac_info *mac = &hw->mac;
 263        u16 link_status;
 264
 265        hw->bus.type = ixgbe_bus_type_pci_express;
 266
 267        /* Get the negotiated link width and speed from PCI config space */
 268        pci_read_config_word(adapter->pdev, IXGBE_PCI_LINK_STATUS,
 269                             &link_status);
 270
 271        switch (link_status & IXGBE_PCI_LINK_WIDTH) {
 272        case IXGBE_PCI_LINK_WIDTH_1:
 273                hw->bus.width = ixgbe_bus_width_pcie_x1;
 274                break;
 275        case IXGBE_PCI_LINK_WIDTH_2:
 276                hw->bus.width = ixgbe_bus_width_pcie_x2;
 277                break;
 278        case IXGBE_PCI_LINK_WIDTH_4:
 279                hw->bus.width = ixgbe_bus_width_pcie_x4;
 280                break;
 281        case IXGBE_PCI_LINK_WIDTH_8:
 282                hw->bus.width = ixgbe_bus_width_pcie_x8;
 283                break;
 284        default:
 285                hw->bus.width = ixgbe_bus_width_unknown;
 286                break;
 287        }
 288
 289        switch (link_status & IXGBE_PCI_LINK_SPEED) {
 290        case IXGBE_PCI_LINK_SPEED_2500:
 291                hw->bus.speed = ixgbe_bus_speed_2500;
 292                break;
 293        case IXGBE_PCI_LINK_SPEED_5000:
 294                hw->bus.speed = ixgbe_bus_speed_5000;
 295                break;
 296        default:
 297                hw->bus.speed = ixgbe_bus_speed_unknown;
 298                break;
 299        }
 300
 301        mac->ops.set_lan_id(hw);
 302
 303        return 0;
 304}
 305
 306/**
 307 *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
 308 *  @hw: pointer to the HW structure
 309 *
 310 *  Determines the LAN function id by reading memory-mapped registers
 311 *  and swaps the port value if requested.
 312 **/
 313void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
 314{
 315        struct ixgbe_bus_info *bus = &hw->bus;
 316        u32 reg;
 317
 318        reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
 319        bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
 320        bus->lan_id = bus->func;
 321
 322        /* check for a port swap */
 323        reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
 324        if (reg & IXGBE_FACTPS_LFS)
 325                bus->func ^= 0x1;
 326}
 327
 328/**
 329 *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
 330 *  @hw: pointer to hardware structure
 331 *
 332 *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
 333 *  disables transmit and receive units. The adapter_stopped flag is used by
 334 *  the shared code and drivers to determine if the adapter is in a stopped
 335 *  state and should not touch the hardware.
 336 **/
 337s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
 338{
 339        u32 number_of_queues;
 340        u32 reg_val;
 341        u16 i;
 342
 343        /*
 344         * Set the adapter_stopped flag so other driver functions stop touching
 345         * the hardware
 346         */
 347        hw->adapter_stopped = true;
 348
 349        /* Disable the receive unit */
 350        reg_val = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
 351        reg_val &= ~(IXGBE_RXCTRL_RXEN);
 352        IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, reg_val);
 353        IXGBE_WRITE_FLUSH(hw);
 354        msleep(2);
 355
 356        /* Clear interrupt mask to stop from interrupts being generated */
 357        IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
 358
 359        /* Clear any pending interrupts */
 360        IXGBE_READ_REG(hw, IXGBE_EICR);
 361
 362        /* Disable the transmit unit.  Each queue must be disabled. */
 363        number_of_queues = hw->mac.max_tx_queues;
 364        for (i = 0; i < number_of_queues; i++) {
 365                reg_val = IXGBE_READ_REG(hw, IXGBE_TXDCTL(i));
 366                if (reg_val & IXGBE_TXDCTL_ENABLE) {
 367                        reg_val &= ~IXGBE_TXDCTL_ENABLE;
 368                        IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), reg_val);
 369                }
 370        }
 371
 372        /*
 373         * Prevent the PCI-E bus from from hanging by disabling PCI-E master
 374         * access and verify no pending requests
 375         */
 376        if (ixgbe_disable_pcie_master(hw) != 0)
 377                hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
 378
 379        return 0;
 380}
 381
 382/**
 383 *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
 384 *  @hw: pointer to hardware structure
 385 *  @index: led number to turn on
 386 **/
 387s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
 388{
 389        u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 390
 391        /* To turn on the LED, set mode to ON. */
 392        led_reg &= ~IXGBE_LED_MODE_MASK(index);
 393        led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
 394        IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 395        IXGBE_WRITE_FLUSH(hw);
 396
 397        return 0;
 398}
 399
 400/**
 401 *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
 402 *  @hw: pointer to hardware structure
 403 *  @index: led number to turn off
 404 **/
 405s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
 406{
 407        u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 408
 409        /* To turn off the LED, set mode to OFF. */
 410        led_reg &= ~IXGBE_LED_MODE_MASK(index);
 411        led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
 412        IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 413        IXGBE_WRITE_FLUSH(hw);
 414
 415        return 0;
 416}
 417
 418/**
 419 *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
 420 *  @hw: pointer to hardware structure
 421 *
 422 *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
 423 *  ixgbe_hw struct in order to set up EEPROM access.
 424 **/
 425s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
 426{
 427        struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
 428        u32 eec;
 429        u16 eeprom_size;
 430
 431        if (eeprom->type == ixgbe_eeprom_uninitialized) {
 432                eeprom->type = ixgbe_eeprom_none;
 433                /* Set default semaphore delay to 10ms which is a well
 434                 * tested value */
 435                eeprom->semaphore_delay = 10;
 436
 437                /*
 438                 * Check for EEPROM present first.
 439                 * If not present leave as none
 440                 */
 441                eec = IXGBE_READ_REG(hw, IXGBE_EEC);
 442                if (eec & IXGBE_EEC_PRES) {
 443                        eeprom->type = ixgbe_eeprom_spi;
 444
 445                        /*
 446                         * SPI EEPROM is assumed here.  This code would need to
 447                         * change if a future EEPROM is not SPI.
 448                         */
 449                        eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
 450                                            IXGBE_EEC_SIZE_SHIFT);
 451                        eeprom->word_size = 1 << (eeprom_size +
 452                                                  IXGBE_EEPROM_WORD_SIZE_SHIFT);
 453                }
 454
 455                if (eec & IXGBE_EEC_ADDR_SIZE)
 456                        eeprom->address_bits = 16;
 457                else
 458                        eeprom->address_bits = 8;
 459                hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: "
 460                          "%d\n", eeprom->type, eeprom->word_size,
 461                          eeprom->address_bits);
 462        }
 463
 464        return 0;
 465}
 466
 467/**
 468 *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
 469 *  @hw: pointer to hardware structure
 470 *  @offset: offset within the EEPROM to be written to
 471 *  @data: 16 bit word to be written to the EEPROM
 472 *
 473 *  If ixgbe_eeprom_update_checksum is not called after this function, the
 474 *  EEPROM will most likely contain an invalid checksum.
 475 **/
 476s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
 477{
 478        s32 status;
 479        u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
 480
 481        hw->eeprom.ops.init_params(hw);
 482
 483        if (offset >= hw->eeprom.word_size) {
 484                status = IXGBE_ERR_EEPROM;
 485                goto out;
 486        }
 487
 488        /* Prepare the EEPROM for writing  */
 489        status = ixgbe_acquire_eeprom(hw);
 490
 491        if (status == 0) {
 492                if (ixgbe_ready_eeprom(hw) != 0) {
 493                        ixgbe_release_eeprom(hw);
 494                        status = IXGBE_ERR_EEPROM;
 495                }
 496        }
 497
 498        if (status == 0) {
 499                ixgbe_standby_eeprom(hw);
 500
 501                /*  Send the WRITE ENABLE command (8 bit opcode )  */
 502                ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_WREN_OPCODE_SPI,
 503                                            IXGBE_EEPROM_OPCODE_BITS);
 504
 505                ixgbe_standby_eeprom(hw);
 506
 507                /*
 508                 * Some SPI eeproms use the 8th address bit embedded in the
 509                 * opcode
 510                 */
 511                if ((hw->eeprom.address_bits == 8) && (offset >= 128))
 512                        write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
 513
 514                /* Send the Write command (8-bit opcode + addr) */
 515                ixgbe_shift_out_eeprom_bits(hw, write_opcode,
 516                                            IXGBE_EEPROM_OPCODE_BITS);
 517                ixgbe_shift_out_eeprom_bits(hw, (u16)(offset*2),
 518                                            hw->eeprom.address_bits);
 519
 520                /* Send the data */
 521                data = (data >> 8) | (data << 8);
 522                ixgbe_shift_out_eeprom_bits(hw, data, 16);
 523                ixgbe_standby_eeprom(hw);
 524
 525                msleep(hw->eeprom.semaphore_delay);
 526                /* Done with writing - release the EEPROM */
 527                ixgbe_release_eeprom(hw);
 528        }
 529
 530out:
 531        return status;
 532}
 533
 534/**
 535 *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
 536 *  @hw: pointer to hardware structure
 537 *  @offset: offset within the EEPROM to be read
 538 *  @data: read 16 bit value from EEPROM
 539 *
 540 *  Reads 16 bit value from EEPROM through bit-bang method
 541 **/
 542s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
 543                                       u16 *data)
 544{
 545        s32 status;
 546        u16 word_in;
 547        u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
 548
 549        hw->eeprom.ops.init_params(hw);
 550
 551        if (offset >= hw->eeprom.word_size) {
 552                status = IXGBE_ERR_EEPROM;
 553                goto out;
 554        }
 555
 556        /* Prepare the EEPROM for reading  */
 557        status = ixgbe_acquire_eeprom(hw);
 558
 559        if (status == 0) {
 560                if (ixgbe_ready_eeprom(hw) != 0) {
 561                        ixgbe_release_eeprom(hw);
 562                        status = IXGBE_ERR_EEPROM;
 563                }
 564        }
 565
 566        if (status == 0) {
 567                ixgbe_standby_eeprom(hw);
 568
 569                /*
 570                 * Some SPI eeproms use the 8th address bit embedded in the
 571                 * opcode
 572                 */
 573                if ((hw->eeprom.address_bits == 8) && (offset >= 128))
 574                        read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
 575
 576                /* Send the READ command (opcode + addr) */
 577                ixgbe_shift_out_eeprom_bits(hw, read_opcode,
 578                                            IXGBE_EEPROM_OPCODE_BITS);
 579                ixgbe_shift_out_eeprom_bits(hw, (u16)(offset*2),
 580                                            hw->eeprom.address_bits);
 581
 582                /* Read the data. */
 583                word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
 584                *data = (word_in >> 8) | (word_in << 8);
 585
 586                /* End this read operation */
 587                ixgbe_release_eeprom(hw);
 588        }
 589
 590out:
 591        return status;
 592}
 593
 594/**
 595 *  ixgbe_read_eeprom_generic - Read EEPROM word using EERD
 596 *  @hw: pointer to hardware structure
 597 *  @offset: offset of  word in the EEPROM to read
 598 *  @data: word read from the EEPROM
 599 *
 600 *  Reads a 16 bit word from the EEPROM using the EERD register.
 601 **/
 602s32 ixgbe_read_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
 603{
 604        u32 eerd;
 605        s32 status;
 606
 607        hw->eeprom.ops.init_params(hw);
 608
 609        if (offset >= hw->eeprom.word_size) {
 610                status = IXGBE_ERR_EEPROM;
 611                goto out;
 612        }
 613
 614        eerd = (offset << IXGBE_EEPROM_READ_ADDR_SHIFT) +
 615               IXGBE_EEPROM_READ_REG_START;
 616
 617        IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
 618        status = ixgbe_poll_eeprom_eerd_done(hw);
 619
 620        if (status == 0)
 621                *data = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
 622                         IXGBE_EEPROM_READ_REG_DATA);
 623        else
 624                hw_dbg(hw, "Eeprom read timed out\n");
 625
 626out:
 627        return status;
 628}
 629
 630/**
 631 *  ixgbe_poll_eeprom_eerd_done - Poll EERD status
 632 *  @hw: pointer to hardware structure
 633 *
 634 *  Polls the status bit (bit 1) of the EERD to determine when the read is done.
 635 **/
 636static s32 ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw *hw)
 637{
 638        u32 i;
 639        u32 reg;
 640        s32 status = IXGBE_ERR_EEPROM;
 641
 642        for (i = 0; i < IXGBE_EERD_ATTEMPTS; i++) {
 643                reg = IXGBE_READ_REG(hw, IXGBE_EERD);
 644                if (reg & IXGBE_EEPROM_READ_REG_DONE) {
 645                        status = 0;
 646                        break;
 647                }
 648                udelay(5);
 649        }
 650        return status;
 651}
 652
 653/**
 654 *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
 655 *  @hw: pointer to hardware structure
 656 *
 657 *  Prepares EEPROM for access using bit-bang method. This function should
 658 *  be called before issuing a command to the EEPROM.
 659 **/
 660static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
 661{
 662        s32 status = 0;
 663        u32 eec = 0;
 664        u32 i;
 665
 666        if (ixgbe_acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
 667                status = IXGBE_ERR_SWFW_SYNC;
 668
 669        if (status == 0) {
 670                eec = IXGBE_READ_REG(hw, IXGBE_EEC);
 671
 672                /* Request EEPROM Access */
 673                eec |= IXGBE_EEC_REQ;
 674                IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
 675
 676                for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
 677                        eec = IXGBE_READ_REG(hw, IXGBE_EEC);
 678                        if (eec & IXGBE_EEC_GNT)
 679                                break;
 680                        udelay(5);
 681                }
 682
 683                /* Release if grant not acquired */
 684                if (!(eec & IXGBE_EEC_GNT)) {
 685                        eec &= ~IXGBE_EEC_REQ;
 686                        IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
 687                        hw_dbg(hw, "Could not acquire EEPROM grant\n");
 688
 689                        ixgbe_release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
 690                        status = IXGBE_ERR_EEPROM;
 691                }
 692        }
 693
 694        /* Setup EEPROM for Read/Write */
 695        if (status == 0) {
 696                /* Clear CS and SK */
 697                eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
 698                IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
 699                IXGBE_WRITE_FLUSH(hw);
 700                udelay(1);
 701        }
 702        return status;
 703}
 704
 705/**
 706 *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
 707 *  @hw: pointer to hardware structure
 708 *
 709 *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
 710 **/
 711static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
 712{
 713        s32 status = IXGBE_ERR_EEPROM;
 714        u32 timeout;
 715        u32 i;
 716        u32 swsm;
 717
 718        /* Set timeout value based on size of EEPROM */
 719        timeout = hw->eeprom.word_size + 1;
 720
 721        /* Get SMBI software semaphore between device drivers first */
 722        for (i = 0; i < timeout; i++) {
 723                /*
 724                 * If the SMBI bit is 0 when we read it, then the bit will be
 725                 * set and we have the semaphore
 726                 */
 727                swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
 728                if (!(swsm & IXGBE_SWSM_SMBI)) {
 729                        status = 0;
 730                        break;
 731                }
 732                msleep(1);
 733        }
 734
 735        /* Now get the semaphore between SW/FW through the SWESMBI bit */
 736        if (status == 0) {
 737                for (i = 0; i < timeout; i++) {
 738                        swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
 739
 740                        /* Set the SW EEPROM semaphore bit to request access */
 741                        swsm |= IXGBE_SWSM_SWESMBI;
 742                        IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
 743
 744                        /*
 745                         * If we set the bit successfully then we got the
 746                         * semaphore.
 747                         */
 748                        swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
 749                        if (swsm & IXGBE_SWSM_SWESMBI)
 750                                break;
 751
 752                        udelay(50);
 753                }
 754
 755                /*
 756                 * Release semaphores and return error if SW EEPROM semaphore
 757                 * was not granted because we don't have access to the EEPROM
 758                 */
 759                if (i >= timeout) {
 760                        hw_dbg(hw, "Driver can't access the Eeprom - Semaphore "
 761                               "not granted.\n");
 762                        ixgbe_release_eeprom_semaphore(hw);
 763                        status = IXGBE_ERR_EEPROM;
 764                }
 765        }
 766
 767        return status;
 768}
 769
 770/**
 771 *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
 772 *  @hw: pointer to hardware structure
 773 *
 774 *  This function clears hardware semaphore bits.
 775 **/
 776static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
 777{
 778        u32 swsm;
 779
 780        swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
 781
 782        /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
 783        swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
 784        IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
 785        IXGBE_WRITE_FLUSH(hw);
 786}
 787
 788/**
 789 *  ixgbe_ready_eeprom - Polls for EEPROM ready
 790 *  @hw: pointer to hardware structure
 791 **/
 792static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
 793{
 794        s32 status = 0;
 795        u16 i;
 796        u8 spi_stat_reg;
 797
 798        /*
 799         * Read "Status Register" repeatedly until the LSB is cleared.  The
 800         * EEPROM will signal that the command has been completed by clearing
 801         * bit 0 of the internal status register.  If it's not cleared within
 802         * 5 milliseconds, then error out.
 803         */
 804        for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
 805                ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
 806                                            IXGBE_EEPROM_OPCODE_BITS);
 807                spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
 808                if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
 809                        break;
 810
 811                udelay(5);
 812                ixgbe_standby_eeprom(hw);
 813        };
 814
 815        /*
 816         * On some parts, SPI write time could vary from 0-20mSec on 3.3V
 817         * devices (and only 0-5mSec on 5V devices)
 818         */
 819        if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
 820                hw_dbg(hw, "SPI EEPROM Status error\n");
 821                status = IXGBE_ERR_EEPROM;
 822        }
 823
 824        return status;
 825}
 826
 827/**
 828 *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
 829 *  @hw: pointer to hardware structure
 830 **/
 831static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
 832{
 833        u32 eec;
 834
 835        eec = IXGBE_READ_REG(hw, IXGBE_EEC);
 836
 837        /* Toggle CS to flush commands */
 838        eec |= IXGBE_EEC_CS;
 839        IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
 840        IXGBE_WRITE_FLUSH(hw);
 841        udelay(1);
 842        eec &= ~IXGBE_EEC_CS;
 843        IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
 844        IXGBE_WRITE_FLUSH(hw);
 845        udelay(1);
 846}
 847
 848/**
 849 *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
 850 *  @hw: pointer to hardware structure
 851 *  @data: data to send to the EEPROM
 852 *  @count: number of bits to shift out
 853 **/
 854static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
 855                                        u16 count)
 856{
 857        u32 eec;
 858        u32 mask;
 859        u32 i;
 860
 861        eec = IXGBE_READ_REG(hw, IXGBE_EEC);
 862
 863        /*
 864         * Mask is used to shift "count" bits of "data" out to the EEPROM
 865         * one bit at a time.  Determine the starting bit based on count
 866         */
 867        mask = 0x01 << (count - 1);
 868
 869        for (i = 0; i < count; i++) {
 870                /*
 871                 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
 872                 * "1", and then raising and then lowering the clock (the SK
 873                 * bit controls the clock input to the EEPROM).  A "0" is
 874                 * shifted out to the EEPROM by setting "DI" to "0" and then
 875                 * raising and then lowering the clock.
 876                 */
 877                if (data & mask)
 878                        eec |= IXGBE_EEC_DI;
 879                else
 880                        eec &= ~IXGBE_EEC_DI;
 881
 882                IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
 883                IXGBE_WRITE_FLUSH(hw);
 884
 885                udelay(1);
 886
 887                ixgbe_raise_eeprom_clk(hw, &eec);
 888                ixgbe_lower_eeprom_clk(hw, &eec);
 889
 890                /*
 891                 * Shift mask to signify next bit of data to shift in to the
 892                 * EEPROM
 893                 */
 894                mask = mask >> 1;
 895        };
 896
 897        /* We leave the "DI" bit set to "0" when we leave this routine. */
 898        eec &= ~IXGBE_EEC_DI;
 899        IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
 900        IXGBE_WRITE_FLUSH(hw);
 901}
 902
 903/**
 904 *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
 905 *  @hw: pointer to hardware structure
 906 **/
 907static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
 908{
 909        u32 eec;
 910        u32 i;
 911        u16 data = 0;
 912
 913        /*
 914         * In order to read a register from the EEPROM, we need to shift
 915         * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
 916         * the clock input to the EEPROM (setting the SK bit), and then reading
 917         * the value of the "DO" bit.  During this "shifting in" process the
 918         * "DI" bit should always be clear.
 919         */
 920        eec = IXGBE_READ_REG(hw, IXGBE_EEC);
 921
 922        eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
 923
 924        for (i = 0; i < count; i++) {
 925                data = data << 1;
 926                ixgbe_raise_eeprom_clk(hw, &eec);
 927
 928                eec = IXGBE_READ_REG(hw, IXGBE_EEC);
 929
 930                eec &= ~(IXGBE_EEC_DI);
 931                if (eec & IXGBE_EEC_DO)
 932                        data |= 1;
 933
 934                ixgbe_lower_eeprom_clk(hw, &eec);
 935        }
 936
 937        return data;
 938}
 939
 940/**
 941 *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
 942 *  @hw: pointer to hardware structure
 943 *  @eec: EEC register's current value
 944 **/
 945static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
 946{
 947        /*
 948         * Raise the clock input to the EEPROM
 949         * (setting the SK bit), then delay
 950         */
 951        *eec = *eec | IXGBE_EEC_SK;
 952        IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
 953        IXGBE_WRITE_FLUSH(hw);
 954        udelay(1);
 955}
 956
 957/**
 958 *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
 959 *  @hw: pointer to hardware structure
 960 *  @eecd: EECD's current value
 961 **/
 962static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
 963{
 964        /*
 965         * Lower the clock input to the EEPROM (clearing the SK bit), then
 966         * delay
 967         */
 968        *eec = *eec & ~IXGBE_EEC_SK;
 969        IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
 970        IXGBE_WRITE_FLUSH(hw);
 971        udelay(1);
 972}
 973
 974/**
 975 *  ixgbe_release_eeprom - Release EEPROM, release semaphores
 976 *  @hw: pointer to hardware structure
 977 **/
 978static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
 979{
 980        u32 eec;
 981
 982        eec = IXGBE_READ_REG(hw, IXGBE_EEC);
 983
 984        eec |= IXGBE_EEC_CS;  /* Pull CS high */
 985        eec &= ~IXGBE_EEC_SK; /* Lower SCK */
 986
 987        IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
 988        IXGBE_WRITE_FLUSH(hw);
 989
 990        udelay(1);
 991
 992        /* Stop requesting EEPROM access */
 993        eec &= ~IXGBE_EEC_REQ;
 994        IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
 995
 996        ixgbe_release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
 997}
 998
 999/**
1000 *  ixgbe_calc_eeprom_checksum - Calculates and returns the checksum
1001 *  @hw: pointer to hardware structure
1002 **/
1003static u16 ixgbe_calc_eeprom_checksum(struct ixgbe_hw *hw)
1004{
1005        u16 i;
1006        u16 j;
1007        u16 checksum = 0;
1008        u16 length = 0;
1009        u16 pointer = 0;
1010        u16 word = 0;
1011
1012        /* Include 0x0-0x3F in the checksum */
1013        for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1014                if (hw->eeprom.ops.read(hw, i, &word) != 0) {
1015                        hw_dbg(hw, "EEPROM read failed\n");
1016                        break;
1017                }
1018                checksum += word;
1019        }
1020
1021        /* Include all data from pointers except for the fw pointer */
1022        for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1023                hw->eeprom.ops.read(hw, i, &pointer);
1024
1025                /* Make sure the pointer seems valid */
1026                if (pointer != 0xFFFF && pointer != 0) {
1027                        hw->eeprom.ops.read(hw, pointer, &length);
1028
1029                        if (length != 0xFFFF && length != 0) {
1030                                for (j = pointer+1; j <= pointer+length; j++) {
1031                                        hw->eeprom.ops.read(hw, j, &word);
1032                                        checksum += word;
1033                                }
1034                        }
1035                }
1036        }
1037
1038        checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1039
1040        return checksum;
1041}
1042
1043/**
1044 *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1045 *  @hw: pointer to hardware structure
1046 *  @checksum_val: calculated checksum
1047 *
1048 *  Performs checksum calculation and validates the EEPROM checksum.  If the
1049 *  caller does not need checksum_val, the value can be NULL.
1050 **/
1051s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1052                                           u16 *checksum_val)
1053{
1054        s32 status;
1055        u16 checksum;
1056        u16 read_checksum = 0;
1057
1058        /*
1059         * Read the first word from the EEPROM. If this times out or fails, do
1060         * not continue or we could be in for a very long wait while every
1061         * EEPROM read fails
1062         */
1063        status = hw->eeprom.ops.read(hw, 0, &checksum);
1064
1065        if (status == 0) {
1066                checksum = ixgbe_calc_eeprom_checksum(hw);
1067
1068                hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1069
1070                /*
1071                 * Verify read checksum from EEPROM is the same as
1072                 * calculated checksum
1073                 */
1074                if (read_checksum != checksum)
1075                        status = IXGBE_ERR_EEPROM_CHECKSUM;
1076
1077                /* If the user cares, return the calculated checksum */
1078                if (checksum_val)
1079                        *checksum_val = checksum;
1080        } else {
1081                hw_dbg(hw, "EEPROM read failed\n");
1082        }
1083
1084        return status;
1085}
1086
1087/**
1088 *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1089 *  @hw: pointer to hardware structure
1090 **/
1091s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1092{
1093        s32 status;
1094        u16 checksum;
1095
1096        /*
1097         * Read the first word from the EEPROM. If this times out or fails, do
1098         * not continue or we could be in for a very long wait while every
1099         * EEPROM read fails
1100         */
1101        status = hw->eeprom.ops.read(hw, 0, &checksum);
1102
1103        if (status == 0) {
1104                checksum = ixgbe_calc_eeprom_checksum(hw);
1105                status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
1106                                            checksum);
1107        } else {
1108                hw_dbg(hw, "EEPROM read failed\n");
1109        }
1110
1111        return status;
1112}
1113
1114/**
1115 *  ixgbe_validate_mac_addr - Validate MAC address
1116 *  @mac_addr: pointer to MAC address.
1117 *
1118 *  Tests a MAC address to ensure it is a valid Individual Address
1119 **/
1120s32 ixgbe_validate_mac_addr(u8 *mac_addr)
1121{
1122        s32 status = 0;
1123
1124        /* Make sure it is not a multicast address */
1125        if (IXGBE_IS_MULTICAST(mac_addr))
1126                status = IXGBE_ERR_INVALID_MAC_ADDR;
1127        /* Not a broadcast address */
1128        else if (IXGBE_IS_BROADCAST(mac_addr))
1129                status = IXGBE_ERR_INVALID_MAC_ADDR;
1130        /* Reject the zero address */
1131        else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
1132                 mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0)
1133                status = IXGBE_ERR_INVALID_MAC_ADDR;
1134
1135        return status;
1136}
1137
1138/**
1139 *  ixgbe_set_rar_generic - Set Rx address register
1140 *  @hw: pointer to hardware structure
1141 *  @index: Receive address register to write
1142 *  @addr: Address to put into receive address register
1143 *  @vmdq: VMDq "set" or "pool" index
1144 *  @enable_addr: set flag that address is active
1145 *
1146 *  Puts an ethernet address into a receive address register.
1147 **/
1148s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1149                          u32 enable_addr)
1150{
1151        u32 rar_low, rar_high;
1152        u32 rar_entries = hw->mac.num_rar_entries;
1153
1154        /* setup VMDq pool selection before this RAR gets enabled */
1155        hw->mac.ops.set_vmdq(hw, index, vmdq);
1156
1157        /* Make sure we are using a valid rar index range */
1158        if (index < rar_entries) {
1159                /*
1160                 * HW expects these in little endian so we reverse the byte
1161                 * order from network order (big endian) to little endian
1162                 */
1163                rar_low = ((u32)addr[0] |
1164                           ((u32)addr[1] << 8) |
1165                           ((u32)addr[2] << 16) |
1166                           ((u32)addr[3] << 24));
1167                /*
1168                 * Some parts put the VMDq setting in the extra RAH bits,
1169                 * so save everything except the lower 16 bits that hold part
1170                 * of the address and the address valid bit.
1171                 */
1172                rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1173                rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1174                rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1175
1176                if (enable_addr != 0)
1177                        rar_high |= IXGBE_RAH_AV;
1178
1179                IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1180                IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1181        } else {
1182                hw_dbg(hw, "RAR index %d is out of range.\n", index);
1183        }
1184
1185        return 0;
1186}
1187
1188/**
1189 *  ixgbe_clear_rar_generic - Remove Rx address register
1190 *  @hw: pointer to hardware structure
1191 *  @index: Receive address register to write
1192 *
1193 *  Clears an ethernet address from a receive address register.
1194 **/
1195s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1196{
1197        u32 rar_high;
1198        u32 rar_entries = hw->mac.num_rar_entries;
1199
1200        /* Make sure we are using a valid rar index range */
1201        if (index < rar_entries) {
1202                /*
1203                 * Some parts put the VMDq setting in the extra RAH bits,
1204                 * so save everything except the lower 16 bits that hold part
1205                 * of the address and the address valid bit.
1206                 */
1207                rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1208                rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1209
1210                IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1211                IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1212        } else {
1213                hw_dbg(hw, "RAR index %d is out of range.\n", index);
1214        }
1215
1216        /* clear VMDq pool/queue selection for this RAR */
1217        hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1218
1219        return 0;
1220}
1221
1222/**
1223 *  ixgbe_enable_rar - Enable Rx address register
1224 *  @hw: pointer to hardware structure
1225 *  @index: index into the RAR table
1226 *
1227 *  Enables the select receive address register.
1228 **/
1229static void ixgbe_enable_rar(struct ixgbe_hw *hw, u32 index)
1230{
1231        u32 rar_high;
1232
1233        rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1234        rar_high |= IXGBE_RAH_AV;
1235        IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1236}
1237
1238/**
1239 *  ixgbe_disable_rar - Disable Rx address register
1240 *  @hw: pointer to hardware structure
1241 *  @index: index into the RAR table
1242 *
1243 *  Disables the select receive address register.
1244 **/
1245static void ixgbe_disable_rar(struct ixgbe_hw *hw, u32 index)
1246{
1247        u32 rar_high;
1248
1249        rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1250        rar_high &= (~IXGBE_RAH_AV);
1251        IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1252}
1253
1254/**
1255 *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1256 *  @hw: pointer to hardware structure
1257 *
1258 *  Places the MAC address in receive address register 0 and clears the rest
1259 *  of the receive address registers. Clears the multicast table. Assumes
1260 *  the receiver is in reset when the routine is called.
1261 **/
1262s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1263{
1264        u32 i;
1265        u32 rar_entries = hw->mac.num_rar_entries;
1266
1267        /*
1268         * If the current mac address is valid, assume it is a software override
1269         * to the permanent address.
1270         * Otherwise, use the permanent address from the eeprom.
1271         */
1272        if (ixgbe_validate_mac_addr(hw->mac.addr) ==
1273            IXGBE_ERR_INVALID_MAC_ADDR) {
1274                /* Get the MAC address from the RAR0 for later reference */
1275                hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1276
1277                hw_dbg(hw, " Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
1278                       hw->mac.addr[0], hw->mac.addr[1],
1279                       hw->mac.addr[2]);
1280                hw_dbg(hw, "%.2X %.2X %.2X\n", hw->mac.addr[3],
1281                       hw->mac.addr[4], hw->mac.addr[5]);
1282        } else {
1283                /* Setup the receive address. */
1284                hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1285                hw_dbg(hw, " New MAC Addr =%.2X %.2X %.2X ",
1286                       hw->mac.addr[0], hw->mac.addr[1],
1287                       hw->mac.addr[2]);
1288                hw_dbg(hw, "%.2X %.2X %.2X\n", hw->mac.addr[3],
1289                       hw->mac.addr[4], hw->mac.addr[5]);
1290
1291                hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1292        }
1293        hw->addr_ctrl.overflow_promisc = 0;
1294
1295        hw->addr_ctrl.rar_used_count = 1;
1296
1297        /* Zero out the other receive addresses. */
1298        hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1299        for (i = 1; i < rar_entries; i++) {
1300                IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1301                IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1302        }
1303
1304        /* Clear the MTA */
1305        hw->addr_ctrl.mc_addr_in_rar_count = 0;
1306        hw->addr_ctrl.mta_in_use = 0;
1307        IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1308
1309        hw_dbg(hw, " Clearing MTA\n");
1310        for (i = 0; i < hw->mac.mcft_size; i++)
1311                IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1312
1313        if (hw->mac.ops.init_uta_tables)
1314                hw->mac.ops.init_uta_tables(hw);
1315
1316        return 0;
1317}
1318
1319/**
1320 *  ixgbe_add_uc_addr - Adds a secondary unicast address.
1321 *  @hw: pointer to hardware structure
1322 *  @addr: new address
1323 *
1324 *  Adds it to unused receive address register or goes into promiscuous mode.
1325 **/
1326static void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
1327{
1328        u32 rar_entries = hw->mac.num_rar_entries;
1329        u32 rar;
1330
1331        hw_dbg(hw, " UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
1332                  addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
1333
1334        /*
1335         * Place this address in the RAR if there is room,
1336         * else put the controller into promiscuous mode
1337         */
1338        if (hw->addr_ctrl.rar_used_count < rar_entries) {
1339                rar = hw->addr_ctrl.rar_used_count -
1340                      hw->addr_ctrl.mc_addr_in_rar_count;
1341                hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
1342                hw_dbg(hw, "Added a secondary address to RAR[%d]\n", rar);
1343                hw->addr_ctrl.rar_used_count++;
1344        } else {
1345                hw->addr_ctrl.overflow_promisc++;
1346        }
1347
1348        hw_dbg(hw, "ixgbe_add_uc_addr Complete\n");
1349}
1350
1351/**
1352 *  ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
1353 *  @hw: pointer to hardware structure
1354 *  @addr_list: the list of new addresses
1355 *  @addr_count: number of addresses
1356 *  @next: iterator function to walk the address list
1357 *
1358 *  The given list replaces any existing list.  Clears the secondary addrs from
1359 *  receive address registers.  Uses unused receive address registers for the
1360 *  first secondary addresses, and falls back to promiscuous mode as needed.
1361 *
1362 *  Drivers using secondary unicast addresses must set user_set_promisc when
1363 *  manually putting the device into promiscuous mode.
1364 **/
1365s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
1366                              u32 addr_count, ixgbe_mc_addr_itr next)
1367{
1368        u8 *addr;
1369        u32 i;
1370        u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
1371        u32 uc_addr_in_use;
1372        u32 fctrl;
1373        u32 vmdq;
1374
1375        /*
1376         * Clear accounting of old secondary address list,
1377         * don't count RAR[0]
1378         */
1379        uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
1380        hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
1381        hw->addr_ctrl.overflow_promisc = 0;
1382
1383        /* Zero out the other receive addresses */
1384        hw_dbg(hw, "Clearing RAR[1-%d]\n", uc_addr_in_use);
1385        for (i = 1; i <= uc_addr_in_use; i++) {
1386                IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1387                IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1388        }
1389
1390        /* Add the new addresses */
1391        for (i = 0; i < addr_count; i++) {
1392                hw_dbg(hw, " Adding the secondary addresses:\n");
1393                addr = next(hw, &addr_list, &vmdq);
1394                ixgbe_add_uc_addr(hw, addr, vmdq);
1395        }
1396
1397        if (hw->addr_ctrl.overflow_promisc) {
1398                /* enable promisc if not already in overflow or set by user */
1399                if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
1400                        hw_dbg(hw, " Entering address overflow promisc mode\n");
1401                        fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
1402                        fctrl |= IXGBE_FCTRL_UPE;
1403                        IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
1404                }
1405        } else {
1406                /* only disable if set by overflow, not by user */
1407                if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
1408                        hw_dbg(hw, " Leaving address overflow promisc mode\n");
1409                        fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
1410                        fctrl &= ~IXGBE_FCTRL_UPE;
1411                        IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
1412                }
1413        }
1414
1415        hw_dbg(hw, "ixgbe_update_uc_addr_list_generic Complete\n");
1416        return 0;
1417}
1418
1419/**
1420 *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1421 *  @hw: pointer to hardware structure
1422 *  @mc_addr: the multicast address
1423 *
1424 *  Extracts the 12 bits, from a multicast address, to determine which
1425 *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1426 *  incoming rx multicast addresses, to determine the bit-vector to check in
1427 *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1428 *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1429 *  to mc_filter_type.
1430 **/
1431static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1432{
1433        u32 vector = 0;
1434
1435        switch (hw->mac.mc_filter_type) {
1436        case 0:   /* use bits [47:36] of the address */
1437                vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1438                break;
1439        case 1:   /* use bits [46:35] of the address */
1440                vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1441                break;
1442        case 2:   /* use bits [45:34] of the address */
1443                vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1444                break;
1445        case 3:   /* use bits [43:32] of the address */
1446                vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1447                break;
1448        default:  /* Invalid mc_filter_type */
1449                hw_dbg(hw, "MC filter type param set incorrectly\n");
1450                break;
1451        }
1452
1453        /* vector can only be 12-bits or boundary will be exceeded */
1454        vector &= 0xFFF;
1455        return vector;
1456}
1457
1458/**
1459 *  ixgbe_set_mta - Set bit-vector in multicast table
1460 *  @hw: pointer to hardware structure
1461 *  @hash_value: Multicast address hash value
1462 *
1463 *  Sets the bit-vector in the multicast table.
1464 **/
1465static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1466{
1467        u32 vector;
1468        u32 vector_bit;
1469        u32 vector_reg;
1470        u32 mta_reg;
1471
1472        hw->addr_ctrl.mta_in_use++;
1473
1474        vector = ixgbe_mta_vector(hw, mc_addr);
1475        hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
1476
1477        /*
1478         * The MTA is a register array of 128 32-bit registers. It is treated
1479         * like an array of 4096 bits.  We want to set bit
1480         * BitArray[vector_value]. So we figure out what register the bit is
1481         * in, read it, OR in the new bit, then write back the new value.  The
1482         * register is determined by the upper 7 bits of the vector value and
1483         * the bit within that register are determined by the lower 5 bits of
1484         * the value.
1485         */
1486        vector_reg = (vector >> 5) & 0x7F;
1487        vector_bit = vector & 0x1F;
1488        mta_reg = IXGBE_READ_REG(hw, IXGBE_MTA(vector_reg));
1489        mta_reg |= (1 << vector_bit);
1490        IXGBE_WRITE_REG(hw, IXGBE_MTA(vector_reg), mta_reg);
1491}
1492
1493/**
1494 *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
1495 *  @hw: pointer to hardware structure
1496 *  @mc_addr_list: the list of new multicast addresses
1497 *  @mc_addr_count: number of addresses
1498 *  @next: iterator function to walk the multicast address list
1499 *
1500 *  The given list replaces any existing list. Clears the MC addrs from receive
1501 *  address registers and the multicast table. Uses unused receive address
1502 *  registers for the first multicast addresses, and hashes the rest into the
1503 *  multicast table.
1504 **/
1505s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
1506                                      u32 mc_addr_count, ixgbe_mc_addr_itr next)
1507{
1508        u32 i;
1509        u32 vmdq;
1510
1511        /*
1512         * Set the new number of MC addresses that we are being requested to
1513         * use.
1514         */
1515        hw->addr_ctrl.num_mc_addrs = mc_addr_count;
1516        hw->addr_ctrl.mta_in_use = 0;
1517
1518        /* Clear the MTA */
1519        hw_dbg(hw, " Clearing MTA\n");
1520        for (i = 0; i < hw->mac.mcft_size; i++)
1521                IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1522
1523        /* Add the new addresses */
1524        for (i = 0; i < mc_addr_count; i++) {
1525                hw_dbg(hw, " Adding the multicast addresses:\n");
1526                ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
1527        }
1528
1529        /* Enable mta */
1530        if (hw->addr_ctrl.mta_in_use > 0)
1531                IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
1532                                IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
1533
1534        hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
1535        return 0;
1536}
1537
1538/**
1539 *  ixgbe_enable_mc_generic - Enable multicast address in RAR
1540 *  @hw: pointer to hardware structure
1541 *
1542 *  Enables multicast address in RAR and the use of the multicast hash table.
1543 **/
1544s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
1545{
1546        u32 i;
1547        u32 rar_entries = hw->mac.num_rar_entries;
1548        struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
1549
1550        if (a->mc_addr_in_rar_count > 0)
1551                for (i = (rar_entries - a->mc_addr_in_rar_count);
1552                     i < rar_entries; i++)
1553                        ixgbe_enable_rar(hw, i);
1554
1555        if (a->mta_in_use > 0)
1556                IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
1557                                hw->mac.mc_filter_type);
1558
1559        return 0;
1560}
1561
1562/**
1563 *  ixgbe_disable_mc_generic - Disable multicast address in RAR
1564 *  @hw: pointer to hardware structure
1565 *
1566 *  Disables multicast address in RAR and the use of the multicast hash table.
1567 **/
1568s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
1569{
1570        u32 i;
1571        u32 rar_entries = hw->mac.num_rar_entries;
1572        struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
1573
1574        if (a->mc_addr_in_rar_count > 0)
1575                for (i = (rar_entries - a->mc_addr_in_rar_count);
1576                     i < rar_entries; i++)
1577                        ixgbe_disable_rar(hw, i);
1578
1579        if (a->mta_in_use > 0)
1580                IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1581
1582        return 0;
1583}
1584
1585/**
1586 *  ixgbe_fc_enable - Enable flow control
1587 *  @hw: pointer to hardware structure
1588 *  @packetbuf_num: packet buffer number (0-7)
1589 *
1590 *  Enable flow control according to the current settings.
1591 **/
1592s32 ixgbe_fc_enable(struct ixgbe_hw *hw, s32 packetbuf_num)
1593{
1594        s32 ret_val = 0;
1595        u32 mflcn_reg;
1596        u32 fccfg_reg;
1597        u32 reg;
1598
1599        mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
1600        mflcn_reg &= ~(IXGBE_MFLCN_RFCE | IXGBE_MFLCN_RPFCE);
1601
1602        fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
1603        fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
1604
1605        /*
1606         * The possible values of fc.current_mode are:
1607         * 0: Flow control is completely disabled
1608         * 1: Rx flow control is enabled (we can receive pause frames,
1609         *    but not send pause frames).
1610         * 2: Tx flow control is enabled (we can send pause frames but
1611         *    we do not support receiving pause frames).
1612         * 3: Both Rx and Tx flow control (symmetric) are enabled.
1613         * 4: Priority Flow Control is enabled.
1614         * other: Invalid.
1615         */
1616        switch (hw->fc.current_mode) {
1617        case ixgbe_fc_none:
1618                /* Flow control completely disabled by software override. */
1619                break;
1620        case ixgbe_fc_rx_pause:
1621                /*
1622                 * Rx Flow control is enabled and Tx Flow control is
1623                 * disabled by software override. Since there really
1624                 * isn't a way to advertise that we are capable of RX
1625                 * Pause ONLY, we will advertise that we support both
1626                 * symmetric and asymmetric Rx PAUSE.  Later, we will
1627                 * disable the adapter's ability to send PAUSE frames.
1628                 */
1629                mflcn_reg |= IXGBE_MFLCN_RFCE;
1630                break;
1631        case ixgbe_fc_tx_pause:
1632                /*
1633                 * Tx Flow control is enabled, and Rx Flow control is
1634                 * disabled by software override.
1635                 */
1636                fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
1637                break;
1638        case ixgbe_fc_full:
1639                /* Flow control (both Rx and Tx) is enabled by SW override. */
1640                mflcn_reg |= IXGBE_MFLCN_RFCE;
1641                fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
1642                break;
1643#ifdef CONFIG_DCB
1644        case ixgbe_fc_pfc:
1645                goto out;
1646                break;
1647#endif
1648        default:
1649                hw_dbg(hw, "Flow control param set incorrectly\n");
1650                ret_val = -IXGBE_ERR_CONFIG;
1651                goto out;
1652                break;
1653        }
1654
1655        /* Enable 802.3x based flow control settings. */
1656        IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
1657        IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
1658
1659        /* Set up and enable Rx high/low water mark thresholds, enable XON. */
1660        if (hw->fc.current_mode & ixgbe_fc_tx_pause) {
1661                if (hw->fc.send_xon)
1662                        IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(packetbuf_num),
1663                                        (hw->fc.low_water | IXGBE_FCRTL_XONE));
1664                else
1665                        IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(packetbuf_num),
1666                                        hw->fc.low_water);
1667
1668                IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(packetbuf_num),
1669                                (hw->fc.high_water | IXGBE_FCRTH_FCEN));
1670        }
1671
1672        /* Configure pause time (2 TCs per register) */
1673        reg = IXGBE_READ_REG(hw, IXGBE_FCTTV(packetbuf_num));
1674        if ((packetbuf_num & 1) == 0)
1675                reg = (reg & 0xFFFF0000) | hw->fc.pause_time;
1676        else
1677                reg = (reg & 0x0000FFFF) | (hw->fc.pause_time << 16);
1678        IXGBE_WRITE_REG(hw, IXGBE_FCTTV(packetbuf_num / 2), reg);
1679
1680        IXGBE_WRITE_REG(hw, IXGBE_FCRTV, (hw->fc.pause_time >> 1));
1681
1682out:
1683        return ret_val;
1684}
1685
1686/**
1687 *  ixgbe_fc_autoneg - Configure flow control
1688 *  @hw: pointer to hardware structure
1689 *
1690 *  Negotiates flow control capabilities with link partner using autoneg and
1691 *  applies the results.
1692 **/
1693s32 ixgbe_fc_autoneg(struct ixgbe_hw *hw)
1694{
1695        s32 ret_val = 0;
1696        u32 i, reg, pcs_anadv_reg, pcs_lpab_reg;
1697
1698        reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
1699
1700        /*
1701         * The possible values of fc.current_mode are:
1702         * 0:  Flow control is completely disabled
1703         * 1:  Rx flow control is enabled (we can receive pause frames,
1704         *     but not send pause frames).
1705         * 2:  Tx flow control is enabled (we can send pause frames but
1706         *     we do not support receiving pause frames).
1707         * 3:  Both Rx and Tx flow control (symmetric) are enabled.
1708         * 4:  Priority Flow Control is enabled.
1709         * other: Invalid.
1710         */
1711        switch (hw->fc.current_mode) {
1712        case ixgbe_fc_none:
1713                /* Flow control completely disabled by software override. */
1714                reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
1715                break;
1716        case ixgbe_fc_rx_pause:
1717                /*
1718                 * Rx Flow control is enabled and Tx Flow control is
1719                 * disabled by software override. Since there really
1720                 * isn't a way to advertise that we are capable of RX
1721                 * Pause ONLY, we will advertise that we support both
1722                 * symmetric and asymmetric Rx PAUSE.  Later, we will
1723                 * disable the adapter's ability to send PAUSE frames.
1724                 */
1725                reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
1726                break;
1727        case ixgbe_fc_tx_pause:
1728                /*
1729                 * Tx Flow control is enabled, and Rx Flow control is
1730                 * disabled by software override.
1731                 */
1732                reg |= (IXGBE_PCS1GANA_ASM_PAUSE);
1733                reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE);
1734                break;
1735        case ixgbe_fc_full:
1736                /* Flow control (both Rx and Tx) is enabled by SW override. */
1737                reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
1738                break;
1739#ifdef CONFIG_DCB
1740        case ixgbe_fc_pfc:
1741                goto out;
1742                break;
1743#endif
1744        default:
1745                hw_dbg(hw, "Flow control param set incorrectly\n");
1746                ret_val = -IXGBE_ERR_CONFIG;
1747                goto out;
1748                break;
1749        }
1750
1751        IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
1752        reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
1753
1754        /* Set PCS register for autoneg */
1755        /* Enable and restart autoneg */
1756        reg |= IXGBE_PCS1GLCTL_AN_ENABLE | IXGBE_PCS1GLCTL_AN_RESTART;
1757
1758        /* Disable AN timeout */
1759        if (hw->fc.strict_ieee)
1760                reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
1761
1762        hw_dbg(hw, "Configuring Autoneg; PCS_LCTL = 0x%08X\n", reg);
1763        IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
1764
1765        /* See if autonegotiation has succeeded */
1766        hw->mac.autoneg_succeeded = 0;
1767        for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
1768                msleep(10);
1769                reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
1770                if ((reg & (IXGBE_PCS1GLSTA_LINK_OK |
1771                     IXGBE_PCS1GLSTA_AN_COMPLETE)) ==
1772                    (IXGBE_PCS1GLSTA_LINK_OK |
1773                     IXGBE_PCS1GLSTA_AN_COMPLETE)) {
1774                        if (!(reg & IXGBE_PCS1GLSTA_AN_TIMED_OUT))
1775                                hw->mac.autoneg_succeeded = 1;
1776                        break;
1777                }
1778        }
1779
1780        if (!hw->mac.autoneg_succeeded) {
1781                /* Autoneg failed to achieve a link, so we turn fc off */
1782                hw->fc.current_mode = ixgbe_fc_none;
1783                hw_dbg(hw, "Flow Control = NONE.\n");
1784                goto out;
1785        }
1786
1787        /*
1788         * Read the AN advertisement and LP ability registers and resolve
1789         * local flow control settings accordingly
1790         */
1791        pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
1792        pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
1793        if ((pcs_anadv_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
1794                (pcs_lpab_reg & IXGBE_PCS1GANA_SYM_PAUSE)) {
1795                /*
1796                 * Now we need to check if the user selected Rx ONLY
1797                 * of pause frames.  In this case, we had to advertise
1798                 * FULL flow control because we could not advertise RX
1799                 * ONLY. Hence, we must now check to see if we need to
1800                 * turn OFF the TRANSMISSION of PAUSE frames.
1801                 */
1802                if (hw->fc.requested_mode == ixgbe_fc_full) {
1803                        hw->fc.current_mode = ixgbe_fc_full;
1804                        hw_dbg(hw, "Flow Control = FULL.\n");
1805                } else {
1806                        hw->fc.current_mode = ixgbe_fc_rx_pause;
1807                        hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
1808                }
1809        } else if (!(pcs_anadv_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
1810                   (pcs_anadv_reg & IXGBE_PCS1GANA_ASM_PAUSE) &&
1811                   (pcs_lpab_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
1812                   (pcs_lpab_reg & IXGBE_PCS1GANA_ASM_PAUSE)) {
1813                hw->fc.current_mode = ixgbe_fc_tx_pause;
1814                hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
1815        } else if ((pcs_anadv_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
1816                   (pcs_anadv_reg & IXGBE_PCS1GANA_ASM_PAUSE) &&
1817                   !(pcs_lpab_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
1818                   (pcs_lpab_reg & IXGBE_PCS1GANA_ASM_PAUSE)) {
1819                hw->fc.current_mode = ixgbe_fc_rx_pause;
1820                hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
1821        } else {
1822                hw->fc.current_mode = ixgbe_fc_none;
1823                hw_dbg(hw, "Flow Control = NONE.\n");
1824        }
1825
1826out:
1827        return ret_val;
1828}
1829
1830/**
1831 *  ixgbe_setup_fc_generic - Set up flow control
1832 *  @hw: pointer to hardware structure
1833 *
1834 *  Sets up flow control.
1835 **/
1836s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw, s32 packetbuf_num)
1837{
1838        s32 ret_val = 0;
1839        ixgbe_link_speed speed;
1840        bool link_up;
1841
1842#ifdef CONFIG_DCB
1843        if (hw->fc.requested_mode == ixgbe_fc_pfc) {
1844                hw->fc.current_mode = hw->fc.requested_mode;
1845                goto out;
1846        }
1847
1848#endif
1849        /* Validate the packetbuf configuration */
1850        if (packetbuf_num < 0 || packetbuf_num > 7) {
1851                hw_dbg(hw, "Invalid packet buffer number [%d], expected range "
1852                       "is 0-7\n", packetbuf_num);
1853                ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
1854                goto out;
1855        }
1856
1857        /*
1858         * Validate the water mark configuration.  Zero water marks are invalid
1859         * because it causes the controller to just blast out fc packets.
1860         */
1861        if (!hw->fc.low_water || !hw->fc.high_water || !hw->fc.pause_time) {
1862                hw_dbg(hw, "Invalid water mark configuration\n");
1863                ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
1864                goto out;
1865        }
1866
1867        /*
1868         * Validate the requested mode.  Strict IEEE mode does not allow
1869         * ixgbe_fc_rx_pause because it will cause testing anomalies.
1870         */
1871        if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
1872                hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict "
1873                       "IEEE mode\n");
1874                ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
1875                goto out;
1876        }
1877
1878        /*
1879         * 10gig parts do not have a word in the EEPROM to determine the
1880         * default flow control setting, so we explicitly set it to full.
1881         */
1882        if (hw->fc.requested_mode == ixgbe_fc_default)
1883                hw->fc.requested_mode = ixgbe_fc_full;
1884
1885        /*
1886         * Save off the requested flow control mode for use later.  Depending
1887         * on the link partner's capabilities, we may or may not use this mode.
1888         */
1889        hw->fc.current_mode = hw->fc.requested_mode;
1890
1891        /* Decide whether to use autoneg or not. */
1892        hw->mac.ops.check_link(hw, &speed, &link_up, false);
1893        if (!hw->fc.disable_fc_autoneg && hw->phy.multispeed_fiber &&
1894            (speed == IXGBE_LINK_SPEED_1GB_FULL))
1895                ret_val = ixgbe_fc_autoneg(hw);
1896
1897        if (ret_val)
1898                goto out;
1899
1900        ret_val = ixgbe_fc_enable(hw, packetbuf_num);
1901
1902out:
1903        return ret_val;
1904}
1905
1906/**
1907 *  ixgbe_disable_pcie_master - Disable PCI-express master access
1908 *  @hw: pointer to hardware structure
1909 *
1910 *  Disables PCI-Express master access and verifies there are no pending
1911 *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
1912 *  bit hasn't caused the master requests to be disabled, else 0
1913 *  is returned signifying master requests disabled.
1914 **/
1915s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
1916{
1917        u32 i;
1918        u32 reg_val;
1919        u32 number_of_queues;
1920        s32 status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
1921
1922        /* Disable the receive unit by stopping each queue */
1923        number_of_queues = hw->mac.max_rx_queues;
1924        for (i = 0; i < number_of_queues; i++) {
1925                reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
1926                if (reg_val & IXGBE_RXDCTL_ENABLE) {
1927                        reg_val &= ~IXGBE_RXDCTL_ENABLE;
1928                        IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
1929                }
1930        }
1931
1932        reg_val = IXGBE_READ_REG(hw, IXGBE_CTRL);
1933        reg_val |= IXGBE_CTRL_GIO_DIS;
1934        IXGBE_WRITE_REG(hw, IXGBE_CTRL, reg_val);
1935
1936        for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
1937                if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO)) {
1938                        status = 0;
1939                        break;
1940                }
1941                udelay(100);
1942        }
1943
1944        return status;
1945}
1946
1947
1948/**
1949 *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
1950 *  @hw: pointer to hardware structure
1951 *  @mask: Mask to specify which semaphore to acquire
1952 *
1953 *  Acquires the SWFW semaphore thought the GSSR register for the specified
1954 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
1955 **/
1956s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
1957{
1958        u32 gssr;
1959        u32 swmask = mask;
1960        u32 fwmask = mask << 5;
1961        s32 timeout = 200;
1962
1963        while (timeout) {
1964                if (ixgbe_get_eeprom_semaphore(hw))
1965                        return -IXGBE_ERR_SWFW_SYNC;
1966
1967                gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
1968                if (!(gssr & (fwmask | swmask)))
1969                        break;
1970
1971                /*
1972                 * Firmware currently using resource (fwmask) or other software
1973                 * thread currently using resource (swmask)
1974                 */
1975                ixgbe_release_eeprom_semaphore(hw);
1976                msleep(5);
1977                timeout--;
1978        }
1979
1980        if (!timeout) {
1981                hw_dbg(hw, "Driver can't access resource, GSSR timeout.\n");
1982                return -IXGBE_ERR_SWFW_SYNC;
1983        }
1984
1985        gssr |= swmask;
1986        IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
1987
1988        ixgbe_release_eeprom_semaphore(hw);
1989        return 0;
1990}
1991
1992/**
1993 *  ixgbe_release_swfw_sync - Release SWFW semaphore
1994 *  @hw: pointer to hardware structure
1995 *  @mask: Mask to specify which semaphore to release
1996 *
1997 *  Releases the SWFW semaphore thought the GSSR register for the specified
1998 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
1999 **/
2000void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2001{
2002        u32 gssr;
2003        u32 swmask = mask;
2004
2005        ixgbe_get_eeprom_semaphore(hw);
2006
2007        gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2008        gssr &= ~swmask;
2009        IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2010
2011        ixgbe_release_eeprom_semaphore(hw);
2012}
2013
2014/**
2015 *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2016 *  @hw: pointer to hardware structure
2017 *  @regval: register value to write to RXCTRL
2018 *
2019 *  Enables the Rx DMA unit
2020 **/
2021s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2022{
2023        IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2024
2025        return 0;
2026}
2027
2028/**
2029 *  ixgbe_blink_led_start_generic - Blink LED based on index.
2030 *  @hw: pointer to hardware structure
2031 *  @index: led number to blink
2032 **/
2033s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2034{
2035        ixgbe_link_speed speed = 0;
2036        bool link_up = 0;
2037        u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2038        u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2039
2040        /*
2041         * Link must be up to auto-blink the LEDs;
2042         * Force it if link is down.
2043         */
2044        hw->mac.ops.check_link(hw, &speed, &link_up, false);
2045
2046        if (!link_up) {
2047                autoc_reg |= IXGBE_AUTOC_FLU;
2048                IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2049                msleep(10);
2050        }
2051
2052        led_reg &= ~IXGBE_LED_MODE_MASK(index);
2053        led_reg |= IXGBE_LED_BLINK(index);
2054        IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2055        IXGBE_WRITE_FLUSH(hw);
2056
2057        return 0;
2058}
2059
2060/**
2061 *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2062 *  @hw: pointer to hardware structure
2063 *  @index: led number to stop blinking
2064 **/
2065s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2066{
2067        u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2068        u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2069
2070        autoc_reg &= ~IXGBE_AUTOC_FLU;
2071        autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2072        IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2073
2074        led_reg &= ~IXGBE_LED_MODE_MASK(index);
2075        led_reg &= ~IXGBE_LED_BLINK(index);
2076        led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2077        IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2078        IXGBE_WRITE_FLUSH(hw);
2079
2080        return 0;
2081}
2082