linux/drivers/edac/i5400_edac.c
<<
>>
Prefs
   1/*
   2 * Intel 5400 class Memory Controllers kernel module (Seaburg)
   3 *
   4 * This file may be distributed under the terms of the
   5 * GNU General Public License.
   6 *
   7 * Copyright (c) 2008 by:
   8 *       Ben Woodard <woodard@redhat.com>
   9 *       Mauro Carvalho Chehab <mchehab@redhat.com>
  10 *
  11 * Red Hat Inc. http://www.redhat.com
  12 *
  13 * Forked and adapted from the i5000_edac driver which was
  14 * written by Douglas Thompson Linux Networx <norsk5@xmission.com>
  15 *
  16 * This module is based on the following document:
  17 *
  18 * Intel 5400 Chipset Memory Controller Hub (MCH) - Datasheet
  19 *      http://developer.intel.com/design/chipsets/datashts/313070.htm
  20 *
  21 */
  22
  23#include <linux/module.h>
  24#include <linux/init.h>
  25#include <linux/pci.h>
  26#include <linux/pci_ids.h>
  27#include <linux/slab.h>
  28#include <linux/edac.h>
  29#include <linux/mmzone.h>
  30
  31#include "edac_core.h"
  32
  33/*
  34 * Alter this version for the I5400 module when modifications are made
  35 */
  36#define I5400_REVISION    " Ver: 1.0.0 " __DATE__
  37
  38#define EDAC_MOD_STR      "i5400_edac"
  39
  40#define i5400_printk(level, fmt, arg...) \
  41        edac_printk(level, "i5400", fmt, ##arg)
  42
  43#define i5400_mc_printk(mci, level, fmt, arg...) \
  44        edac_mc_chipset_printk(mci, level, "i5400", fmt, ##arg)
  45
  46/* Limits for i5400 */
  47#define NUM_MTRS_PER_BRANCH     4
  48#define CHANNELS_PER_BRANCH     2
  49#define MAX_CHANNELS            4
  50#define MAX_DIMMS               (MAX_CHANNELS * 4)      /* Up to 4 DIMM's per channel */
  51#define MAX_CSROWS              (MAX_DIMMS * 2)         /* max possible csrows per channel */
  52
  53/* Device 16,
  54 * Function 0: System Address
  55 * Function 1: Memory Branch Map, Control, Errors Register
  56 * Function 2: FSB Error Registers
  57 *
  58 * All 3 functions of Device 16 (0,1,2) share the SAME DID and
  59 * uses PCI_DEVICE_ID_INTEL_5400_ERR for device 16 (0,1,2),
  60 * PCI_DEVICE_ID_INTEL_5400_FBD0 and PCI_DEVICE_ID_INTEL_5400_FBD1
  61 * for device 21 (0,1).
  62 */
  63
  64        /* OFFSETS for Function 0 */
  65#define         AMBASE                  0x48 /* AMB Mem Mapped Reg Region Base */
  66#define         MAXCH                   0x56 /* Max Channel Number */
  67#define         MAXDIMMPERCH            0x57 /* Max DIMM PER Channel Number */
  68
  69        /* OFFSETS for Function 1 */
  70#define         TOLM                    0x6C
  71#define         REDMEMB                 0x7C
  72#define                 REC_ECC_LOCATOR_ODD(x)  ((x) & 0x3fe00) /* bits [17:9] indicate ODD, [8:0]  indicate EVEN */
  73#define         MIR0                    0x80
  74#define         MIR1                    0x84
  75#define         AMIR0                   0x8c
  76#define         AMIR1                   0x90
  77
  78        /* Fatal error registers */
  79#define         FERR_FAT_FBD            0x98    /* also called as FERR_FAT_FB_DIMM at datasheet */
  80#define                 FERR_FAT_FBDCHAN (3<<28)        /* channel index where the highest-order error occurred */
  81
  82#define         NERR_FAT_FBD            0x9c
  83#define         FERR_NF_FBD             0xa0    /* also called as FERR_NFAT_FB_DIMM at datasheet */
  84
  85        /* Non-fatal error register */
  86#define         NERR_NF_FBD             0xa4
  87
  88        /* Enable error mask */
  89#define         EMASK_FBD               0xa8
  90
  91#define         ERR0_FBD                0xac
  92#define         ERR1_FBD                0xb0
  93#define         ERR2_FBD                0xb4
  94#define         MCERR_FBD               0xb8
  95
  96        /* No OFFSETS for Device 16 Function 2 */
  97
  98/*
  99 * Device 21,
 100 * Function 0: Memory Map Branch 0
 101 *
 102 * Device 22,
 103 * Function 0: Memory Map Branch 1
 104 */
 105
 106        /* OFFSETS for Function 0 */
 107#define AMBPRESENT_0    0x64
 108#define AMBPRESENT_1    0x66
 109#define MTR0            0x80
 110#define MTR1            0x82
 111#define MTR2            0x84
 112#define MTR3            0x86
 113
 114        /* OFFSETS for Function 1 */
 115#define NRECFGLOG               0x74
 116#define RECFGLOG                0x78
 117#define NRECMEMA                0xbe
 118#define NRECMEMB                0xc0
 119#define NRECFB_DIMMA            0xc4
 120#define NRECFB_DIMMB            0xc8
 121#define NRECFB_DIMMC            0xcc
 122#define NRECFB_DIMMD            0xd0
 123#define NRECFB_DIMME            0xd4
 124#define NRECFB_DIMMF            0xd8
 125#define REDMEMA                 0xdC
 126#define RECMEMA                 0xf0
 127#define RECMEMB                 0xf4
 128#define RECFB_DIMMA             0xf8
 129#define RECFB_DIMMB             0xec
 130#define RECFB_DIMMC             0xf0
 131#define RECFB_DIMMD             0xf4
 132#define RECFB_DIMME             0xf8
 133#define RECFB_DIMMF             0xfC
 134
 135/*
 136 * Error indicator bits and masks
 137 * Error masks are according with Table 5-17 of i5400 datasheet
 138 */
 139
 140enum error_mask {
 141        EMASK_M1  = 1<<0,  /* Memory Write error on non-redundant retry */
 142        EMASK_M2  = 1<<1,  /* Memory or FB-DIMM configuration CRC read error */
 143        EMASK_M3  = 1<<2,  /* Reserved */
 144        EMASK_M4  = 1<<3,  /* Uncorrectable Data ECC on Replay */
 145        EMASK_M5  = 1<<4,  /* Aliased Uncorrectable Non-Mirrored Demand Data ECC */
 146        EMASK_M6  = 1<<5,  /* Unsupported on i5400 */
 147        EMASK_M7  = 1<<6,  /* Aliased Uncorrectable Resilver- or Spare-Copy Data ECC */
 148        EMASK_M8  = 1<<7,  /* Aliased Uncorrectable Patrol Data ECC */
 149        EMASK_M9  = 1<<8,  /* Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC */
 150        EMASK_M10 = 1<<9,  /* Unsupported on i5400 */
 151        EMASK_M11 = 1<<10, /* Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC  */
 152        EMASK_M12 = 1<<11, /* Non-Aliased Uncorrectable Patrol Data ECC */
 153        EMASK_M13 = 1<<12, /* Memory Write error on first attempt */
 154        EMASK_M14 = 1<<13, /* FB-DIMM Configuration Write error on first attempt */
 155        EMASK_M15 = 1<<14, /* Memory or FB-DIMM configuration CRC read error */
 156        EMASK_M16 = 1<<15, /* Channel Failed-Over Occurred */
 157        EMASK_M17 = 1<<16, /* Correctable Non-Mirrored Demand Data ECC */
 158        EMASK_M18 = 1<<17, /* Unsupported on i5400 */
 159        EMASK_M19 = 1<<18, /* Correctable Resilver- or Spare-Copy Data ECC */
 160        EMASK_M20 = 1<<19, /* Correctable Patrol Data ECC */
 161        EMASK_M21 = 1<<20, /* FB-DIMM Northbound parity error on FB-DIMM Sync Status */
 162        EMASK_M22 = 1<<21, /* SPD protocol Error */
 163        EMASK_M23 = 1<<22, /* Non-Redundant Fast Reset Timeout */
 164        EMASK_M24 = 1<<23, /* Refresh error */
 165        EMASK_M25 = 1<<24, /* Memory Write error on redundant retry */
 166        EMASK_M26 = 1<<25, /* Redundant Fast Reset Timeout */
 167        EMASK_M27 = 1<<26, /* Correctable Counter Threshold Exceeded */
 168        EMASK_M28 = 1<<27, /* DIMM-Spare Copy Completed */
 169        EMASK_M29 = 1<<28, /* DIMM-Isolation Completed */
 170};
 171
 172/*
 173 * Names to translate bit error into something useful
 174 */
 175static const char *error_name[] = {
 176        [0]  = "Memory Write error on non-redundant retry",
 177        [1]  = "Memory or FB-DIMM configuration CRC read error",
 178        /* Reserved */
 179        [3]  = "Uncorrectable Data ECC on Replay",
 180        [4]  = "Aliased Uncorrectable Non-Mirrored Demand Data ECC",
 181        /* M6 Unsupported on i5400 */
 182        [6]  = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
 183        [7]  = "Aliased Uncorrectable Patrol Data ECC",
 184        [8]  = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC",
 185        /* M10 Unsupported on i5400 */
 186        [10] = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
 187        [11] = "Non-Aliased Uncorrectable Patrol Data ECC",
 188        [12] = "Memory Write error on first attempt",
 189        [13] = "FB-DIMM Configuration Write error on first attempt",
 190        [14] = "Memory or FB-DIMM configuration CRC read error",
 191        [15] = "Channel Failed-Over Occurred",
 192        [16] = "Correctable Non-Mirrored Demand Data ECC",
 193        /* M18 Unsupported on i5400 */
 194        [18] = "Correctable Resilver- or Spare-Copy Data ECC",
 195        [19] = "Correctable Patrol Data ECC",
 196        [20] = "FB-DIMM Northbound parity error on FB-DIMM Sync Status",
 197        [21] = "SPD protocol Error",
 198        [22] = "Non-Redundant Fast Reset Timeout",
 199        [23] = "Refresh error",
 200        [24] = "Memory Write error on redundant retry",
 201        [25] = "Redundant Fast Reset Timeout",
 202        [26] = "Correctable Counter Threshold Exceeded",
 203        [27] = "DIMM-Spare Copy Completed",
 204        [28] = "DIMM-Isolation Completed",
 205};
 206
 207/* Fatal errors */
 208#define ERROR_FAT_MASK          (EMASK_M1 | \
 209                                 EMASK_M2 | \
 210                                 EMASK_M23)
 211
 212/* Correctable errors */
 213#define ERROR_NF_CORRECTABLE    (EMASK_M27 | \
 214                                 EMASK_M20 | \
 215                                 EMASK_M19 | \
 216                                 EMASK_M18 | \
 217                                 EMASK_M17 | \
 218                                 EMASK_M16)
 219#define ERROR_NF_DIMM_SPARE     (EMASK_M29 | \
 220                                 EMASK_M28)
 221#define ERROR_NF_SPD_PROTOCOL   (EMASK_M22)
 222#define ERROR_NF_NORTH_CRC      (EMASK_M21)
 223
 224/* Recoverable errors */
 225#define ERROR_NF_RECOVERABLE    (EMASK_M26 | \
 226                                 EMASK_M25 | \
 227                                 EMASK_M24 | \
 228                                 EMASK_M15 | \
 229                                 EMASK_M14 | \
 230                                 EMASK_M13 | \
 231                                 EMASK_M12 | \
 232                                 EMASK_M11 | \
 233                                 EMASK_M9  | \
 234                                 EMASK_M8  | \
 235                                 EMASK_M7  | \
 236                                 EMASK_M5)
 237
 238/* uncorrectable errors */
 239#define ERROR_NF_UNCORRECTABLE  (EMASK_M4)
 240
 241/* mask to all non-fatal errors */
 242#define ERROR_NF_MASK           (ERROR_NF_CORRECTABLE   | \
 243                                 ERROR_NF_UNCORRECTABLE | \
 244                                 ERROR_NF_RECOVERABLE   | \
 245                                 ERROR_NF_DIMM_SPARE    | \
 246                                 ERROR_NF_SPD_PROTOCOL  | \
 247                                 ERROR_NF_NORTH_CRC)
 248
 249/*
 250 * Define error masks for the several registers
 251 */
 252
 253/* Enable all fatal and non fatal errors */
 254#define ENABLE_EMASK_ALL        (ERROR_FAT_MASK | ERROR_NF_MASK)
 255
 256/* mask for fatal error registers */
 257#define FERR_FAT_MASK ERROR_FAT_MASK
 258
 259/* masks for non-fatal error register */
 260static inline int to_nf_mask(unsigned int mask)
 261{
 262        return (mask & EMASK_M29) | (mask >> 3);
 263};
 264
 265static inline int from_nf_ferr(unsigned int mask)
 266{
 267        return (mask & EMASK_M29) |             /* Bit 28 */
 268               (mask & ((1 << 28) - 1) << 3);   /* Bits 0 to 27 */
 269};
 270
 271#define FERR_NF_MASK            to_nf_mask(ERROR_NF_MASK)
 272#define FERR_NF_CORRECTABLE     to_nf_mask(ERROR_NF_CORRECTABLE)
 273#define FERR_NF_DIMM_SPARE      to_nf_mask(ERROR_NF_DIMM_SPARE)
 274#define FERR_NF_SPD_PROTOCOL    to_nf_mask(ERROR_NF_SPD_PROTOCOL)
 275#define FERR_NF_NORTH_CRC       to_nf_mask(ERROR_NF_NORTH_CRC)
 276#define FERR_NF_RECOVERABLE     to_nf_mask(ERROR_NF_RECOVERABLE)
 277#define FERR_NF_UNCORRECTABLE   to_nf_mask(ERROR_NF_UNCORRECTABLE)
 278
 279/* Defines to extract the vaious fields from the
 280 *      MTRx - Memory Technology Registers
 281 */
 282#define MTR_DIMMS_PRESENT(mtr)          ((mtr) & (1 << 10))
 283#define MTR_DIMMS_ETHROTTLE(mtr)        ((mtr) & (1 << 9))
 284#define MTR_DRAM_WIDTH(mtr)             (((mtr) & (1 << 8)) ? 8 : 4)
 285#define MTR_DRAM_BANKS(mtr)             (((mtr) & (1 << 6)) ? 8 : 4)
 286#define MTR_DRAM_BANKS_ADDR_BITS(mtr)   ((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
 287#define MTR_DIMM_RANK(mtr)              (((mtr) >> 5) & 0x1)
 288#define MTR_DIMM_RANK_ADDR_BITS(mtr)    (MTR_DIMM_RANK(mtr) ? 2 : 1)
 289#define MTR_DIMM_ROWS(mtr)              (((mtr) >> 2) & 0x3)
 290#define MTR_DIMM_ROWS_ADDR_BITS(mtr)    (MTR_DIMM_ROWS(mtr) + 13)
 291#define MTR_DIMM_COLS(mtr)              ((mtr) & 0x3)
 292#define MTR_DIMM_COLS_ADDR_BITS(mtr)    (MTR_DIMM_COLS(mtr) + 10)
 293
 294/* This applies to FERR_NF_FB-DIMM as well as FERR_FAT_FB-DIMM */
 295static inline int extract_fbdchan_indx(u32 x)
 296{
 297        return (x>>28) & 0x3;
 298}
 299
 300#ifdef CONFIG_EDAC_DEBUG
 301/* MTR NUMROW */
 302static const char *numrow_toString[] = {
 303        "8,192 - 13 rows",
 304        "16,384 - 14 rows",
 305        "32,768 - 15 rows",
 306        "65,536 - 16 rows"
 307};
 308
 309/* MTR NUMCOL */
 310static const char *numcol_toString[] = {
 311        "1,024 - 10 columns",
 312        "2,048 - 11 columns",
 313        "4,096 - 12 columns",
 314        "reserved"
 315};
 316#endif
 317
 318/* Device name and register DID (Device ID) */
 319struct i5400_dev_info {
 320        const char *ctl_name;   /* name for this device */
 321        u16 fsb_mapping_errors; /* DID for the branchmap,control */
 322};
 323
 324/* Table of devices attributes supported by this driver */
 325static const struct i5400_dev_info i5400_devs[] = {
 326        {
 327                .ctl_name = "I5400",
 328                .fsb_mapping_errors = PCI_DEVICE_ID_INTEL_5400_ERR,
 329        },
 330};
 331
 332struct i5400_dimm_info {
 333        int megabytes;          /* size, 0 means not present  */
 334        int dual_rank;
 335};
 336
 337/* driver private data structure */
 338struct i5400_pvt {
 339        struct pci_dev *system_address;         /* 16.0 */
 340        struct pci_dev *branchmap_werrors;      /* 16.1 */
 341        struct pci_dev *fsb_error_regs;         /* 16.2 */
 342        struct pci_dev *branch_0;               /* 21.0 */
 343        struct pci_dev *branch_1;               /* 22.0 */
 344
 345        u16 tolm;                               /* top of low memory */
 346        u64 ambase;                             /* AMB BAR */
 347
 348        u16 mir0, mir1;
 349
 350        u16 b0_mtr[NUM_MTRS_PER_BRANCH];        /* Memory Technlogy Reg */
 351        u16 b0_ambpresent0;                     /* Branch 0, Channel 0 */
 352        u16 b0_ambpresent1;                     /* Brnach 0, Channel 1 */
 353
 354        u16 b1_mtr[NUM_MTRS_PER_BRANCH];        /* Memory Technlogy Reg */
 355        u16 b1_ambpresent0;                     /* Branch 1, Channel 8 */
 356        u16 b1_ambpresent1;                     /* Branch 1, Channel 1 */
 357
 358        /* DIMM information matrix, allocating architecture maximums */
 359        struct i5400_dimm_info dimm_info[MAX_CSROWS][MAX_CHANNELS];
 360
 361        /* Actual values for this controller */
 362        int maxch;                              /* Max channels */
 363        int maxdimmperch;                       /* Max DIMMs per channel */
 364};
 365
 366/* I5400 MCH error information retrieved from Hardware */
 367struct i5400_error_info {
 368        /* These registers are always read from the MC */
 369        u32 ferr_fat_fbd;       /* First Errors Fatal */
 370        u32 nerr_fat_fbd;       /* Next Errors Fatal */
 371        u32 ferr_nf_fbd;        /* First Errors Non-Fatal */
 372        u32 nerr_nf_fbd;        /* Next Errors Non-Fatal */
 373
 374        /* These registers are input ONLY if there was a Recoverable Error */
 375        u32 redmemb;            /* Recoverable Mem Data Error log B */
 376        u16 recmema;            /* Recoverable Mem Error log A */
 377        u32 recmemb;            /* Recoverable Mem Error log B */
 378
 379        /* These registers are input ONLY if there was a Non-Rec Error */
 380        u16 nrecmema;           /* Non-Recoverable Mem log A */
 381        u16 nrecmemb;           /* Non-Recoverable Mem log B */
 382
 383};
 384
 385/* note that nrec_rdwr changed from NRECMEMA to NRECMEMB between the 5000 and
 386   5400 better to use an inline function than a macro in this case */
 387static inline int nrec_bank(struct i5400_error_info *info)
 388{
 389        return ((info->nrecmema) >> 12) & 0x7;
 390}
 391static inline int nrec_rank(struct i5400_error_info *info)
 392{
 393        return ((info->nrecmema) >> 8) & 0xf;
 394}
 395static inline int nrec_buf_id(struct i5400_error_info *info)
 396{
 397        return ((info->nrecmema)) & 0xff;
 398}
 399static inline int nrec_rdwr(struct i5400_error_info *info)
 400{
 401        return (info->nrecmemb) >> 31;
 402}
 403/* This applies to both NREC and REC string so it can be used with nrec_rdwr
 404   and rec_rdwr */
 405static inline const char *rdwr_str(int rdwr)
 406{
 407        return rdwr ? "Write" : "Read";
 408}
 409static inline int nrec_cas(struct i5400_error_info *info)
 410{
 411        return ((info->nrecmemb) >> 16) & 0x1fff;
 412}
 413static inline int nrec_ras(struct i5400_error_info *info)
 414{
 415        return (info->nrecmemb) & 0xffff;
 416}
 417static inline int rec_bank(struct i5400_error_info *info)
 418{
 419        return ((info->recmema) >> 12) & 0x7;
 420}
 421static inline int rec_rank(struct i5400_error_info *info)
 422{
 423        return ((info->recmema) >> 8) & 0xf;
 424}
 425static inline int rec_rdwr(struct i5400_error_info *info)
 426{
 427        return (info->recmemb) >> 31;
 428}
 429static inline int rec_cas(struct i5400_error_info *info)
 430{
 431        return ((info->recmemb) >> 16) & 0x1fff;
 432}
 433static inline int rec_ras(struct i5400_error_info *info)
 434{
 435        return (info->recmemb) & 0xffff;
 436}
 437
 438static struct edac_pci_ctl_info *i5400_pci;
 439
 440/*
 441 *      i5400_get_error_info    Retrieve the hardware error information from
 442 *                              the hardware and cache it in the 'info'
 443 *                              structure
 444 */
 445static void i5400_get_error_info(struct mem_ctl_info *mci,
 446                                 struct i5400_error_info *info)
 447{
 448        struct i5400_pvt *pvt;
 449        u32 value;
 450
 451        pvt = mci->pvt_info;
 452
 453        /* read in the 1st FATAL error register */
 454        pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);
 455
 456        /* Mask only the bits that the doc says are valid
 457         */
 458        value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);
 459
 460        /* If there is an error, then read in the
 461           NEXT FATAL error register and the Memory Error Log Register A
 462         */
 463        if (value & FERR_FAT_MASK) {
 464                info->ferr_fat_fbd = value;
 465
 466                /* harvest the various error data we need */
 467                pci_read_config_dword(pvt->branchmap_werrors,
 468                                NERR_FAT_FBD, &info->nerr_fat_fbd);
 469                pci_read_config_word(pvt->branchmap_werrors,
 470                                NRECMEMA, &info->nrecmema);
 471                pci_read_config_word(pvt->branchmap_werrors,
 472                                NRECMEMB, &info->nrecmemb);
 473
 474                /* Clear the error bits, by writing them back */
 475                pci_write_config_dword(pvt->branchmap_werrors,
 476                                FERR_FAT_FBD, value);
 477        } else {
 478                info->ferr_fat_fbd = 0;
 479                info->nerr_fat_fbd = 0;
 480                info->nrecmema = 0;
 481                info->nrecmemb = 0;
 482        }
 483
 484        /* read in the 1st NON-FATAL error register */
 485        pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);
 486
 487        /* If there is an error, then read in the 1st NON-FATAL error
 488         * register as well */
 489        if (value & FERR_NF_MASK) {
 490                info->ferr_nf_fbd = value;
 491
 492                /* harvest the various error data we need */
 493                pci_read_config_dword(pvt->branchmap_werrors,
 494                                NERR_NF_FBD, &info->nerr_nf_fbd);
 495                pci_read_config_word(pvt->branchmap_werrors,
 496                                RECMEMA, &info->recmema);
 497                pci_read_config_dword(pvt->branchmap_werrors,
 498                                RECMEMB, &info->recmemb);
 499                pci_read_config_dword(pvt->branchmap_werrors,
 500                                REDMEMB, &info->redmemb);
 501
 502                /* Clear the error bits, by writing them back */
 503                pci_write_config_dword(pvt->branchmap_werrors,
 504                                FERR_NF_FBD, value);
 505        } else {
 506                info->ferr_nf_fbd = 0;
 507                info->nerr_nf_fbd = 0;
 508                info->recmema = 0;
 509                info->recmemb = 0;
 510                info->redmemb = 0;
 511        }
 512}
 513
 514/*
 515 * i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci,
 516 *                                      struct i5400_error_info *info,
 517 *                                      int handle_errors);
 518 *
 519 *      handle the Intel FATAL and unrecoverable errors, if any
 520 */
 521static void i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci,
 522                                    struct i5400_error_info *info,
 523                                    unsigned long allErrors)
 524{
 525        char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80];
 526        int branch;
 527        int channel;
 528        int bank;
 529        int buf_id;
 530        int rank;
 531        int rdwr;
 532        int ras, cas;
 533        int errnum;
 534        char *type = NULL;
 535
 536        if (!allErrors)
 537                return;         /* if no error, return now */
 538
 539        if (allErrors &  ERROR_FAT_MASK)
 540                type = "FATAL";
 541        else if (allErrors & FERR_NF_UNCORRECTABLE)
 542                type = "NON-FATAL uncorrected";
 543        else
 544                type = "NON-FATAL recoverable";
 545
 546        /* ONLY ONE of the possible error bits will be set, as per the docs */
 547
 548        branch = extract_fbdchan_indx(info->ferr_fat_fbd);
 549        channel = branch;
 550
 551        /* Use the NON-Recoverable macros to extract data */
 552        bank = nrec_bank(info);
 553        rank = nrec_rank(info);
 554        buf_id = nrec_buf_id(info);
 555        rdwr = nrec_rdwr(info);
 556        ras = nrec_ras(info);
 557        cas = nrec_cas(info);
 558
 559        debugf0("\t\tCSROW= %d  Channels= %d,%d  (Branch= %d "
 560                "DRAM Bank= %d Buffer ID = %d rdwr= %s ras= %d cas= %d)\n",
 561                rank, channel, channel + 1, branch >> 1, bank,
 562                buf_id, rdwr_str(rdwr), ras, cas);
 563
 564        /* Only 1 bit will be on */
 565        errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
 566
 567        /* Form out message */
 568        snprintf(msg, sizeof(msg),
 569                 "%s (Branch=%d DRAM-Bank=%d Buffer ID = %d RDWR=%s "
 570                 "RAS=%d CAS=%d %s Err=0x%lx (%s))",
 571                 type, branch >> 1, bank, buf_id, rdwr_str(rdwr), ras, cas,
 572                 type, allErrors, error_name[errnum]);
 573
 574        /* Call the helper to output message */
 575        edac_mc_handle_fbd_ue(mci, rank, channel, channel + 1, msg);
 576}
 577
 578/*
 579 * i5400_process_fatal_error_info(struct mem_ctl_info *mci,
 580 *                              struct i5400_error_info *info,
 581 *                              int handle_errors);
 582 *
 583 *      handle the Intel NON-FATAL errors, if any
 584 */
 585static void i5400_process_nonfatal_error_info(struct mem_ctl_info *mci,
 586                                        struct i5400_error_info *info)
 587{
 588        char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80];
 589        unsigned long allErrors;
 590        int branch;
 591        int channel;
 592        int bank;
 593        int rank;
 594        int rdwr;
 595        int ras, cas;
 596        int errnum;
 597
 598        /* mask off the Error bits that are possible */
 599        allErrors = from_nf_ferr(info->ferr_nf_fbd & FERR_NF_MASK);
 600        if (!allErrors)
 601                return;         /* if no error, return now */
 602
 603        /* ONLY ONE of the possible error bits will be set, as per the docs */
 604
 605        if (allErrors & (ERROR_NF_UNCORRECTABLE | ERROR_NF_RECOVERABLE)) {
 606                i5400_proccess_non_recoverable_info(mci, info, allErrors);
 607                return;
 608        }
 609
 610        /* Correctable errors */
 611        if (allErrors & ERROR_NF_CORRECTABLE) {
 612                debugf0("\tCorrected bits= 0x%lx\n", allErrors);
 613
 614                branch = extract_fbdchan_indx(info->ferr_nf_fbd);
 615
 616                channel = 0;
 617                if (REC_ECC_LOCATOR_ODD(info->redmemb))
 618                        channel = 1;
 619
 620                /* Convert channel to be based from zero, instead of
 621                 * from branch base of 0 */
 622                channel += branch;
 623
 624                bank = rec_bank(info);
 625                rank = rec_rank(info);
 626                rdwr = rec_rdwr(info);
 627                ras = rec_ras(info);
 628                cas = rec_cas(info);
 629
 630                /* Only 1 bit will be on */
 631                errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
 632
 633                debugf0("\t\tCSROW= %d Channel= %d  (Branch %d "
 634                        "DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
 635                        rank, channel, branch >> 1, bank,
 636                        rdwr_str(rdwr), ras, cas);
 637
 638                /* Form out message */
 639                snprintf(msg, sizeof(msg),
 640                         "Corrected error (Branch=%d DRAM-Bank=%d RDWR=%s "
 641                         "RAS=%d CAS=%d, CE Err=0x%lx (%s))",
 642                         branch >> 1, bank, rdwr_str(rdwr), ras, cas,
 643                         allErrors, error_name[errnum]);
 644
 645                /* Call the helper to output message */
 646                edac_mc_handle_fbd_ce(mci, rank, channel, msg);
 647
 648                return;
 649        }
 650
 651        /* Miscelaneous errors */
 652        errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
 653
 654        branch = extract_fbdchan_indx(info->ferr_nf_fbd);
 655
 656        i5400_mc_printk(mci, KERN_EMERG,
 657                        "Non-Fatal misc error (Branch=%d Err=%#lx (%s))",
 658                        branch >> 1, allErrors, error_name[errnum]);
 659}
 660
 661/*
 662 *      i5400_process_error_info        Process the error info that is
 663 *      in the 'info' structure, previously retrieved from hardware
 664 */
 665static void i5400_process_error_info(struct mem_ctl_info *mci,
 666                                struct i5400_error_info *info)
 667{       u32 allErrors;
 668
 669        /* First handle any fatal errors that occurred */
 670        allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
 671        i5400_proccess_non_recoverable_info(mci, info, allErrors);
 672
 673        /* now handle any non-fatal errors that occurred */
 674        i5400_process_nonfatal_error_info(mci, info);
 675}
 676
 677/*
 678 *      i5400_clear_error       Retrieve any error from the hardware
 679 *                              but do NOT process that error.
 680 *                              Used for 'clearing' out of previous errors
 681 *                              Called by the Core module.
 682 */
 683static void i5400_clear_error(struct mem_ctl_info *mci)
 684{
 685        struct i5400_error_info info;
 686
 687        i5400_get_error_info(mci, &info);
 688}
 689
 690/*
 691 *      i5400_check_error       Retrieve and process errors reported by the
 692 *                              hardware. Called by the Core module.
 693 */
 694static void i5400_check_error(struct mem_ctl_info *mci)
 695{
 696        struct i5400_error_info info;
 697        debugf4("MC%d: " __FILE__ ": %s()\n", mci->mc_idx, __func__);
 698        i5400_get_error_info(mci, &info);
 699        i5400_process_error_info(mci, &info);
 700}
 701
 702/*
 703 *      i5400_put_devices       'put' all the devices that we have
 704 *                              reserved via 'get'
 705 */
 706static void i5400_put_devices(struct mem_ctl_info *mci)
 707{
 708        struct i5400_pvt *pvt;
 709
 710        pvt = mci->pvt_info;
 711
 712        /* Decrement usage count for devices */
 713        pci_dev_put(pvt->branch_1);
 714        pci_dev_put(pvt->branch_0);
 715        pci_dev_put(pvt->fsb_error_regs);
 716        pci_dev_put(pvt->branchmap_werrors);
 717}
 718
 719/*
 720 *      i5400_get_devices       Find and perform 'get' operation on the MCH's
 721 *                      device/functions we want to reference for this driver
 722 *
 723 *                      Need to 'get' device 16 func 1 and func 2
 724 */
 725static int i5400_get_devices(struct mem_ctl_info *mci, int dev_idx)
 726{
 727        struct i5400_pvt *pvt;
 728        struct pci_dev *pdev;
 729
 730        pvt = mci->pvt_info;
 731        pvt->branchmap_werrors = NULL;
 732        pvt->fsb_error_regs = NULL;
 733        pvt->branch_0 = NULL;
 734        pvt->branch_1 = NULL;
 735
 736        /* Attempt to 'get' the MCH register we want */
 737        pdev = NULL;
 738        while (!pvt->branchmap_werrors || !pvt->fsb_error_regs) {
 739                pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
 740                                      PCI_DEVICE_ID_INTEL_5400_ERR, pdev);
 741                if (!pdev) {
 742                        /* End of list, leave */
 743                        i5400_printk(KERN_ERR,
 744                                "'system address,Process Bus' "
 745                                "device not found:"
 746                                "vendor 0x%x device 0x%x ERR funcs "
 747                                "(broken BIOS?)\n",
 748                                PCI_VENDOR_ID_INTEL,
 749                                PCI_DEVICE_ID_INTEL_5400_ERR);
 750                        goto error;
 751                }
 752
 753                /* Store device 16 funcs 1 and 2 */
 754                switch (PCI_FUNC(pdev->devfn)) {
 755                case 1:
 756                        pvt->branchmap_werrors = pdev;
 757                        break;
 758                case 2:
 759                        pvt->fsb_error_regs = pdev;
 760                        break;
 761                }
 762        }
 763
 764        debugf1("System Address, processor bus- PCI Bus ID: %s  %x:%x\n",
 765                pci_name(pvt->system_address),
 766                pvt->system_address->vendor, pvt->system_address->device);
 767        debugf1("Branchmap, control and errors - PCI Bus ID: %s  %x:%x\n",
 768                pci_name(pvt->branchmap_werrors),
 769                pvt->branchmap_werrors->vendor, pvt->branchmap_werrors->device);
 770        debugf1("FSB Error Regs - PCI Bus ID: %s  %x:%x\n",
 771                pci_name(pvt->fsb_error_regs),
 772                pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);
 773
 774        pvt->branch_0 = pci_get_device(PCI_VENDOR_ID_INTEL,
 775                                       PCI_DEVICE_ID_INTEL_5400_FBD0, NULL);
 776        if (!pvt->branch_0) {
 777                i5400_printk(KERN_ERR,
 778                        "MC: 'BRANCH 0' device not found:"
 779                        "vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
 780                        PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_FBD0);
 781                goto error;
 782        }
 783
 784        /* If this device claims to have more than 2 channels then
 785         * fetch Branch 1's information
 786         */
 787        if (pvt->maxch < CHANNELS_PER_BRANCH)
 788                return 0;
 789
 790        pvt->branch_1 = pci_get_device(PCI_VENDOR_ID_INTEL,
 791                                       PCI_DEVICE_ID_INTEL_5400_FBD1, NULL);
 792        if (!pvt->branch_1) {
 793                i5400_printk(KERN_ERR,
 794                        "MC: 'BRANCH 1' device not found:"
 795                        "vendor 0x%x device 0x%x Func 0 "
 796                        "(broken BIOS?)\n",
 797                        PCI_VENDOR_ID_INTEL,
 798                        PCI_DEVICE_ID_INTEL_5400_FBD1);
 799                goto error;
 800        }
 801
 802        return 0;
 803
 804error:
 805        i5400_put_devices(mci);
 806        return -ENODEV;
 807}
 808
 809/*
 810 *      determine_amb_present
 811 *
 812 *              the information is contained in NUM_MTRS_PER_BRANCH different
 813 *              registers determining which of the NUM_MTRS_PER_BRANCH requires
 814 *              knowing which channel is in question
 815 *
 816 *      2 branches, each with 2 channels
 817 *              b0_ambpresent0 for channel '0'
 818 *              b0_ambpresent1 for channel '1'
 819 *              b1_ambpresent0 for channel '2'
 820 *              b1_ambpresent1 for channel '3'
 821 */
 822static int determine_amb_present_reg(struct i5400_pvt *pvt, int channel)
 823{
 824        int amb_present;
 825
 826        if (channel < CHANNELS_PER_BRANCH) {
 827                if (channel & 0x1)
 828                        amb_present = pvt->b0_ambpresent1;
 829                else
 830                        amb_present = pvt->b0_ambpresent0;
 831        } else {
 832                if (channel & 0x1)
 833                        amb_present = pvt->b1_ambpresent1;
 834                else
 835                        amb_present = pvt->b1_ambpresent0;
 836        }
 837
 838        return amb_present;
 839}
 840
 841/*
 842 * determine_mtr(pvt, csrow, channel)
 843 *
 844 * return the proper MTR register as determine by the csrow and desired channel
 845 */
 846static int determine_mtr(struct i5400_pvt *pvt, int csrow, int channel)
 847{
 848        int mtr;
 849        int n;
 850
 851        /* There is one MTR for each slot pair of FB-DIMMs,
 852           Each slot may have one or two ranks (2 csrows),
 853           Each slot pair may be at branch 0 or branch 1.
 854           So, csrow should be divided by eight
 855         */
 856        n = csrow >> 3;
 857
 858        if (n >= NUM_MTRS_PER_BRANCH) {
 859                debugf0("ERROR: trying to access an invalid csrow: %d\n",
 860                        csrow);
 861                return 0;
 862        }
 863
 864        if (channel < CHANNELS_PER_BRANCH)
 865                mtr = pvt->b0_mtr[n];
 866        else
 867                mtr = pvt->b1_mtr[n];
 868
 869        return mtr;
 870}
 871
 872/*
 873 */
 874static void decode_mtr(int slot_row, u16 mtr)
 875{
 876        int ans;
 877
 878        ans = MTR_DIMMS_PRESENT(mtr);
 879
 880        debugf2("\tMTR%d=0x%x:  DIMMs are %s\n", slot_row, mtr,
 881                ans ? "Present" : "NOT Present");
 882        if (!ans)
 883                return;
 884
 885        debugf2("\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
 886
 887        debugf2("\t\tELECTRICAL THROTTLING is %s\n",
 888                MTR_DIMMS_ETHROTTLE(mtr) ? "enabled" : "disabled");
 889
 890        debugf2("\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
 891        debugf2("\t\tNUMRANK: %s\n", MTR_DIMM_RANK(mtr) ? "double" : "single");
 892        debugf2("\t\tNUMROW: %s\n", numrow_toString[MTR_DIMM_ROWS(mtr)]);
 893        debugf2("\t\tNUMCOL: %s\n", numcol_toString[MTR_DIMM_COLS(mtr)]);
 894}
 895
 896static void handle_channel(struct i5400_pvt *pvt, int csrow, int channel,
 897                        struct i5400_dimm_info *dinfo)
 898{
 899        int mtr;
 900        int amb_present_reg;
 901        int addrBits;
 902
 903        mtr = determine_mtr(pvt, csrow, channel);
 904        if (MTR_DIMMS_PRESENT(mtr)) {
 905                amb_present_reg = determine_amb_present_reg(pvt, channel);
 906
 907                /* Determine if there is a DIMM present in this DIMM slot */
 908                if (amb_present_reg & (1 << (csrow >> 1))) {
 909                        dinfo->dual_rank = MTR_DIMM_RANK(mtr);
 910
 911                        if (!((dinfo->dual_rank == 0) &&
 912                                ((csrow & 0x1) == 0x1))) {
 913                                /* Start with the number of bits for a Bank
 914                                 * on the DRAM */
 915                                addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
 916                                /* Add thenumber of ROW bits */
 917                                addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
 918                                /* add the number of COLUMN bits */
 919                                addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
 920
 921                                addrBits += 6;  /* add 64 bits per DIMM */
 922                                addrBits -= 20; /* divide by 2^^20 */
 923                                addrBits -= 3;  /* 8 bits per bytes */
 924
 925                                dinfo->megabytes = 1 << addrBits;
 926                        }
 927                }
 928        }
 929}
 930
 931/*
 932 *      calculate_dimm_size
 933 *
 934 *      also will output a DIMM matrix map, if debug is enabled, for viewing
 935 *      how the DIMMs are populated
 936 */
 937static void calculate_dimm_size(struct i5400_pvt *pvt)
 938{
 939        struct i5400_dimm_info *dinfo;
 940        int csrow, max_csrows;
 941        char *p, *mem_buffer;
 942        int space, n;
 943        int channel;
 944
 945        /* ================= Generate some debug output ================= */
 946        space = PAGE_SIZE;
 947        mem_buffer = p = kmalloc(space, GFP_KERNEL);
 948        if (p == NULL) {
 949                i5400_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
 950                        __FILE__, __func__);
 951                return;
 952        }
 953
 954        /* Scan all the actual CSROWS (which is # of DIMMS * 2)
 955         * and calculate the information for each DIMM
 956         * Start with the highest csrow first, to display it first
 957         * and work toward the 0th csrow
 958         */
 959        max_csrows = pvt->maxdimmperch * 2;
 960        for (csrow = max_csrows - 1; csrow >= 0; csrow--) {
 961
 962                /* on an odd csrow, first output a 'boundary' marker,
 963                 * then reset the message buffer  */
 964                if (csrow & 0x1) {
 965                        n = snprintf(p, space, "---------------------------"
 966                                        "--------------------------------");
 967                        p += n;
 968                        space -= n;
 969                        debugf2("%s\n", mem_buffer);
 970                        p = mem_buffer;
 971                        space = PAGE_SIZE;
 972                }
 973                n = snprintf(p, space, "csrow %2d    ", csrow);
 974                p += n;
 975                space -= n;
 976
 977                for (channel = 0; channel < pvt->maxch; channel++) {
 978                        dinfo = &pvt->dimm_info[csrow][channel];
 979                        handle_channel(pvt, csrow, channel, dinfo);
 980                        n = snprintf(p, space, "%4d MB   | ", dinfo->megabytes);
 981                        p += n;
 982                        space -= n;
 983                }
 984                debugf2("%s\n", mem_buffer);
 985                p = mem_buffer;
 986                space = PAGE_SIZE;
 987        }
 988
 989        /* Output the last bottom 'boundary' marker */
 990        n = snprintf(p, space, "---------------------------"
 991                        "--------------------------------");
 992        p += n;
 993        space -= n;
 994        debugf2("%s\n", mem_buffer);
 995        p = mem_buffer;
 996        space = PAGE_SIZE;
 997
 998        /* now output the 'channel' labels */
 999        n = snprintf(p, space, "            ");
1000        p += n;
1001        space -= n;
1002        for (channel = 0; channel < pvt->maxch; channel++) {
1003                n = snprintf(p, space, "channel %d | ", channel);
1004                p += n;
1005                space -= n;
1006        }
1007
1008        /* output the last message and free buffer */
1009        debugf2("%s\n", mem_buffer);
1010        kfree(mem_buffer);
1011}
1012
1013/*
1014 *      i5400_get_mc_regs       read in the necessary registers and
1015 *                              cache locally
1016 *
1017 *                      Fills in the private data members
1018 */
1019static void i5400_get_mc_regs(struct mem_ctl_info *mci)
1020{
1021        struct i5400_pvt *pvt;
1022        u32 actual_tolm;
1023        u16 limit;
1024        int slot_row;
1025        int maxch;
1026        int maxdimmperch;
1027        int way0, way1;
1028
1029        pvt = mci->pvt_info;
1030
1031        pci_read_config_dword(pvt->system_address, AMBASE,
1032                        (u32 *) &pvt->ambase);
1033        pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
1034                        ((u32 *) &pvt->ambase) + sizeof(u32));
1035
1036        maxdimmperch = pvt->maxdimmperch;
1037        maxch = pvt->maxch;
1038
1039        debugf2("AMBASE= 0x%lx  MAXCH= %d  MAX-DIMM-Per-CH= %d\n",
1040                (long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
1041
1042        /* Get the Branch Map regs */
1043        pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
1044        pvt->tolm >>= 12;
1045        debugf2("\nTOLM (number of 256M regions) =%u (0x%x)\n", pvt->tolm,
1046                pvt->tolm);
1047
1048        actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28));
1049        debugf2("Actual TOLM byte addr=%u.%03u GB (0x%x)\n",
1050                actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28);
1051
1052        pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
1053        pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
1054
1055        /* Get the MIR[0-1] regs */
1056        limit = (pvt->mir0 >> 4) & 0x0fff;
1057        way0 = pvt->mir0 & 0x1;
1058        way1 = pvt->mir0 & 0x2;
1059        debugf2("MIR0: limit= 0x%x  WAY1= %u  WAY0= %x\n", limit, way1, way0);
1060        limit = (pvt->mir1 >> 4) & 0xfff;
1061        way0 = pvt->mir1 & 0x1;
1062        way1 = pvt->mir1 & 0x2;
1063        debugf2("MIR1: limit= 0x%x  WAY1= %u  WAY0= %x\n", limit, way1, way0);
1064
1065        /* Get the set of MTR[0-3] regs by each branch */
1066        for (slot_row = 0; slot_row < NUM_MTRS_PER_BRANCH; slot_row++) {
1067                int where = MTR0 + (slot_row * sizeof(u32));
1068
1069                /* Branch 0 set of MTR registers */
1070                pci_read_config_word(pvt->branch_0, where,
1071                                &pvt->b0_mtr[slot_row]);
1072
1073                debugf2("MTR%d where=0x%x B0 value=0x%x\n", slot_row, where,
1074                        pvt->b0_mtr[slot_row]);
1075
1076                if (pvt->maxch < CHANNELS_PER_BRANCH) {
1077                        pvt->b1_mtr[slot_row] = 0;
1078                        continue;
1079                }
1080
1081                /* Branch 1 set of MTR registers */
1082                pci_read_config_word(pvt->branch_1, where,
1083                                &pvt->b1_mtr[slot_row]);
1084                debugf2("MTR%d where=0x%x B1 value=0x%x\n", slot_row, where,
1085                        pvt->b1_mtr[slot_row]);
1086        }
1087
1088        /* Read and dump branch 0's MTRs */
1089        debugf2("\nMemory Technology Registers:\n");
1090        debugf2("   Branch 0:\n");
1091        for (slot_row = 0; slot_row < NUM_MTRS_PER_BRANCH; slot_row++)
1092                decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
1093
1094        pci_read_config_word(pvt->branch_0, AMBPRESENT_0,
1095                        &pvt->b0_ambpresent0);
1096        debugf2("\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
1097        pci_read_config_word(pvt->branch_0, AMBPRESENT_1,
1098                        &pvt->b0_ambpresent1);
1099        debugf2("\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);
1100
1101        /* Only if we have 2 branchs (4 channels) */
1102        if (pvt->maxch < CHANNELS_PER_BRANCH) {
1103                pvt->b1_ambpresent0 = 0;
1104                pvt->b1_ambpresent1 = 0;
1105        } else {
1106                /* Read and dump  branch 1's MTRs */
1107                debugf2("   Branch 1:\n");
1108                for (slot_row = 0; slot_row < NUM_MTRS_PER_BRANCH; slot_row++)
1109                        decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
1110
1111                pci_read_config_word(pvt->branch_1, AMBPRESENT_0,
1112                                &pvt->b1_ambpresent0);
1113                debugf2("\t\tAMB-Branch 1-present0 0x%x:\n",
1114                        pvt->b1_ambpresent0);
1115                pci_read_config_word(pvt->branch_1, AMBPRESENT_1,
1116                                &pvt->b1_ambpresent1);
1117                debugf2("\t\tAMB-Branch 1-present1 0x%x:\n",
1118                        pvt->b1_ambpresent1);
1119        }
1120
1121        /* Go and determine the size of each DIMM and place in an
1122         * orderly matrix */
1123        calculate_dimm_size(pvt);
1124}
1125
1126/*
1127 *      i5400_init_csrows       Initialize the 'csrows' table within
1128 *                              the mci control structure with the
1129 *                              addressing of memory.
1130 *
1131 *      return:
1132 *              0       success
1133 *              1       no actual memory found on this MC
1134 */
1135static int i5400_init_csrows(struct mem_ctl_info *mci)
1136{
1137        struct i5400_pvt *pvt;
1138        struct csrow_info *p_csrow;
1139        int empty, channel_count;
1140        int max_csrows;
1141        int mtr;
1142        int csrow_megs;
1143        int channel;
1144        int csrow;
1145
1146        pvt = mci->pvt_info;
1147
1148        channel_count = pvt->maxch;
1149        max_csrows = pvt->maxdimmperch * 2;
1150
1151        empty = 1;              /* Assume NO memory */
1152
1153        for (csrow = 0; csrow < max_csrows; csrow++) {
1154                p_csrow = &mci->csrows[csrow];
1155
1156                p_csrow->csrow_idx = csrow;
1157
1158                /* use branch 0 for the basis */
1159                mtr = determine_mtr(pvt, csrow, 0);
1160
1161                /* if no DIMMS on this row, continue */
1162                if (!MTR_DIMMS_PRESENT(mtr))
1163                        continue;
1164
1165                /* FAKE OUT VALUES, FIXME */
1166                p_csrow->first_page = 0 + csrow * 20;
1167                p_csrow->last_page = 9 + csrow * 20;
1168                p_csrow->page_mask = 0xFFF;
1169
1170                p_csrow->grain = 8;
1171
1172                csrow_megs = 0;
1173                for (channel = 0; channel < pvt->maxch; channel++)
1174                        csrow_megs += pvt->dimm_info[csrow][channel].megabytes;
1175
1176                p_csrow->nr_pages = csrow_megs << 8;
1177
1178                /* Assume DDR2 for now */
1179                p_csrow->mtype = MEM_FB_DDR2;
1180
1181                /* ask what device type on this row */
1182                if (MTR_DRAM_WIDTH(mtr))
1183                        p_csrow->dtype = DEV_X8;
1184                else
1185                        p_csrow->dtype = DEV_X4;
1186
1187                p_csrow->edac_mode = EDAC_S8ECD8ED;
1188
1189                empty = 0;
1190        }
1191
1192        return empty;
1193}
1194
1195/*
1196 *      i5400_enable_error_reporting
1197 *                      Turn on the memory reporting features of the hardware
1198 */
1199static void i5400_enable_error_reporting(struct mem_ctl_info *mci)
1200{
1201        struct i5400_pvt *pvt;
1202        u32 fbd_error_mask;
1203
1204        pvt = mci->pvt_info;
1205
1206        /* Read the FBD Error Mask Register */
1207        pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1208                        &fbd_error_mask);
1209
1210        /* Enable with a '0' */
1211        fbd_error_mask &= ~(ENABLE_EMASK_ALL);
1212
1213        pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1214                        fbd_error_mask);
1215}
1216
1217/*
1218 * i5400_get_dimm_and_channel_counts(pdev, &num_csrows, &num_channels)
1219 *
1220 *      ask the device how many channels are present and how many CSROWS
1221 *       as well
1222 */
1223static void i5400_get_dimm_and_channel_counts(struct pci_dev *pdev,
1224                                        int *num_dimms_per_channel,
1225                                        int *num_channels)
1226{
1227        u8 value;
1228
1229        /* Need to retrieve just how many channels and dimms per channel are
1230         * supported on this memory controller
1231         */
1232        pci_read_config_byte(pdev, MAXDIMMPERCH, &value);
1233        *num_dimms_per_channel = (int)value * 2;
1234
1235        pci_read_config_byte(pdev, MAXCH, &value);
1236        *num_channels = (int)value;
1237}
1238
1239/*
1240 *      i5400_probe1    Probe for ONE instance of device to see if it is
1241 *                      present.
1242 *      return:
1243 *              0 for FOUND a device
1244 *              < 0 for error code
1245 */
1246static int i5400_probe1(struct pci_dev *pdev, int dev_idx)
1247{
1248        struct mem_ctl_info *mci;
1249        struct i5400_pvt *pvt;
1250        int num_channels;
1251        int num_dimms_per_channel;
1252        int num_csrows;
1253
1254        if (dev_idx >= ARRAY_SIZE(i5400_devs))
1255                return -EINVAL;
1256
1257        debugf0("MC: " __FILE__ ": %s(), pdev bus %u dev=0x%x fn=0x%x\n",
1258                __func__,
1259                pdev->bus->number,
1260                PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1261
1262        /* We only are looking for func 0 of the set */
1263        if (PCI_FUNC(pdev->devfn) != 0)
1264                return -ENODEV;
1265
1266        /* Ask the devices for the number of CSROWS and CHANNELS so
1267         * that we can calculate the memory resources, etc
1268         *
1269         * The Chipset will report what it can handle which will be greater
1270         * or equal to what the motherboard manufacturer will implement.
1271         *
1272         * As we don't have a motherboard identification routine to determine
1273         * actual number of slots/dimms per channel, we thus utilize the
1274         * resource as specified by the chipset. Thus, we might have
1275         * have more DIMMs per channel than actually on the mobo, but this
1276         * allows the driver to support upto the chipset max, without
1277         * some fancy mobo determination.
1278         */
1279        i5400_get_dimm_and_channel_counts(pdev, &num_dimms_per_channel,
1280                                        &num_channels);
1281        num_csrows = num_dimms_per_channel * 2;
1282
1283        debugf0("MC: %s(): Number of - Channels= %d  DIMMS= %d  CSROWS= %d\n",
1284                __func__, num_channels, num_dimms_per_channel, num_csrows);
1285
1286        /* allocate a new MC control structure */
1287        mci = edac_mc_alloc(sizeof(*pvt), num_csrows, num_channels, 0);
1288
1289        if (mci == NULL)
1290                return -ENOMEM;
1291
1292        debugf0("MC: " __FILE__ ": %s(): mci = %p\n", __func__, mci);
1293
1294        mci->dev = &pdev->dev;  /* record ptr  to the generic device */
1295
1296        pvt = mci->pvt_info;
1297        pvt->system_address = pdev;     /* Record this device in our private */
1298        pvt->maxch = num_channels;
1299        pvt->maxdimmperch = num_dimms_per_channel;
1300
1301        /* 'get' the pci devices we want to reserve for our use */
1302        if (i5400_get_devices(mci, dev_idx))
1303                goto fail0;
1304
1305        /* Time to get serious */
1306        i5400_get_mc_regs(mci); /* retrieve the hardware registers */
1307
1308        mci->mc_idx = 0;
1309        mci->mtype_cap = MEM_FLAG_FB_DDR2;
1310        mci->edac_ctl_cap = EDAC_FLAG_NONE;
1311        mci->edac_cap = EDAC_FLAG_NONE;
1312        mci->mod_name = "i5400_edac.c";
1313        mci->mod_ver = I5400_REVISION;
1314        mci->ctl_name = i5400_devs[dev_idx].ctl_name;
1315        mci->dev_name = pci_name(pdev);
1316        mci->ctl_page_to_phys = NULL;
1317
1318        /* Set the function pointer to an actual operation function */
1319        mci->edac_check = i5400_check_error;
1320
1321        /* initialize the MC control structure 'csrows' table
1322         * with the mapping and control information */
1323        if (i5400_init_csrows(mci)) {
1324                debugf0("MC: Setting mci->edac_cap to EDAC_FLAG_NONE\n"
1325                        "    because i5400_init_csrows() returned nonzero "
1326                        "value\n");
1327                mci->edac_cap = EDAC_FLAG_NONE; /* no csrows found */
1328        } else {
1329                debugf1("MC: Enable error reporting now\n");
1330                i5400_enable_error_reporting(mci);
1331        }
1332
1333        /* add this new MC control structure to EDAC's list of MCs */
1334        if (edac_mc_add_mc(mci)) {
1335                debugf0("MC: " __FILE__
1336                        ": %s(): failed edac_mc_add_mc()\n", __func__);
1337                /* FIXME: perhaps some code should go here that disables error
1338                 * reporting if we just enabled it
1339                 */
1340                goto fail1;
1341        }
1342
1343        i5400_clear_error(mci);
1344
1345        /* allocating generic PCI control info */
1346        i5400_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
1347        if (!i5400_pci) {
1348                printk(KERN_WARNING
1349                        "%s(): Unable to create PCI control\n",
1350                        __func__);
1351                printk(KERN_WARNING
1352                        "%s(): PCI error report via EDAC not setup\n",
1353                        __func__);
1354        }
1355
1356        return 0;
1357
1358        /* Error exit unwinding stack */
1359fail1:
1360
1361        i5400_put_devices(mci);
1362
1363fail0:
1364        edac_mc_free(mci);
1365        return -ENODEV;
1366}
1367
1368/*
1369 *      i5400_init_one  constructor for one instance of device
1370 *
1371 *      returns:
1372 *              negative on error
1373 *              count (>= 0)
1374 */
1375static int __devinit i5400_init_one(struct pci_dev *pdev,
1376                                const struct pci_device_id *id)
1377{
1378        int rc;
1379
1380        debugf0("MC: " __FILE__ ": %s()\n", __func__);
1381
1382        /* wake up device */
1383        rc = pci_enable_device(pdev);
1384        if (rc == -EIO)
1385                return rc;
1386
1387        /* now probe and enable the device */
1388        return i5400_probe1(pdev, id->driver_data);
1389}
1390
1391/*
1392 *      i5400_remove_one        destructor for one instance of device
1393 *
1394 */
1395static void __devexit i5400_remove_one(struct pci_dev *pdev)
1396{
1397        struct mem_ctl_info *mci;
1398
1399        debugf0(__FILE__ ": %s()\n", __func__);
1400
1401        if (i5400_pci)
1402                edac_pci_release_generic_ctl(i5400_pci);
1403
1404        mci = edac_mc_del_mc(&pdev->dev);
1405        if (!mci)
1406                return;
1407
1408        /* retrieve references to resources, and free those resources */
1409        i5400_put_devices(mci);
1410
1411        edac_mc_free(mci);
1412}
1413
1414/*
1415 *      pci_device_id   table for which devices we are looking for
1416 *
1417 *      The "E500P" device is the first device supported.
1418 */
1419static const struct pci_device_id i5400_pci_tbl[] __devinitdata = {
1420        {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_ERR)},
1421        {0,}                    /* 0 terminated list. */
1422};
1423
1424MODULE_DEVICE_TABLE(pci, i5400_pci_tbl);
1425
1426/*
1427 *      i5400_driver    pci_driver structure for this module
1428 *
1429 */
1430static struct pci_driver i5400_driver = {
1431        .name = "i5400_edac",
1432        .probe = i5400_init_one,
1433        .remove = __devexit_p(i5400_remove_one),
1434        .id_table = i5400_pci_tbl,
1435};
1436
1437/*
1438 *      i5400_init              Module entry function
1439 *                      Try to initialize this module for its devices
1440 */
1441static int __init i5400_init(void)
1442{
1443        int pci_rc;
1444
1445        debugf2("MC: " __FILE__ ": %s()\n", __func__);
1446
1447        /* Ensure that the OPSTATE is set correctly for POLL or NMI */
1448        opstate_init();
1449
1450        pci_rc = pci_register_driver(&i5400_driver);
1451
1452        return (pci_rc < 0) ? pci_rc : 0;
1453}
1454
1455/*
1456 *      i5400_exit()    Module exit function
1457 *                      Unregister the driver
1458 */
1459static void __exit i5400_exit(void)
1460{
1461        debugf2("MC: " __FILE__ ": %s()\n", __func__);
1462        pci_unregister_driver(&i5400_driver);
1463}
1464
1465module_init(i5400_init);
1466module_exit(i5400_exit);
1467
1468MODULE_LICENSE("GPL");
1469MODULE_AUTHOR("Ben Woodard <woodard@redhat.com>");
1470MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
1471MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
1472MODULE_DESCRIPTION("MC Driver for Intel I5400 memory controllers - "
1473                   I5400_REVISION);
1474
1475module_param(edac_op_state, int, 0444);
1476MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1477